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Abstract 

This study investigated the performance of several metrics used to evaluate spectral stability 
in vowels. Four metrics suggested in the literature and a newly developed one were tested and 
compared to the traditional method of associating the spectrally stable portion with the middle 
of the vowel. First, synthetic stimuli whose spectrally stable portion had been defined in 
advance were used to evaluate the potential of the different metrics to capture spectral 
stability. Second, the output of the different metrics on the acoustic measurements obtained in 
the vowel portions identified as spectrally stable was compared on both synthesized and 
natural speech. It is clear that higher-dimensional features are needed to capture spectral 
stability and that the best-performing metrics yield acoustic measurements that are similar to 
those obtained in the middle of the vowel. This study empirically validates long-standing 
intuitions about the validity of selecting the middle section of vowels as the preferred method 
to identify the spectrally stable region in vowels. 

 

Keywords: Spectral analysis, Methodology, Vowel target, Feature-selection, Speech 
synthesis 



 

 

1. Introduction  

Speech sounds are categorized by speakers into discrete units which support communication 
and many investigations of speech aim to measure the acoustic characteristics of those units. 
For practical reasons, the dynamics of vowels have often been reduced to a single 
measurement per vowel which is considered representative for the whole vowel even if the 
discrete linguistic units are mapped onto a continuous acoustic signal. However, that task is 
anything but trivial. In fact, selecting a specific measurement point inevitably influences the 
characterization of the vowel to some extent by phenomena such as co- articulation (e.g. 
Kühnert and Nolan, 1999; Farnetani and Recasens, 2010; Embarki and Dodane, 2011).  

Selecting a measurement point which is minimally influenced by the phonetic context 
is thus not a trivial task and it involves identifying the spectrally most stable portion,1 which 
in earlier studies was done by visual inspection of spectrograms. However, with phonetics 
resorting to ever larger databases, there is a need for automating this process. To this end, 
several metrics have been suggested in the literature to evaluate spectral stability of vowels 
automatically. These metrics can be broadly classified into two types (Evanini, 2009: 5), i.e. a 
distinction can be made between time-defined and feature-defined methods. The former are 
based on the analysis of the time dimension, while the latter rely on the examination of 
acoustic features. Furthermore, feature-defined methods can be vowel-independent or vowel-
dependent, i.e. the acoustic features are specific to the type of vowel involved.  

These approaches have advantages and disadvantages and it is of interest to assess the 
different techniques available to identify the spectrally stable portion of vowels. In the 
remainder of this paper, this task will be referred to as Identification of Maximal Spectral 
Stability (IMSS). To the best of our knowledge, only Evanini (2009) has compared different 
methods for IMSS. Evanini (2009: 66) suggests that feature-defined methods such as those of 
Lennig (1978) and Labov et al. (2006) yield inferior results than time-defined methods. When 
applying time-defined methods, the spectrally stable portion of vowels is situated around the 
first quarter or third of the total vowel duration. However,  

Evanini’s (2009) evaluation has two major drawbacks. Firstly, the comparison only 
included a limited number of metrics. Secondly, it is based on the degree to which the formant 
measurements correlate with those obtained after manual selection. The problem with using 
human-made selections as a reference is that the evaluation procedure is based on the 
reliability of the reference. However, the reliability of a manual selection is difficult to assess 
because the criteria used by phoneticians are often vague and the consistency of their 
application is unknown (Van Bergem, 1988: 62).  

Therefore, a more reliable benchmark to compare the different techniques is required. 
This is precisely what this study intends to achieve.  

 
1 Please note that the phonetic context can significantly influence even the most spectrally stable portion of the 

vowel. However, one should search for the segment that is relatively less affected by the preceding and following 
phones in comparison to other parts of the vowel, such as the transitions between the vowel and its adjacent 
phones. In other words, it might be impossible to find a portion of the vowel which is not under the influence of 
its phonetic context, but the aim is to minimize such contextual effects by excluding transitional phases and 
selecting the segment with the highest spectral stability. 



 

 

2. Background  

The most intuitive approach for identifying the spectrally stable portion of an acoustic signal 
is to rely on visual inspection of sound spectrograms. However, this technique has two major 
drawbacks. Firstly, the criteria are unclear, and the consistency of their application cannot be 
assured. Secondly, the increasing size of databases available to phoneticians makes visual 
inspection nearly unfeasible. For these reasons, it has been attempted to automate this process.  

In the past, several procedures have been proposed for automatic IMSS. Perhaps the 
most widely used technique is one that selects the middle of the vowel. That technique relies 
on a commonly accepted model of the organization of articulatory transitions according to 
which a vowel phoneme can be considered as consisting of three parts: the vowel onset, a 
spectrally stable portion and the vowel offset (Lindblom and Studdert-Kennedy, 1967: 831). 
Typically, selecting the middle third of the vowel is considered a good approach. Because this 
time-defined technique is widely used in phonetic sciences, it serves as a reference for 
comparison throughout this paper and is operationalised here as the portion of the vowel 
situated at its temporal center and whose duration is equal to one-third of the total duration of 
the vowel.  

The main advantage of this technique is its ease of implementation. However, a study 
by Weismer and Berry (2003) suggests that there might be significant individual differences in 
formant dynamics which suggests that a priori selecting the center of vowels may fail to 
identify the stable portion of vowels.  

In order to deal with this, it has been attempted to develop metrics which evaluate 
spectral stability to identify the most stable portion in vowels. Several techniques have been 
proposed for this purpose, but they all rely on the same basic principle. If the acoustic signal 
is composed of successive frames, a given acoustic feature can be measured in each of them. 
Then, the extent of dissimilarity between the extracted features in the different frames is 
compared and the most dissimilar sequences of frames are excluded. The most important 
advantage of such feature-defined algorithms is that they do not rely on a priori assumptions 
about the location of the stable portion of vowels.  

For instance, Lennig (1978: 52–53) suggested a metric which selects the portion of the 
signal where “the spectrum at which the first two formants [are] changing the least quickly”. 
In other words, it computes an instability score. Based on a perceptual study by Miller (1989), 
Hillenbrand et al. (1995: 3100) suggested a similar technique to identify the spectrally most 
stable portion of a vowel by calculating the slope in log F2 - log F1. Van Bergem (1988) 
developed another metric to evaluate frame-per-frame dissimilarity consisting of the pooled 
within-variance of the log-transformed formant values in each frame. The main disadvantage 
of these techniques is that they use the stability of the formants as a proxy for the overall 
spectral stability, leading to a low-dimensional representation of spectral stability. A second 
drawback of formant-based techniques is that the identification of spectral stability relies 
exclusively on the accuracy of the formant tracking. However, it is well known that automatic 
formant tracking can often be biased (Van der Harst, 2011).  

Van Bergem (1993: 6) developed another metric which is not based on formant values 
but on mel-like scale cepstral coefficients (also called MFCC), which are regularly used in 
speech processing. Leaving aside technical details, the features used by speech processing 
applications have a number of attractive characteristics. They usually do not use a single 
acoustic feature but a combination of them, either at the level of the feature vector itself or at 
the level of acoustic probabilities (cfr. Nadeu et al., 2001: 516). The second advantage of 



 

 

speech-processing techniques is that they use features whose window of analysis is not as 
limited in frequency range as formant-based techniques.  

However, the main disadvantage of speech processing approaches to the identification 
of spectral stability is that they are designed to search for changes between phones, i.e. to 
chunk the signal into contrastive units only. In other words, they need to capture 
dissimilarities in the acoustic signal which are relevant to the human ear. Therefore, the 
spectral feature(s) need to be sensitive to ensure that the algorithm can detect a boundary 
between two phones but stable within a single segment for the algorithm not to detect 
boundaries within a single segment.  

Besides those techniques, there are also vowel-dependent techniques which use 
different features for each vowel category (e.g. Labov et al., 2006; Fletcher et al., 2015; 
Derdemezis et al., 2016, Fletcher et al., 2017; Eichhorn et al., 2018). Therefore, they require 
pre-processing in the form of transcriptions and cannot be applied to speech sounds not 
suitable for phoneme-based classification such as babbling. Vowel-dependent techniques are 
beyond the scope of the present paper.  

Overall, the present review shows that the different IMSS procedures have advantages 
and disadvantages (a more formal characterisation of the different techniques can be found in 
the appendix A). In order to further improve the IMSS, the method needs to be flexible, cover 
a wide range of frequencies and does not rely on a potentially inaccurate tracking algorithm. It 
was consequently decided to try and develop a new metric to identify the spectrally most 
stable portion of vowel sounds.  

3. A new metric  

This section introduces the Spectral Stability Score (SSS) which is a new metric to identify 
spectral stability: its basic principles are illustrated in Fig. 1. This metric operates on the idea 
that spectral stability is more accurately represented when large(r) frequency ranges are 
analysed, when few(er) transformations are applied to the acoustic signal and when no 
complex tracking algorithm is used. To meet those requirements, the present SSS uses the 
Long-Term Average Spectrum (henceforth, LTAS). The LTAS has long been used as a proper 
“long- term” spectral feature because it is considered highly invariant with respect to 
segmental influences when speech samples exceed 20–40 s (for a review, see Mennen et al., 
2010).  



 

 

 

Fig. 1. Block diagram of the IMSS procedure.   

 
However, it is important to note that it can also summarize spectral information over 

short periods of time. Specifically, it stands for the “logarithmic spectral density as a function 
of frequency, expressed in dB/Hz relative to 2 × 10–5 Pa” (Boersma and Weenink, 2021). It is 
interesting that the LTAS of a sound can be computed across the entire sampling frequency. 
This makes it possible to detect dissimilarity at higher frequencies than the algorithms which 
use formant tracking, similarly to metrics based on cepstral coefficients. Furthermore, the 
LTAS does not rely on a complex tracking algorithm: it only computes the logarithmic 
spectral density in a given frequency band averaged over time. If the sound is long enough,2 
the LTAS of any sound can be computed, unlike formant-based metrics which need an 
algorithm to detect the formants and it is well known that formant tracking is not always 
accurate, see Van der Harst (2011).  

The LTAS makes it possible to obtain an overall representation of the speech as an n-
dimensional vector which represents the logarithmic spectral density in each frequency bin 
(step (3) in Fig. 1). Therefore, it is possible to calculate the correlation between the LTAS of 
frames f and f - 1 as well as between f and f + 1 (step (4) in Fig. 1). Those values can be 
averaged to get a Spectral Stability Score which evaluates the similarity between frame f and 
the preceding and following frames, see Eq. (1) where SSSf stands for the Spectral Stability 
Score of frame f, where n is the number of frequency bins, where x is frame f, where y is 
frame f - 1 and where z is frame f + 1. In the case of the first and last frames, the correlation is 
computed with the following and preceding frames, respectively, see Eqs. (1.a) and (1.b). The 
obtained scores range between 0 and 1. A score close to 0 indicates that successive frames are 
very dissimilar and this suggests spectral instability. Scores close to 1 indicate that adjacent 
frames are very similar and suggest spectral stability. Contrary to the previously mentioned 
metrics, the SSS is a stability metric, not an instability metric. The identified frames are the 
ones which compose the longest sequence of frames whose SSS is above the kth within-vowel 
percentile of stability (step (7) in Fig. 1). 
 

 
2   Twenty ms is sufficient for frequency bands of 100 Hz in PRAAT (Boersma and Weesnink, 2021). 
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A potential limitation of this metric is that absolute silence is characterized by a perfect SSS. 
Therefore, the algorithm is implemented such that it identifies a portion of the acoustic signal 
only if it contains an intensity peak (steps (9–11) in Fig. 1). Duckworth et al. (2011: 40) 
recommend that measurements are made in a stable portion and around the intensity peak. 
However, Kent and Vorperian (2018: 77) suggest that the intensity peak does not match the 
spectrally most stable part of the vowel in some cases. As far as the intensity tracking is 
concerned, the standard parameters of PRAAT are used.3 If intensity tracking cannot be 
applied, the longest sequence of frames whose SSS is above certain level of spectral stability 
is selected, not considering intensity.  

4. The present work  

The main aim of this paper is the experimental investigation of two methodological questions.  
The first experiment investigates whether previously proposed spectral stability 

metrics differ in their ability to identify the a priori determined spectrally stable portion of 
synthesized vowels and how their efficiency compares to the conventional assumption that the 
spectrally stable portion is situated around the temporal center of a vowel. This was tested on 
a corpus of synthetic stimuli.  

The second experiment investigates whether the metrics have an effect on acoustic 
measurements typically made by phoneticians – such as F0, F1 or F2 – by applying spectral 
stability metrics to the same corpus of synthesized speech.  

The third experiment consists of the same analysis as the second experiment, but the 
analysis is carried out on a corpus of child speech that was elicited by means of a (non)word 
repetition task.  

 
3 Since the tracking of intensity requires that the physical duration of the sound be at least 6.4 divided by the 

minimum pitch, 100 Hz in our case, the intensity of the sounds whose duration is shorter than 0.064 s cannot be 
computed. 



 

 

5. Experiment I - synthetic stimuli  

Experiment I investigates the ability of 5 metrics to identify the spectrally stable portion of 
synthetic vowels whose spectrally stable portion had been experimentally varied. Their results 
were compared to the traditional assumption that the spectrally stable portion of a vowel is 
situated around a vowel’s temporal midpoint.  

5.1. Material and methods  

In order to assess how well different metrics perform to identify the spectrally stable portion 
of vowel sounds, a range of synthetic speech stimuli were created in which spectral stability 
was carefully controlled. For this purpose, PRAAT’s articulatory speech synthesis software 
was used (Boersma, 1998). This synthesizer can generate speech sounds by specifying the 
activity of 29 articulators by values ranging from -1 to +1. As such, the activity of the 
different articulators is modulated to create the shape of the pharyngeal, oral, and nasal tracts 
as well as the laryngeal and pulmonary activity. This synthesizer can also produce sequences 
of speech sounds by linearly interpolating the articulator activity values between two 
articulatory targets specified at two different timepoints (Boersma, 1998: 62).  

In order to synthesize speech-like CVC sequences, the activity of the different 
articulators has to be specified at multiple timepoints throughout the sequence, i.e. each 
segment and each transition between segments is created by specifying the timepoints at 
which the articulators reach and depart from their targets. Consequently, the synthesis of a 
vowel can be designed so that all articulators have reached their target for the vowel and do 
not depart from it between two a priori determined timepoints. It means that none of the 
articulatory parameters varies between those two points, and it can therefore be assumed that 
this portion of the signal has the greatest possible stability within the synthetic CVC sequence. 
As such, the duration of the spectrally stable portion can be controlled. For maximizing the 
variability within the stimulus set, the duration of the spectrally stable portion of the vowels 
was generated randomly within certain pre-defined limits (see Section 5.1.1.). Similarly, the 
position of that stable portion, i.e. whether it is situated closer to one of the two consonants or 
perfectly in the middle, was also varied randomly.  

As such, speech synthesis makes it possible to create CVC-like stimuli in which the 
duration and location of the steady-state portion of the vowel can be controlled as an 
experimental variable. It is important to emphasize that the aim of the simulation in this 
experiment is not to synthesize naturally sounding human speech, but rather to maximise the 
variation in the location and duration of the spectrally stable portion of the vowels in order to 
test how well the different metrics perform in detecting the experimentally controlled 
spectrally stable portion.  

5.1.1. Stimuli  

The stimuli for this experiment consisted of CVC-sequences in which an [a] vowel is 
preceded and followed by a single consonant from the following set [p, b, m, t, d, n, k, g, ŋ]. 
These sounds were synthesized by specifying 8 articulators of the synthesizer using the values 
given in Table 1 (a more formal characterisation can be found in the appendix B).  

For the synthesis of CVC-sequences, articulators were specified for 12 points in time. 
Fig. 2 presents the gestural score of a hypothetical articulator with the 12 points at which its 



 

 

activity is determined for the synthesis of a given CVC-sequence (a more formal 
characterisation can be found in the appendix C). Fig. 3 shows the same articulatory trajectory 
and its implications in terms of coarticulation. Overall, the stimuli met three conditions:   

 
1) Each sequence has a total duration of 350 ms;   
2) Each articulator reaches its articulatory target for C1 and C2 at given    

timepoints;   
3) The vowel has a spectrally stable portion of at least 50 ms.  

 
Each CVC-sequence was generated by one of the three standard artificial speakers provided 
by the articulatory synthesizer: (i) a male speaker, (ii) a female speaker and (iii) a child. For 
each sequence, the 12 points in time at which the activity of the articulators was specified 
were generated randomly 20 times. This procedure resulted in 4860 synthesized CVC 
sequences (9 C1×1V×9 C2×3 speakers×20 timing sequences).  

5.1.2. Evaluation of the metrics  

The present paper compares 5 spectral stability identification procedures to a baseline 
condition (mid-third portion of the vowel, i.e. the most traditional identification method). The 
spectral stability procedures are listed in Table 2.  
 

Time-defined  Mid-third IMSS 

Feature-
defined 

Vowel-independent 

Coefficient of change (cfr. Lennig, 1978) 
Slope in log F2-log F1space (cfr. Hillenbrand et al., 
1995) 
Pooled within-variance (cfr. Van Bergem, 1988) 
Cepstral coefficients (cfr. Van Bergem, 1993) 
Spectral stability score  

Vowel-dependent n/a 
 

The different IMSS procedures were compared with respect to their ’precision’ and 
’recall’. It is important that algorithms identify the relevant parts of the acoustic signal and 
exclude the irrelevant parts of it. Therefore, a score is needed which captures how well an 
algorithm classifies portions of the acoustic signal as stable or unstable. That task is very 
similar to the assessment of classifiers (e.g. Buckland and Gey, 1994) for two reasons. First, 
the amount of signal which is relevant should be maximized. The more of the relevant portion 
of the signal is selected, the better. In technical terms, it should maximize recall. Second, it 
should minimize the amount of signal, which is influenced by its phonetic environment, and 
which is thus not relevant, i.e. it should technically increase precision. Precision and recall 
can be calculated on the basis of Eqs. (2) and (3), respectively where TP stands for true 
positives (i.e. stable portion of the signal identified as stable), FP for false positives (i.e. 
unstable portion of the signal identified as stable) and FN for false negatives (i.e. stable 
portion of the signal identified as unstable). True/false positives/negatives are illustrated with 
respect to the synthesized CVC-sequence in Fig. 4.  
 
precision = TP/(TP+FP) (2) 



 

 

recall = TP/(TP+FN)   (3) 

To obtain an overall measure of the accuracy of the algorithms in terms of both recall and 
precision, the f1-score was used, which is the harmonic average of precision and recall, see 
Eq. (4). This metric was chosen because it is a single score that evaluates both the precision 
and recall of an algorithm between 0 and 1. Higher f1-scores indicate a better trade-off 
between precision and recall. A score of 0 indicates that an algorithm completely failed to 
locate the stable portion of the vowel. A score of 1 indicates that the algorithm perfectly 
detected the spectrally stable portion.4 For the analysis, the f1-scores were transformed to their 
logits. In conclusion, higher logits of f1 indicate better identification of the spectrally stable 
vowel portion.  

f1	 =  2	 ∗ 	
precision	 ∗ 	recall
precision	 + 	recall 

(2) 

5.1.3. Computational implementation of the evaluation procedure  

 
Fig. 5. Block diagram of the evaluation procedure.   

The overall evaluation procedure is summarized in Fig. 5. The metrics were coded in 
algorithms which take the form of Python scripts.5 Features were calculated by means of the 
Parselmouth API (Jadoul et al., 2018) of PRAAT (Boersma and Weenink, 2021). Each 
stimulus was segmented in overlapping frames of 20 ms with a frame rate of 5 ms. The 

 
4 A problem arises when the denominator in Eq. (4) is equal to 0 but for it to be equal to 0, both the precision and 

recall need to be equal to 0. This would mean that the algorithm has no precision and no recall. Therefore, it is 
reasonable to assign to the algorithm a very low f1 value of 1*1010.  5 The scripts are available upon simple request 
to the authors.  



 

 

algorithm then computed the (in)stability metric for each frame and selected the spectrally 
most stable frames, i.e. the frames whose stability is above a given threshold value.  

 

 

 

Phone Lungs Interarytenoid LevatorPalatini Masseter Hyoglossus UpperTongue Styloglossus OrbicularisOris 
[a] 0 0.50 1 -0.5 0.5 0 0 0 
[b] 0 0.53 1 0.5 0.0 0 0 1 
[p] 0 0.00 1 0.5 0.0 0 0 1 
[m] 0 0.53 0 0.5 0.0 0 0 1 
[d] 0 0.53 1 0.0 0.0 1 0 0 
[t] 0 0.00 1 0.0 0.0 1 0 0 
[n] 0 0.53 0 0.0 0.0 1 0 0 
[g] 0 0.53 1 0.0 0.0 0 1 0 
[k] 0 0.00 1 0.0 0.0 0 1 0 
[ŋ] 0 0.53 0 0.0 0.0 0 1 0 
Neutral 
position 

0 0.00 0 0.0 0.0 0 0 0 

Table 1. Articulatory parameters for the targets of each phone used in the simulation. The articulatory target 
specifications are adapted from Boersma (1998) and the PRAAT scripts available on its companion website. 

 

Fig. 2. Gestural score of a hypothetical articulator with the different time- points needed for 
the synthesis of the stimuli.  



 

 

 

Fig. 3. Model of coarticulation for a synthesized CVC sequence; gray: target of C reached, 
white: target of V reached, hatched: neutral position.  

In order to assess the ability of different metrics to capture spectral stability, they need to be 
compared on the same basis, i.e. the threshold should be optimized for each metric. For that 
purpose, the overall within-stimulus stability is evaluated and rescaled to 1. As such, vowel 
portions which reach at least kthpercentile of stability (for stability metrics) or which are 
below kth percentile of stability (for instability metrics) can be selected for IMSS. By making k 
vary on a continuum from 0 to 1, a maximum or minimum of variability can be allowed. As 
such, the kth percentile with which the metric leads to better IMSS can be observed. The kth 

percentile of (in)stability within-stimulus is henceforth  

 

Fig. 4. Gestural score of a hypothetical articulator; gray area: potential selection by an 
algorithm. referred to as the τ threshold.  

In other words, the algorithms select all sequences of at least 2 consecutive frames whose 
stability score is above τ or the frames whose instability score is below τ. Among all those 
potential sequences, the algorithm then selects the longest possible one.  



 

 

5.1.4. Statistical analysis  

The statistical analysis was carried out in R (Development Core Team, 2021) and the R 
package lme4 (Bates et al., 2015). The package lmerTest (Kuznetsova et al., 2015) was used to 
obtain p-values. Multilevel modelling was used to determine the potential effect of the chosen 
technique via pairwise comparisons between the IMSS on the mid-third part of the vowel and 
the IMSS by one of the feature-defined algorithms whose τ threshold had been set at a 
particular value. The dependent variable of the model is the logit of the f1-score. The fixed 
effects are the voicing of C1 and of C2, the duration of the a priori determined stable portion, 
the duration of the transition phase between the C1 constriction and the start of the stable 
portion, and the duration of the transition between the end of the stable portion and the C2 
constriction (without interaction). Besides that, C1 and C2, as well as speakers (i.e. male, 
female or child) and items (i.e. each unique combination of C1 and C2), were included as 
random intercepts.  

The duration of the transition between C1 and V was calculated as the difference 
between the earliest point at which at least one articulator starts to depart from its C1 target 
towards its V target and the moment at which all articulators have reached their V target 
divided by the length of the sound between the complete constriction of C1 and C2. The 
duration of the transition between V and C2 was calculated as the difference between the end 
of the stable portion of the vowel and the point at which the last articulator reached its C2 
target divided by the length of the sound between the complete constriction of C1 and C2.  

The voicing of C1 and C2 were also included as fixed effects in the model because it is 
expected that voiced consonants result in smoother transitions than voiceless consonants. By 
including that effect in the model, it can be taken into account how the algorithms react to 
these constraints.  

5.1.5. Threshold selection  

Prior to the final analysis, information about how the different algorithms perform according 
to the amount of variability tolerated in the selection was collected by making τ vary from a 
minimal to a maximal value. It is expected that the accuracy of an algorithm (evaluated by its 
estimate with respect to IMSS on the mid-third) might behave (curvi) linearly, according to 
the amount of (in)variability tolerated, i.e. according to the chosen τ. To reduce the 
computational cost and observe the behavior of τ values according to the different metrics, 
100 randomly selected stimuli were extracted from the full synthesized corpus. The 
algorithms were then run with different τ thresholds, ranging from 0.025 to 0.975 by steps of 
0.025 on the subset of the corpus. We aimed to select four τ values which get the best results 
in order to test the metrics on the entire corpus with those specific τ values. It was expected to 
find some relation between the τ values, i.e. the amount of variability tolerated, and the 
quality of the output of the algorithm. The observed trends were then used to test the 
algorithms with the τ which potentially provide the best results.  

If the algorithms perform best towards one or the other end of the τ continuum, the 
retained τ values are the four most extreme values towards that end. If the relation between 
the output of the algorithm and τ shapes a negative parabola, the τ value which gives the best 
results, i.e. its vertex, and the three lower surrounding τ values are retained. If the parabola 
opens upwards, the retained τ values are the two highest points as well as the preceding or 
following τ value which gets the lowest intercept. By doing so, the τ parameter which gives 



 

 

the best possible output per metric can be empirically determined and consequently, it can be 
avoided that a human decision plays a role.  

5.2. Results  

5.2.1. Selection  

For each algorithm, the retained τ values are the thresholds with which the algorithm has the 
best possible output when compared to the traditional IMSS on the mid-third. The results are 
presented in Figs. 6–10. A positive intercept indicates that the algorithm performs better in 
IMSS than the traditional IMSS on the mid-third. A negative intercept indicates that IMSS on 
the mid-third is better than the one suggested by the algorithm. If the difference between both 
IMSS techniques is significant, the intercept is indicated by a red dot. Black dots indicate that 
the difference is not significant. These values were used to run the algorithm on the full 
corpus of synthetic stimuli.  

As far as Lennig’s (1978) coefficient of change is concerned, a positive parabolic-like 
relation is observed. It probably indicates that high τ values allow for very little variability 
within the IMSS. Thus, the algorithm selects relevant portions of the acoustic signal but 
probably does not maximize the amount of relevant signal in the selection. It probably 
indicates good precision, but inferior recall. On the contrary, lower τ values probably allow 
for more variability in the selection and improve recall but might consequently select a 
portion of the acoustic signal that is not relevant. This is probably why the algorithms perform 
best at both ends of the τ value continuum, as can be seen in Fig. 6. The τ values retained for 
further investigation were: 0.05, 0.075, 0.95, 0.975.  

When it comes to the metrics of the slope in the log F2 – log F1 space, it can be seen 
in Fig. 7 that τ threshold values between 0.65 and 0.725 lead to better results. This may 
indicate that higher τ threshold values increase precision and lower values increase recall. 
Overall, intermediate values lead to better f1 scores.5 The retained τ values were 0.65, 0.675, 
0.7 and 0.725.  

With respect to the pooled within-variance of the log-transformed formant values, τ 
threshold values around 0.5 lead to better results which is clear from the parabolic-like 
relation between τ and the estimate displayed in Fig. 8. This may indicate that higher τ 
threshold values increase precision and lower τ increase recall. The retained τ values for 
further analysis were: 0.475, 0.5, 0.525, 0.55.  

When it comes to the metrics of cepstral coefficients, it is clear from Fig. 9 that higher 
τ threshold values lead to better results than lower τ values. This means that the results are 
better when less instability is accepted by the algorithm. The values which will therefore be 
retained were: 0.975, 0.95, 0.925 and 0.9.6 

As far as the SSS algorithm is concerned, Fig. 10 suggests that lower τ thresholds 
provide better accuracy of the algorithm with respect to the traditional IMSS on the mid-third. 
It indicates that the algorithm with less strict τ values or which allow for more spectral 
variability in the selection results in selections which are closer to the true spectrally stable 
portion. Overall, the algorithm does not seem to perform better than the traditional IMSS 

 
5 τ=0.825 and τ=0.875 are not represented because the models do not converge. 
6 τ=0.025 is not represented because none of the 100 stimuli could be processed with that parameter. This is 
probably the result of the very low level of accepted instability associated to this extreme τ value. 



 

 

method, except for the lowest τ value tested, i.e. 0.025, but the difference did not reach 
significance. Therefore, the four retained τ threshold values were: 0.025, 0.05, 0.075 and 0.1.  

 

 

Fig. 6. Estimate of the fixed effect of metric (coefficient of change) [reference level = Mid-
third IMSS]. Red dot: significant effect (p < 0.05); black dot: not significant effect.



 

 

 

Fig. 7. Estimate of the fixed effect of metric (slope in log F2 - log F1 space) [reference level = Mid-third 
IMSS]. Red dot: significant effect (p < 0.05); black dot: not significant effect.  

 

Fig. 8. Estimate of the fixed effect of metric (pooled within-variance) [reference level = Mid-third IMSS]. 
Red dot: significant effect (p < 0.05); black dot: not significant effect.  



 

 

5.3. Discussion pooled within-variance of the log transformed values is significant, but the effect is 
negative. This indicates that the IMSS around the middle of  

The results of this experiment indicate that the effect of the metric for the vowel performs better because it 
has a higher logit of f1-score than the coefficient of change, the slope in log F2 - log F1 space and the the 
feature-defined IMSS.  

 

Fig. 9. Estimate of the fixed effect of metric (cepstral coefficients) [reference level = Mid-third IMSS]. Red 
dot: significant effect (p < 0.05); black dot: not significant effect.  



 

 

 

Fig. 10. Estimate of the fixed effect of metric (SSS) [reference level = Mid-third IMSS]. Red dot: 
significant effect (p < 0.05); black dot: not significant effect.   

5.2.2. Full analysis  

The identification procedures based on the different metrics have been applied to the corpus of 4860 
synthetic CVC sequences, with the τ values expected to give the best results according to the threshold 
selection test. Table 3 summarizes the results of the fixed effects of the linear mixed-modelling procedure 
for each metric and each selected τ.  

The estimate of the Algorithm factor indicates whether the algorithm gives better results, i.e. higher 
logit of f1-scores than the traditional IMSS on the mid-third. Those estimates are printed in bold in Table 3. 
A positive estimate shows that using the feature-defined algorithm rather than the traditional time-defined 
algorithm increases the logit of the f1- score. A negative estimate suggests that the traditional method 
performs best. The p-values give the significance level of the effect.  

From Table 3, it is clear that the results vary largely according to the metric and the τ value used. 
One parameter, however, consistently affects the performance of all algorithms, i.e. the duration of the 
vowel. Longer vowels facilitate the identification of the spectrally stable vowel portion. A similar, but less 
consistent effect (across metrics and τ) of the transition durations 1 and 2 is also found. Longer transitions 
are less abrupt in terms of their frame-by-frame stability and the more difficult it is for the algorithm to 
detect spectrally stable portions. The output of some algorithms can also be influenced by the voicing of the 
C2. There can be a significant effect which shows that a voiced C2 is slightly easier for the algorithm to 
process. The opposite was expected because voiced consonants trigger smoother transitions. This 
unexpected pattern may result from the constriction of voiceless consonants associated with a lower amount 
of energy in the spectrum. As a result, the transition patterns of the articulators may not be reflected as 
clearly in the spectrum as in a voiced consonant in which transition patterns are more easily identified 
because of the increased energy present in the signal. However, the effect of C1 voicing is never significant.  

Concerning the metrics themselves, it can be observed that there are significant differences between 
the tested algorithms and the traditional identification of the stable portion at the center of the vowel. Most 



 

 

results indicate that the selection around the middle of the vowel outperforms the selection of a feature-
defined algorithm. This holds for the coefficient of change, the slope in log F2 - log F1 space and pooled 
within-variance metric. However, the algorithm using cepstral coefficients as a metric does not do 
significantly worse than the IMSS around the center of the vowel. The 0.975 τ value in fact gives even 
significantly better results for the feature-based algorithm than for the traditional selection. Similarly, the 
algorithm based on the SSS leads to significantly better results with all 4 selected τ values.  

Table 3. Results of the fixed effects as a function of metric and τ value.   
Algorithm and 𝜏 value Estimate SE df t-value p-value  Algorithm and 𝜏 value Estimate SE df t-value p-value 
Coefficient of change - 0.025  Coefficient of change - 0.05 
(Intercept) 0.68629 0.37386 163.06169 1.836 0.0682.  (Intercept) -0.61862 0.32886 80.69081 -1.881 0.0636. 
Voicing C1 0.04095 0.18262 6.98992 0.224 0.8290  Voicing C1 -0.08622 0.12925 6.92273 -0.667 0.5263 
Voicing C2 0.38320 0.14846 6.91653 2.581 0.0368*  Voicing C2 0.56765 0.20907 6.98569 2.715 0.0300* 
Duration stable portion 11.04906 1.76830 2564.17457 6.248 4.84e-10***  Duration stable portion 16.18396 1.50487 4361.78891 10.754 <2e-16*** 
Duration transition 1 -39.10746 1.45052 2908.43492 -26.961 <2e-16***  Duration transition 1 -29.47527 1.21671 5197.47244 -24.225 <2e-16*** 
Duration transition 2 -1.29275 1.85591 3267.65868 -0.697 0.4861  Duration transition 2 -1.28751 1.59964 5717.22484 -0.805 0.4209 
Algorithm [Mid-third IMSS] -1.58961 0.23298 347.54130 -6.823 3.98e-11***  Algorithm [Mid-third IMSS] -2.24912 0.13727 471.03038 -16.385 <2e-16*** 
Coefficient of change - 0.95  Coefficient of change - 0.975 
(Intercept) -1.9342 0.4642 23.1282 -4.167 0.000368***  (Intercept) -1.92312 0.37794 28.60736 -5.088 2.06e-05*** 
Voicing C1 -0.2499 0.4157 7.0001 -0.601 0.566759  Voicing C1 -0.07625 0.31361 7.00228 -0.243 0.815 
Voicing C2 -0.1070 0.1612 6.9808 -0.664 0.527914  Voicing C2 0.18629 0.12154 9563.09101 1.533 0.125 
Duration stable portion 29.7523 1.6961 6247.1783 17.542 <2e-16***  Duration stable portion 26.43563 1.45880 6354.51542 18.121 <2e-16*** 
Duration transition 1 -34.1396 1.3721 7281.8454 -24.882 <2e-16***  Duration transition 1 -33.25841 1.17932 7329.77693 -28.201 <2e-16*** 
Duration transition 2 16.7725 1.8508 8004.7332 9.063 <2e-16***  Duration transition 2 15.27435 1.58973 8052.54385 9.608 <2e-16*** 
Algorithm [Mid-third IMSS] -2.3797 0.1568 333.3879 -15.172 2e-16***  Algorithm [Mid-third IMSS] -0.59887 0.13776 335.56019 -4.347 1.83e-05*** 
Slope in log F2 - log F1 space - 0.65  Slope in log F2 - log F1 space - 0.675 
(Intercept) -4.7326 0.9657 11.5677 -4.901 0.000407***  (Intercept) -4.7926 0.9181 11.5514 -5.220 0.000243*** 
Voicing C1 0.7138 0.8311 7.0008 0.859 0.418820  Voicing C1 0.7608 0.7894 7.0013 0.964 0.367275 
Voicing C2 0.2195 0.3162 6.9869 0.694 0.509891  Voicing C2 0.2168 0.2727 6.9832 0.795 0.452664 
Duration stable portion 51.3916 2.0121 7478.7223 25.541 <2e-16***  Duration stable portion 51.8769 2.0064 7588.6654 25.855 <2e-16*** 
Duration transition 1 -41.0956 1.6232 8075.3380 -25.318 <2e-16***  Duration transition 1 -41.8996 1.6184 8150.6107 -25.890 <2e-16*** 
Duration transition 2 22.2936 2.1791 8587.9394 10.231 <2e-16***  Duration transition 2 23.5415 2.1722 8642.5044 10.838 <2e-16*** 
Algorithm [Mid-third IMSS] -7.8153 0.2071 548.9717 -37.738 <2e-16***  Algorithm [Mid-third IMSS] -7.7161 0.2079 579.6101 -37.119 <2e-16*** 
Slope in log F2 - log F1 space - 0.7  Slope in log F2 - log F1 space - 0.725 
(Intercept) -4.7721 0.8686 11.4954 -5.494 0.00016***  (Intercept) -4.6580 0.8177 12.4931 -5.696 8.55e-05*** 
Voicing C1 0.8107 0.7461 7.0021 1.087 0.31319  Voicing C1 0.7040 0.7129 7.0015 0.988 0.356 
Voicing C2 0.1584 0.2222 6.9781 0.713 0.49907  Voicing C2 0.2346 0.2027 6.9713 1.157 0.285 
Duration stable portion 52.3589 1.9970 7613.8713 26.219 <2e-16***  Duration stable portion 51.6113 1.9977 7457.6246 25.835 <2e-16*** 
Duration transition 1 -42.6086 1.6107 8166.2892 -26.454 <2e-16***  Duration transition 1 -42.6823 1.6118 8063.7346 -26.481 <2e-16*** 
Duration transition 2 23.5459 2.1617 8653.2565 10.892 <2e-16***  Duration transition 2 23.3664 2.1638 8578.2382 10.799 <2e-16*** 
Algorithm [Mid-third IMSS] -7.5883 0.2073 586.1858 -36.605 <2e-16***  Algorithm [Mid-third IMSS] -7.5786 0.2047 543.8825 -37.018 <2e-16*** 
Pooled within-variance 0.475  Pooled within-variance 0.5 † 
(Intercept) -2.7424 0.4256 9.9635 -6.444 7.53e-05***  (Intercept) -2.7478 0.4040 9.9346 -6.802 4.89e-05*** 
Voicing C1 -0.1919 0.1494 7.0174 -1.284 0.23982  Voicing C1 -0.1589 0.1327 9564.4283 -1.198 0.23109 
Voicing C2 0.7675 0.1735 6.9959 4.424 0.00307**  Voicing C2 0.7133 0.1408 6.9908 5.065 0.00146** 
Duration stable portion 33.8571 1.6082 6785.8019 21.053 <2e-16***  Duration stable portion 33.4369 1.6006 6749.3648 20.891 <2e-16*** 
Duration transition 1 -32.9222 1.2990 7633.3442 -25.344 <2e-16***  Duration transition 1 -32.5110 1.2928 7607.4523 -25.149 <2e-16*** 
Duration transition 2 9.7132 1.7485 8280.3093 5.555 2.86e-08***  Duration transition 2 10.0361 1.7407 8245.6061 5.765 8.44e-09*** 
Algorithm [Mid-third IMSS] -2.0465 0.1565 395.2295 -13.077 <2e-16***  Algorithm [Mid-third IMSS] -1.9136 0.1557 384.9238 -12.291 <2e-16*** 
Pooled within-variance 0.525  Pooled within-variance 0.575 
(Intercept) -2.8859 0.3738 17.2419 -7.720 5.38e-07***  (Intercept) -2.9854 0.3438 25.2424 -8.682 4.72e-09*** 
Voicing C1 -0.2316 0.1494 7.0170 -1.550 0.16491  Voicing C1 -0.2546 0.1305 9568.1126 -1.951 0.0511. 
Voicing C2 0.7431 0.1452 6.9914 5.117 0.00138**  Voicing C2 0.7545 0.1304 9566.7181 5.786 7.44e-09*** 
Duration stable portion 33.6234 1.5921 6674.8947 21.118 <2e-16***  Duration stable portion 33.1043 1.5693 6494.7343 21.094 <2e-16*** 
Duration transition 1 -31.1211 1.2861 7557.0732 -24.197 <2e-16***  Duration transition 1 -29.5468 1.2682 7434.2518 -23.298 <2e-16*** 
Duration transition 2 10.9098 1.7322 8207.6175 6.298 3.17e-10***  Duration transition 2 11.8676 1.7083 8117.4922 6.947 4.02e-12*** 
Algorithm [Mid-third IMSS] -1.8274 0.1541 374.8195 -11.860 <2e-16***  Algorithm [Mid-third IMSS] -1.6380 0.1502 351.0263 -10.906 <2e-16*** 
Cepstral coefficients - 0.9  Cepstral coefficients - 0.925 
(Intercept) -0.4422 0.3640 63.7945 -1.215 0.2290  (Intercept) -0.4415 0.3319 127.0916 -1.330 0.18584 
Voicing C1 0.1700 0.2549 6.9805 0.667 0.5261  Voicing C1 0.1765 0.1935 6.9684 0.912 0.39219 
Voicing C2 0.3704 0.1235 8814.0832 3.001 0.0027**  Voicing C2 0.3802 0.1216 8811.1290 3.128 0.00177** 
Duration stable portion 23.9209 1.5692 5144.6626 15.244 <2e-16***  Duration stable portion 22.7304 1.5405 4949.1122 14.755 <2e-16*** 
Duration transition 1 -48.8692 1.2955 5811.8946 -37.721 <2e-16***  Duration transition 1 -46.8129 1.2723 5661.4977 -36.795 <2e-16*** 
Duration transition 2 10.3963 1.6813 6392.5504 6.183 6.66e-10***  Duration transition 2 9.0615 1.6516 6243.8313 5.487 4.26e-08*** 
Algorithm [Mid-third IMSS] -0.3548 0.1440 518.9475 -2.464 0.0141*  Algorithm [Mid-third IMSS] -0.1732 0.1401 482.0791 -1.236 0.21689 
Cepstral coefficients - 0.95 †  Cepstral coefficients - 0.975 
(Intercept) -0.4095 0.3120 148.5770 -1.312 0.19138  (Intercept) -0.75285 0.29469 165.71362 -2.555 0.0115* 
Voicing C1 0.2328 0.1742 6.9764 1.336 0.22348  Voicing C1 0.08821 0.13680 6.99516 0.645 0.5396 
Voicing C2 0.3490 0.1163 8810.2721 3.001 0.00269**  Voicing C2 0.43488 0.13234 7.07073 3.286 0.0132* 
Duration stable portion 20.4515 1.4705 4835.2594 13.908 <2e-16***  Duration stable portion 20.04261 1.41276 4753.00323 14.187 <2e-16*** 
Duration transition 1 -43.5009 1.2147 5577.9263 -35.811 <2e-16***  Duration transition 1 -37.58980 1.16713 5511.85107 -32.207 <2e-16*** 
Duration transition 2 7.1854 1.5772 6157.3569 4.556 5.32e-06***  Duration transition 2 6.19361 1.51564 6089.90480 4.086 4.44e-05*** 
Algorithm [Mid-third IMSS] 0.2048 0.1328 463.0645 1.542 0.12364  Algorithm [Mid-third IMSS] 0.54407 0.12726 448.85082 4.275 2.33e-05*** 
SSS - 0.025  SSS - 0.05 
(Intercept) -0.3991 0.2621 76.9105 -1.523 0.1319  (Intercept) -0.5766 0.2759 67.1756 -2.090 0.0404* 
Voicing C1 -0.1347 0.1199 7.0058 -1.124 0.2980  Voicing C1 -0.1195 0.1375 7.0061 -0.869 0.4137 
Voicing C2 0.3703 0.1642 7.0013 2.255 0.0588.  Voicing C2 0.4821 0.1763 6.9997 2.735 0.0291* 
Duration stable portion 10.4954 1.1585 7007.1928 9.059 <2e-16***  Duration stable portion 9.9587 1.1893 6837.3385 8.373 <2e-16*** 
Duration transition 1 -23.6886 0.9343 7700.1546 -25.355 <2e-16***  Duration transition 1 -22.1793 0.9594 7579.7769 -23.118 <2e-16*** 
Duration transition 2 -1.8632 1.2572 8346.3640 -1.482 0.1384  Duration transition 2 -1.1046 1.2914 8258.4438 -0.855 0.3924 
Algorithm [Mid-third IMSS] 1.2209 0.1183 405.4763 10.317 <2e-16***  Algorithm [Mid-third IMSS] 0.9649 0.1202 378.3950 8.025 1.29e-14*** 
SSS - 0.075  SSS - 0.1 
(Intercept) -0.6403 0.2791 77.6245 -2.295 0.0245*  (Intercept) -0.8405 0.2923 68.8638 -2.876 0.005356** 
Voicing C1 -0.1730 0.1535 7.0093 -1.127 0.2970  Voicing C1 -0.1889 0.1417 7.0096 -1.333 0.224141 
Voicing C2 0.5554 0.1589 7.0022 3.495 0.0101*  Voicing C2 0.7084 0.1870 7.0012 3.788 0.006816** 
Duration stable portion 10.2381 1.2347 6634.9612 8.292 <2e-16***  Duration stable portion 10.7218 1.2757 6757.3338 8.405 <2e-16*** 
Duration transition 1 -21.2268 0.9964 7440.5098 -21.304 <2e-16***  Duration transition 1 -19.9152 1.0293 7530.6462 -19.348 <2e-16*** 
Duration transition 2 -1.9502 1.3417 8154.6348 -1.454 0.1461  Duration transition 2 -3.0988 1.3858 8221.4365 -2.236 0.025370* 
Algorithm [Mid-third IMSS] 0.6514 0.1230 350.7009 5.296 2.1e-07***  Algorithm [Mid-third IMSS] 0.4446 0.1279 368.4903 3.477 0.000567*** 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’. †:  The model does not converge with the 
“nloptwrap” optimizer, and the data is therefore modelled with the “bobyqa” optimizer.  



 

 

The metric based on cepstral coefficients was overall not significant is one τ value with which the IMSS 
procedure based on the cepstral when compared to the traditional method, which means that both 
coefficients gives statistically significant better results. Given that this techniques perform equally well: 
they capture a similarly good ratio of significant positive result is tied to that very specific τ, it is difficult to 
relevant and irrelevant portions of the speech signal. Nevertheless, there establish whether the significance 
of the result can be attributed to a parameter that would make the performance of the metric significantly 
better in general or to a τ especially suitable for the present corpus of synthesized stimuli.  

The SSS metric performs significantly better than the traditional method with all of the four tested τ. 
This indicates that using this IMSS method with those specific parameters enables better identification of 
the spectrally stable portion than the IMSS around the temporal middle region of the vowel. Thus, 
measurements obtained after applying SSS could be more reliable than those obtained via the traditional 
approach.  

6. Experiment II – synthetic stimuli  

Experiment II studies to what extent the IMSS by the different metrics correlate with the mid-third IMSS on 
the mid-third in terms of starting point, center and end point, but most importantly, in terms of standard 
acoustic measurements made by phoneticians such as F0, F1, or F2. This experiment is designed to observe 
whether the ultimate goal of the phonetician, i.e. the measurements are considerably affected by adopting 
one or another technique, despite differences in the quality of the IMSS.  

6.1. Materials and methods  

6.1.1. Stimuli  

The same data as in Experiment I were used.  

6.1.2. Acoustic analysis  

The F0, F1 and F2 of all vowels were analysed by means of a Python script on the portion of the vowel 
identified as stable by the different metrics. The measurement of F0, F1 and F2 was carried out by the 
Parselmouth API (Jadoul et al., 2018) of PRAAT (Boersma and Weenink, 2021) via its standard auto-
correlation algorithm. The pitch floor and ceiling were set to 75 and 600 Hz, respectively. The maximum 
number of candidates was set to 15, the silence threshold to 0.03, the voicing threshold to 0.45, the octave 
cost to 0.01, the octave-jump cost to 0.35, the voiced/unvoiced cost to 0.14. As far as the formant 
parameters are concerned, the maximum number of formants was set to 5, the maximum formant to 5500 
Hz, the window length to 0.025 and the pre-emphasis to 50. The F0, F1 and F2 values of each vowel were 
measured as the mean of all the measurements inside the selection determined by the different metrics. 

6.1.3. Statistical analysis  

On the one hand, it can be assessed to what extent the different algorithms correlate in terms of starting, 
middle and end points. On the other hand, it can be established whether the acoustic measurements carried 
out on the segmented audio signals differ from those obtained in the middle third portion of the vowels. To 
this end, F0, F1 and F2 in Hz were measured in each vowel. To compare the different outputs, Pearson’s 
correlation coefficients were used with a significance level set at 0.05.  

In addition to those two parameters, it is of interest to observe to what extent it is computationally 
feasible to apply the different metrics, i.e. the proportion of stimuli for which a given metric is able to 
identify a stable portion. It is essential for phoneticians to know whether an algorithm can be consistently 
applied to the majority of the analysed stimuli rather than only a small subset. This evaluation criterion, 



 

 

referred to as coverage in the remainder of this paper, is computed by dividing the number of processed 
stimuli by the total number of stimuli.  

6.2. Results  

Table 4 displays the correlation coefficients between the acoustic measurements (F0, F1 and F2) carried out 
in the spectrally stable portion of the vowels as determined by the different metrics and the same acoustic 
measurements made around the temporal center of the vowels. Table 4 also shows the correlation 
coefficients between the different metrics and the IMSS on the mid-third in terms of starting point, center 
and ending. In addition, Table 4 presents the coverage for each selected metric and τ value.  

Algorithm 𝜏 Starting point Centre End point  F0 F1 F2  Coverage r p-value r p-value r p-value  r p-value r p-value r p-value  

Coefficient of change 

0.05 0.564 < 2.22e-16 0.502 < 2.22e-16 0.578 < 2.22e-16  0.857 < 2.22e-16 0.515 < 2.22e-16 0.608 < 2.22e-16  0.724 
0.075 0.571 < 2.22e-16 0.466 < 2.22e-16 0.592 < 2.22e-16  0.855 < 2.22e-16 0.513 < 2.22e-16 0.608 < 2.22e-16  0.885 
0.95 0.444 < 2.22e-16 0.65 < 2.22e-16 0.762 < 2.22e-16  0.854 < 2.22e-16 0.56 < 2.22e-16 0.643 < 2.22e-16  0.998 
0.975 0.349 < 2.22e-16 0.784 < 2.22e-16 0.795 < 2.22e-16  0.904 < 2.22e-16 0.673 < 2.22e-16 0.762 < 2.22e-16  0.998 

Slope in log F2 – log F1 space 

0.65 0.314 < 2.22e-16 0.576 < 2.22e-16 0.413 < 2.22e-16  0.713 < 2.22e-16 0.377 < 2.22e-16 0.448 < 2.22e-16  0.998 
0.675 0.312 < 2.22e-16 0.588 < 2.22e-16 0.415 < 2.22e-16  0.713 < 2.22e-16 0.381 < 2.22e-16 0.46 < 2.22e-16  0.998 
0.7 0.321 < 2.22e-16 0.598 < 2.22e-16 0.425 < 2.22e-16  0.714 < 2.22e-16 0.398 < 2.22e-16 0.479 < 2.22e-16  0.998 

0.725 0.333 < 2.22e-16 0.604 < 2.22e-16 0.438 < 2.22e-16  0.709 < 2.22e-16 0.406 < 2.22e-16 0.486 < 2.22e-16  0.998 

Pooled within-variance 

0.475 0.544 < 2.22e-16 0.603 < 2.22e-16 0.631 < 2.22e-16  0.847 < 2.22e-16 0.475 < 2.22e-16 0.589 < 2.22e-16  0.998 
0.5 0.556 < 2.22e-16 0.594 < 2.22e-16 0.64 < 2.22e-16  0.852 < 2.22e-16 0.492 < 2.22e-16 0.591 < 2.22e-16  0.998 

0.525 0.558 < 2.22e-16 0.605 < 2.22e-16 0.644 < 2.22e-16  0.85 < 2.22e-16 0.497 < 2.22e-16 0.591 < 2.22e-16  0.998 
0.55 0.57 < 2.22e-16 0.601 < 2.22e-16 0.652 < 2.22e-16  0.855 < 2.22e-16 0.497 < 2.22e-16 0.597 < 2.22e-16  0.998 

Cepstral coefficients 

0.9 0.237 < 2.22e-16 0.731 < 2.22e-16 0.772 < 2.22e-16  0.912 < 2.22e-16 0.698 < 2.22e-16 0.727 < 2.22e-16  0.869 
0.925 0.221 < 2.22e-16 0.744 < 2.22e-16 0.783 < 2.22e-16  0.915 < 2.22e-16 0.694 < 2.22e-16 0.737 < 2.22e-16  0.869 
0.95 0.202 < 2.22e-16 0.771 < 2.22e-16 0.802 < 2.22e-16  0.916 < 2.22e-16 0.717 < 2.22e-16 0.758 < 2.22e-16  0.869 
0.975 0.161 < 2.22e-16 0.814 < 2.22e-16 0.831 < 2.22e-16  0.831 < 2.22e-16 0.733 < 2.22e-16 0.779 < 2.22e-16  0.869 

SSS 

0.025 0.459 < 2.22e-16 0.248 < 2.22e-16 0.745 < 2.22e-16  0.845 < 2.22e-16 0.615 < 2.22e-16 0.651 < 2.22e-16  0.998 
0.05 0.477 < 2.22e-16 0.194 < 2.22e-16 0.649 < 2.22e-16  0.827 < 2.22e-16 0.558 < 2.22e-16 0.614 < 2.22e-16  0.998 
0.075 0.517 < 2.22e-16 0.149 < 2.22e-16 0.615 < 2.22e-16  0.825 < 2.22e-16 0.529 < 2.22e-16 0.601 < 2.22e-16  0.998 
0.1 0.551 < 2.22e-16 0.092 7.0217e-06 0.591 < 2.22e-16  0.815 < 2.22e-16 0.506 < 2.22e-16 0.579 < 2.22e-16  0.998 

Table 4. Results of the correlation tests between the different metrics and the IMSS on the mid-third of the vowel on artificial 
stimuli in terms of location, acoustic measurements and coverage. 

In terms of coverage, most of the metrics can process almost every stimulus, i.e. more than 99% of the 
stimuli. However, the cepstral coefficients metric consistently shows lower coverage values, implying that 
only about 87% of the stimuli could be processed. Besides the IMSS based on cepstral coefficients, the 
coefficient of change also leads to lower coverage scores but only with the two lowest τ values.  

As far as the temporal correlation coefficients are concerned, the starting point, center and end point 
determined by the metric-based IMSS are all significantly correlated to the starting point, center and end 
point based on the IMSS at the temporal center of the vowel. However, there is variation in the strength of 
the correlation, with the correlation coefficients ranging from 0.161 to 0.571 in terms of starting point, from 
0.092 to 0.814 as to the center and from 0.413 to 0.831 as far as the end point is concerned. Most 
importantly, the two metrics which are less correlated to the traditional IMSS are the cepstral coefficients 
and the SSS in terms of starting point and center, respectively.  

Turning to a detailed analysis of the acoustic measurement correlation coefficients, it can be 
observed that the different metrics are more correlated to the output of the mid-third IMSS in terms of F0 
(between 0.709 and 0.916) than in terms of F1 and F2 (between 0.377 and 0.733 and between 0.448 and 
0.779, respectively). Across F0, F1 and F2, the cepstral coefficient metric consistently leads to the highest 
correlation with the IMSS on the mid-third. The second highest correlation coefficients are obtained by the 
SSS, but generally speaking, the correlation coefficients are high for each metric and τ values.  

6.3. Discussion  

In experiment II, the procedures to identify spectral stability based on different metrics were compared with 
the most traditional IMSS technique, both in terms of the temporal location of the segment of the vowel 
identified as stable and in terms of subsequent acoustic measurements (F0, F1 and F2) carried out on those 
portions of the vowel. In addition, their coverage has also been calculated.  

First of all, the most important question which interests phoneticians is whether using one technique 
or another would yield markedly different acoustic measurements compared to using the most traditional 



 

 

IMSS on the center of the vowel. In response to this question, it is crucial to signal that no significant 
disparities arise. In other words, the F0, F1 and F2 measurements are all moderately to highly correlated 
(between 0.377 and 0.943) to the same measurements carried out on the center of the vowel. Although the 
slope in the log F2 – log F1 space yields slightly lower correlation coefficients than the other metrics, the 
correlation coefficients are rather similar across metrics for F0 (between 0.862 and 0.943), F1 (between 
0.377 and 0.733) and F2 (between 0.448 and 0.779), meaning that choosing one or the other metric would 
not change to a large extent the subsequent measurements made on the portion identified as stable. This is 
especially true for F0. Most interestingly, the metrics that perform in Experiment I equally good as the 
traditional IMSS (i.e., cepstral coefficients) or even better (i.e., SSS) lead in most cases to the highest 
correlation coefficients among the different metrics.  

Turning our attention to the location of the identified stable portions, it is worth signalling that the 
correlation coefficients of the temporal time points are lower than those of the acoustic measurements. 
Since the stable portions in those stimuli were randomly generated and given that the traditional IMSS on 
the center of the vowel is not flexible between stimuli, it is expected that if an IMSS metric accurately 
captures the stable portion of the vowel, which may not be centrally located, the correlation between the 
traditional IMSS and the other metric would be lower. The results show that all metrics correlate relatively 
with the traditional IMSS, indicating some overlap between all IMSS even if the location and duration of 
the vowel was made to vary randomly. Besides that, it is worth signalling that the two metrics that perform 
best in Experiment I (i.e., that are best at detecting the stable portion of the vowel), also lead to the lowest 
correlation coefficients, at least in terms of starting point for cepstral coefficients and center for SSS. In 
other words, it shows that those two metrics are the most different ones than the traditional IMSS in the way 
they capture the stable portion of vowels, most probably when the stable portion is situated further away 
from the temporal center of the vowel.  

Regarding coverage, most techniques can easily cover a large majority of the stimuli, with over 99% 
of the stimuli handled by most of them. However, the cepstral coefficients metric only handles 87% of the 
stimuli, probably because it requires more frames for its computation than the other IMSS techniques. As to 
the lower coverage values obtained by the coefficient of change IMSS with two τ values, the reason for this 
remains unclear. Nevertheless, each metric can deal with a significant number of stimuli, at least 72%.  

In conclusion, Experiment I demonstrates that the cepstral coefficients and SSS metrics perform as 
well as or even better than the traditional IMSS in detecting stable portions in the artificial stimuli. 
Nevertheless, the findings of Experiment II show that all metric-based IMSS are correlated to the traditional 
IMSS, indicating no large difference in the identification of the stable portion, even though the differences 
were larger for the metrics which performed best in Experiment I. Most importantly, the results also show 
that the choice of IMSS has very little impact on the subsequent acoustic measurements, indicating that the 
significant differences between metrics observed in Experiment I do not translate into practically large 
enough differences for phoneticians. 7. Experiment III - real speech data  

Experiment III studies how the different metrics perform on real speech data. It addresses the 
question of whether the metrics affect the acoustic measurements which are carried out in the identified 
region of spectral stability.  

7.1. Materials and methods  

The speech data on which the metrics were tested were taken from a corpus of Belgian Dutch child speech. 
These data had been collected by means of a (non)word repetition task, which was first described in 
Verhoeven et al. (2016).  

7.1.1. Stimuli and data selection  

The database contains recordings of 36 monosyllabic (non)words which consisted of a vowel nucleus with 
one of the 12 monophthongs of Belgian Standard Dutch, i.e. [i, ʏ, ɪ, ε, ɑ, ɔ, u, yː, eː, øː, aː, oː] (Verhoeven, 



 

 

2005). Each vowel occurred in three different consonantal contexts: (i) [p_t], (ii) [l_t] and (iii) [t_r]. Sixteen 
stimuli were existing Dutch words. The 20 other items were non-words which respect the requirements of 
the Dutch phonological system.  

These (non)words had first been produced by a trained phonetician and native speaker of Standard 
Belgian Dutch. The recordings of these stimuli were played to the participating children who were asked to 
repeat the stimuli one by one. The recordings were made by means of a TASCAM DAT recorder and a 
head-mounted MicroMic II in a quiet room. The audio files were formatted to WAV-files by means of a 
TASCAM US 428 Digital Control Surface with a sampling rate of 44.1 kHz and a quantification precision 
of 16 bits per sample.  

First, children’s productions were perceptually assessed by six expert listeners to identify the vowels 
which were correct imitations of the target vowels. 7261 vowels out of 7985 were deemed correct imitations 
by the listening panel. In order to have a more between-children balanced corpus, a further selection was 
made by selecting children who produced at least 2 repetitions of the three cardinal vowels [i, aː, u] and at 
least one repetition of all vowels in whatever phonetic context. This amounted to a total of 4757 vocalic 
productions produced by 47 children.  

7.1.2. Participants  

The participating children were all Belgian Dutch-speaking born from native speakers of Belgian Standard 
Dutch. Their median chronological age was 6 years, with a minimum of 5 and a maximum of 7 years, and 
they all attended their first year of primary school. They had always lived in their region of birth before data 
collection. The normal-hearing status of the children was confirmed informally by reports from parents and 
teachers. No formal hearing test was carried out.  

7.1.3. Acoustic analysis  

All vowels were annotated by hand. The F0, F1 and F2 of all vowels were analysed by means of a Python 
script. The measurement of F0, F1 and F2 was carried out by the Parselmouth API (Jadoul et al., 2018) of 
PRAAT (Boersma and Weenink, 2021) via its standard auto-correlation algorithm. The pitch floor and 
ceiling were set to 150 and 500 Hz, respectively. The maximum number of candidates was set to 15, the 
silence threshold to 0.03, the voicing threshold to 0.45, the octave cost to 0.01, the octave-jump cost to 0.35, 
the voiced/unvoiced cost to 0.14. As far as the formant parameters are concerned, the maximum number of 
formants was set to 5, the maximum formant to 5500 Hz, the window length to 0.025 and the pre-emphasis 
to 50. The F0, F1 and F2 values of each vowel were measured as the means of all the measurements inside 
the selection determined by the different metrics.  

7.1.4. Statistical analysis  

When it comes to real speech data, two types of criteria can evaluate the output of the algorithms. On the 
one hand, it can be assessed to what extent the different algorithms correlate in terms of starting, middle and 
end points. On the other hand, it can be established whether the acoustic measurements carried out on the 
segmented audio signals differ from those obtained in the middle third portion of the vowels. To this end, 
F0, F1 and F2 in Hz were measured in each vowel. To compare the different outputs, Pearson’s correlation 
coefficients were used with a significance level set at 0.05.  

In addition to those two parameters, it is of interest to observe to what extent it is computationally 
possible to apply the different metrics on real speech stimuli, i.e. coverage.  



 

 

7.2. Results  

Table 5 surveys the correlation coefficients between the acoustic measurements carried out in the spectrally 
stable portion of the vowels as identified by the different metrics and the acoustic measurements carried out 
around the temporal center of the vowels. Table 5 also presents the correlation coefficients between the 
starting point, center and end point as identified by the different metrics and the starting point, center and 
end point of the IMSS on the mid-third. In addition, Table 5 shows the coverage for each selected metric 
and τ value. 

Algorithm 𝜏 Starting point Centre End point  F0 F1 F2  Coverage r p-value r p-value r p-value 	 r p-value r p-value r p-value  

Coefficient of change 

0.05 0.356 <2.22e-16 0.359 <2.22e-16 0.363 <2.22e-16  0.876 <2.22e-16 0.884 <2.22e-16 0.83 <2.22e-16  0.33 
0.075 0.314 <2.22e-16 0.321 <2.22e-16 0.327 <2.22e-16  0.879 <2.22e-16 0.901 <2.22e-16 0.839 <2.22e-16  0.55 
0.95 0.357 <2.22e-16 0.646 <2.22e-16 0.773 <2.22e-16  0.941 <2.22e-16 0.963 <2.22e-16 0.931 <2.22e-16  0.999 
0.975 0.232 <2.22e-16 0.696 <2.22e-16 0.837 <2.22e-16  0.952 <2.22e-16 0.973 <2.22e-16 0.942 <2.22e-16  0.999 

Slope in log F2 – log F1 space 

0.65 0.336 <2.22e-16 0.409 <2.22e-16 0.473 <2.22e-16  0.905 <2.22e-16 0.911 <2.22e-16 0.842 <2.22e-16  0.968 
0.675 0.311 <2.22e-16 0.388 <2.22e-16 0.457 <2.22e-16  0.904 <2.22e-16 0.914 <2.22e-16 0.843 <2.22e-16  0.971 
0.7 0.317 <2.22e-16 0.398 <2.22e-16 0.47 <2.22e-16  0.906 <2.22e-16 0.914 <2.22e-16 0.852 <2.22e-16  0.971 

0.725 0.314 <2.22e-16 0.4 <2.22e-16 0.475 <2.22e-16  0.907 <2.22e-16 0.919 <2.22e-16 0.854 <2.22e-16  0.971 

Pooled within-variance 

0.475 0.275 <2.22e-16 0.331 <2.22e-16 0.381 <2.22e-16  0.887 <2.22e-16 0.903 <2.22e-16 0.852 <2.22e-16  0.992 
0.5 0.257 <2.22e-16 0.316 <2.22e-16 0.369 <2.22e-16  0.889 <2.22e-16 0.907 <2.22e-16 0.853 <2.22e-16  0.995 

0.525 0.265 <2.22e-16 0.329 <2.22e-16 0.385 <2.22e-16  0.889 <2.22e-16 0.908 <2.22e-16 0.852 <2.22e-16  0.995 
0.55 0.246 <2.22e-16 0.313 <2.22e-16 0.373 <2.22e-16  0.892 <2.22e-16 0.91 <2.22e-16 0.855 <2.22e-16  0.995 

Cepstral coefficients 

0.9 0.308 <2.22e-16 0.471 <2.22e-16 0.557 <2.22e-16  0.944 <2.22e-16 0.978 <2.22e-16 0.956 <2.22e-16  0.523 
0.925 0.283 <2.22e-16 0.487 <2.22e-16 0.593 <2.22e-16  0.947 <2.22e-16 0.98 <2.22e-16 0.962 <2.22e-16  0.523 
0.95 0.223 <2.22e-16 0.504 <2.22e-16 0.638 <2.22e-16  0.953 <2.22e-16 0.981 <2.22e-16 0.969 <2.22e-16  0.523 
0.975 0.086 0.019766 0.542 <2.22e-16 0.723 <2.22e-16  0.957 <2.22e-16 0.981 <2.22e-16 0.969 <2.22e-16  0.523 

SSS 

0.025 0.274 <2.22e-16 0.519 <2.22e-16 0.575 <2.22e-16  0.94 <2.22e-16 0.968 <2.22e-16 0.942 <2.22e-16  0.999 
0.05 0.357 <2.22e-16 0.495 <2.22e-16 0.526 <2.22e-16  0.936 <2.22e-16 0.962 <2.22e-16 0.935 <2.22e-16  0.999 
0.075 0.381 <2.22e-16 0.481 <2.22e-16 0.505 <2.22e-16  0.931 <2.22e-16 0.957 <2.22e-16 0.926 <2.22e-16  0.999 
0.1 0.3999 <2.22e-16 0.472 <2.22e-16 0.489 <2.22e-16  0.93 <2.22e-16 0.954 <2.22e-16 0.921 <2.22e-16  0.999 

Table 5. Results of the correlation tests between the different metrics and the IMSS on the mid-third of the vowel on real speech 
data in terms of location, acoustic measurements and coverage. 

As far as coverage is concerned, the metric which makes it possible to process the largest number of stimuli 
is the SSS, while the cepstral coefficient metric consistently triggers one of the lowest coverages among the 
tested metrics. The pooled within-variance and the slope in log F2 - log F1 space shows excellent coverage, 
i.e. they can process more than 95% of the stimuli. The coefficient of change exhibits a relatively small 
coverage with the smaller τ values and good coverage with the higher τ values.  

It can also be seen that the correlation coefficients of the temporal time points are lower than those 
of the acoustic measurements. In other words, the effect of the different metrics is observable at the level of 
the location of the spectrally stable portion. Fig. 11 shows the distribution of the relative location of the 
center of the spectrally stable portion relative to the total duration of the vowel. As a first observation, the 
different τ thresholds do not have a large influence on the shape of the distribution per metric but it has an 
effect on the number of observations.  

The metrics used by Hillenbrand et al. (1995) and Van Bergem (1988) show a clear bi-modal 
distribution with the two peaks being situated towards the edge of the vowel. This indicates that these 
metrics tend to locate the spectrally stable part of the vowel towards the beginning or the end of the vowel. 
The distribution based on the coefficient of change (Lennig, 1978) also exhibits a bi-modal distribution 
whose peaks are more centerd. The metric using cepstral coefficients shows a bi-modal distribution, but 
most of the observations are closer to the center of the vowel. Finally, the SSS shows a right-skewed 
distribution.  

Turning to a detailed analysis of the correlation coefficients, it can be observed that the different 
metrics are more correlated to the output of the mid-third IMSS in terms of center and end point (between 
0.316 and 0.696 and between 0.327 and 0.837, respectively) than in terms of starting point (between 0.086 
and 0.399). The higher correlation in terms of starting point results from using the SSS metric, while the 
highest correlations in terms of the center and end point are obtained by the coefficient of change metric.  

Furthermore, the acoustic measurements are more strongly correlated irrespective of the metric. This 
means that feature-defined IMSS can differ to some extent from the traditional IMSS around the middle of 
the vowel, but it also means that the different IMSS procedures do not have such an effect on the 
subsequent acoustic measurements made on the identified stable portion. As far as the acoustic 
measurements are concerned, it can be observed that all metrics have very high correlation coefficients. For 



 

 

F0, F1 and F2, the metrics which consistently across τ values lead to one of the highest correlation 
coefficients are the SSS and the cepstral coefficients.  

 

Fig. 11. Distribution of the relative position of the center of the IMSS as a function of metrics and τ value.   

7.3. Discussion  

In this experiment, the procedures to identify spectral stability based on different metrics were tested on 
natural speech data. First, F0, F1 and F2 were measured in the portions of the vowels identified as 
spectrally stable by different algorithms; these measurements were compared to the measurements made in 
the middle of the vowel. The distribution of the locations of the center of the spectrally stable portions was 
also analysed in order to observe differences in the location of the spectrally stable portions according to the 
different metrics. The coverage on real speech data has also been calculated.  

The first question to be addressed relates to the potential effect of using an IMSS procedure based on 
a given metric rather than a more traditional method for selecting the stable part of the vowel. In other 
words, does the use of a specific metric for the identification of the stable portion have an impact on the 
subsequent acoustic measurements? From Table 5, it is clear that the correlation between measurements in 
all algorithms and those in the middle of the vowel is very high. This suggests that all methods provide 
measurements which genuinely represent the actual vowel target.  

Interestingly enough, the two feature-defined metrics which were best at detecting the stable portion 
of the vowel in synthesized stimuli correlate better with the IMSS on the mid-third than with the other 
metrics. That is, the results obtained by metrics which are known to provide the most reliable results 
(according to Experiment I) are very similar to those obtained by the IMSS which selects the mid-third of 



 

 

the vowel. In other words, by using the mid-third IMSS method, F0, F1 and F2 measurements are expected 
to be very close to the measurements which would be made on the spectrally stable part of the vowel if it 
were to be known.  

Turning to the location of the center of the selection, the IMSS based on the SSS shows a right-
skewed distribution. This means that this metric, which performs best at detecting the spectrally stable 
portion of a vowel, locates the center of the spectrally stable portion in the first quarter or third of the 
vowel. This finding is similar to Evanini (2009). Nevertheless, a certain number of spectrally stable sections 
are located sparsely through the rest of the vowel, especially in the vicinity of its center. The bi-modal 
distribution of the centers obtained by the IMSS based on the cepstral coefficients also seems to show that 
more observations are situated within the first half of the vowel than in the second half. Nevertheless, it can 
be seen that most of the observations are situated towards the middle of the vowel rather than towards the 
edges. On the contrary, the bi-modal distributions of the three other metrics that performed worse on 
synthesized stimuli seem to identify the center of the spectrally stable portion towards the edges. A possible 
explanation for this might be that those metrics can be sensitive to the presence of outliers in terms of frame 
instability around the center of the vowel. Another possible explanation might be that, during a potential 
long voiced occlusion, the metrics which all use formant values capture some stability in the formants value 
during the consonant-vowel transitions. The amount of stability would then be superior to the one observed 
within the middle of the vowel. Therefore, those algorithms might erroneously prefer to select portions of 
the signal situated before or after the stable portion of the vowels.  

The metric which can be applied to the largest number of stimuli is the SSS. This simple algorithm 
performs with good accuracy and can be applied to almost every vowel. Other metrics seem to perform 
quite well in terms of coverage too. Most of them can cover more than 95% of the stimuli, while the use of 
the cepstral coefficients can only handle 52% of the stimuli in this specific test. A possible explanation for 
this is that the ease of computation of the LTAS hardly ever prevents the IMSS, whereas the cepstral 
coefficient metric suggested by Van Bergem (1993) requires five frames to be used. It should be noted at 
this point that the good correlation achieved by the MFCC-based IMSS procedures are obtained on the 
stimuli which were processable, i.e. longer stimuli or stimuli with a more easily identifiable spectrally 
stable portion. Therefore, audio samples whose duration is too short cannot be processed by those 
algorithms. The relatively smaller coverage of the formant-based IMSS procedures might be the result of 
the inability of formant tracking to be carried out on some audio samples. More specifically, the coefficient 
of change with a low τ value also seems to perform worse. It is probably too restrictive in terms of 
variability tolerated and thus cannot select a sequence of at least two frames whose instability is below τ.  

8. General discussion  

In this research, even though one has to cope with the limitations of both synthesized and natural speech 
data, the adopted methodology makes it possible to observe in as controlled a setting as possible, both the 
accuracy of different IMSS techniques and their effect on subsequent acoustic measurements.  

In Experiment I, it has been shown that the metrics which prove to be better at detecting the stable 
portion of a vowel are those which use higher dimensional representations of spectra, such as the cepstral 
coefficients or the SSS. Some metrics manage to get logits of f1-scores equal to the performance of the 
traditional IMSS procedure around the center of the vowel. The cepstral coefficients metric performs 
significantly better with the most extreme τ value tested, i.e. τ = 0.975. Similarly, the SSS performs 
significantly better with the four tested τ values. On the contrary, the formant-based metrics do not reach the 
level of performance of the IMSS on the mid-third, they are even worse in most cases.  

Experiment II has shown that, although highly significant differences can be observed in the 
accuracy of the IMSS (as in Experiment I), the subsequent acoustic measurements are very similar, 
whatever metrics is used. Of particular significance to phoneticians is the finding from Experiment III, 
which demonstrates that when applying these IMSS techniques to real speech, the differences between them 



 

 

in terms of acoustic measures are even further reduced. This suggests that no substantial advantage of 
specific metrics over the traditional method was observed.  

Fig. 12 indicates that the algorithms which perform best (i.e., higher estimates) are associated with 
higher correlation coefficients. In other words, algorithms which are good at detecting the spectrally stable 
vowel portions provide acoustic measurements closer to those obtained by the traditional IMSS around the 
center of the vowel. It can also be seen that when the τ of each algorithm improves the IMSS on artificial 
stimuli, higher correlation is achieved with the measurements obtained via the traditional IMSS. That trend 
is not observable with the coefficient of change. The reason for this is still unclear. Generally speaking, it 
means that optimisation of the algorithm is likely to provide better correlations. All in all, it indicates that 
improving the IMSS will reflect in lower impact on the acoustic measurements.  

Besides the more or less equivalent performance of the metrics, its effect on the F0, F1 and F2 
measures is limited. It means that, despite using a flexible algorithm which can capture to some extent the 
stable portion of the vowel, the use of a very simple algorithm which selects the middle portion of the 
vowel produces very similar results. To put it simply, using metrics such as the SSS or cepstral coefficients 
might improve the identification of the spectrally most stable portion of the vowel compared to the 
traditional IMSS. As a result, this leads to slightly different temporal measures observed on artificial 
stimuli. However, the differences in terms of acoustic measurements (e.g. F0, F1 and F2) are practically 
small, especially on real speech data. In other words, the best fine-tuned IMSS techniques might result in a 
slight improvement of the IMSS, but they would not lead to significantly relevant differences in terms of 
acoustic measurements, with the most traditional method leading essentially to the same results.  

 

 

Fig. 12. Correlation coefficients for F0, F1 and F2 measured on real speech data as a function of the 
estimate obtained on synthetic stimuli according to the different metrics. 

8.1. Limitations and future directions  

This research shows the efficiency of different metrics to capture spectral stability and the effect of this on 
subsequent acoustic measurements. It may be useful, however, to point out some limitations due to the 
methodological choices which were made.  



 

 

Firstly, the evaluation carried out on synthetic stimuli does not indicate whether the algorithm 
performs the same way with real speech data, but the nature of real speech data prevents having a gold 
standard to evaluate the performance of the metrics. Secondly, the algorithms were tested on non-
spontaneous speech collected in carefully controlled conditions. The application of the algorithm to 
spontaneous speech with a potentially less controlled paradigm has not been tested. Thirdly, to compare the 
different metrics the same window duration (20 ms) and rate (5 ms) were used in all cases. It is not clear 
whether those settings might suit some algorithms better than others. For instance, the metric suggested by 
Van Bergem (1993) requires a larger number of frames. A very short vowel may thus be difficult to process. 
Shorter windows might be more suitable for such metrics. For each metric, an ideal trade-off between the 
time resolution and the metric resolution should be found. The adjustment of such parameters is beyond the 
scope of the present study, but further research in this area seems useful. Moreover, only rectangular 
windows were used in this first study. Some other window types might further improve the IMSS method.  

The present paper focuses on the metrics themselves, but a posteriori treatments of the metrics 
might further improve the ability of an algorithm to detect the spectrally stable portion of speech sounds. 
Therefore, further research on the use of probabilistic and deep-learning approaches from speech processing 
to detect the stable portion of vowels is suggested.  

Furthermore, this research is based on the assumption that only one measurement is used to 
characterize a vowel. However, rather than collecting one data point per vowel, it would be possible to 
collect multiple data points in the form of a time-series and to analyse the vowel as a whole by using, for 
instance, General Additive Mixed Modelling (see Wieling, 2018). The ability of GAMMs to deal with 
dynamic data makes it possible to separate between parametric terms and random smooths in order to 
separate a height effect from its (non)linear pattern. Yet, the reference value for the fixed effect of time on 
the acoustic measurements needs to be centered in order for it to be representative of the vowel. In light of 
the above, it can reasonably be assumed that centring the effect of time around the center of the vowel gives 
results representative of the vowel target.  

9. Conclusions  

This study compared and evaluated different metrics that have been used previously in research to evaluate 
spectral stability and their advantages and disadvantages were discussed in a theoretical perspective. A 
novel metric has also been developed to improve the identification of spectral stability. The reliability of the 
different metrics has been investigated experimentally.  

First, the ability of the metrics to capture spectral stability in synthetic stimuli was evaluated. All 
metrics were assessed with respect to synthesized speech stimuli whose spectrally stable part had been 
defined beforehand. This experiment showed that feature-defined metrics hardly reach the performance of 
the technique which extracts the middle portion of a vowel. The results also suggest that the larger the 
frequency range covered by the metric, the better it captures spectral stability. Secondly, the effect of the 
metrics on acoustic measurements was examined on real speech data. The results show that a metric which 
performs better gets results which are very similar to the IMSS of the mid-third.  

In short, this research provides empirical validation for accepting the middle of the vowel as stable 
is a good trade-off between ease of implementation and reliability. Other metrics such as cepstral 
coefficients or the SSS can be used in order for the IMSS to be more flexible but overall, they hardly 
achieve better results than the traditional approach. Those fine-grained IMSS techniques can differ in the 
portions of the vowel that they detect as stable, but the subsequent acoustic measurements made on the 
identified stable portions are anyway very similar to each other, whatever metric is used. Furthermore, the 
feature- defined algorithms which perform best on synthetic stimuli yield acoustic measurements which are 
the most highly correlated to the ones obtained the middle of the vowel. In this respect, it is reassuring that 
a widely-used technique provides reliable results by selecting portions of the acoustic signal which 
represent the vowels well.  
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Appendix A. Formulae

Please note that the present implementation differs to some extent from the original applications of the 
metrics because the parameters were (manually) set by the original authors to optimize the output of a 
given metric, but this would not provide a reliable basis for comparison. In fact, setting the parameters to 
improve the accuracy of a metric gives information about the level of accuracy that can be reached with 
that metric on a given test set, but it gives little objective information about the ability to evaluate spectral 
stability by the metric per se.  

1. Lennig (1978)  

It computes an instability score, that is, the coefficient of change presented in Eq. (1) where cf is the 
coefficient of change of frame f.  

𝑐! =
,-%!.-%!"#,.,-%!.-%!$#,

-%!
	+ ,-/!.-/!"#,.,-/!.-/!$#,

-/!
   (1) 

2. Hillenbrand et al. (1995)  

It consists in selecting the frames with the lowest slope in the log F2 - log F1 space as in Eq. (2) where slopef 
is the slope in log F2 - log F1 space of frame f and where sf stands for the start of frame f and ef, the end of 
frame f.  



 

 

𝑠𝑙𝑜𝑝𝑒! =	
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3. Van Bergem (1988)  
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It computes an instability score as in Eq. (3) where pvf is the pooled within-variance of the log-transformed 
formant values within frame f.  

4. Van Bergem (1993)  

It consists in the within standard deviation for the frame interval whose center is frame f as in Eq. (4) where 
N stands for the number of cepstral coefficients calculated within a frame interval, cij represents the jth 

cepstral coefficient of frame i and cj is the mean value of all the jth cepstral coefficients of the frame 
interval.  
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Appendix B. Articulatory targets specification  

The articulatory target specifications are adapted from Boersma (1998) and the PRAAT scripts available on 
its companion website. To synthesize the CVC sequences, a contraction of the lungs is synthesized by 
setting the Lung parameter to 0.2 at 0 ms and to 0.0 after 100 ms in order to generate a sufficient lung 
pressure which triggers an increase in oral pressure necessary for phonation and the production of stops 
(see Boersma, 1998: 128). This parameter is the same for all stimuli.  

To generate an [a]-like sound, vocal fold vibration is generated by setting the Interarytenoid 
parameter to 0.5. To avoid nasalization, the activity of the LevatorPalatini is set at 1.0 in order to close the 
nasal port. The pulling-down of the tongue is synthesized by means of Hyoglossus activity of 0.5. and jaw 
opening by a Masseter activity of -0.5.  

In order to synthesize [b]-like sounds, the Interarytenoid target is set to 0.53, i.e. 0.5 for voicing and 
an additional activity of 0.03 is added in order to compensate for the oral closure. The LevatorPalatini is 
also set to 1 in order to prevent air leakage through the nasal cavity. The Masseter parameter is set to 0.5 to 
lift the jaw. The OrbicularisOris activity is set to 1 to synthesize lip closure. The Hyoglossus, UpperTongue 
and Styloglossus are kept in their neutral position, i.e. 0. The synthesis of a [p]-like sound requires the same 
articulatory targets, except for the Interarytenoid target, which is set to 0. To synthesize an [m]-like sound, 
the same parameters as for the [b] are used except for the LevatorPalatini which is set to 0 in order to 
synthesize a lowering of the velum.  



 

 

For the synthesis of [d]-like sounds, the Interarytenoid target is set to 0.53 and the LevatorPalatini 
parameter to 1 for the same reasons as those evoked with respect to the synthesis of [b]-like sounds. 
However, the OrbicularisOris and Masseter activity are set to 0. The articulator used to synthesize the oral 
closure in [d]-like sounds is the UpperTongue whose activity is set to 1. To synthesize a [t]-like sound, the 
same parameters are used, but the Interarytenoid parameter is set to 0. As far as [n]-like sounds are 
concerned, the synthesis requires the same parameters as for the [d]-like sounds, but the lowering of the 
velum is synthesized by setting the LevatorPalatini activity to 0.  

[g]-like sounds are also synthesized. The Interarytenoid target is thus set to 0.53 and the 
LevatorPalatini parameter to 1. The OrbicularisOris and Masseter activity are set to 0. The velar closure is 
realized by setting the Styloglossus activity to 1. The Hyoglossus and UpperTongue activity are set to 0. To 
synthesize [k]-like sounds, the same parameters are used, but the Interarytenoid activity is set to 0. The 
synthesis of [ŋ]-like sounds uses the same parameters as the synthesis of [g]-like sounds but with an 
activity of the LevatorPalatini reduced to 0.  

Appendix C. Timing targets specification  

The sequences are built in such a way that there is one point (OccC1) where all the articulators needed for 
the articulation of C1 have reached their target and did not depart from it. Another time point is located 
where the articulator has reached its target (TsOccC1) before OccC1. After OccC1, there is another point 
(TeOccC1) where the level of activity of one articulator that characterizes the C1 target starts varying 
progressively towards the level of activity that characterizes the articulation of the vowel. The same 
principle applies to all articulators. The vocalic target is reached at TsV and is maintained up to TeV. The 
rules for the synthesis of the C1-V articulation apply symmetrically to the V-C2 articulation. Between two 
targets, a varying in-between position of the articulator is synthesized which we assume to be somehow 
similar to transition movements involved in coarticulation.  

In practice, the first time point which is determined is the onset of the vocalic stable portion (TsV). 
It needs to be situated between 50 ms after the beginning of the sound file and at least 100 ms before its 
end. The end of the stable portion of the vowel (TeV) has to occur at least 50 ms after the beginning of the 
stable portion. Another time point is set between the onset of the recording and the start of the stable 
portion of the vowel to indicate the point at which all the articulators needed for the articulation of the C1 
have reached their target (OccC1). A similar time point is set between the end of the stable portion of the 
vowel and the end of the sound to indicate that the point at which all the articulators needed for the 
articulation of C2 have reached their articulatory targets (OccC2). A time point is created between the 
beginning of the sound and the moment at which an articulator start moving towards its C1 target (Onset). 
Up to that point, the articulator keeps its neutral position. A similar time point (Offset) is situated between 
the moment at which an articulator leaves its C2 target and the end of the sound. By this time, the 
articulator has reached its neutral position.  

If a given articulator has the same target in C1, V and C2, its onset point is set between the onset of 
the recording and C1 occlusion. It means that it must have reached its target before the occlusion of C1. Its 
offset point is situated between the occlusion of C2 and the end of the recording. It departs from its C2 
target after C2 occlusion.  

If an articulator has different C1, V targets and different V and C2 targets, its onset point is set 
between the start of the recording and the C1 occlusion, it reaches its target before C1 occlusion, where 
another time point is set, then moves away from it after C1 occlusion, where another time point is set, and 
before the start of the onset of the stable portion of V by which it has reached its target for the articulation 
of V. It departs from it at the end of the stable portion of V and reaches the target of C2 before C2 
occlusion, where another time point is set. It then departs from it between the occlusion of C2 and the end 



 

 

of the recording, and eventually reaches its neutral position between C2 occlusion and the end of the 
recording, where another time point is set.  

If an articulator has the same C1 and V targets but a different C2 target. Its onset point is set 
between the onset of the recording and the C1 occlusion, it reaches its target before C1 occlusion, then 
moves away from it at the end of the stable portion of V and before C2 occlusion. At this point it reaches its 
C2 target. The articulator departs from it after C2 occlusion and reaches its offset point between the 
departure from its C2 target and the end of the sound.  

If an articulator has the same C2 and V targets but a different C1 target, its onset point is set 
between the onset of the recording and C1 occlusion, it reaches its target before C1 occlusion, then moves 
away from it after C1 occlusion and before the start of the stable portion of the vowel by which it has 
reached the target for the articulation of V. The articulator then departs from it after C2 occlusion and 
reaches its offset between that its departure from C2 occlusion and the end of the sound.   

- Start: always 0 s;   
- Onset: between Start and OccC1;   
- TsOccC1: between Onset and OccC1;   
- OccC1: between Start and TsV;   
- TeOccC1: between OccC1 and TsV;   
- TsV: after 0 + 0.05 s and before 0.35s-0.1 s;   
- TeV: after TsV+0.05 s and before 0.35s-0.05 s;   
- TsOccC2: between TeV and OccC2;   
- OccC2: between TeV and End;   
- TeOccC2: between OccC2 and Offset;   
- Offset: between OccC2 and End;   
- End: always 0.35 s.  
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