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Geographically Weighted Visualization: Interactive Graphics 
for Scale-Varying Exploratory Analysis 

Jason Dykes and Chris Brunsdon

Abstract — We introduce a series of geographically weighted (GW) interactive graphics, or geowigs, and use them to explore 
spatial relationships at a range of scales. We visually encode information about geographic and statistical proximity and variation in 
novel ways through gw-choropleth maps, multivariate gw-boxplots, gw-shading and scalograms. The new graphic types reveal 
information about GW statistics at several scales concurrently. We impement these views in prototype software containing dynamic 
links and GW interactions that encourage exploration and refine them to consider directional geographies. An informal evaluation 
uses interactive GW techniques to consider Guerry’s dataset of 'moral statistics', casting doubt on correlations originally proposed 
through visual analysis, revealing new local anomalies and suggesting multivariate geographic relationships. Few attempts at 
visually synthesising geography with multivariate statistical values at multiple scales have been reported. The geowigs  proposed 
here provide informative representations of multivariate local variation, particularly when combined with interactions that coordinate 
views and result in gw-shading. We argue that they are widely applicable to area and point-based geographic data and provide a set 
of methods to support visual analysis using GW statistics through which the effects of geography can be explored at multiple scales. 

Index terms — Geographical weighting, exploratory data analysis, scale, multivariate, directional, interaction, coordinated views  

 
 

1 INTRODUCTION

Definitions of geovisualization and information visualization suggest 
mutual exclusivity – yet in practice much geovisualization is 
dependent on and informed by aspatial graphics and many views that 
combine elements of geography and statistical spaces provide useful 
insights. The value added in combining these elements to help 
explain geographical processes is that exploring relationships 
between measured phenomena that are ‘near’ in statistical space and 
geographical space may provide insights that cannot be achieved 
with maps or statistical graphics alone. The definition of ‘nearness’ 
is fundamental to such approaches: How near do two houses have to 
be before the selling price of one influences the selling price of the 
other? How near does an area with a high crime rate have to be from 
a house to influence its selling price? Is the relationship a simple 
monotone or might there be more than one ‘critical distance’ at 
which interactions occur? And do these relationships vary across 
space and with direction? These kinds of questions consider 
geographical interaction between variables but also imply that an 
investigation of scale must be considered. 

A popular approach to the investigation of geographical patterns 
is the concept of local statistics [11,18] perhaps arising from 
Openshaw’s stated dissatisfaction with ‘whole map statistics’ [15]. A 
point location u in a study area is selected, and some statistical 
technique applied to the data weighted by proximity to u. Applying 
this procedure to a number of locations spanning the study area gives 
an indication of the spatial variability in the distribution of the data 
values. Such approaches have incorporated not only formal 
inferential methods, such as the g-statistic [11], or geographically 
weighted regression (GWR) [1], but also descriptive tools, such as 
geographically weighted summary statistics [2]. The latter approach 
allows us to consider spatial patterns of attributes through localized 
descriptive statistics and is suitable for considering the geography of 
a statistical data set in the context of exploratory enquiry.  

For the ‘geographically weighted’ approaches, the rate at which 

weighting reduces with distance is controlled by a parameter h: 
typically h is either a fixed distance for all u, or chosen to equal the 
distance from each u to its kth nearest neighbour [1]. In the former 
case the scale of localisation is fixed for all u in physical space, and 
in the latter it is fixed for all u in areas of a given density. Mapping 
the results for each location for some given h or k is an effective way 
of showing local changes in the distribution of some measured 
attribute, or changes in the relationships between several of these. 
However, a number of spatial processes operate at several scales 
simultaneously. Consider for example house prices which may 
exhibit patterns within streets, between parts of a town and between 
national regions, or topographic features whereby a local peak may 
be part of a larger valley when measured at a wider scale [20]. 

It can be helpful to consider the effect of varying either k or h in 
order to identify all scales at which patterns operate, particularly 
when spatial data are analysed in an exploratory situation. 
Fotheringham et al.[8] describe the process of so doing as involving 
a ‘spatial microscope’ whose focal length may be varied to allow the 
identification of patterns at different scales. For example, Foody [7] 
uses GWR to explore the relationship between species richness and 
three explanatory environmental variables in sub-Saharan Africa, and 
considers how spatial patterns in the geographically varying 
regression parameters change in association with h in order to 
investigate the underlying geographical scale of the relationships 
between these variables. Scale-space analysis [13] provides a multi-
scale framework for analysing data recorded in a regular rectangular 
array in this manner and is used for feature recognition. It may, along 
with other pixel-based approaches, be applied to data recorded in the 
kinds of irregular zones that are typical of many geographic data sets 
[17]. 

While static mapping may be useful for investigating spatial 
variation for a fixed k or h [2], visualizing variability of the spatial 
patterns with h, is arguably too complex a task for conventional 
cartography, particularly where multiple variables are considered 
concurrently. Interactive graphics provide opportunities for exploring 
complex structured data sets and generating knowledge from them 
[16]. For example, interactive graphical techniques have been 
developed to show the effects of scale on local surface derivatives 
[21]. Here we extend these ideas by developing complimentary 
graphical techniques, with coordinated behaviours and interactions 
through which these can be accessed. These new methods allow us to 
explore variations in h and are applicable to multivariate data sets 
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measured using irregular zones. They are suitable for investigating 
the properties of spatial data at a range of scales. They include 
standard choropleth maps, maps of geographic weightings for any h 
(weighting maps) maps of geographically weighted means (gw-mean 
maps) and local variations from the mean (gw-residual maps), a 
localised (GW) version of the box-and-whisker plot that we term a 
gw-boxplot and a scalogram – a plot showing the variation of 
localised summary statistics as the value of h changes. Our prototype 
software contains interactions and visual encodings that are both 
geographic and geographically weighted. In combination these views 
and coordinated interactions are designed to help analysts gain 
insight into spatial patterns through which geographic processes may 
be characterised and understood.  

2 CONTEXT : CHALLENGES FOR MULTIVARIABLE SPATIAL 
ANALYSIS – GUERRY’S MORAL STATISTICS OF FRANCE 

By way of example we focus on a particular multivariate geographic 
data set – that collated and graphically represented by André-Michel 
Guerry in his ‘Essai sur la statistique morale de la France’ [19]. 
Guerry meticulously collected and importantly related data on a 
number of themes for the departments of France to analyse social 
issues in the early 19th century. He considered geography 
predominantly by visually inspecting his univariate choropleth maps 
and identified geographic outliers and some regional trends. Visual 
inspections were used to hypothesize about relationships between 
variables. Friendly [9] uses statistical and graphical methods to 
revisit Guerry’s data set. Regression analysis shows that some of 
Guerry’s postulated associations do not hold and that others omitted 
by Guerry exist. Geography is considered in a hierarchical manner 
by comparing data for departments in each of the five regions of 
France and suggestions are made about relationships between these 
regional aggregations [10]. Multivariate graphics and conditioned 
choropleths [4] are used to augment Guerry’s univariate maps.  

3 GEOGRAPHICALLY WEIGHTED GRAPHICS 
The geographically weighted interactive graphics, or ‘geowigs’, 
developed here are graphical representations of geographically 
weighted summary statistics. 

3.1 Summary Statistics 
A number of geographically weighted summary statistics can be 
calculated at locations in a spatial data set [2]. The most fundamental 
of these is the geographically weighted mean. This is simply a 
moving spatial window mean smoother. If we have a number of 
observations with values xi at points ui, then the geographically 
weighted mean at any point u is  
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where wi(u)  is the weight applied to the observation at location ui 
when computing the geographically weighted mean at location u. 
This weight is typically a monotone decreasing function of the 
distance between u and ui with h a parameter controlling the rate at 
which the decay occurs. h is referred to as the bandwidth of the 
locally weighted statistic – it effectively controls the size of the 
moving window. Here, we use a Gaussian decay function:  
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This has a maximum value of one when u = ui. We can simplify 

the formula for M(u,h) if we replace the standard weights by a set of 
weights that sum to one, so that  

 

 Wi(u) =
wi(u)

wi(u)∑
 and M(u,h) = xiWi(u)∑     (3) 

 

Fig. 1. Unclassified choropleth maps of Guerry’s six key variables. 

This last expression demonstrates that a geographically weighted 
mean is the mean of a mass-point distribution with a discrete set of 
(value, probability) pairs )},{( iWixL = . The other locally weighted 
summary statistics of importance here are the distributional quantiles 
associated with the construction of boxplots. They are computed in 
terms of the quantiles of the mass-point distribution L. If the (xi ,Wi) 
pairs are ordered in increasing values of xi then the cumulative 
distribution of L makes a series of discrete ‘jumps’ at each value of xi 
– jumping from zero to W1 at x1, then to W1 + W2 at x2 and so on. 
Thus each point xi is the (W1 + W2  + … + Wi)th quantile of the 
distribution and other specific quantiles (such as the median or 
quartiles) can be derived by linear interpolation.  

These statistics form the basis of our geowigs. In the case of area-
based data such as that collected and analysed by Guerry we may 
select the centroids of our zones as the positions at which u is 
calculated. We use the notation M(ui,h) to refer to the gw-mean at the 
centroid of department with index i at a bandwidth h. 

3.2 Graphic Types 
The Guerry data set contains six key quantitative variables for each 
of the 86 departments of France in 1830. These are shaded according 
to rank in Friendly and Guerry’s maps. We symbolise the ratios 



using unclassified choropleths (Figure 1). The colour schemes used 
throughout are continuous and based upon Brewer’s sequential and 
diverging schemes [12]. Guerry regarded high values are being 
indicative of moral character and so in accordance with Guerry and 
Friendly’s maps low data values are represented by darker shades to 
reveal ‘la France obscure and la France éclairée’. We use the 
YlOrBr scheme [12] for maps of original statistical values and GW 
means. Spatial variation in any single variable can be depicted at a 
range of scales by displaying GW means. Choropleth maps for 
variable 1 are shown in Figure 2 with five values of h increasing 
from left to right. M(u,h) is precomputed for selected values of h in 
our implementation. The weighting maps (top) show the relative 
contributions of local departments wij in the calculation of M(u,h) for 
a single unit using the YlGn scheme [12] – in which zones making 
no contribution to the statistic are light shaded yellow. Symbolism 
that is consistent across the resultant gw-mean maps (middle) shows 
the absolute effects of increasing h on the local weighted value of a 
single statistic. Symbolism that varies between gw-mean maps 
(bottom) shows the relative effects of varying h. Each map shows the 
local statistic for ‘population per crime against persons’ with 
‘nearness’ being considered more widely successively from left to 
right. The value computed for any location ui is dependent upon the 
geography considered in calculating the statistic. In this case the 
values are calculated for the 86 department centroids. 

The univariate gw-mean maps reveal some regional trends at 
particular scales, but it can be useful to compare local variation at a 
range of scales. We achieve this by generating gw-boxplots at a range 
of scales from GW percentiles, as discussed in section 3.1. In Figure 
3 the light grey boxplots represent the national figures (not weighted 
and consistent across all values of h). The green gw-boxplots show 
local variation for any combination of u and h, which tend towards 
the national values as h increases (from left to right). The smaller 
grey circles represents the local value x(u), the larger green circle 
represents the GW mean – M(u,h). 

The geographically weighted box and whisker plots visually 
encode the GW median and GW percentiles. A series of these allows 
multivariate GW relationships to be considered at a variety of scales. 
The gw-boxplots contrast with the maps in that they are projected in 
a statistical space with the y-axis representing statistical values and 
the x-axis ordering a series of alternative gw-boxplots by variable (x) 
or scale (h).  

 

 
Fig. 2. Geographically weighted maps for variable 1 – ‘population per 
crime against persons’, with h increasing from left to right. From top to 
bottom: weighting maps for one department; gw-mean maps using a 
common colour scheme (for considering inter-map variation); gw-
mean maps using a unique colour scheme for each value of h (for 
considering intra-map variation).  The maps on the right hand side of 
the figure give a good indication of the range of shades used in the 
YlGn (top right) and YlOrBr (bottom right) colour schemes [12]. 

 
Fig. 3. gw-boxplots for a single department – variable 1 ‘population per 
crime against persons’ at five different scales (h=25 to h=200).  

Figure 3 shows gw-boxplots for i=23, Creuse, at five scales. The 
department is evidently a local maximum at h=25, as suggested 
clearly by the light zone on the map and as identified by Guerry, 
though it is not considered a statistical outlier in the boxplot. This 
maximum is not persistent across scale however. Locations to the 
north have higher GW mean values at a scale of h=50 and several 
departments to the east have higher GW means at h=100 as shown in 
the gw–mean maps of Figure 2. Not unrelated is that fact that ‘local’ 
variability in ‘crime against persons’ around Creuse at scale h=50 is 
greater than that observed in the national data set. These trends and 
findings are more subtle and more spatial than those detected in 
previous analyses, including Guerry’s identification of a local high, 
the regional analysis of Friendly and the national ‘obscure / éclairée’ 
trend. The way that local maxima depend upon the definition of 
‘nearness’ and that a process operating at a local scale (between 
h=25 and h=50) focused on Creuse is resulting in more variation than 
is evident in the wider national data set may be of some interest and 
is indicative of the kind of knowledge that might be elicited from 
geowigs. 

The scalogram is designed to help explore such variations and the 
scales at which they occur. Whilst the gw-mean maps are projected 
in geographical space, the scalogram fills an abstract space with 
orthogonal geographic and statistical dimensions. The x-axis is used 
to represent h and the y-axis for M(u,h). Lines linking M(u,h) for all 
h for every ui enable us to consider variation in multiple zones at a 
range of scales for any variable. The three views in Figure 4 show 
the original data mapped as a choropleth (left), the scalogram for 
i=23 – Creuse, which is the maximum value in the original data 
(center), and the complete scalogram for all 86 departments (right). 
The vertical lines in the scalograms show values of h for which 
M(u,h) has been computed. The path of the single line in the central 
scalogram of Figure 4 corresponds with the GW means in Figure 3 
(the green circles). Flatter sections of the lines in the full scalogram 
(right) denote departments where varying scale or the definition 
nearness has little effect on the GW value. 

 
 

 
Fig. 4. scalograms for variable 1 – ‘population per crime against 
persons’. A single department (centre) and all departments (right).  



 
5. Map views – choropleth map of original values, gw-mean map, gw-
residual map and weighting map. 

The way in which the GW mean centred on Creuse decreases as 
our definition of ‘nearness’ increases in scale is shown by the falling 
profile in Figure 4 (centre). The reducing dominance of the location 
as a ‘high’ as we expand our definition of ‘nearness’ is reflected in 
the profile dipping beneath those of other departments in Figure 4 
(right). The bottom line in Figure 4 (right) is Corsica, and the lack of 
any local effect until h=100 relates to the geographic isolation of the 
island. Steeper line sections within a scalogram draw attention to 
local variability at a particular scale and show the scale at which this 
occurs. These are characteristic of a number of departments. Some 
departmental scalogram profiles contain local maxima or minima 
identifying a scale at which local variation is particularly atypical. 

3.3 Interactions – Software Implementation 
Our demonstrator software contains three linked views: a map, gw-
boxplots and a scalogram. A series of interactions supports rapid 
navigation between alternative visual encodings within these graphic 
types to interrogate the spatial structure of data sets. Clicking the 
maps cycles through the variables available (Figure 1), the 
precomputed values of h (Figure 2) and the four spatial encodings 
(Figure 5) with related updates in all other views. 

The four spatial views available are: the choropleth map – 
sequential shades relate to the original values (see Figure 1); the gw-
mean map – colours show the GW mean values for a particular h 
using constant (comparable) or map-specific sequential shading 
schemes (see Figure 2); the gw-residual map – showing local effects 
of the geographic weighting at a particular scale for all zones with a 
diverging scheme (see Figure 5) – we use the RYB scheme [12] 
where red is positive, with values higher than the locality denoting a 

local high and blue is negative, denoting a local low ; the weighting 
map – a sequential scheme shows the relative weightings of all 
departments in localities based upon a particular source department – 
the visual emphasis relates directly to the contribution of each 
department to M(u,h) (see Figure 2).  

All of the views are coordinated so that any interaction that 
changes x (the mapped variable) or h (the scale used in weightings) 
results in appropriate updates to all views. Links between the 
scalogram and map are dynamically updated as the map is clicked; 
selecting a location on the map updates the gw-boxplots and 
weighting map so that they are centred on the relevant zone (Figure 
6). gw-boxplots for five departments are shown in Figure 6 to 
highlight the spatial differences in scale effects for a single variable. 
The departments selected are the 'outliers' identified by Friendly. 

 

 
Fig. 6. Choropleth and gw-boxplots for one variable at a single scale – 
five different departments, those selected identified as 'outliers' [10]. 

Our software shows gw-boxplots for all variables in the data set 
simultaneously and so the interactions described occur for multiple 
variables concurrently. Figure 7 shows the effects of interactively 
changing the mapped variable (x), the scale (h) and the zone of 
interest (i) whilst undertaking exploratory analysis. 

 
 

 

 
Fig. 7. Maps for two variables and gw-boxplots for all six variables for 
two departments at two scales. These two examples map variables 1 
and 2 respectively and show the effects of highlighting departments 23 
(Creuse) and 43 (Haute Loire). Each shows a choropleth of the 
original values, and then pairs of multivariate gw-boxplots and 
weighting maps for h=25 (top) and h=100 (bottom).  



Shading used in the map is reflected in the scalogram and so 
when weighting maps are displayed, colour encodings in the 
scalogram emphasize items according to their weighted contribution 
to the locality [6]. Figure 8 illustrates with maps and scalograms at 
h=50 for two variables: x1 (top set) and x2 (bottom set). In each case 
the first scalogram is shaded according to the original statistical 
values of the selected variable (x) recorded for each department (i). 
The second scalogram uses gw-shading – GW highlighting in which 
the colour of each line is varied such that departments closest to that 
selected on the map are visually emphasized. The currently selected 
values of h and i are shown by emboldening the appropriate vertical 
line in the scalogram and through a weighting map focused on the 
brushed spatial unit. In Figure 9, the graphics use the format shown 
in Figure 8 and focus on i=69, Rhône. The peak in the darkest curve 
(i=69) indicates a scale effect that may be of interest. 

These visual encodings constitute new graphic types for 
geographic enquiry. When combined, the dynamic features of these 
geographically weighted interactive graphics or ‘geowigs’ provide 
the basis for exploring local variations in the effects of scale on a 
series of geographic variables. This configuration supports rapid 
comparison and exploration. Computing the geographically weighted 
statistics and subsequent use of visual mappings provides a spatial 
perspective on the analysis of geographic data. In terms of visual 
information seeking we are filtering by geography in two ways – by 
location (u) and nearness (h) and provide graphical details on 
demand (gw-boxplots and scalograms). The geographic nature of our 
enquiry requires the Gestalt of the graphical overview and so maps 
are provided concurrently. Dynamic brushing helps relate graphical 
overview with graphical detail as data are filtered. 

4 GEOGRAPHICALLY WEIGHTED ANALYSIS 
The graphic types introduced here show that the identification of 
maxima, minima and notable ‘outliers’ is scale dependent when 
considering geographic data and draw attention to these 
dependencies. Our preliminary analysis allows us to suggest patterns 
at a range of scales. Individual departments identified as ‘outliers’ in 
Guerry’s data set may not be atypical for all variables at all scales 
(Figure 7). The shapes of the scalograms help us relate local and 
national variations in single variables. For example, when comparing 
the full scalograms in Figure 8, the wider range of values of M(u,h) 
at h=200 for x1 than x2 suggest that trends measured at a national 
scale are more dominant in case of the former variable (‘crime 
against persons’) than the latter (‘crime against property’).  

Equally, we can identify particular scales at which local effects 
occur. For example, in Figure 9, Rhône (i=69) has a low value for x2 
at low values of h, but is part of a wider locality with values of 
‘crime against property’ above the national average where h=50 and 
h=75. The peak in the curve suggests that, relative to other 
departments, Rhône is a local high for ‘crime against property’, but 
only when considered at certain scales. These scales do not 
correspond to either the highest resolution available (the departments 
for which the data were originally collected) or a formal regional 
scale (the regions into which departments are aggregated in the 
administrative hierarchy [10]). The peak suggests that there is more 
intra-regional variation than inter-regional variation in this variable 
at this location, enabling us to detect a scale at which the geography 
of ‘crime against property’ may operate here. It is important to note 
that a more traditional approach to identifying visual patterns would 
prescribe a scale at which to view patterns, most likely settling for 
either departments or regions, rather than exploring a range of scales. 
In this case, a pattern has occurred at a scale not coincident with 
typical ‘official’ reporting scales for statistical mapping. Another 
difference with the more ‘traditional’ hierarchical approach to scale 
is that aggregation is spatially abrupt – neighbouring departments 
may be related, but this information is lost if a neighbour pair 
consists of two departments in different regions. The ‘moving 
window’ approach, where larger scale neighbourhoods move 
continuously with u, overcomes this problem. 

  
 

 
Fig. 8. scalograms with statistical and geographically weighted 
shading (xi and wij). i=23, x1 (top) and i=43, x2 (bottom). The pairs of 
figures show maps and scalograms for two variables: x1 (top quartet) 
and x2 (bottom quartet). 



 
Fig. 9. scalograms with statistical and geographically weighted 
shading (xi and wij). i=69, x2. The graphics use the format shown in 
Figure 8 and focus on i=69, Rhône. The peak in the darkest curve of 
the scalograms (i=69) indicate a scale effect that may be of interest. 

 
Another feature of the interactive nature of the geowigs presented 

here is the ability to ‘strum’ the set of scalogram curves – here 
‘strumming’ means running the cursor quickly up or down the curves 
while brushing. Highlighting each curve in quick succession gives an 
indication of how unusual the shape of the scalogram curve is. Not 
only has this approach highlighted an effect at an unexpected scale, 
in the case of Rhône, it has also demonstrated that this is localised to 
one particular area. Processes may work at different scales in 
different places. 

Other geographic patterns are detectable in the GW views. Loire-
Inferiure is notable as being unlike its immediate locality (which has 
nationally high values) in variable 5 (illegitimate births) despite 
having an individual value close the national statistical average; 
Lozere and Rhône are local highs and local lows in variables 6 
(‘suicide’) and 2 (‘crime against property’) respectively and Loiret is 
spatially invariant when variable 3 (‘literacy’) is considered. These 
are not the kinds of relationships that have been identified in 
previous analyses of the data set and are detectable through the 
multi-scale geovisualization techniques introduced here. 

The serial display of boxplots enables local comparison between 
multiple variables at a range of scales. For example, the degree of 
variance (i.e. GW interquartile range) for the variables ‘population 
per crime against property’ (x1) and ‘population per crime against 
the person’ (x2) is relatively large when centred on Rhône at low 
values of h, but less significant for both variables at nearby Saone-et-
Loire. Probing the map and considering the gw-boxplots indicates 
that a third variable relating to literacy (‘percent read and write’ – x3) 
maintains a more constant GW interquartile range in the vicinity of 
Rhône then either x1 or x2. 

 

5 DIRECTED GEOGRAPHIC WEIGHTING 
Weighting has been applied isotropically thus far, with weighting 

functions depending only on the distance between a pair of points, 
and not on their angular separation. However direction, as well as 
distance, plays a key role in the study of many geographical 
phenomena. In the domain of physical geography there are many 
examples, such as wind speed, direction of water flows and 
orientation of faultlines. Examples in human geography include 
population migration flows and the direction of commuting patterns. 
When such phenomena and processes are considered, similarity 
between a pair of places may not just depend on their distance apart, 
but also on the direction from one place to the other. For example, if 
this direction were coincident with population flow, one might 
expect two places to have more social characteristics in common 
than otherwise. 

We extend the idea of geographical weighting to incorporate 
direction as well as distance by pre-multiplying the expression for wi 
by the expression  
           exp −λcos θi −ϕ( )( )                           (4) 
 

Here, θi is the angle of the path between locations u and ui and ϕ 
is the principal direction of the weighting (angles are measured 
counter-clockwise from the east). For a fixed distance, ui values 
along this direction from u will gain the highest weighting. Those in 
the opposite direction will receive the lowest weighting. The 
parameter λ controls the relative sharpness of the directional effect. 
Setting λ to zero removes any directional bias in the weighting, while 
increasing it results in an expansion of the ratio between the highest 
and lowest weight values.  

 

 
Fig. 10. weighting maps (top), gw-mean maps (middle) and gw-
residual maps (bottom) using three different directional weightings: 
isotropic, λ=0 (left); φ=90, λ=2 – ‘north’ (centre), φ=180, λ=2 – ‘west’ 
(right). The weighting maps focus on i=82 Tarn et Garonne, which is 
highlighted in the other views and can be seen to vary in terms of the 
relationship between original value and local mean with direction. 



 
Fig. 11. gw-shaded scalograms and multi-scale gw-boxplots for i=82, 
Tarn et Garonne using three different directional weightings: isotropic, 
λ=0 (top); φ=90, λ=2 – ‘north’ (middle), φ=180, λ=2 – ‘west’ (bottom). 
The gw-shading in the scalograms relates to h=50 in all cases. 

To reduce computation time, we only consider ϕ values on so-
called ‘clock points’ – that is angles in the set 
{0,±π/6, ±π/3, ±π/2,±2π/3,±5π/6,π}. Statistics computed using this 
approach will be referred to as directed GW statistics. Angles are 
measured counter-clockwise from east and referred to in degrees, as 
is usual in the geographical literature. We can use this directional 
extension to geographical weighting with our geowigs – to explore 
the data as before, but investigating effects associated with specific 
directions as well as isotropic patterns. 

For example, department 82, Tarn et Garonne, shows interesting 
variation when the directionless GW mean is compared with directed 
GW means at 90o (north) and 180 o (west) at multiple scales. Whilst 
Tarn et Garonne has a low value of variable x1 (‘crime against 
persons’) when compared to the national distribution at a scale of 
h=50, the directionless GW mean indicates a value close to the local 
median and the department is thus locally typical (Figure 10). If we 
consider the directed statistics however, more spatial structure is 
revealed. With λ = 2 and φ = 90 (directed GW mean with bias 
towards the north) Tarn et Garonne is identified as a local directional 
low due to the high value of the northern neighbour – department 46, 
Lot. With λ = 2 and φ = 180 (directed GW mean with bias towards 
the west) Tarn et Garonne is identified as a local directional high due 
to the lower values of neighbours to the west, particularly the 
immediate neighbours – Lot et Garonne (i=47) and Gers (i=32). 
There is evidently directional structure in the local statistics 
associated with Tarn et Garonne, which exhibits variously typical, 
low and high values of ‘population per crime against person’ 
depending upon the uniform, northern and western directional biases 
used in calculating the local statistic. This explains the colour profile 
of outlined department 82, Tarn et Garonne, in the residual maps of 
Figure 10. 

These differences are not consistent across scales. The local 
statistics for Tarn et Garonne are relatively independent of scale from 
h=50 upwards when the directionless local statistic is considered, but 
when a northern bias is applied to the statistics (λ=2 and φ=90) the 
considerable variation in values to the north results in a profile 
showing that Tarn et Garonne varies from local low, to local average 
to local high through scales from h=50 to h=100. There is less scale 
dependency in the western biased GW means (λ=2 and φ=180) as 
there is less variation in values with scale to the west of the 
department. Here, Tarn et Garonne is regarded as a local high across 
scales from h=50 upwards (at h=25 neighbouring zones make little 
contribution to the local statistic). These relationships are depicted in 
the gw-shaded scalograms and multi-scale gw-boxplots shown in 
Figure 11. 

A single measured value in space can thus be considered low, 
high and typical in relation to its neighbours and these characteristics 
can be variously scale dependent and scale invariant when direction 
is considered. These differences are important because as we have 
seen, geographic phenomena are often directional. This directional 
analysis uses geowigs to demonstrate some of the complexity 
associated with geographic relationships – spatial processes are 
neither scale invariant nor isotropic. When we consider a value 
recorded in space its relationships with ‘near’ neighbours depend 
upon definitions of locality and directional emphases. Such 
differences are difficult to detect in standard choropleth maps and the 
GW statistics can help with our exploratory spatial data analysis. 
Interactive visualization of the type described here in our geowigs 
allows us to explore various scale-based definitions of locality and 
nearness and to investigate the effects of directional bias upon 
relationships between attributes recorded in geographic spaces. 

6 SUMMARY, DISCUSSION AND CONCLUSIONS 
Geographically weighted interactive graphics are introduced as a 
means of hypothesizing about the spatial variation in a geographic 
data set. We introduce gw-maps, gw-boxplots, the scalogram, and 
gw-shading in conjunction with appropriate geographic interactions. 
These approaches build upon existing methods and technologies 
[1,2,3,5,6] and are implemented in demonstrator software that 
permits further analysis. Our consideration of the geographic and 
scale-based variation in the Guerry data responds to Friendly’s 
invitation to rise to Guerry’s visualization challenge. The geowig 
techniques provide methods that may be used to compliment the 
analysis of Geurry, Friendly and others in exploring the spatial 
structure of area based data at a range of scales and address an 
identified need for graphical displays of multivariate local variation 
that consider ‘neighbourhoods’ in a flexible manner [18]. Whilst our 



focus is predominantly on the six key quantitative variables used in 
Friendly’s work [9,10] the techniques are extensible to higher 
numbers of variables. 

There is considerable potential for extending and exploring the 
techniques outlined here and using them further. For example, it may 
be helpful to benchmark geowigs, by considering their performance 
when applied to a test bed of geographical data sets – investigating 
the change in outcome when different sizes and shapes of 
geographical regions are used. Doing so may help explore the 
dependence of the GW mean on the geometry of nearby regions at 
low values of h and relate this effect to those associated with the 
aggregation of continuous geographic phenomena into discrete 
irregular units for enumeration. The locally weighted statistics are 
computed on centroids associated with irregular units in our 
implementation. The statistics could, however be centred on any 
points, such as those comprising a regular grid. This might be useful 
for speeding up certain visualisation routines, particularly when large 
numbers of spatial units are involved, and in such situations it would 
not be necessary to compute a local statistic for each unit. Comparing 
geowigs generated from discrete units with those produced from 
more regular continuous representations of phenomena in geographic 
space (perhaps using centroids re-allocation techniques [14]) would 
enable us to explore a number of issues relating to the scale effects 
associated with alternative models of geographic information. 
Additionally, our focus here has been predominantly on highlighting 
multi-scale effects for individual variables, however, one could 
extend the ideas of Brunsdon et. al. [2] by measuring local 
multivariate patterns and mapping a GW correlation coefficient. This 
would enable the effect of local bivariate association to be explored 
at different scales, using a scalogram based upon GW correlation 
instead of the GW mean. Each of these techniques could be used 
with non-Euclidian distances, such as estimated travel time – perhaps 
a more realistic indicator of potential human interaction.  

In commenting on Guerry’s original maps, Friendly [10] states 
that “at the very least, this work testified to the importance of 
detailed data, sensibly presented, to inform the debate on the 
relations of crime and education.” The techniques presented here are 
intended, at the very least, to draw attention to geographically 
weighted graphics and interactions in visualization and to inform 
debate on the possibilities for using interactive graphics to explore 
and reveal spatial structure at multiple scales in multivariate and 
anisotropic geographic data. By adapting ideas from scale-space 
analysis to irregular, multivariate data we have developed techniques 
for geographers and policy analysts to explore regional variability in 
relationships between social variables. These techniques provide 
instruments for helping uncover processes operating in specific 
localities and at particular scales and can draw attention to some of 
the subtleties of spatial information as it encodes geography – such 
as the effects of using zones of irregular shape and of dealing with 
scale using an aggregated hierarchical approach. We hope that they 
may improve understanding of our models and our geography and 
support informed decision-making.  
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