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Chromothripsis is characterized by massive genomic rear-
rangements that are often generated in a single catastrophic 
event and localized to isolated chromosomal regions1–4.  

In contrast to the traditional view of tumorigenesis as the gradual 
process of the accumulation of mutations, chromothripsis provides 
a mechanism for the rapid accrual of hundreds of rearrangements 
in a few cell divisions. This phenomenon has been studied in pri-
mary tumors of diverse histological origins5–10, but similar random 
joining of chromosomal fragments has also been observed in the 
germline11. There has been considerable progress in elucidating 
the mechanisms by which chromothripsis may arise, including 
fragmentation and subsequent reassembly of a single chromatid 
in aberrant nuclear structures called micronuclei2,12 and the frag-
mentation of dicentric chromosomes during telomere crisis13,14. 
Chromothripsis is not specific to cancer as it can cause rare con-
genital human disease and can be transmitted through the germ-
line11,15; it has also been described in plants, where it has been linked 
to micronucleation16. However, despite the recent rapid progress on 
elucidating the mechanisms of chromothripsis, much remains to be 
discovered regarding its cause, prevalence and consequences.

A hallmark of chromothripsis is multiple oscillations between 
two or three copy-number (CN) states1,6. Applying this criterion to 
CN profiles inferred from SNP arrays, chromothripsis was initially 
estimated to occur in at least 2–3% of human cancers1. Subsequent 
studies of large array-based datasets gave similar frequencies: 1.5% 
(124 out of 8,227 tumors across 30 cancer types)17 and 5% (918 
out of 18,394 tumors)18, with the highest frequencies detected for 
soft-tissue tumors (54% for liposarcomas, 24% for fibrosarcomas 
and 23% for sarcomas)18. These estimates relied on the detection 
of CN oscillations that are more-densely clustered than expected  
by chance8.

Whole-genome sequencing (WGS) data provide a greatly 
enhanced view of structural variations (SVs) in the genome19, allow-
ing us to generate a more nuanced set of criteria for chromothripsis 
and enhance detection specificity3. Our previous analysis of WGS 
data from cutaneous melanomas already found chromothripsis-like 
rearrangements in 38% of these tumors (45 out of 117)10; other stud-
ies using WGS data found 60–65% for pancreatic cancer5 and 32% 
for esophageal adenocarcinomas7. Whether these examples are out-
liers that reflect the unique biology of these tumors or whether they 
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suggest a more general underestimation of the frequency of chro-
mothripsis remained unclear.

Motivated by the importance of chromothripsis during tumor 
evolution and the need for more-comprehensive analyses, we deter-
mined the frequency and spectrum of chromothripsis events in 
the WGS data for 2,658 patients with cancer comprising 38 cancer 
types generated by the ICGC and TCGA projects, and aggregated by 
the PCAWG Consortium. These sequencing data were re-analyzed 
with standardized pipelines to align to the human genome (refer-
ence build hs37d5) and to identify germline variants and somatic 
mutations20. In addition to deriving more-accurate estimates of 
the per-tumor type prevalence of chromothripsis, we determined 
the size and genomic distribution of such events, examined their 
role in the amplification of oncogenes or loss of tumor-suppressor 
genes, described their relationship to genome ploidy and investi-
gated whether their presence is correlated with patient survival. Our 
chromothripsis calls can be browsed at the accompanying website 
(http://compbio.med.harvard.edu/chromothripsis/).

Results
Prevalence of chromothripsis across cancer types. We first sought 
to formulate a set of criteria for identifying chromothripsis events 
with varying complexities (Fig. 1a). The acknowledged model of 
chromothripsis posits that some of the DNA fragments generated 
by the shattering of the DNA are lost; thus, CN oscillations between 
two or three states1,6 are an obvious first criterion (Fig. 1a). Such 
deletions also lead to interspersed loss of heterozygosity (LOH) or 
altered haplotype ratios if there is only a single copy of the paren-
tal homolog of the fragmented chromatid. Although chromosome 
shattering and reassembly has been experimentally demonstrated 
to generate chromothripsis2, template-switching DNA-replication 
errors can generate a similar pattern21. Indeed, shattering and repli-
cation error models are not mutually exclusive and could co-occur2. 
Therefore, for the discussion below we will refer generally to ‘chro-
mothripsis’ as encompassing both classes of models.

To detect chromothripsis in WGS data, we developed ShatterSeek 
(Methods and Supplementary Note). A key feature of our method 
is to identify clusters of breakpoints belonging to SVs that are inter-
leaved—that is, the regions bridged by their breakpoints overlap 
instead of being nested (Fig. 1)—as is expected from random join-
ing of genomic fragments. This encompasses the many cases that 
do not display simple oscillations (for example, partially oscillat-
ing CN profiles with interspersed amplifications) and oscillations 
that span multiple CN levels due to aneuploidy5,22. Rearrangements 
in chromothripsis should also follow a roughly even distribu-
tion for the different types of fragment joins (duplication-like, 
deletion-like, head-to-head and tail-to-tail inversions, which are 
shown in blue, orange, black and green, respectively, in Fig. 1a 
and throughout) and have breakpoints that are randomly distrib-
uted across the affected region1–3. Finally, we use interchromo-
somal SVs to identify chromothripsis events that involve multiple 
chromosomes. In the Supplementary Note, we have compiled the 
criteria that have been used in 27 major chromothripsis-related  
studies to date.

After removing low-quality samples using stringent quality 
control, we applied ShatterSeek to 2,543 tumor–normal pairs of  
37 cancer types (Methods and Supplementary Table 1). Of those 
2,543 pairs, 2,428 cases had SVs and were analyzed further. To 
tune the parameters in our method, we used statistical thresholds 
and visual inspection. For the minimum number of oscillating CN 
segments, we used two thresholds: high-confidence calls display 
oscillations between two states in at least seven adjacent segments, 
whereas low-confidence calls involve between four and six seg-
ments (Fig. 1b and Supplementary Note). The analyses described in 
the subsequent sections were performed using the high-confidence 
call set unless noted otherwise.

We first focused on the 1,427 nearly diploid genomes 
(ploidy ≤ 2.1; Supplementary Table 1), in which detection of chro-
mothripsis is more straightforward. We defined as ‘canonical’ those 
events in which more than 60% of the CN segments in the affected 
region oscillated between two states (canonical events in polyploid 
tumors are described later). The frequency of canonical chro-
mothripsis events is more than 40% for multiple cancer types, such 
as glioblastomas (50%) and lung adenocarcinomas (40%). These 
frequencies are much higher than previous estimates17,18.

When we extend our analysis to the entire cohort, we identify 
high-confidence events in 29% of the samples (734 out of 2,543), 
affecting 3.2% of all chromosomes (Fig. 1c and Supplementary 
Dataset 1). When low-confidence calls are included, the percentages 
increase to 40% and 5.3%, respectively (Supplementary Dataset 2).

The frequency varies markedly across cancer types. At the high 
end, we find that 100% of liposarcomas and 77% of osteosarcomas 
exhibit high-confidence chromothripsis (Fig. 1c and Supplementary 
Fig. 1). Although a higher susceptibility of these cancer types to 
chromothripsis has been described1,22, our estimated frequencies 
are substantially higher. Melanomas, glioblastomas and lung adeno-
carcinomas showed evidence of chromothripsis in more than 50% 
of cases (Fig. 1c). By contrast, the frequencies were lowest in thyroid 
adenocarcinomas (3.3%, n = 30), chronic lymphocytic leukemia 
(1.2%, n = 86) and pilocytic astrocytomas (0%, n = 78); in the other 
tumor types with low incidence, the sample sizes were too small to 
give meaningful estimates. Consistent with previous reports23,24, 
we find that chromothripsis is enriched in chromosomes 3 and 5 
in kidney renal cell carcinomas and chromosome 12 in liposarco-
mas (Supplementary Fig. 1a). Overall, these results indicate a much 
greater prevalence of chromothripsis in a majority of human can-
cers than previously estimated10,17,18.

Understanding the difference between our frequency estimates 
and previous ones. Our estimates are in accordance with recent 
analyses in specific tumor types5,7; however, they are considerably 
higher than those described in previous pan-cancer studies that 
used array-based platforms. With higher resolution from sequenc-
ing data, improved SV algorithms and refined criteria, we are able 
to provide more-accurate estimates.

To better understand the discrepancy between WGS-based stud-
ies, we carried out a detailed comparison using previously analyzed 
datasets. For 109 previously described prostate adenocarcinomas25, 
the authors used ShatterProof26 and found chromothripsis in 21% 
(23 out of 109). When we applied the same algorithm (with the 
same parameters) but using our CN and SV calls, the percentage 
more than doubled to 45% (49 out of 109). This indicates that the 
lower sensitivity of previous SV-detection methods is one of the 
main reasons for the discrepancy. Accurate SV detection remains 
challenging, especially for low-purity tumors. The SV calls that we 
used were generated by the PCAWG Structural Variation Working 
Group of the ICGC; each variant was required to be called by at least 
two of the four algorithms used in this analysis27.

Using ShatterSeek, we identified 11 additional cases for a total of 
55% (60 out of 109). Of the 23 previously reported cases25, we missed 
four. The missed events are focal events comprising fewer than six 
SVs, which is the lowest number allowed in our criteria; the detected 
regions appear to be hypermutated regions characterized by tandem 
duplications or deletions. For the cases that we detect but that were 
missed previously25, visual inspection reveals that the differences are 
mostly due to the lower sensitivity of their SV calls (Supplementary 
Note). ShatterSeek has increased sensitivity by incorporating more 
complex patterns of oscillations and interchromosomal SVs while 
keeping the specificity high by imposing additional criteria on 
breakpoint homology to remove tandem duplications and those 
arising from breakage–fusion–bridge (BFB) cycles. Furthermore, 
we also compared our method against ChromAL5 for 76 pancreatic 
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Fig. 1 | Overview of the chromothripsis-calling method and the frequency of events across 37 cancer types. a, Example of a region displaying the 
characteristic features of chromothripsis: cluster of interleaved SVs with equal proportions of SV types (that is, fragment joins), a CN profile that oscillates 
between two states and interspersed LOH. Details of the criteria are described in the Methods. Both the color scheme and the abbreviations shown 
in this figure are used throughout the manuscript. b, Classification of chromothripsis events. In a canonical event, more than 60% of the segments 
oscillate between two CN states; a tumor is classified as canonical if it showed at least one canonical chromothripsis event. c, Percentage of patients with 
chromothripsis events across the entire cohort. The fractions at the top of the bars are the number of tumors that showed high-confidence chromothripsis 
out of the total number of tumors of that type. The cancer type abbreviations used across the manuscript are as follows: Biliary-AdenoCA, biliary 
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astrocytoma; ColoRect-AdenoCA, colorectal adenocarcinoma; Eso-AdenoCA, esophagus adenocarcinoma; Head-SCC, head-and-neck squamous cell 
carcinoma; Kidney-ChRCC, kidney chromophobe renal cell carcinoma; Kidney-RCC, kidney renal cell carcinoma; Liver-HCC, liver hepatocellular carcinoma; 
Lung-AdenoCA, lung adenocarcinoma; Lung-SCC, lung squamous cell carcinoma; Lymph-CLL, lymphoid chronic lymphocytic leukemia; Lymph-BNHL, 
lymphoid mature B-cell lymphoma; Lymph-NOS, lymphoid not otherwise specified; Myeloid-AML, myeloid acute myeloid leukemia; Myeloid-MDS, 
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pancreatic adenocarcinoma; Panc-Endocrine, pancreatic neuroendocrine tumor; Prost-AdenoCA, prostate adenocarcinoma; Skin-Melanoma, skin 
melanoma; SoftTissue-Leiomyo, leiomyosarcoma, soft tissue; SoftTissue-Liposarc, liposarcoma, soft tissue; Stomach-AdenoCA, stomach adenocarcinoma; 
Thy-AdenoCA, thyroid low-grade adenocarcinoma; and Uterus-AdenoCA, uterus adenocarcinoma.
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tumors. Both ChromAL and ShatterSeek detect chromothripsis in 
the same 41 tumors (54%).

Therefore, our estimates for the frequency of chromothripsis 
events are supported by the following: some tumor types such as thy-
roid adenocarcinoma, chronic lymphocytic leukemia and pilocytic 
astrocytomas have few or no events; diploid tumors, which have  

simpler configurations that are easier to reconstruct or verify visually, 
have high frequencies; the high-confidence cases were used for final 
estimates; more sensitive CN and SV calls result in higher frequencies 
for the same datasets; our estimates are in agreement with very recent 
analysis in specific tumor types; and our chromothripsis calls do not 
overlap with regions affected by chromoplexy (Supplementary Note).
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Frequent involvement of interchromosomal SVs. An important 
feature of our approach is the incorporation of interchromosomal 
SVs to detect those events that involve multiple chromosomes. 
Chromothripsis affects only a single chromosome in 40% of the 
tumors with chromothripsis (Fig. 2a–c and Supplementary Figs. 1–3).  
A large number of chromosomes is frequently affected in some tumor 
types, for example, at least five chromosomes are affected in 61% 
osteosarcomas (Supplementary Figs. 1–4). In one extreme case, we 
found a single chromothripsis event that affected six chromosomes 
(Fig. 2b), with only seven of the 110 SVs on chromosome 5 being 
intrachromosomal. In another example (Supplementary Fig. 4d),  
an approximately 5-Mb region on chromosome 12 did not display 

CN oscillations, but it could be linked by interchromosomal SVs to 
another region that does show a clear chromothripsis pattern, sug-
gesting that the amplification of CCND2 on chromosome 12 may 
have originated from chromothripsis. Chromothripsis involving 
multiple chromosomes is likely to have arisen either from simul-
taneous fragmentation of multiple chromosomes (for example, in 
a micronucleus or in a chromosome bridge) or from fragmentation 
of a chromosome that had previously undergone a non-reciprocal 
translocation.

Size and complexity of chromothripsis events are highly variable. 
Chromothripsis events span a wide range of genomic scale, with the 
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number of breakpoints involved varying by two orders of magni-
tude within some tumor types (Supplementary Fig. 1c). We found 
that tumors had relatively focal chromothripsis events—usually a 
few megabases in size—that took place within an otherwise quiet 
genome (bottom-right quadrant in Fig. 2d). Although focal, these 
events can lead to the simultaneous amplification of multiple onco-
genes located in different chromosomes (Supplementary Figs. 4c–e, 
5a–c). Other focal events co-localize with other complex events 
in highly rearranged genomes (bottom-left quadrant in Fig. 2d). 

Overall, our analysis reveals that there is greater heterogeneity in 
chromothripsis patterns than previously appreciated, both in terms 
of the number of SVs and chromosomes involved.

Relationship between chromothripsis and aneuploidy. Newly 
established polyploid cells have high rates of mitotic errors that 
generate lagging chromosomes28,29, which have been linked to chro-
mothripsis in medulloblastomas and in vitro2,12,14. However, a causal 
relationship or even the frequency of association between polyploidy 
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and chromothripsis has not been assessed in detail. To examine the 
sequence of events clearly, we focused on the canonical cases, for 
which we can infer whether chromothripsis occurred before or after 
polyploidization30. For example, if the CN oscillates between two 
and four copies in a tetraploid tumor, we infer that polyploidization 
occurred after chromothripsis; on the other hand, if the oscillation 
occurs between three and four copies, we infer that polyploidization 
occurred first30 (Supplementary Figs. 1, 2, 5d, 6 and Supplementary 
Note). Of the 194 cases in which we can distinguish the sequence of 
events, 74% show chromothripsis after polyploidization. This sug-
gests that a large fraction of the canonical chromothripsis events in 
polyploid tumors are late events.

We observed canonical chromothripsis events in 26% of diploid- 
ranged tumors (431 out of 1,648) and in 40% of polyploid-ranged 
tumors (298 out of 748). After correcting for tumor type using the 
logistic regression, we estimate that, on average, the odds of chro-
mothripsis occurring in a polyploid tumor (cases with ploidy ≥ 2.5) 
is 1.5 times larger than that in a diploid tumor (95% confidence 
interval, 1.20–1.85; P < 10−3). This increase may be due to the pres-
ence of more genomic material in polyploids, although polyploidy 
also reduces the sensitivity of CN and SV detection (due to a lower 
sequence coverage per copy) and makes it easier for the cell to lose 
the highly rearranged copy when intact copies are present31.

Frequent co-localization of chromothripsis with other complex 
events. About half of the chromothripsis events co-localize with 
other genomic alterations (Fig. 1 and Supplementary Figs. 1, 2). 
There is evidence across multiple tumor types that chromothrip-
sis might occur before or after additional layers of rearrange-
ments6–8,13,14,23. For instance, BFB cycles have been mechanistically 
linked to chromothripsis and telomere attrition—which results in 
the formation of BFB cycles, has been identified as a predisposing 
factor for chromothripsis6,13,32.

Co-localization of APOBEC-mediated clustered hypermutation 
(kataegis) and rearrangements has been reported for multiple can-
cer types33,34, and has been linked to single-stranded DNA interme-
diates during break-induced replication35. To study the relationship 
between kataegis and chromothripsis, we examined the presence of 

clusters of APOBEC-induced mutations within the chromothrip-
sis regions (Methods). Excluding melanoma samples (due to the 
overlap between the APOBEC and ultraviolet-light signatures36), 
we find that 28% of the 734 tumors with chromothripsis show at 
least five clustered APOBEC-induced mutations, and 9.3% display 
kataegis comprising more than 20 mutations. Previous analysis of 
liposarcomas has suggested that multiple BFB cycles on a derivative 
chromosome generated by chromothripsis underlie the formation 
of neochromosomes23. In agreement with this model, we observe 
variant allele fractions of 0.01–0.1 for APOBEC-induced muta-
tions in chromothripsis regions that have high-level CN amplifica-
tions in soft-tissue liposarcomas, suggesting that they occurred at 
the late stages of tumor development, likely after chromothripsis 
(Supplementary Fig. 4e). Overall, although kataegis can co-occur 
with chromothripsis, this co-occurrence is not common. This is 
consistent with recent data that chromothriptic derivative chromo-
somes are mostly assembled by end-joining mechanisms that do not 
involve extensive DNA-end resection37.

TP53 mutation status and chromothripsis. Inactivating TP53 
mutations have been associated with chromothripsis in medul-
loblastomas8 and in pediatric cancers38,39, and TP53-deficient cells 
have been used as a model to generate chromothripsis in vitro2,14. 
Nevertheless, the relationship between deleterious TP53 muta-
tions and chromothripsis has not been examined comprehensively. 
In our data, 38% of the samples with inactivating TP53 mutations 
show chromothripsis, whereas 24% of those with wild-type TP53 
have chromothripsis (Fig. 2e). After correcting for cancer type, 
this translates to an odds ratio of 1.54 (95% confidence interval, 
1.21–1.95, P < 10−3) for chromothripsis in those with TP53 muta-
tions compared with TP53 wild-type cancers. However, we note 
that 60% of the chromothripsis cases show neither TP53 mutations 
nor MDM2 amplifications (a regulator of TP53 by ubiquitination40), 
including those with massive cases of chromothripsis in diploid 
genomes (for example, DO25622 in Fig. 2b). This indicates that, 
although p53 malfunction and polyploidy are predisposing factors 
for chromothripsis, it still occurs frequently in diploid tumors with 
proficient p53.
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Signatures of repair mechanisms in chromothripsis regions. 
Although imprecise, it is possible to infer the predominant mecha-
nisms responsible for the chromothripsis event based on the sequence 
homology at the breakpoints41,42. Previously, non-homologous end 
joining (NHEJ) has been implicated in the reassembly of DNA 
fragments generated by chromothripsis2,37, whereas alternative end 
joining (alt-EJ) has been proposed in constitutional chromothrip-
sis and in glioblastomas15,43. In addition, short templated insertions 
suggestive of microhomology-mediated break-induced replication 
(MMBIR) or alt-EJ associated with polymerase theta have been 
detected in chromothripsis events that originated from DNA frag-
mentation in micronuclei2,44–46.

We analyzed the breakpoints involved in canonical chromothrip-
sis events with interspersed LOH, as most SVs in such cases are 
related to chromothripsis (Fig. 1b). In 55% of these events, we only 
detected repair signatures that were concordant with NHEJ or alt-EJ 
(Supplementary Fig. 7). In 32%, we identified stretches of micro-
homology at two or more breakpoint junctions (mostly comprising 
0–6 bp) and short insertions of 10–500 bp that map to distant loca-
tions within the affected region (Supplementary Fig. 7). For exam-
ple, in the massive chromothripsis in Fig. 2a (1,394 SVs, hundreds 
of uninterrupted CN oscillations and interspersed LOH), we detect 
small nonrandom insertions of 10–379 bp at 60 breakpoints. Thus, 
NHEJ has a principal role in DNA repair, with partial contributions 
from MMBIR or alt-EJ.

By contrast, approximately 5% of the canonical events detected 
in diploid genomes show no evidence of LOH in part of the affected 
region or in the entire affected region, for example, oscillations 
between two and three CN, long stretches of microhomology and 
frequent evidence of template switching27 (Figs. 3, 4). For instance, 
in the case shown in Fig. 3b, both the size of the segments at CN 3 
(mean of 45 kb) and the orientation of the breakpoints at their edges 
suggest that these are templated insertions27. In addition, multiple 
breakpoint junctions show features concordant with MMBIR. In 
this case, we could manually reconstruct part of the amplicon by 
following the polymerase trajectory across 42 template-switching 
events (Fig. 3c–f). This type of event might be more appropriately 
called chromoanasynthesis21, but systematically distinguishing 
chromoanasynthesis from chromothripsis is challenging due to 
their partially overlapping features (template switching events can 
generate LOH if the polymerase skips over segments of the template 
and LOH might not be present in chromothripsis events that occur 
in aneuploid genomes; Supplementary Note).

We also find features associated with replication-associated 
mechanisms in more-complex rearrangements involving multiple 
chromosomes. In an illustrative case (Fig. 4a), LOH is observed in 
some chromosomes (Fig. 4b) but absent in others, where the oscil-
lations occur at higher CN states without LOH (Fig. 4c,d). There is 
evidence of templated insertions in chromosomes 5 and 13, which 
are linked to a chromothripsis event showing LOH in chromosome 
1. Notably, the minor CN for the templated insertions in chromo-
some 13 is 1, whereas it is 0 for the rest of the chromosome. This 
suggests that one parental chromosome served as a template and 
was later lost.

Overall, these results indicate the involvement of template- 
switching events in the generation or repair of complex rearrange-
ments, consistent with the observations of replication-associated 
processes in the formation of clustered rearrangements in con-
genital disorders and cancer15,21,27,41,47. Although further experimen-
tal evidence will be necessary, we suggest that the involvement of 
replication-associated mechanisms in the assembly of derivative 
chromosomes in chromothripsis might be substantial.

Oncogene amplification and loss of tumor-suppressor genes in 
chromothripsis regions. Evidence of oncogene amplification in 
extrachromosomal circular DNA elements, termed double-minutes, 

generated as a consequence of chromothripsis has been reported 
for selected cancer types1,2,8,43. However, the extent to which chro-
mothripsis contributes to double-minute formation has not been 
examined on a pan-cancer scale. Although reconstruction of a 
double-minute structure with discordant reads would present clear 
evidence for its extrachromosomal nature, this proves to be too 
difficult in general. Therefore, we rely on CN to make our infer-
ences. We find that 15 patients (2% of tumors with chromothripsis) 
show CN oscillations between one low (CN ≤ 4) and one very high 
(CN ≥ 10) state, consistent with the presence of a double minute8,43. 
We detect known cancer drivers in these putative double min-
utes, including MDM2 (four samples; Supplementary Figs. 4e, 5a  
and Supplementary Table 2) and CDK4 (four samples). These 
amplifications lead to increased mRNA levels of, for example, 
MDM2, NUP107 and CDK4 in a glioblastoma sample (DO14049) 
compared to other glioblastoma tumors. In chromothripsis regions 
subject to additional rearrangements, it is difficult to discern, using 
bulk-sequencing data, whether highly amplified segments are part 
of double minutes or correspond to intrachromosomal amplifica-
tion48. Furthermore, once a double minute has formed, the deriva-
tive chromosome showing chromothripsis may be lost if it has no 
other tumor-promoting mutations. Therefore, the contribution of 
chromothripsis to the formation of extrachromosomal DNA bodies 
is likely to be higher than estimated here.

Further analysis of focal amplifications, defined as regions with 
CN ≥ 4 and smaller than 6 Mb (ref. 49), in 1,268 tumors and 162 nor-
mal tissue samples with RNA-sequencing data reveals that 6,310 
focal amplifications encompassing oncogenes (11.1%; or 20.5% 
when including low-confidence calls) localize to chromothrip-
sis regions, often leading to increased expression (Supplementary 
Table 2). These include well-known cancer-associated genes, such 
as CCND1 (25 tumors), CDK4 (25 tumors), MDM2 (23 tumors), 
SETDB1 (23 tumors), ERBB3 (11 tumors), ERBB2 (11 tumors), 
MYC (10 tumors) and MYCN (five tumors). Therefore, chro-
mothripsis—perhaps together with associated replication-based 
CN gains22,50—may make a substantial contribution to small-scale 
focal amplifications.

Expanding previous analyses5,24, we examined the extent to 
which chromothripsis contributes to the loss of tumor-suppressor 
genes across tumor types. We find that chromothripsis underlies 
2.1% and 1.9% of the losses of tumor-suppressor and DNA-repair 
genes, respectively. These include MLH1 (9 out of 301 tumors with 
MLH1 deletions), PTEN (12 out of 358), BRCA1 (8 out of 154), 
BRCA2 (7 out of 270), APC (9 out of 201), SMAD4 (10 out of 403) 
and TP53 (8 out of 614) (Supplementary Fig. 8 and Supplementary 
Table 2). In 28 samples, both alleles were inactivated, one due to 
chromothripsis and the other due to a point mutation, including 
in SMAD4, APC, TP53 and CDKN2A. In a biliary adenocarci-
noma (Fig. 5), for instance, one MLH1 allele was lost due to chro-
mothripsis and the other allele was likely silenced due to promoter 
hypermethylation, as evidenced by low expression of MLH1 and 
the microsatellite-instability phenotype in an otherwise mismatch 
repair (MMR)-proficient tumor51. Overall, these data illustrate the 
way in which chromothripsis can confer tumorigenic potential 
through the loss of key tumor-suppressor and DNA-repair genes. 
See Supplementary Note for additional analysis of the genes recur-
rently targeted by chromothripsis breakpoints, their role in the for-
mation of gene fusions, enrichment of chromothripsis breakpoints 
in epigenomic marks and survival analyses.

Discussion
Our analysis has revealed that chromothripsis plays a major part in 
shaping the architecture of cancer genomes across diverse cancers. 
We found that the prevalence and heterogeneity of chromothrip-
sis was much higher than previously appreciated. Our approach 
enabled us to define more-nuanced criteria to detect chromothripsis  
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events, including those that involve multiple chromosomes and 
those that were hard to detect previously due to the presence of 
other co-localized rearrangements.

We note that the estimated frequencies of chromothripsis depend 
on statistical thresholds. Although we chose conservative thresholds, 
we cannot exclude the possibility that some chromothripsis-like pat-
terns might have arisen due to other sources of genomic instability. 
Conversely, it is also possible that we missed true chromothripsis 
events that have fewer than the required number of rearrangements; 
it is worth noting that such small-scale events are seen in experi-
mentally generated chromothripsis2. Cases in which chromothripsis 
is followed by other complex rearrangements that mask the canoni-
cal CN pattern are especially difficult to detect, requiring additional 
criteria and in-depth manual inspection. Despite these limitations, 
we believe that our statistical approach is more sensitive than the 
reassembly-based approach in which one attempts to reconstruct 
the steps that led to the observed SV pattern. Most complex events 
are too complicated for reconstruction, especially when many 
breakpoints are undetected and some are incorrectly identified due 
to inherent limitations of short-read data, imperfect SV algorithms 
and insufficient sequencing coverage.

Given the pervasiveness of chromothripsis in human cancers 
and its association with poorer prognosis, another question that 
arises is whether chromothripsis itself constitutes an actionable 
molecular event that is amenable to therapy. This is of particular 
interest given the link between aneuploidy, depleted immune infil-
tration and reduced response to immunotherapy52. As more WGS 
data are linked to other data types including clinical information, it 
will become feasible to understand the influence of chromothripsis 
on tumorigenesis and its potential as a biomarker for diagnosis or 
treatment.
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PCAWG whole-genome sequencing dataset. We integrated, using a common 
processing pipeline, whole-genome sequencing data from the TCGA and ICGC 
consortia for 2,658 tumor and matched normal pairs across 38 cancer types, 
of which 2,543 pairs from 37 cancer types that passed our quality-control 
criteria were selected for further analysis53. The list of samples is provided in 
Supplementary Table 1. Further information for all tumor samples and patients is 
provided in a separate study20. Sequencing reads were aligned using BWA-MEM 
v.0.7.8-r455, whereas BioBamBam v.0.0.138 was used to extract unpaired reads and 
mark duplicates54,55.

Mutation calling. We used the consensus SNV and indel (insertions and 
deletions) call sets released by the PCAWG project (Supplementary Table 3). 
We used HaplotypeCaller v.3.4-46-gbc0262554 to call SNPs in both tumor 
and matched normal samples following the GATK best-practice guidelines. 
We retained only SNPs supported by at least ten reads. We processed a total of 
210,021 nonsynonymous somatic mutations, of which 43,548 were predicted to 
be deleterious using the MetaLR score as implemented in Annovar56. To identify 
APOBEC mutagenesis, we followed a previously described procedure36. In brief, 
we considered as APOBEC-associated mutations those involving a change of (1) 
G within the sequence motif wGa to a C or A (where w is A or T) or (2) C in the 
sequence motif tCw to G or T (where w is A or T).

Detection of SVs and CN alterations. The SVs were identified by the PCAWG 
Structural Variation Working Group, which applied four algorithms and selected 
those SVs found by at least two algorithms20,27. We used the consensus SV, CN, 
purity and ploidy call-sets generated by the PCAWG project (Supplementary  
Table 3). The calling pipelines are described in detail in associated papers27,57.

RNA-seq data analysis. We processed RNA-seq data for a total of 162 normal 
and 1,268 and tumor samples. Sequencing reads were aligned using TopHat2 
and STAR58,59. HTseq-count was subsequently used to calculate read counts for 
the genes encompassed in the PCAWG reference GTF set, namely Gencode v.19. 
Counts were normalized to UQ-FPKM (upper-quartile-normalized fragments 
per kb per million mapped reads) values using upper-quartile normalization. The 
expression values were averaged across the two alignments. The set of oncogenes 
was downloaded and curated from COSMIC (dominant genes) and IntOGen 
databases60,61, whereas the set of tumor suppressors was downloaded from TSGene 
v.2.0, COSMIC (recessive genes) and previous studies62,63. DNA-repair genes were 
extracted from a previous study64.

Characterization of chromothripsis events using ShatterSeek. To identify and 
visualize chromothripsis-like patterns in the cancer genomes by using CN and SV 
data, we adapted the previously proposed set of statistical criteria3. The ShatterSeek 
code, the package documentation and a detailed tutorial are available at https://
github.com/parklab/ShatterSeek. Interactive circos plots for all tumors in the 
PCAWG cohort analyzed in this study are provided at http://compbio.med.harvard.
edu/chromothripsis/.

The values for the statistical criteria for all chromosomes across all samples 
are provided in Supplementary Table 1. Visual depictions of the high-confidence 
and low-confidence calls are provided in Supplementary Datasets 1 and 2. Visual 
depictions for the two sets of SV clusters not identified as chromothripsis by our 
method, namely (1) those involving clusters of duplications or deletions leading 
to CN oscillations, as well as oscillating CN profiles with few or no SVs mapped 
and (2) large clusters of interleaved SVs that did not display chromothripsis, are 
provided in Supplementary Datasets 3 and 4, respectively. In Supplementary 
Datasets 1–4 and in the main text (Figs. 1a, 3a,b, 4b–d and 5a), intrachromosomal 
SVs are depicted as arcs with the breakpoints represented by black points, whereas 
the breakpoints corresponding to interchromosomal SVs are depicted as colored 
points. Duplication-like SVs, deletion-like SVs, head-to-head and tail-to-tail 
inversions are depicted in blue, orange, black and green, respectively. The value  
for the statistical criteria described above for each event is provided underneath  
its representation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Descriptions and links to the datasets and variant calls used in the paper are listed 
in Supplementary Table 3. Information on accessing raw data can be found at 
https://docs.icgc.org/pcawg/data/; PCAWG analysis results are available at https://
dcc.icgc.org/releases/PCAWG. Datasets marked ‘Controlled’ contain potentially 
identifiable information and require authorization from the ICGC and TCGA 
Data Access Committees. Further information regarding the availability of the 
data is provided in ref. 20. In accordance with the data access policies of the ICGC 
and TCGA projects, most data are in an open tier, which does not require access 

approval. To access potentially identifying information, researchers will need to 
apply to the TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.ncbi.
nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, 
and to the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco) for 
the ICGC portion.

Code availability
The code for calling chromothripsis events is available at https://github.com/
parklab/ShatterSeek. The core computational pipelines used by the PCAWG 
Consortium for alignment, quality control and variant calling are available to the 
public at https://dockstore.org/search?search=pcawg under a GNU General Public 
License v.3.0, which allows for reuse and distribution.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data and metadata were collected from International Cancer Genome Consortium (ICGC) consortium members using custom software 
packages designed by the ICGC Data Coordinating Centre. The general-purpose core libraries and utilities underlying this software have 
been released under the GPLv3 open source license as the "Overture" package and are available at https://www.overture.bio. Other data 
collection software used in this effort, such as ICGC-specific portal user interfaces, are available upon request to contact@overture.bio. 

Data analysis The workflows executing core WGS alignment, QC and variant-calling software are packaged as executable Dockstore images and 
available at: https://dockstore.org/search?labels.value.keyword=pcawg&searchMode=files. Individual software components are as 
follows: BWA-MEM v0.78.8-r455; DELLY v0.6.6; ACEseq v1.0.189; DKFZ somatic SNV workflow v1.0.132-1; Platypus v0.7.4; ascatNgs 
v1.5.2; BRASS v4.012; grass v1.1.6; CaVEMan v1.50; Pindel v1.5.7; ABSOLUTE/JaBbA v1.5; SvABA 2015-05-20; dRanger 2016-03-13; 
BreakPointer 2015-12-22; MuTect v1.1.4; MuSE v1.0rc; SMuFIN 2014-10-26; OxoG 2016-4-28; VAGrENT v2.1.2; ANNOVAR v2014Nov12; 
VariantBAM v2017Dec12; SNV-Merge v2017May26; SV-MERGE v2017Dec12; DKFZ v2016Dec15 
The code of the ShatterSeek algorithms we developed to detect chromothripsis from whole-genome sequencing data is available in its 
entirety at https://github.com/parklab/ShatterSeek and http://compbio.med.harvard.edu/chromothripsis/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

WGS somatic and germline variant calls, mutational signatures, subclonal reconstructions, transcript abundance, splice calls and other core data generated by the 
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ICGC/TCGA Pan-cancer Analysis of Whole Genomes Consortium are available for download at https://dcc.icgc.org/releases/PCAWG. Additional information on 
accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data access policies of the ICGC and TCGA 
projects, most molecular, clinical and specimen data are in an open tier which does not require access approval. To access potentially identification information, 
such as germline alleles and underlying sequencing data, researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.ncbi.
nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco) for 
the ICGC portion. In addition, to access somatic single nucleotide variants derived from TCGA donors, researchers will also need to obtain dbGaP authorization
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We compiled an inventory of matched tumour/normal whole cancer genomes in the ICGC Data Coordinating Centre. Most samples came 
from treatment-naïve, primary cancers, but there were a small number of donors with multiple samples of primary, metastatic and/or 
recurrent tumours. Our inclusion criteria were: (i) matched tumour and normal specimen pair; (ii) a minimal set of clinical fields; and (iii) 
characterisation of tumour and normal whole genomes using Illumina HiSeq paired-end sequencing reads.  
We collected genome data from 2,834 donors, representing all ICGC and TCGA donors that met these criteria at the time of the final data 
freeze in autumn 2014. 

Data exclusions After quality assurance, data from 176 donors were excluded as unusable. Reasons for data exclusions included inadequate coverage, 
extreme bias in coverage across the genome, evidence for contamination in samples and excessive sequencing errors (for example, through 8-
oxoguanine).

Replication In order to evaluate the performance of each of the mutation-calling pipelines and determine an integration strategy, we performed a large-
scale deep sequencing validation experiment. We selected a pilot set of 63 representative tumour/normal pairs, on which we ran the three 
core pipelines, together with a set of 10 additional somatic variant-calling pipelines contributed by members of the SNV Calling Working 
Group. Overall, the sensitivity and precision of the consensus somatic variant calls were 95% (CI90%: 88-98%) and 95% (CI90%: 71-99%) 
respectively for SNVs. For somatic indels, sensitivity and precision were 60% (34-72%) and 91% (73-96%) respectively. Regarding SVs, we 
estimate the sensitivity of the merging algorithm to be 90% for true calls generated by any one caller; precision was estimated as 97.5% - that 
is, 97.5% of SVs in the merged SV call-set have an associated copy number change or balanced partner rearrangement.

Randomization No randomisation was performed.

Blinding No blinding was undertaken.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Patient-by-patient clinical data are provided in the marker paper for the PCAWG consortium (Extended Data Table 1 of that 
manuscript). Demographically, the cohort included 1,469 males (55%) and 1,189 females (45%), with a mean age of 56 years 
(range, 1-90 years). Using population ancestry-differentiated single nucleotide polymorphisms (SNPs), the ancestry distribution 
was heavily weighted towards donors of European descent (77% of total) followed by East Asians (16%), as expected for large 
contributions from European, North American and Australian projects. We consolidated histopathology descriptions of the 
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tumour samples, using the ICD-0-3 tumour site controlled vocabulary. Overall, the PCAWG data set comprises 38 distinct tumour 
types. While the most common tumour types are included in the dataset, their distribution does not match the relative 
population incidences, largely due to differences among contributing ICGC/TCGA groups in numbers sequenced. 

Recruitment Patients were recruited by the participating centres following local protocols. 

Ethics oversight The Ethics oversight for the PCAWG protocol was undertaken by the TCGA Program Office and the Ethics and Governance 
Committee of the ICGC. Each individual ICGC and TCGA project that contributed data to PCAWG had their own local 
arrangements for ethics oversight and regulatory alignment.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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