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Abstract 

All mental representations change with time. A baseline intuition is that mental representations have 

specific values at different time points, which may be more or less accessible, depending on noise, 

forgetting processes etc. We present a radically alternative, motivated by recent research using the 

mathematics from quantum theory for cognitive modelling. Such cognitive models raise the possibility 

that certain possibilities or events may be incompatible, so that perfect knowledge of one necessitates 

uncertainty for the others. In the context of time dependence, in physics, this issue is explored with the 

so-called temporal Bell (TB) or Leggett-Garg inequalities. We consider in detail the theoretical and 

empirical challenges involved in exploring the TB inequalities in the context of cognitive systems. One 

interesting conclusion is that we believe the study of the TB inequalities to be empirically more 

constrained in psychology, than in physics. Specifically, we show how the TB inequalities, as applied to 

cognitive systems, can be derived from two simple assumptions, Cognitive Realism and Cognitive 

Completeness.  We discuss possible implications of putative violations of the TB inequalities for 

cognitive models and our understanding of time in cognition in general. Overall, the paper provides a 

surprising, novel direction, in relation to how time should be conceptualized in cognition.  



 

1. Introduction 

Consider a cognitive variable, such as affect or interpretation, in relation to a stimulus, e.g., how much 

one likes eating chocolate. All cognitive variables can, in principle, change with time and how they do so 

is a key consideration in psychological theory, e.g., models of memory. The fundamental, though tacit, 

assumption regarding change in time is that of a classical trajectory. A cognitive variable has specific 

values at different time points, but of course these values are not always readily accessible or they may 

be accessed, but in a noisy way (e.g., Howe & Courage, 1997; Raaijmakers & Shiffrin, 1992; Shiffrin, 

1970). Such intuitions seem straightforward and uncontroversial. With this paper, we challenge the 

notion that cognitive variables (always) have a specific, well-defined value at all times (cf. Raijmakers & 

Molenaar, 2004). The alternative possibility we present is that certainty about the value of a cognitive 

variable at a specific time will create uncertainty about the value at (most) other time points; the act of 

inquiring (e.g., through a psychological process of recall) about value, from time point to time point, may 

be constructive, so that it would be impossible to create a table of possible values of the cognitive 

variable at all time points; such a table would no longer exist. Such issues can be addressed in a 

technical way, using the mathematics developed for quantum theory in physics.  

 Recent work with quantum cognitive models has offered a comprehensive challenge to many 

established intuitions about basic properties of cognitive models, in a way analogous to the application 

of quantum theory in physics. By quantum theory (or quantum probability, QP, theory) we mean the 

rules for assigning probabilities to events from quantum mechanics, without any of the physics (e.g., 

Atmanspacher, Romer, & Wallach, 2006). QP theory is in principle applicable to any area where there is 

a need to formalize uncertainty. In psychology, classical probability (CP) theory is by far the most 

dominant approach for dealing with uncertainty (e.g., Oaksford & Chater, 2009; Tenenbaum et al., 

2011), but empirical findings often challenge classical prescription. QP theory has enabled the 

development of compelling cognitive models for cases for which CP theory appears inadequate, for 



 

example, in conceptual combination (Aerts & Gabora, 2005), decision making (Busemeyer et al., 2011; 

Pothos & Busemeyer, 2009; Trueblood & Busemeyer, 2011; Wang & Busemeyer, 2013), and memory 

(Bruza et al., 2009). We stress that these applications of QP theory to cognition are consistent with a 

fully classical brain and do not require a quantum brain (this latter hypothesis is very controversial). An 

important contribution of this research programme has been the introduction of explanatory concepts 

in psychology, with no prior analogue, such as incompatibility, superposition, and entanglement. Such 

concepts have enabled new insights about the principles underlying cognitive processes (for overviews 

see Busemeyer & Bruza, 2011; Khrennikov, 2010; Pothos & Busemeyer, 2013; for an early example see 

Aerts & Aerts, 1995).  

 Our present focus is on the implications from QP theory on how to understand time 

dependence in cognitive models. Atmanspacher and Filk (2010) have presented a pioneering analysis, 

wherein they argued that the process of perceiving a stimulus, which can have one of two stable 

perceptual interpretations (bistable perception), can be described with a quantum model, in a way 

which challenges classical notions of time dependence. Specifically, they presented conditions, which 

enabled an interpretation of what they called “temporal nonlocality”, by which they meant that “… 

events cannot be uniquely fixed in time” (p.314). Their derivation is based on the temporal Bell (TB) 

inequalities (Leggett & Garg, 1985), also known as the Leggett-Garg inequalities. Briefly, in physics, the 

TB inequalities are based on a combination of two-time correlation functions, at different time points, 

for the value of a physical quantity which can be observed (such quantities are called, surprisingly 

enough, observables). Define realism to be the property that a system with two or more states will be at 

all times in one of these states. A TB inequality will be satisfied by all realist systems, provided they can 

be measured in a non-invasive way (we clarify measurement issues below).  

 The mathematical simplicity and elegance of the TB inequalities make them extremely appealing 

as tests of the necessity of a quantum description for a system. Indeed, historically, a violation of the 



 

(non-temporal) Bell inequalities is considered to be the ultimate proof of the failure of classical physics 

to describe the physical world (Bell, 2004). Observed violations of the Bell inequalities in physics rule out 

not just a single physical model, but rather an entire class of models, those satisfying ‘local causality’  

(Bell, 2004). In physics, the corresponding empirical demonstration by Aspect and colleagues (e.g., 

Aspect, Graingier, & Roger, 1981) has been one of the most compelling events in the history of science. 

In a similar way, our purpose is to develop the necessary conceptual tools to consider violations of the 

TB inequalities in psychology; such violations, if observed, would rule out an entire class of cognitive 

models, those having the property of ‘Cognitive Realism’, which we define below.  

  However, in physics, tests of violations of the TB inequalities are fraught with empirical and 

conceptual difficulties and doubt has been cast on whether they are in principle possible (e.g., 

Ballentine, 1987; Yearsley, under review; Wilde & Mizel, 2012; see Peres, 1988, for early objections). 

Furthermore, the derivation and testing of the TB inequalities in psychology presents challenges 

different from those encountered in physics. The most important difference is that tests of the Bell and 

TB inequalities in physics are (with important caveats) designed to rule out the possibility of a realist 

account of fundamental physics. In contrast, the consensus in psychology is that cognitive function can 

be reduced (at least in principle) to the workings of a classical brain, and thus realism, in the sense that a 

physicist understands it, is a presumption of any cognitive model. It is thus important to establish 

exactly what would be proven by any purported violation of the TB inequalities in psychology. Put 

differently, if the TB inequalities are violated by a cognitive system, but we are assuming a classical 

brain, what exactly is it that is ‘quantum’? Another issue concerns the generality of existing quantum 

models violating TB inequalities in psychology, such as the one of Atmanspacher and Filk (2010). 

Perhaps violations of TB inequalities do occur, but for such specific cognitive quantum models, that 

general implications for cognition are limited. 



 

 The purpose of this paper is to bridge the disciplinary gap between physics and psychology, in 

relation to the considerations for testing for and interpreting putative violations of the TB inequalities. 

There are several conceptual and interpretative issues to address in this effort. Nevertheless, we offer 

the promise of a radical reconceptualization of the construct of time in psychology and, indeed, 

potentially our understanding of memory. We hope that this ‘bridging’ paper will stimulate research in 

this novel, exciting research direction.  

2. The assumptions underlying the TB inequalities 

In this section we motivate a derivation of the TB inequalities in the context of cognitive models. To do 

this, we will need to specify in a fairly precise mathematical way two assumptions about the set of 

cognitive models under consideration. Then, the derivation of a TB inequality is fairly straightforward 

(see the Appendix).  

 Consider a cognitive model of a simple two-valued system such as, to follow from a famous 

example in decision making, participants’ judgement about whether Linda is or is not a bank teller 

(Tversky & Kahneman, 1983). Cognitive models work by isolating a small set of judgments or thoughts 

(cf. Fodor, 1983) and assuming they can be modelled, without detailed knowledge of the underlying 

neuropsychological states of the participants’ brains. Consistency between modelling at the cognitive 

level and the underlying neurophysiology usually concerns just assumptions about computability 

restrictions for the former from the latter, though there are exceptions (for a recent discussion see 

Jones & Love, 2011). The consideration of the putative psychological relevance of TB inequalities 

requires us to be more precise about such issues. We suggest that there are two implicit assumptions in 

all typical cognitive models, concerning the relation between cognitive states and neurophysiological 

ones. We argue that these assumptions are reasonable and, moreover, sufficient to derive the TB 

inequalities, as applied to cognitive systems. Therefore, an empirically observed violation of a TB 



 

inequality for a cognitive system would rule out the large class of cognitive models, consistent with 

these assumptions. 

 The first assumption implicit in all cognitive models may be called Cognitive Realism. This is the 

assumption that the reason for any judgment at the cognitive level is ultimately (in principle, if not in 

practice) reducible to processes at the neurophysiological level. We assume that the neurophysiology of 

the brain is classical (e.g., beim Graben & Atmanspacher, 2009), as arguments to the contrary remain 

controversial. Thus, we assume that, for example, if it were possible to read out the exact state of a 

person’s brain at the neural level, this would be sufficient to uniquely determine the person’s decisions. 

Of course, such a mapping between the neuropsychological and the cognitive level is likely to be 

enormously complicated and impossible to implement in practice. In some sense, this is the whole 

raison d’être of cognitive models. However, all we need assume presently is that such a mapping exists.  

 Mathematically, this means that the expected outcome of a particular judgement   in a 

cognitive model may be written as 

〈 〉  ∑    

 

     

Here the   denote the possible neuropsychological states of the brain,      tells us the judgement of a 

participant or group of participants, given that their neuropsychological state is  , and      denotes the 

probability distribution of the participants’ neuropsychological states over the possible  .  

 The neuropsychological states   are like the ‘hidden variables’ in the physics context, to be 

distinguished from what we can call cognitive variables (which relate only to the cognitive state). The 

hidden (neurophysiological) variables represent the information that would be needed to fully 

determine both the cognitive state and its dynamics, i.e., to predict all future relevant decisions of a 

participant (at least up to classical noise arising from imperfect measurement). Thus each alternative 

configuration of the neuropsychological state   determines the value of the judgment  , for participants 

with this particular neuropsychological state. This formalism is easily adapted to multiple judgments or 



 

to time-dependent cognitive variables. Cognitive variables are typically directly observable, whereas 

neurophysiological variables are not. Our uncertainty about the exact neuropsychological state of the 

participant is expressed by the fact that      is a probability distribution, which may give non-zero 

probabilities for many possible states. 

 The assumption of Cognitive Realism may also be expressed in the following important way: For 

any set of judgements, and at all times, an observer has a definite opinion about all judgments. 

Cognitive Realism, together with the assumption of Cognitive Completeness (explained shortly), imply 

that participants’ judgments reflect pre-existing preferences and so cannot be ‘constructive’. Note, 

quantum cognition models do not satisfy the assumption of Cognitive Realism.  

 The second assumption, which we suggest is implicit in all standard cognitive models, can be 

called Cognitive Completeness. Consider a cognitive model to predict responses for an arbitrary set of 

judgments, for example, following again from Tversky and Kahneman’s (1983) example, ‘is Linda a 

feminist?’, ‘is Linda a bank teller?’ etc. Cognitive Completeness is the assumption that the cognitive 

state of a person responding to such a set of judgments can be entirely determined by the probabilities 

for the judgment outcomes. That is, observing participant behaviour can fully determine the underlying 

cognitive state, without the need to invoke neurophysiological variables. It is possible that different 

neurophysiological states give rise to the same behaviour or not. Regardless, Cognitive Completeness 

means that knowledge of the relevant cognitive state (and its dynamics), in relation to a set of 

judgments, can fully occur, without the knowledge of neurophysiological variables. 

 Mathematically, this assumption means that every cognitive model defines a set of similarity 

classes on the set of all probability distributions over the neuropsychological variables, with two 

distributions      and       being similar,           , if they lead to the same predictions, for all 

judgments produced by the cognitive model.  



 

 This assumption has a crucial consequence. Consider any stimuli presented to, or measurement 

made on, a group of participants, which does not change the probabilities for the outcomes of any 

future judgment, in the relevant cognitive model. Let us call such measurements non-disturbing. 

Whether or not a measurement is non-disturbing can be established empirically. Call measurements 

which affect the neurophysiological variables invasive, by analogy with physics, whereby invasive 

measurements are ones which affect hidden variables (invasive measurements could, e.g., change the 

dynamics of a system, but in such a way that the probabilities for future measurements are the same). In 

physics, a fundamental challenge in any attempt to demonstrate violations of the TB inequality is that it 

is possible to empirically establish whether a measurement is disturbing or not, but this is not so for 

whether it is invasive or not (George et al, 2013, Palacios-Laloy et al 2010, Yearsley, under review). In 

psychology, with the assumption of Cognitive Completeness, we avoid this problem: Cognitive 

Completeness means that, as long as a measurement is non-disturbing, it can be assumed to be non-

invasive as well, that is, that it has no effect on the neurophysiological state of a participant. This is 

because Cognitive Completeness tells us that the cognitive state of the participants may be fully 

determined by knowledge of the outcomes of all judgments in the relevant cognitive model. Thus, at 

most, a non-disturbing measurement may change the underlying neurophysiological state in a way that 

gives rise to the same cognitive state. But, any such change is undetectable by any measurement 

relevant to the cognitive model and thus we can simply assume that no change in the 

neurophysiological state occurred. 

 Let us recap the two assumptions that define the class of cognitive models we are considering. 

Cognitive Realism tells us that the outcomes of all judgements in a cognitive model are ultimately 

determined, doubtless in an extremely complicated way, by the participants’ neuropsychological states. 

This expression of Cognitive Realism is uncontroversial, but in practice it rarely impacts on the 

specification of cognitive models. Of relevance to cognitive models is the implication from Cognitive 



 

Realism that, for any set of judgments, and at all times, a definite outcome exists. Cognitive 

Completeness tells us that the cognitive state relevant to a particular set of judgments may be 

determined entirely from the probabilities for outcomes of those judgments and thus, that different 

neurophysiological states, which give rise to the same probabilities for these judgments, may be 

considered identical. In brief, Cognitive Completeness means that non-disturbing measurements can be 

assumed to be non-invasive. These assumptions are simple, plausible, and central, implicitly or explicitly, 

to most existing cognitive models.    

  A final caveat is that our motivation for Cognitive Completeness is partly based on considering 

the only plausible hidden variables to be neurophysiological ones. Why not consider the possibility of 

cognitive hidden variables, that is, the possibility of augmenting a cognitive model with more judgments, 

in the hope of identifying a larger set of judgments, such that the corresponding model satisfies both 

Cognitive Realism and Cognitive Completeness?  If such additional judgments could be measured in a 

non-disturbing way, then we could get the marginal probability distribution for the original judgments 

by summing them out. But, in such a case, an observed violation of TB would tell us that this marginal 

does not exist, and therefore neither can the joint probability distribution for the original plus additional 

judgments. This implies that any cognitive hidden variable can never be measured in a non-disturbing 

way. However, the existence of a cognitive variable, which is impossible to measure without altering the 

probabilities for the outcomes of future judgments, indeed feels very much like an expression of 

‘quantumness’ in a cognitive model. 



 

 

 

 Figure 1: Venn diagram showing the relationship between the assumptions of Cognitive 

Realism and Cognitive Completeness and their overlap, which defines classical cognitive models. 

Quantum models satisfy Cognitive Completeness but not Cognitive Realism, and a model in the class 

‘X’ would satisfy Cognitive Realism but not Cognitive Completeness.  

 

 Given the assumptions of Cognitive Realism and Cognitive Completeness, it is possible to derive 

a simple form of the TB inequality, as relevant to cognitive systems (see the Appendix). Consider a two 

level time dependent observable     , with two possible values     The definition of an observable in 

psychology is entirely analogous to that in physics; e.g., in psychology, an observable could correspond 

to a participant’s impression of whether Linda is a bank teller or not. Let 〈          〉 denote the two 

time correlation functions, by which we mean the expected value of the product of the observable at    

and the observable at   . Then, given our two assumptions, one can derive a TB inequality of the 

following form,  

|〈          〉  〈          〉|    [〈          〉  〈          〉]. 

  We note here a difference between the inequality above and the version in Atmanspacher and 

Filk (2010). The inequality we present involves correlations between the values of the observable   at 



 

four different times, in contrast to Atmanspacher and Filk’s (2010) one, which involves three. The 

derivation of the three time version involves the extra assumption that the possible values of     , ie 

the measured value of  , given that the neurophysiological state is  , can only take the values    (see 

the Appendix). In psychological terms, this means demanding, first, that the judged value of   follows 

deterministically, given a particular neurophysiological state (plausible, but an assumption which we 

would rather not require) and, second, that the experimental set up is such that the measured value of 

  is perfectly correlated with the judged value of  , i.e., there is no noise in the measurement. Both of 

these are strong assumptions and it seems better to use a framework which does not depend on them, 

as is the case for the four time version of the temporal Bell inequalities.    

   

3. Planning for violations of the TB inequality 

Classical cognitive models satisfy both Cognitive Realism and Cognitive Completeness, and so the TB 

inequalities. Quantum cognitive models may violate the TB inequalities, allowing us to consider whether 

Cognitive Realism or Cognitive Completeness might be rejected in cognitive explanation. However, this 

speculation is meaningless, unless it is possible to specify quantum cognitive models, which would guide 

prediction, regarding the time points when putative violations of TB inequalities are expected. In this 

section, we discuss how a dynamic quantum model can be developed, for a particular set of situations, 

which arise fairly often in cognitive modelling, that of bi-valued judgments, regarding a single question 

(e.g., an evaluation of positive vs. negative affect or risky vs. safe choice etc.) 

 We assume that we are dealing with a closed set of judgments, by which we mean that there is 

no obvious way to regard the judgments as some subset of a larger set of possibilities. (This assumption 

can be relaxed at the expense of requiring a more complicated model.)  The main aspect of the 

specification of a quantum dynamical model then concerns the Hamiltonian, H, the operator which 



 

determines how a quantum system changes with time, via Schrödinger’s equation,  
  

  
    . To 

simplify computations, we assume that H is independent of time and that we are working with 

dimensionless units. The solution to Schrödinger’s equation is                               

     , where    is the initial time. Note that we use the word ‘time’ here in a formal way. For certain 

types of stimuli, the ‘time’ in the solution of Schrödinger’s equation may be the length of time for which 

the stimuli was presented, but for other, discrete stimuli, it may be proportional to the number of 

stimuli presented or even to the ‘strength’ of the stimuli in some sense (e.g. if the stimuli are quantities 

of money,   might be proportional to the amount of money).   

 Generally, it is difficult to a priori motivate a suitable Hamiltonian. However, for a two level 

system, any Hamiltonian must be a weighted sum of the three Pauli matrices (   (
  
  

),    

(
   
  

),    (
  
   

)) and the identity. The effect of the identity is just to introduce an overall phase 

factor onto the state, so it can be ignored (this phase factor cancels out when we compute 

probabilities). In the standard Bloch sphere representation of a two-level quantum system, there are 

three directions, x, y, z. Let us choose the direction z to correspond to the psychological variable of 

interest (recall, we are talking about a bi-valued observable, e.g., whether a hypothetical person is a 

bank teller or not), so that the projection operators to the two possibilities of interest can be set as 

   [
  
  

] and    [
  
  

] (which correspond to the eigenstates of   ). As we are only concerned 

with projection along the z-axis, we can drop one of    and   , and we eliminate the latter. The 

Hamiltonian for such a system would then be determined by    and   . Our purpose here is not to 

specify the most general (reasonable) Hamiltonian, rather demonstrate how to derive optimal times for 

when to expect violations of the TB inequalities. So, for simplicity, we also eliminate    (note that, in 

physics,    controls the difference between the energies of the two psychologically relevant states, i.e., 

   ⟨ |  | ⟩  ⟨ |  | ⟩, a function which is of arguable relevance in psychology). 



 

Given these simplifying assumptions,      , where   is a constant affecting the rate of change of the 

psychological state (  could be determined through calibration experiments). While this model is not 

the most general one, even for a cognitive model for bi-valued judgments, the simplifying assumptions 

are reasonable and we think it would be useful in at least some cognitive modelling situations. Indeed, 

this model has the same form as that derived by Atmanspacher and Filk (2010).  

 We now put the model to good use, showing how it can guide empirical tests for putative 

violations of the TB inequalities. Specifically, we show that some control is needed over the times 

between measurements in order to generate a TB violation, and this model can guide us in our choice of 

measurement times. For the above quantum model it is easy to show that 〈          〉  

    (         )  Taking the intervals between the measurements to be all equal to   means the TB 

inequality for this system reduces to  

                      

which is maximally violated for       , when the left hand side is equal to  √   but which is violated 

to a lesser extent for all times between measurements in the interval          where           . 

 Thus, we see how it is possible to derive specific expectations regarding the measurement 

times, which can lead to violations of the TB inequalities. We note that the control over the 

measurement times need not be too precise, which makes an experimental test plausible. In the next 

section, we consider some operational details for such an experimental test. 

 

4. Operational prescription 

In physics, for a violation of a TB inequality to be interesting, one needs to demonstrate that a 

measurement is non-disturbing and non-invasive. However, in psychology, the assumption of Cognitive 

Completeness implies that all non-disturbing measurements may be considered non-invasive as well. 



 

Thus, in psychology, we need only examine whether measurements are non-disturbing, and so the 

empirical challenge is simplified. A disturbing measurement changes the cognitive state and thus the 

expected probability distribution of future measurements.  

 We rephrase the necessary condition as one which will help with operational prescription: We 

seek to control against measurements, which have an influence on the results of future measurements. 

If such a possibility is not eliminated, it is possible to produce violations of TB, even for classical systems. 

It is easy to see why this is the case: Consider a version of Table 1, but such that the outcome at    

depends on whether a measurement was performed at   . Then,            ∑              

                       . It would be like having two separate columns for the outcome of the    

measurement in Table 1, depending on whether a measurement at    had taken place or not. So, a 

dependence of measurements on the existence of previous measurements has to be precluded. (This is 

similar to the possibility of signalling between subsystems, which must be eliminated in tests of the 

standard Bell inequalities.)  

 Consider three measurement time points,   ,   , and   , and three stimuli A, B, and C, one 

presented at each measurement point (it is simpler to discuss the operational prescription in terms of 

three time points and the extension to the required four is straightforward). The three stimuli can be 

thought of as determining the time evolution of the relevant observable. For example, the observable 

may be whether there is ‘red’ on a computer screen, as judged by a naïve observer, and the stimuli may 

be three colour patches, which are red to different degrees. Such a scheme translates easily to the 

matrix of possible observable values in Table 1. Then, we can easily specify a template for a cognitive 

experiment to examine putative violations of the TB inequality. Observe first that Table 1 implies (with 

simple set theory) that                              , where    indicates changes in the value of 

the system across corresponding time points (cf., Atmanspacher & Filk, 2010; in the Appendix we show 

how this inequality can be derived from the temporal Bell one in Section 2). Note that such an inequality 



 

makes sense only if we have a classical system, in which case all system values are assumed to be 

possessed. Then, we can arrange an experimental set-up, so that any change across successive time 

steps (      and      ) is small, so that a participant does not report a change. But, accumulatively, the 

change across       is large enough for a change to be reported. Therefore, we would have that 

                              translates into                               , and so a 

violation of the TB inequality.  

 There are some necessary controls. First, we must establish that the difference in the 

observable value, across stimuli A, B, C is, in principle, detectable. As noted, a clever design will ensure 

that participants are unlikely to report a difference between A,B and B,C, but this should not be due to a 

psychophysical inability to discriminate between the stimuli (T. Filk, personal communication, August 

2013). This can be explored with a simple 2-alternative forced choice task, in which participants are 

shown the stimuli e.g. sequentially and have to decide which stimulus is more red. Second, we need 

consider whether measurements are non-disturbing (cf. the idea of adroit measurements in Wilde & 

Mizel, 2012) or not. One can compare the probability distribution of responses at   , following a 

measurement at   , and, likewise, at   , following measurements at    and   . If the distributions are the 

same, this would be an indication that the measurements are not disturbing, in the above sense of 

earlier measurements not affecting later ones. Note that it is possible that a measurement on the actual 

value of the observable at the different time points is disturbing, but a measurement of whether there is 

a change across different time points (i.e., counting   (     ) statistics) is not (cf. Atmanspacher & Filk, 

2010). Change measurements might be less disturbing, if it is possible to have a sense of a change in an 

observable, without knowledge of exact values. 

 The issue of controlling against disturbing measurements is certainly not trivial, as one needs a 

paradigm such that a question at    would not affect the measurement outcomes at subsequent time 

points, e.g.,   ,   . Yet, in cognitive psychology, there have been other similar empirical challenges, 



 

whereby the influence of one judgment must not extend to other, related judgments (e.g., in studying 

violations of the law of total probability with within participants designs; cf. Shafir & Tversky, 1992). 

Such challenges have often been overcome through the judicious use of e.g. filler items and it is hoped 

that similar designs would enable the study of violations of the TB inequality for cognitive systems.  

   

5. The implications of TB violation for a classical brain 

We have discussed how the TB inequalities can apply to cognitive models. Consider a bi-valued system, 

at the cognitive level (e.g., whether a person is a bank teller or not). If we cannot conduct non-disturbing 

measurements, then the outlined approach fails (perhaps this indicates an inherent ‘quantumness’, 

though this cannot be established with the present analysis). Suppose then that we know we can 

conduct non-disturbing measurements. This is a fairly standard claim in psychology, and at any rate it is 

empirically verifiable, so it does not constitute a serious assumption of the same type as, say, Cognitive 

Realism. Suppose we conduct the non-disturbing measurements at different, appropriate time points, 

and we find a violation of the TB inequality. What are we to conclude? 

We have proven that any cognitive model satisfying Cognitive Realism and Cognitive Completeness must 

respect the TB inequalities (assuming non-disturbing measurements), so we are forced to abandon one 

of these assumptions. The crucial question is, which one?  

 One might think that a conservative response is to abandon the assumption of Cognitive 

Completeness, that is, the idea that a cognitive state can be fully determined from the probability for all 

relevant judgments. This implies that the cognitive model in question, as specified, needs to be 

augmented with extra variables. Note, because of the assumption of a classical brain, we know that all 

cognitive models are incomplete, that is, it is always possible to provide a description of a cognitive 

process, in terms of purely classical (neurophysiological) variables, which does not violate any TB 



 

inequality. For example, a characterization of a person as a bank teller must be reducible to a very 

complicated function of the underlying brain state. However, there are at least two problems with such 

an approach. The first is that it is difficult to imagine how to extend a given cognitive model in an 

appropriate way. We noted in Section 2 that putative hidden variables for cognitive models cannot be 

cognitive, but, for the sake of argument, let us consider this possibility here. What could such hidden 

cognitive variables possibly be? For example, given the example of Linda discussed above, what other 

cognitive variables might be appropriate to include, in order to extend a cognitive model, based on 

beliefs about properties Linda may or may not have? There are no clear prescriptions. Alternatively, we 

could attempt to augment a cognitive approach with neurophysiological variables, but, manifestly, this 

is impractical and, indeed, currently impossible (many researchers have rightly pointed out the need for 

consistency between so-called computational and algorithmic levels of description, e.g., Jones & Love, 

2011; but this is different from requiring a full specification of cognitive variables with 

neurophysiological ones). The second problem is that such a solution in a sense defeats the objective of 

cognitive models, which is to decide in advance on a small set of decisions, to be modelled in isolation 

(note, not all researchers accept this assumption; e.g., Fodor, 1983), and to avoid discussing other 

thoughts, stimuli, judgments etc. and, indeed, the supporting neurophysiology. In a very real sense, the 

assumption of Cognitive Completeness is fundamental for cognitive models, even more so than realism.  

  If we refuse to abandon the assumption of Cognitive Completeness, then a putative violation of  

a TB inequality, would force us to reassess the assumption of Cognitive Realism. So far, our discussion of 

the TB inequalities in cognitive models has been based on the assumption that these cognitive models 

are classical (realist). Without the assumption of Cognitive Realism, we have to adopt non-realist 

cognitive models, such as ones based on quantum theory. Adopting non-realist cognitive models means 

that we ‘forget’ about the underlying classical neurophysiology of the brain and so reject the key 



 

implication of Cognitive Realism, that for the relevant set of judgments an observer can have a definite 

opinion about all judgments at all time points.  

 Such quantum cognitive models have, in fact, provided simple and intuitive explanations for 

important cognitive phenomena, which have persistently resisted explanations using CP principles. For 

example, in the famous conjunction fallacy (Tversky & Kahneman, 1983), a hypothetical person, Linda, is 

judged more likely to be a bank teller and a feminist, than just a bank teller (i.e., Prob(bank teller & 

feminist) > Prob (bank teller)). Busemeyer et al. (2011) proposed that the possibilities of bank teller and 

feminist are incompatible with each other, in the quantum sense, so that certainty about one possibility 

creates uncertainty about/a unique perspective for the other. The explanation for the conjunction 

fallacy is then based on the idea that the probability of a bank teller, from the perspective of having 

accepted Linda as a feminist rises (feminists can have all sort of professions), compared to from the 

baseline perspective. In this and related research, considerable effort is devoted in motivating an 

assumption of incompatibility and considering relevant empirical tests (cf. Pothos & Busemeyer, 2013).  

 That quantum cognitive models do not satisfy the assumption of Cognitive Realism is one of 

their defining features. This arises because there are certain cognitive states, superpositions, in which a 

decision maker cannot be thought of as having a definite opinion about, e.g. whether Linda is a bank 

teller or not. Thus, such quantum cognitive models can violate the TB inequalities, without the need to 

assume additional, unknown variables (i.e., without having to abandon the assumption of Cognitive 

Completeness).  

 In summary then, a violation of the TB inequalities implies that one of the two assumptions of 

Cognitive Realism and Cognitive Completeness must be dropped. In other words, the observation of 

such a violation would indicate a failure of the top-down approach to cognition, in a classical, realist 

way. This presents theorists with two options. First, classical cognitive models can be augmented with 

additional variables. But, we have argued that this option is (currently at least) not feasible and, indeed, 



 

undesirable. Second, quantum theory can be employed to model the relevant cognitive system in a non-

realist way, since violations of the TB inequalities are typical for any quantum system. This is an 

interesting conclusion, and mostly robust, but some qualifications are needed.  

 A violation of the TB inequality proves that a classical cognitive model is not possible for the 

corresponding cognitive system, without additional variables. This, however, does not quite prove that a 

quantum model will be adequate. Specifically, the violation of a TB inequality involving a particular 

observable, at different time points, implies that it is impossible to have a joint probability distribution 

for the (assumed possessed) value of the observable across all these time points. This important idea, 

that it is impossible to concurrently fix the observable values across all time points, suggests (but does 

not prove) a key property motivating the use of quantum models, that of incompatibility (as applied to 

considering the same observable at different time points). Incompatibility has been at the heart of what 

makes many current cognitive models work, e.g., through the finding that certainty about particular 

properties (e.g., that Linda is a feminist) facilitates the transition to other, incompatible, properties (e.g., 

that Linda is a bank teller), which are unlikely from a baseline perspective (Busemeyer et al., 2011; 

Trueblood & Busemeyer, 2011; Wang & Busemeyer, 2013).  

 Relatedly, the TB inequalities may also be employed as a test of whether a quantum model be 

adequate to describe a system. This is because QP theory allows a violation of the TB inequality only up 

to a certain constant (  √ ; this is the analogue of the Tsirelson bound, in the study of the Bell 

inequalities; Tsirelson, 1980). Thus, the TB inequality could, in principle, disprove the applicability of not 

only a CP theory model, but of a QP theory model too, thereby introducing a rigorous falsifiability test.  

 

t1 t2 t3 

+ + + 
+ + - 
+ - + 
+ - - 
- + + 



 

- + - 
- - + 
- - - 

Table 1. The values of a bi-valued (+,-) observable at different time points. A violation of the TB 

inequality means that it is impossible to specify such a table, for the corresponding cognitive system.  

 

6. Discussion  

 

We have argued that a violation of the TB inequalities in a cognitive system would demonstrate a limit 

to classical top-down modelling. Arguably, the whole point of cognitive psychology is to study cognition 

without getting embroiled in the detailed neurophysiology of the brain and so treat everything at the 

level of thoughts; this idea is more formally expressed with the assumption of Cognitive Completeness. 

Violations of the TB inequalities mean any classical (realist) model of cognition must distinguish between 

different states of the brain, corresponding to the same set of thoughts. Thus, any realist model of 

cognition would be basically forced to include detail about neurophysiology (assuming this is how 

classicality arises). Quantum cognitive models, on the other hand, can overcome this problem and still 

model cognition purely at the level of thoughts, although one pays a price of having to accept properties 

such as incompatibility, superposition, and entanglement, which introduce a certain level of vagueness 

about exactly what is going on at any given time. Our main conclusion is that putative violations of the 

TB inequalities could be accounted for, whilst retaining the assumption of Cognitive Completeness, by 

rejecting the assumption of Cognitive Realism.  

 The fundamental motivation for this discussion is understanding the role of time in cognition. 

Mental representations change in time, but how are we to understand this putative time-dependence? 

A classical trajectory is the most straightforward intuition, whereby a cognitive observable has specific 

values across different time points. The use of QP theory in cognitive modelling provides a radically 



 

different possibility, since quantum models (or indeed any model inconsistent with Cognitive Realism) 

can violate the TB inequalities. If a violation of the TB inequalities for the relevant cognitive system can 

be established, then a well-defined history for the cognitive observable does not exist. This is not about 

classical uncertainty, which may arise due to noise, forgetting, etc. but, rather about the fact that the 

copies of the observable at different time points are incompatible with each other and so a tabulation of 

values at different time points, as in Table 1, is impossible (cf. Fine, 1982). For example, a specific value 

of the observable at, e.g.,    requires uncertainty about the observable both at most future time points, 

  , and earlier ones, e.g.,   . Recalling a judgment about an observable last week, potentially makes me 

uncertain about the same judgment the week before, and vice versa. Equally, unless I specifically probe 

(e.g., with a recall process) my memory of an observable on Monday, it is very possible that this memory 

does not exist at all; memory recall would have to be a constructive process (the idea that 

measurements are ‘constructive’ has a long history in quantum theory; see e.g. Jammer, 1974). A 

sequence of memory recalls would thus be subject to interference or order effects and reveal 

uncertainty relations. Is this part of the process which leads to false memories? This discussion does not 

take into account explicit bias, which may arise from a desire to be consistent in answering the same 

question across successive judgments. Nonetheless, if such biases can be eliminated, there is obvious 

potential for a complete reconceptualization of how mental representations depend on time.  

 A violation of the TB inequality is sometimes said to indicate entanglement in time. The term is 

borrowed from the discussion of the Bell inequality. In a typical experimental set-up to study the Bell 

inequalities, two sub-systems are separated in a way that ensures there is no interaction. However, 

despite the absence of interaction, quantum theory allows for the existence of states, whose 

representation for the overall system is not the (tensor) product of the representations for the 

subsystems. For such states, the behaviour of the full system is not factorizable into what happens in 

each separate subsystem. The two sub-systems are said to be entangled, which in turn means that the 



 

correlations between the measurement outcomes in each subsystem may exceed classical bounds. A 

violation of the TB inequality can be said to reflect entanglement in time, in an analogous sense, that is, 

the correlations between the outcomes of measurements at different time points may exceed classical 

bounds. The implications for cognitive theory (e.g., theories of memory) are potentially profound.  

 In sum, we have discussed in precise terms what a violation of the TB inequality would mean for 

cognitive systems and the conditions for a robust experimental demonstration. There are clearly many 

conceptual and empirical challenges, but, overall, we think that a successful resolution is possible 

(arguably, more so in psychology than in physics). We hope therefore that this paper will further 

motivate research in this novel, exciting research direction.   
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Appendix: Derivation of the TB Inequalities 

 

We provide a derivation of the TB inequalities, starting from the two assumptions of Cognitive Realism 

and Cognitive Completeness. We review the definitions below. 

 

Cognitive Realism 

The outcomes of any measurement of a cognitive variable    , at a given time   can be expressed (in 

principle, not necessarily in practice) in terms of the values of the underlying neurophysiological 

variables     in the following way, 

       ∑      

 

            

(Throughout this appendix we will consider only measurements that are non-disturbing. As noted in 

Section 4 this is something that can be empirically verified, so it does not constitute an extra 

assumption.) Note, we assume that the relevant hidden variables are neurophysiological, since, as noted 

in the main text, cognitive hidden variables can be discounted. Here, the   set of variables denote the 

possible neurophysiological states of the participants’ brains,        tells us the judgment of a 

participant or group of participants, at time  , given that their neurophysiological state is  , and      

denotes the probability distribution of the participants’ neurophysiological states, over the possible  .  

 

Cognitive Completeness  

The cognitive state of the participants may be fixed entirely in terms of the probabilities for the 

judgments contained within the cognitive model. Thus, for the purposes of computing probabilities for 

judgments, within a cognitive model different neurophysiological states      and      , which lead to 

the same predictions for the probabilities of judgments, may be considered equivalent and interchanged 

where desired. 



 

 The assumption of Cognitive Completeness has an important corollary. Consider a 

measurement, which we make of a cognitive variable     , which does not change the probabilities for 

future measurements of  . As noted in the main text, such measurements are called non-disturbing. 

However, in general, non-disturbing measurements will still have an effect on the neurophysiological 

state. Suppose a measurement of       changes the neurophysiological state from      to        . (We 

use the time that a measurement was carried out, rather than a dash, to denote the new state, to allow 

for the possibility of multiple measurements and changes.) A non-disturbing measurement of       

followed by a measurement of       will give, 

              ∑                      
 

 

However since the probabilities for the outcomes of the measurement of       are not changed by the 

measurement of       (this being the definition of a non-disturbing measurement) we can also write, 

 

              ∑                      
 

 ∑                           
 

 

In other words      and         are equivalent for any non-disturbing measurement performed at   . 

Note that is a considerably weaker requirement than the usual assumption of ‘non-invasive 

measurability’, which is that             . 

 Given these two assumptions we may derive a TB inequality as follows.  

Consider a set of four times               and suppose we can perform a non-disturbing measurement 

of      at at least the first three times. Then we have, 

                          ∑ [                             ]       
 

 

Here, we employ the assumption of Cognitive Realism, to write the expected value for the outcome of a 

measurement of   at a series of time points, as a summation across all possible specific values of the 



 

observable, in terms of the possible neurophysiological states, weighted by corresponding probabilities. 

Next, we notice we can rewrite this as, 

                         

 ∑               [                ]       
 

 ∑               [                ]       
 

 

 

taking the absolute value of both sides and using the triangle inequality gives, 

|                          |

 ∑ [                ]|              |       
 

 ∑ [                ]|              |       
 

 

|                          |

 ∑ [                ]       
 

 ∑ [                ]       
 

 

|                          |

   [∑                      
 

 ∑                      
 

 

It is important to note that the previous two steps are purely algebraic, i.e. up to this point the only 

assumption we have made is that of Cognitive Realism. However, an examination of the terms on the 

right hand side of the above equation shows that they are not of the correct form, to be regarded as 

two-time correlation functions. This is because, in each of the products for the observable values, the 

first measurement is at    or   , but the neurophysiological state has been altered not as a result of a 

measurement at these times, but rather by an apparently unperformed measurement at     However, if 



 

we assume Cognitive Completeness then, as noted above, we can drop the dependence of the 

neurophysiological state on the measurements and conclude that 

|                             [∑                     ∑                    ] 

|                          |    [                         ] 

The final line is the desired four time temporal Bell inequality.  

 Let us finally briefly discuss the derivation of a three-time TB inequality, since this involves an 

extra assumption, touched on in the main text. To do this, we first set       to get, 

|                          |    [                         ] 

Now consider the quantity 

             ∑       
     

 

 

If we assume that        can only take the values     for any   and   then it follows that  

          

Therefore we have 

             ∑    

 

   

and thus the three time temporal Bell inequality becomes , 

 

|                          |    [              ] 

 

                                                  (***) 

 



 

Atmanspacher and Filk (2010) gave their TB inequality in terms of a different variable,          , which 

is defined as +1 if the state changes between    and    and 0 otherwise. It is easy to see that           

may be written as, 

          
 

 
                 

and so (***) may be written in these new variables as, 

                              

This is the form given in Atmanspacher and Filk (2010). 

 Note though, as mentioned in the main text, the assumption that           is rather strict 

because it implies, firstly, that the map between neurophysiological states and cognitive judgments is 

deterministic and, secondly, that the measurements are noise free (both assumptions are required to 

assume that multiple copies of        produce the same value). In particular              implies 

that, for every participant, a subsequent measurement preformed immediately after the first one will 

yield exactly the same result. In practice, this is unlikely to be the case and thus the derivation of the 

three-time TB inequality from the four-time one will not hold for a realistic experimental set up. 

 


