

City, University of London Institutional Repository

Citation: Krotsiani, M., Spanoudakis, G. & Mahbub, K. (2013). Incremental certification of

cloud services. Paper presented at the SECURWARE 2013 - 7th International Conference
on Emerging Security Information, Systems and Technologies, 25th - 31st August 2013,
Barcelona, Spain.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/3236/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Incremental Certification of Cloud Services

Maria Krotsiani, George Spanoudakis, Khaled Mahbub
School of Informatics

City University London, UK
{Maria.Krotsiani.1, G.E.Spanoudakis, K.Mahbub}@city.ac.uk

Abstract—Cloud is becoming fast a critical infrastructure.
However, several recent incidents regarding the security of
cloud services clearly demonstrate that security rightly
remains one of the major concerns of enterprises and the
general public regarding the use of the cloud. Despite
advancements of research related to cloud security, we are still
not in a position to provide a systematic assessment of cloud
security based on real operational evidence. As a step towards
addressing this problem, in this paper, we propose a novel
approach for certifying the security of cloud services. Our
approach is based on the incremental certification of security
properties for different types of cloud services, including IaaS,
PaaS and SaaS services, based on operational evidence from
the provision of such services gathered through continuous
monitoring. An initial implementation of this approach is
presented.

Keywords–cloud services; security certification; continuous
monitoring

I. INTRODUCTION
Cloud technology offers the opportunity for utilising

computational capabilities offered as computation, data,
storage, and network cloud services upon demand without
owning the resources that realise and offer them [26]. The
use of cloud services is spreading fast, formulating a market
that is expected to reach a value of $66bn by 2016 [29].
Despite their fast spread, the use of cloud services has been
associated with several security problems. These include
breaches of integrity, confidentiality and privacy of
customer data on clouds [6][9][18], spamming, wrapping
and cross-site scripting attacks [6], various forms of Denial-
of-Service (DoS) attacks resulting in reduced application
and data availability [9][24], and Authentication,
Authorization and Accounting (AAA) vulnerabilities
[9][18]. Thus, the use of the cloud has created significant
concerns regarding the security of the data and services
offered through it [6][9][18]. Frequent reports of cloud
security incidents spanning across major providers indicate
that these are valid concerns [14].

The provision and assessment of cloud service security
is difficult and not well supported by the existing state of
the art. Researchers have made significant progress
delivering methods and tools for access control and identity
management on clouds [1], secure storage protocols (e.g.,
proof-of-retrievability [3], proof-of-storage protocols [31]),
encryption and key management [17], and secure
virtualization [12]. Despite this work, the security of cloud
services is far from perfect. This is due to several
vulnerabilities of cloud service provision that are related to

the possibility of breaches of integrity, confidentiality and
privacy due to multi-tenancy of services; interference
between security mechanisms operating at different layers
of cloud services (infrastructure, platform and software
services); interference between security and cloud
virtualization/optimisation mechanisms (e.g., spreading of
DoS attacks due to load balancing in cloud federations
[24]); and subverting administrative functions of the cloud
infrastructure.

The risk arising from these vulnerabilities is increased
by dependencies between services at all the layers of the
cloud stack (i.e., IaaS, PaaS and SaaS services), which may
also evolve dynamically (e.g., changing VMs,
configurations of platform services, or deployed software
services). These dependencies and their dynamic changes
make it difficult to introduce appropriate pre-deployment
and operation controls for assessing and guaranteeing the
security [9][24]. Furthermore, the exact provision of cloud
services is frequently opaque, making it difficult to assess
cloud security through audit mechanisms.

Under these circumstances, the security and
trustworthiness of cloud services require continuous and
transparent assessment. Certification has a long history as a
mechanism for verifying properties of software systems and
increasing trust in them, mainly due to the liability that it
entails for the authority that issues the certificates. However,
existing certification methods, such as those based on the
Common Criteria model [10], focus mainly on systems with
a stable structure that operate under stable operational
conditions and, therefore, they are not suitable for the cloud.
Recent research focuses on certification of service-based
systems, whose structure can change dynamically [22].
However, it still ignores the deployment infrastructure and
platform services that are involved in the provision of
software services in a cloud. Also, SOA certification
research [22][23] is centered on certificates produced
through pre-deployment testing and/or formal analysis of
services without incorporating real and continuous cloud
service monitoring data.

In this paper, we propose a novel cloud service
certification approach that addresses this gap. Our approach
is based on the creation of incremental certificates for
security properties of cloud services. In such certificates, the
evidence required for assessing and verifying security
properties is acquired through continuous monitoring of the
operation of cloud services. Hence, the evidential basis for
the assessment of properties can cover contextual conditions
that might not be possible to envisage, test or simulate
through other forms of assessment (e.g., testing and static

analysis) before deploying a cloud service. Continuous
monitoring can capture contextual conditions in cloud
service provision as, for example, changes in the population
of co-tenant services, the deployed virtualization and
optimisation strategies and mechanisms, and network and
middleware configurations in a cloud, which are difficult to
take into account in static forms of assessment. It can also
capture and adapt to the migration of SaaS cloud services
within cloud federations, providing support for the
adaptation of monitoring infrastructures when this happens.

The rest of this paper is organized as follows. Section II
overviews our approach. Section III introduces the
certification models that drive the incremental certification
process. Section IV details the certification process, gives
examples of how it is carried out, and overviews the tool
support for our approach. Section V overviews related work,
and finally, Section VI provides concluding remarks and
directions for future work.

II. OVERVIEW OF INCREMENTAL CERTIFICATION

A. Certificates and certification models
The core model of certificates that can be issued in our

approach is shown in Figure 1. As the model shows, a
certificate asserts a security property regarding an asset of a
cloud service (e.g., a specific service operation, a set of
service operations, data managed by the service).
Certificates are produced based on a certification model that
is defined (or endorsed) by a certification authority, and are
signed by this authority. The certification model is based on
an assessment scheme determining what evidence should be
taken into account for assessing a property. The assessment
scheme also determines how frequently the evidence should
be checked and when the accumulated evidence will be
sufficient for issuing the certificate through an evidence
aggregation scheme.

The certification model defines also validity checks that
should be executed before issuing a certificate. Such checks
may, for example, require that the monitoring infrastructure,
which is used to gather the operational evidence for the
certificate C, has itself a certificate C’ confirming the
integrity and non-repudiation of the monitoring data that it
captures and provides. Also, C’ had to be valid for the entire

period over which the particular monitoring infrastructure
has been used to gather evidence for C.

When the evidence gathered for a certificate type is
sufficient for verifying the security property related to it (as
determined by the certification model), a certificate that is
an instance of this type could be issued. However, even after
they are issued, certificates can be subject to changes in the
operational conditions of the cloud service that they are
associated with. The possible updates and other key changes
in the life cycle of incremental certificates are described by
a generic life cycle model that we discuss next.

B. Lifecycle of incremental certificates
The life cycle of incremental certificates is described by

the UML statechart diagram of Figure 2. The first state in
the certificate’s lifecycle is Activated. In this state, a
certificate type is activated with a unique ID; a reference to
the certification model that will be used for its incremental
assessment and for issuing and updating certificates that are
instances of it; a reference to the asset(s) of the cloud
service that it refers to; and a digital signature of its issuer.
The signature confirms that certificates, which are instances
of the particular type, may be potentially issued for the
referenced cloud service, based on the specific certification
model and the evidence that needs to be collected.

After being activated, a certificate type enters the

SetUpMonitors state. At this state, a monitoring
infrastructure that will be used to acquire the operational
evidence required for the assessment of the certificate is set
up. If a suitable monitoring infrastructure for the type can be
identified and set up, the certificate type moves to
UpdateCertificationModel state. At this state, a concrete
operational specification of the security property of the
certificate type is generated for the particular infrastructure.
This specification will enable the monitoring infrastructure
to determine the monitoring events (evidence) required for
the assessment of the property and how to use them in order
to assess the property. When these updates are completed
and recorded in the certification model, the certificate type
moves to Monitoring state. Note, however, that if no
suitable monitoring configuration is found, the certificate
type will cease to exist.

Whilst at the monitoring state, the evidence required for
the assessment of the certificate type is continually gathered

Figure 2: Life cycle of incremental certificates

Figure 1: Model Based Certificates

by the monitoring infrastructure. When the accumulated
evidence becomes sufficient for confirming the validity of
the security property of the type, the certificate type gets to
the sub state CanBeIssued. This state indicates that
certificates of the particular type can be issued by the
certification platform. Whilst a certificate type is at the state
CanBeIssued, its monitoring continues and, at specific
checkpoints defined by the certification model, any
additional operational evidence that is acquired for the type
by the monitoring infrastructure is recorded in an
aggregated format within the certification infrastructure (see
the self-transition EvidenceUpdate).

When a certificate type gets to the state CanBeIssued,
any agent interested in it (whether an application or a human
actor) can request the generation of a certificate that is an
instance of the particular type from the certification
infrastructure by using the certificate type’s unique ID.
Upon such a request, the certification infrastructure will
check if the extra validity conditions for the certificate type
(if any) are satisfied and, if they are, it will generate a
certificate instance and return it back to the requester. The
generated instance will be identified by the combination of
the ID of the certificate type and its own unique ID. The
certificate instance will also record the expiration date of its
type (as this date will apply to it as well). These actions are
executed during the transition RequestInstance in Figure 2.
The issued instance of the certificate type will incorporate
the aggregated evidence until the last checkpoint when
monitoring data were retrieved from the monitoring
infrastructure and aggregated for the certificate type. It will
also contain the timestamp of the earliest and latest available
evidence for the security property that it asserts, in order for
its users to know the exact period covered by the evidence.

A certificate type that is at the state CanBeIssued may
also be revoked. This will happen if the monitoring
infrastructure identifies new monitoring data contradicting
the evidence gathered so far and indicating that the relevant
security property has been compromised. The occurrence of
such evidence is signified by the transition Security
Property Violation to the state Revoked. When a certificate
type gets to the state Revoked, all the previously generated
instances of it will be revoked. Also, the certificate type will
be flagged as revoked in the certification infrastructure in
order to prevent the generation of new instances of it, and its
monitoring will be terminated.

In line with traditional models of certification, a
certificate type has an expiration date. When this date is
reached, the certificate type will move to the state Audit.
This state signifies an audit of the certification model and
the evidence gathered for the certificate type. The
certification authority, which defined the certification
model, will carry this out in order to ascertain that it may
continue to use the certification model for producing
certificates. If the audit is successful, the certificate type can
be renewed: the transition Renewed brings the certificate
back to the state where it was prior to reaching its expiration
date and moving to the state Audit. If the audit is
unsuccessful, the specific certificate type will be terminated.
In this case, a notification should also be sent to owners of

any issued instance certificates of the type to notify them
that the type no longer exists but that the instances of it that
have been issued will remain valid until their expiration
date.

Following the expiration of a certificate instance, its
agent can request from the certification infrastructure to
provide a renewed instance of the same certificate type. The
infrastructure will be able to do so only if the certificate type
at this stage is at the state CanBeIssued.

The life cycle mode also reflects reactions to changes
related to the cloud infrastructure where the certified service
has been deployed, or to the monitoring infrastructure that is
used to generate the operational evidence for the certificate.
Such changes may require a change in the monitoring
infrastructure that is used to gather the operational evidence
underpinning the certificates of the given type and the
concrete operational specification of the security property of
the certificate type that drives the operation of the
monitoring infrastructure. The evidence, however, that has
been held so far in the certification infrastructure regarding
the property may (depending on the certification model)
remain relevant and should be maintained by the
certification structure so that to be used when issuing new
instances of the given type.

Changes in the cloud infrastructure and/or the
monitoring infrastructure will trigger the transition of the
certificate type to the SetUpMonitors state to check whether
after the changes, the cloud deployment infrastructure of the
service provides the monitoring capabilities required for
continuing the monitoring of the specific certificate type. If
successful, the certificate will move to the
UpdateCertificationModel during which the certification
model will be updated as described previously. When this
completes successfully, the certificate will transit back to
the evidence accumulation state inside Monitoring. If,
however, the security property cannot be monitored after the
changes, the certificate type will cease to exist.

C. Incremental Certification Infrastructure
The generation of incremental certificates is supported

by a proof-of-concept certification infrastructure (CeRTiN).
The architecture of CeRTiN is shown in Figure 3.

Figure 3: Certification Infrastructure

CeRTiN consists of a Certificate Generator (CG), a
service monitorability reporting tool (SMART), a set of
translators, and a certification models registry. The
certificate generator has the responsibility for initiating and

managing the process of creating incremental certificates
following the life cycle model introduced in Sect. II.B, upon
requests for certification authorities. The operation of the
certificate generator is driven by certification models,
maintained as part of a model registry. To realise the
functionality underpinning the state SetUpMonitors and
Monitoring in the life cycle model, the generator interacts
with SMaRT and Translators, and Monitoring components
on cloud platforms, respectively. SMaRT has responsibility
for checking (i) whether the cloud on which the cloud
service to be certified is deployed has the monitors required
for the incremental certification of the service, and (ii) for
assembling an appropriate monitoring platform. To do so,
SMaRT has access to the certification model to be applied
and descriptions of the monitoring capabilities available in
cloud platforms. Translators have the responsibility for
translating the security property to be verified by certificates
into an operational monitoring specification for the
monitoring platform assembled by SMaRT. Finally, the
monitoring components on cloud platforms have the
responsibility for providing the raw monitoring evidence
from cloud monitoring components.

III. SPECIFICATION OF CERTIFICATION MODELS
As discussed in Sect. II, the generation of incremental
certificates is driven by certification models. In this section,
we define the language for specifying such models as an
XML schema. The top-level structure of this schema is
shown in Figure 4 and the elements at this level of the
schema are discussed below.

A. Certification model elements
CASignature: The element CASignature represents the
digital signature of the certification authority that has
defined/advocated the certification model.

AbstractSecurityProperty: This element defines the
security property that is to be certified by the particular
certification model. The security property must be defined
in an abstract form that is independent from the language
used by the monitoring infrastructure that will be used for
gathering operational evidence for the property. This is
because the monitoring infrastructure that will be used for
different certificates of the model may vary across different
cloud platforms. Also, the monitoring infrastructure may
change during the lifecycle of the certificate type when, for
example, the service or the constituent services and
components that are the subject to incremental certification
migrate across different clouds (e.g., within a cloud
federation). During the monitoring infrastructure set up state
in the certificate type life cycle model, the abstract property
is translated automatically to the concrete property that will
then be used to drive the operational monitoring (see
below).

In the current implementation of our approach, the
abstract security property is expressed using a subset of the
language for specifying Service Level Agreements (SLAs)
that was introduced by the SLA@SOI project, known as
SLA* model [19]. In particular, we are using the part of the
language that enables the definition of guaranteed terms in

an SLA. SLA* has been chosen for two reasons. The first is
that it defines several build-in security properties such as
integrity, non-repudiation, availability and forms of
confidentiality as “standard” guarantee terms. The second
reason is that it provides the syntactic and semantic means
for customizing the definitions of built-in properties and/or
defining new properties.

Figure 4: Certification model schema (top level)

The certification model schema provides two options for

specifying abstract security properties in SLA*: (1) to
specify the property as a string, according to the BNF
syntax of SLA*, or (2) to use the XML schema defined for
SLA*. A full account of SLA* is beyond the scope of this
paper and can be found in [19]. In Figure 5, however, we
show an example of specifying the availability of a service
as defined in SLA*.

AssessmentScheme: This element defines conditions
regarding the assessment of the evidence that should be
satisfied, in addition to the adherence of the cloud service to
the security property, for the certificate to become issuable.
These conditions relate to the frequency and sufficiency of
evidence collection, and are specified by the following sub-
elements of an assessment scheme:
• EvidenceFrequency – This element defines the

checkingPeriod, which states how often the events
should be checked, and/or the minNoOfEvents, which
declares the minimum number of events that should
occur in a specific period of time.

• SufficientEvidence – This element defines sufficiency
conditions regarding the extent of collected evidence for
issuing a certificate. Such conditions are specified by the
sub-elements of SufficientEvidence, namely:
– minMonitoredPeriod that states the minimum time

needed for monitoring,
– minNoOfEvents that states the minimum number of

events (evidence) that need to be monitored.
Validity tests: A certification model may, in addition to

the assessment scheme, define extra validity tests as
preconditions for issuing a certificate of a given type. These
tests may relate, for example, to conditions regarding the
cloud where the service is deployed (e.g., requiring that the
cloud offers full isolation of virtual machines) or the
adherence of other services that this service may depend on
to standards (e.g., requiring that a storage service, which is
used by a SaaS service implements correctly a proof-of-
retrievability protocol [3]) or the monitoring infrastructure
itself (e.g., requiring the integrity of the transmission of
monitoring events and results inside the infrastructure and to
external clients of it). Such conditions are specified by the
element validityTests in the certification model schema. Our
approach to the specification of validity tests assumes that
any related components will have other certificates
confirming their adherence to the required conditions and
therefore the validity tests are expressed as logical conditions
against the contents of such certificates.

MonitoringConfigurations: This element specifies the
list of the monitoring configurations that have been used to
collect the evidence for generating certificates. Each
monitoring configuration includes:
• A list of components of the monitoring environment.

These components can be of two types: (1) sensors,
which are components capable of capturing and
transmitting primitive monitoring events, and (2)
reasoners, which are components capable of analyzing
events and checking whether monitoring conditions are
satisfied (aka monitors). The start and end of each time
period during which it has been used for collecting
evidence for the specific certification model

• ConcreteSecurityProperty – This element provides the
concrete operational specification of the security
property that is to be certified by the model, expressed in
the language accepted by the reasoner(s) of the particular
monitoring configuration. The concrete security property
is generated automatically from the abstract security
property once a monitoring configuration is selected as
we discuss in Sect. IV.C.

B. Example of Certification Model for Availability Property
Figure 5 presents an example of a certification model for

the availability of a service, i.e., the ratio of the period of
time during which a service cannot respond to calls of its
operations without producing an error (i.e., it is
unavailable), over the total period of time during which the
service is deployed.

As shown in the figure, the value of the expression
attribute in the AbstractSecurityElement is set to availability

(i.e., a standard term of SLA* with the meaning defined
above). The element AssessmentScheme of the model
specifies that monitoring should be performed every 24
hours for minimum of 1000 events in this period (see the
attribute values of EvidenceFrequency element) and
monitoring should be performed for at least 30 days for
minimum 100000 events in this period in order to issue a
certificate (see the attribute values of SufficientEvidence
element). The ValidityTest element specifies a precondition
that should be met to issue a certificate. The precondition in
this example specifies that the integrity of the transmission
of monitoring events and results should be maintained.
Finally, in the MonitoringConfiguration element, it is
specified the monitoring environment that will be used to
monitor the events and collect the evidence.

IV. CERTIFICATION PROCESS
In the following, we give an example demonstrating the

certification process based on the availability property
specified in the certification model of Figure 5.

A. Initiation of certification process
The certification process starts when a service provider

makes a request to a Certification Authority (CA), in order
to certify a security property for a service. The CA may use
an existing Certification Model (CM) if it is suitable for the
property and the service, create a new model for it, or reject
the request. If a CM is identified, CA submits it to the
Certificate Generator CG). CG has then to select and

Figure 5: Example Certification Model

<ns1:CertificationModel xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance'
 xmlns:ns3='http://slasoi.org/monitoring/citymonitor/xmlrule'
 xmlns:ns2='http://assert4soa.eu/schema/Assert_SQL'
 xmlns:ns1='http://www.cumulus.org/certificate/model'
 xsi:schemaLocation='http://www.cumulus.org/certificate/model
CertificationModel-v2.xsd'>
 <CASignature></CASignature>
 <AbstractSecurityProperty
 expression="http://www.slaatsoi.org/commonTerms#availability"/>
 <AssessmentScheme>
 <EvidenceFrequency checkingPeriod="24" periodUnit="hours"
 minNoOfEvents ="1000"></EvidenceFrequency>
 <SufficientEvidence minMonitoredPeriod="30" periodUnit="days"
 minNoOfEvents="100000"></SufficientEvidence>
 </AssessmentScheme>
 <ValidityTests negated="false" certificateScope="SINGLE">
 <ns2:Condition negated="false" relation="EQUAL-TO">
 <ns2:Operand1>
 <ns2:AssertOperand facetName="Assert" facetType="Assert">
 //ASSERTCore/SecurityProperty/@PropertyAbstractCategory
 </ns2:AssertOperand>
 </ns2:Operand1>
 <ns2:Operand2>
 <ns2:Constant type="STRING">
 http://www.assert4soa.eu/ontology/security/security#Integrity
 </ns2:Constant>
 </ns2:Operand2>
 </ns2:Condition>
 </ValidityTests>
 <MonitoringConfigurations>
 <MonitoringConfiguration>
 <Component type="REASONER">
 <EndPoint>http://localhost:8888/...</EndPoint>
 </Component>
 … … … …
 </MonitoringConfiguration>
 </MonitoringConfigurations>
</ns1:CertificationModel>

configure a monitoring infrastructure for starting the
incremental certification process.

B. Selecting and configuring the infrastructure
Assuming that the request for certification is about the

availability of a service S, the CM of Figure 5 could be
selected and used for the certification of S. After identifying
it, CG calls SMART (see Figure 3) to find if there is a
monitoring infrastructure available in the cloud platform
where the service is deployed that could monitor availability.

To do so, SMART parses the security property in the
certificate model and generates an Abstract Syntax Tree
(AST) of the property based on the BNF grammar of the
security property language. Then, it searches through the
registry of the monitoring capabilities of the cloud
infrastructure to check if there are suitable sensors for
providing the events and analysis functions required for
monitoring the availability property.

The capabilities of the monitoring components that may
be available in the infrastructure are described according to
the monitoring capability model introduced in [16].
According to this model, a monitoring component in a cloud
infrastructure is described by its unique identifier within the
infrastructure (uuid), its type (i.e., SENSOR or REASONER
depending on whether the component can capture and
transmit events or can analyse them to check if a monitoring
condition is satisfied, respectively), and a list of
MonitoringFeatures. The latter describe either basic features
such as event capturing and transmitting operations (e.g.,
service operation requests and responses) or more complex
computational functions (e.g., computation of average time
between service calls, CPU load etc.).

SMART uses the AST for the property to find
monitoring components, which have monitoring features
matching each node of the tree. More specifically, a non-leaf
node of AST would have the form (Parent: Operator (OP),

Children: left-hand side (LHS), right-hand side (RHS)) and
each of OP, LHS and RHS needs to be matched with a
monitoring component with appropriate features. A full
match of the AST with monitors constitutes a candidate
configuration. For these, SMART also checks if they satisfy
any validity conditions for monitors that may have been
defined in the certification model, and maintains only the
configurations that are compliant. If there is more than one
such configuration, it also performs a selection. Figure 6
shows the AST for availability and an example of a matching
monitoring configuration.

C. Deriving the monitoring specification
Following, the selection of a monitoring configuration,

CG translates the abstract security property of the
certification model into the monitoring language accepted by
the REASONER component in the configuration.

In the current implementation of CeRTiN, we are using
EVEREST (EVEnt REaSoning Toolkit [15]) to perform the
monitoring required during the certification process.
EVEREST is an open-source monitoring framework
developed by the last two authors of this paper to support the
monitoring of service-based systems. EVEREST supports
the monitoring of properties expressed in EC-Assertion, a
first order temporal logic language based on Event Calculus.

EC-Assertion specifies monitorable properties in terms of
events and fluents. An event is something that occurs at a
specific instance of time and has instantaneous duration.
Fluent represent system states and are initiated and
terminated by events. The basic predicates used by EC-
Assertion for expressing events and fluents, and their
meanings are summarized in Table I.

TABLE I: EC-ASSERTION PREDICATES

Based on these predicates, EC-Assertion expresses
monitorable properties as monitoring rules of the form body
⇒ head. The meaning of a monitoring rule is that if its body
evaluates to True, its head must also evaluate to True. EC-
Assertion also uses monitoring assumptions, which have the
same form as rules but their meaning is that when their body
evaluates to True, their head can be deduced. Thus
assumptions are used to deduce and/or record information
about the state of the system during monitoring.

Operational monitoring specifications in EC-Assertion
are produced from the specification of an abstract security
property in a certification model by transforming the AST
of the property into EC-Assertion formulas. The translation
process is based on the use of predefined parametric

Predicate Meaning
Happens(e,tℜ(tL,tU)) An event e of instantaneous durations occurs

at some time point t within the time range
ℜ(tL,tU) (ℜ(tL,tU)=[tL,tU]).

HoldsAt(f,t) A state (aka fluent) f holds at time t. This is a
derived predicate that is true if the f has been
initiated by some event at some time point t’
before t and has not been terminated by any
other event within the range [t’,t].

Initiates(e,f,t) Fluent f is initiated by an event e at time t
Terminates(e,f,t) Fluent f is initiated by an event e at time t
Initially(f) Fluent f holds at the start of system operation.
<rel>(x,y), <rel>::= =
| < | > | ≤ | ≥ | ≠

The relation <rel> holds between the x and y.

Figure 6: Availability AST and matching monitoring configuration

monitoring templates for the standard terms of the SLA*
model. These templates are retrieved and instantiated during
the translation process when the relevant standard term of
SLA* is encountered in a node of the AST generated for a
security property. The details of this translation process are
beyond the scope of this paper and can be found in [20].

Table II shows the parametric template used for the
standard Availability property in SLA*. As discussed in
Sect. III.B, service availability is defined as the ratio of the
period during which a service is unavailable over the total
period of monitoring a service.

TABLE II: AVAILABILITY TEMPLATE (EC-ASSERTION)

The parametric availability template uses three fluents
specific to availability computation. The fluent Unavailable
keeps track of unavailability. The fluent has three
parameters: (i) _PN that counts the number of unavailable
periods for a monitored service; (ii) _SrvId that records the
unique ID of the monitored service, and (iii) _ST that
records the time point when the service becomes
unavailable. To keep track of unavailable periods the
template uses the fluent UnavailablePeriods. This fluent has
also three parameters: (i) _SrvId that records the unique ID
of the monitored service; (ii) _PN that records the count of
unavailable periods of the monitored service; and (iii) _P[]
that records duration of each unavailable period of the

monitored service. The third fluent in the template, i.e.,
LastMonitoringPeriod, is used to record the starting time
point of the monitoring session. This fluent has two
parameters. The first parameter (i.e. <_SrvId>) records the
unique ID of the monitored service, and the second
parameter (i.e. systemTime()) signifies a system call
executed by the monitor to obtain the current time of the
system where the monitoring service is running.

 The assumptions A0 and A1 initiate the
LastMonitoringPeriod and UnavailablePeriods fluents
respectively for first time. A2 starts new period of
unavailability when a non-served event occurs and increases
the number of unavailability periods. A3 terminates a
current period of unavailability for a service. The
assumption A4 records the length of a terminated period of
unavailability. Finally, the rule R checks if the availability
of a service is greater than K.

 In the template, <CaseId> refers to the unique id of the
certificate to be generated. It should be noted that
EVEREST would receive primitive call and response events
from the sensor that has been selected by SMaRT.
Therefore, a call to the monitored service occurred at t is
considered as served if a corresponding response occurs
within a predefined time range between t and t+d. The value
of d is denoted as <D> in the templates. During the
translation process concrete values of <_SrvId>, <CaseId>
and <D> are chosen according to a predefined set of
criteria.

D. Monitoring process & reaction to changes
 During the monitoring state in the lifecycle model of

Figure 2, EVEREST analyses the events received from
sensors and detects violations of the monitoring rule that
provides the concrete operational specification of the
security property of the certification model. EVEREST
attempts to match events sent to it from sensors with the
monitoring rules and assumptions. When the body of a
monitoring rule is fully matched (instantiated) with events,
it will expect to receive events matching the rule’s head or
find them in its internal event database according to the
designated time constraints. If such events are not
found/received the rule is treated as violated. Otherwise, it is
treated as satisfied. The same process is used for
assumptions, except that when the body of an assumption
becomes fully instantiated (i.e., True), the predicates in its
head are derived and recorded in the EVEREST’s database.
Instances of monitoring rules instantiated by the events that
match them constitute the monitoring results, which are sent
to CG (see [15] for a detailed description).

In the case of the availability property example,
EVEREST would report to CG instances of R where
sum(_P[]) / (t2 – _lmsTime) > K (property satisfaction
cases) as well as cases where sum(_P[]) / (t2 – _lmsTime)
≤ K (property violations). _P[] in these results will provide
all the durations of unavailability periods and the events
instantiating rule R will provide the concrete evidence
demonstrating satisfaction or violation of the property.

〈Availability〉tdef==

A0.Availability.<CaseId>: Initially(LastServiceMonitoringPeriod(<_SrvId>,
systemTime())

A1.Availability.<CaseId>:
Initially(UnavailablePeriods(<_SrvId> ,_PN, _P[]))

A2.Availability.<CaseId>:
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧
¬Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2,
[t1,t1+<D>]) ∧ ¬∃ _PN, _ST,: HoldsAt(Unavailable(_PN, <_SrvId>, _ST),
t1)) ∧
∃ _PN, _P[]: HoldsAt(UnavailablePeriods(<_SrvId>, _PN, _P[]), t1)) ⇒
Initiates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), Unavailable(_PN+1,
<_SrvId>, t1), t1) ∧ Terminates(e(_id1, _Snd, <_SrvId>, Call(_O),
<_SrvId>), UnavailablePeriods(<_SrvId>, _PN, _P[]), t1) ∧
Initiates(e(_id1,_Snd,<_SrvId>,Call(_O),<_SrvId>),UnavailablePeriods(<_S
rvId>,_PN+1,_P[]), t1)

A3.Availability.<CaseId>:
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧
Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2,
[t1,t1+<D>]) ∧∃ _PNum, _ST: HoldsAt(Unavailable(_PN, <_SrvId>, _ST),
t1) ⇒
Terminates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), Unavailable(_PN,
<_SrvId>, _ST), t1+1)

A4.Availability.<CaseId>:
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧
Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2,
[t1,t1+<D>]) ∧ ∃ _PN, _ST,: HoldsAt(Unavailable(_PN, <_SrvId>, _ST), t1))
∧
∃ _PN, _P[]: HoldsAt(UnavailablePeriods(<_SrvId>, _PN, _P[]), t2)) ⇒
Terminates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>),
UnavailablePeriods(<_SrvId>, _PN, _P[]), t2) ∧
Initiates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>),
UnavailablePeriods(<_SrvId>, _PN, append(_P[], t1 − ST)), t2)

R.Availability.<CaseId>:
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧
Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2,
[t1,t1+<D>]) ∧∃ _PN, _ST, _P []: HoldsAt(Unavailable(_PN, <_SrvId>,
_ST), t1)) ∧
HoldsAt(UnavailablePeriods(<_SrvId>, _PN, _P[]), t2) ∧
HoldsAt(LastServiceMonitoringPeriod(<_SrvId>, _lmsTime), t2)) ⇒
sum(_P[]) / (t2 – _lmsTime) > K

E. Certificate provision
When a request for a certificate regarding the

availability of a the service is made to CeRTiN, if the
certificate type under monitoring is in the state
CanBeIssued, CG will extract the monitoring results from
its own database and generate the certificate. Prior to
generating it however, it will also check if any extra validity
tests required by the certification model are satisfied.

F. Tool Support
An early proof-of-concept implementation of CeRTiN

has been developed using two components of the open
source monitoring framework developed by the SLA@SOI
project, namely SMART and EVEREST. These two
components play the roles of monitoring configuration
selection tool and monitors in CeRTiN. Both of these tools
have been implemented in Java based on Eclipse Modeling
Framework (EMF). The tool is shown in Figure 7.

Figure 7: CeRTiN prototype

The upper part of Figure 7 illustrates SMART. As
shown in the figure, the left hand panel of the tool allows
the user to select the certification model to be applied for a
given service and the monitoring features (i.e., capabilities)
that are available in a cloud infrastructure.

The lower part of Figure 7 shows monitoring results
produced by EVEREST. The left top panel of EVEREST
lists the concrete security property that has been produced
from the abstract security property that is to be monitored.
The bottom left panel shows the monitoring specification of
the abstract property (concrete security property) in EC–
Assertion. The top right panel of the tool shows the
summary of the monitoring results and bottom right panel
shows the detail description of each monitoring result.

V. RELATED WORK
Our approach is related to research strands in three

different areas, namely: software and software services
certification, cloud security and cloud monitoring.

Existing approaches in the field of security certification
have focused on concrete software components and provide
human readable certificates. Thus, they cannot support
service-based scenarios that require machine-readable
certificates and could support dynamic service selection and
composition [11].

Unlike traditional approaches, the FP7 Project
ASSERT4SOA [22] has been focusing on formal and test-
based certification of services and has developed a
framework for representing and using machine-readable
service security certificates, known as ASSERTS, in service
discovery and composition [21][22]. But overall research on
the certification of cloud services and applications is still in
an early stage. Some work has been done to predict the
potential benefits of integrating certification schemes within
cloud infrastructures [2][18], without, however, offering a
concrete solution to this problem. Grobauer et al. [2],
examine potential vulnerabilities in cloud computing, and
acknowledge that the existence of such vulnerabilities is the
lack of certification schemes and security metrics for cloud.
Heiser and Nicolett [18] evaluate the cloud security risks and
propose sharing IT risks with any externally provided
service. A test based cloud certification approach has been
proposed in [23] focusing on minimising test generation and
execution activities in certifying cloud services. Test based
certificates of cloud services could be combined with
monitoring based certification, so as to produce extended
hybrid certificates for the properties of interest.

More work has focused on auditing cloud security. The
Cloud Controls Matrix (CCM) of the Cloud Security
Alliance (CSA) [5], for example, contains a comprehensive
set of controls to assess the information security assurance in
clouds and maps controls to existing frameworks such as PCI
DSS [30], COBIT [7]. CCM is currently being developed
through the Open Certification Framework (OCM) [28] into
a 3rd party certification program. Moreover, CSA has
published the Cloud Audit protocol [4], which provides an
automated query interface to cloud services for audit. Our
approach is compliant with CSA’s frameworks and we are
investigating the potential integration of CeRTiN into OCM.

Cloud monitoring has been supported by several
monitoring systems, including commercial software, open
source systems, and research prototypes. Most of these
systems (e.g., [25][27]) focus on performance monitoring
without checking security properties as such. Cloud security
monitoring is supported by positioning agents at different
key points of a cloud infrastructure to detect incidents
[13][14]. Other systems (e.g., DeSVi [32]) support the
detection of SLA violations. None of these systems,
however, supports security monitoring directly and
customers can only use them to establish performance
baselines, which, if deviated substantially, could indicate
some incident conditions. EVEREST [15], the monitoring

framework that underpins CeRTiN, is in exception as it
provides direct support for security monitoring.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a certification

approach for the security of cloud services that is based on
incremental assessment of security properties based on
continuous monitoring, and have described the basic models
and mechanisms for realising it.

The use of evidence coming from continuous monitoring
provides coverage of contextual conditions that might not be
possible to envisage, test or simulate through other forms of
assessment of security properties (e.g., testing and static
analysis) before deploying a cloud service. Therefore, our
approach provides an advantage over test and static analysis
approaches. We should note, however, that our work is part
of a broader research programme undertaken by the EU F7
project CUMULUS, which aims to develop certification
schemes that will enable the development of hybrid
certification schemes, incorporating multiple types of
evidence, including testing, static analysis and monitoring.
Hence, we also aim to investigate how to integrate the
certification models described in this paper with test and
static analysis based models.

Furthermore, we are looking into the further
development of some elements of our approach, notably the
development of mechanisms for filtering low level
monitoring data and aggregating them into compound forms
of evidence prior to including them in certificates. This will
be necessary in order to produce scalable and auditable
certificates. We are also planning an evaluation activity
based on inputs from certification authorities and industrial
stakeholders that participate in CUMULUS.

ACKNOWLEDGMENT
This work has been partially funded by the EU F7 project

CUMULUS [8] (grant no 318580).

REFERENCES
[1] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Security and Cloud

Computing: InterCloud Identity Management Infrastructure”, In 19th
IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, 2010, pp. 263-265.

[2] B. Grobauer, T. Walloschek, and E. Stocker, "Understanding Cloud
Computing Vulnerabilities," IEEE Security & Privacy, vol. 9, 2011,
pp. 50-57.

[3] C. Cachin, I. Keider, and A. Shraer, “Trusting The Cloud”, IBM
Research, Zurich Research laboratory, 2009.

[4] Cloud Security Alliance, Cloud Audit, Available from:
https://cloudsecurityalliance.org/research/cloudaudit/

[5] Cloud Security Alliance, Cloud Controls Matrix, Available from:
https://cloudsecurityalliance.org/research/ccm/

[6] Cloud Security Alliance, Security Guidance for Critical Areas of
Focus in Cloud Computing vol. 2, available from:
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf
[retrieved: June, 2013].

[7] COBIT, http://www.isaca.org
[8] CUMULUS project, http://www.cumulus-project.eu/
[9] D. Catteddu and G. Hogben, “Cloud Computing: Benefits, Risks and

Recommendations for Information Security.”, European Network and
Information Security Agency (ENISA), 2009.

[10] D. S. Herrmann, “Using the Common Criteria for IT security
evaluation”, Auerbach Publications, 2002.

[11] E. Damiani, and A. Mana, “Toward WS-Certificate”, In Proc. of the
ACM Workshop on Secure Web Services (SWS 2009), 2009, pp. 1-2.

[12] F Lombardi and R Di Pietro, “Secure virtualization for cloud
computing”, J. Netw. Comput. Appl. 34, 4, July 2011, pp. 1113-1122.

[13] F. Doelitzscher, C. Reich, M. H. Knahl, and N. L. Clarke, "Incident
detection for cloud environments", Proc. of the Third International
Conference on Emerging Network Intelligence,2011, pp. 100-105.

[14] F. Doelitzscher, C. Reich, M. Knahl, A. Passfall, and N. Clarke, "An
agent based business aware incident detection system for cloud
environments", Journal of Cloud Computing: Advances, Systems and
Applications vol. 1:9, 2012.

[15] G. Spanoudakis, C. Kloukinas, and K. Mahbub, “The SERENITY
Runtime Monitoring Framework”, In Security and Dependability for
Ambient Intelligence, Springer, 2009, pp. 213-238.

[16] H. Foster and G. Spanoudakis, “Advanced Service Monitoring
Configurations with SLA Decomposition and Selection”, In Proc. of
26th Annual ACM Symposium on Applied Computing, 2011, pp.
1582-1589.

[17] H. Li, Y. Dai, and B. Yang, "Identity-Based Cryptography for Cloud
Security", IACR Cryptology ePrint Archive, 2011, pp.169-169.

[18] J. Heiser and M. Nicolett, “Assessing the Security Risks of Cloud
Computing”, Gartner technical report, June 2008.

[19] K. Kearney, F. Torreli, and C. Kotsokalis, “SLA*: An Abstract
Syntax for Service Level Agreements”, In Proc. Of 10th IEEE/ACM
International Conference on Grid Computing, 2010, pp. 217-224.

[20] K. Mahbub, G. Spanoudakis, and T. Tsigkritis, "Translation of SLAs
into Monitoring Specifications", In Service Level Agreements for
Cloud Computing, R. Yahyapour, P. Weider (Eds), Springer-verlag,
2011.

[21] L. Pino, G. Spanoudakis, “Constructing Secure Service Compositions
with patterns” 2012 IEEE 8th World Congress on Services, 2012, pp.
184-191.

[22] M. Anisetti et al., “ASSERT4SOA: Toward Security Certification of
Service-Oriented Applications”, OTM 2010 Woekshops, 2010, pp.
38-40.

[23] M. Anisetti, C. A. Ardagna, and E. Damiani, “A Low-Cost Security
Certification Scheme for Evolving Services”, In Proc. Of IEEE 19th
International Conference on Web Services, 2012, pp. 122-129.

[24] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Iacono, “On
Technical Security Issues in Cloud Computing”, In Proc. of the IEEE
International Conference on Cloud Computing, 2009, pp. 109-116.

[25] M. L. Massie, B. N. Chun , and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience”, Parallel
Computing, vol. 30, 2004, pp. 817–840.

[26] Microsoft, The Economics of Cloud for the EU Public Sector, Paper,
2010:http://www.microsoft.eu/Portals/0/Document/EU_Public_Sector
_Cloud_Economics_A4.pdf [retrieved: June, 2013].

[27] Nagios, 2011. http://www.nagios.org/
[28] Open Certification Framework,

https://cloudsecurityalliance.org/research/ocf/
[29] Ovum, http://www.computing.co.uk/ctg/news/2113323/ovum-public-

cloud-services-market-explode
[30] PCI Security Standards Council, PCI DSS Quick Reference Guide:

Understanding the Payment Card Industry Data Security Standard v2,
https://www.pcisecuritystandards.org/documents/PCI%20SSC%20Qu
ick%20Reference%20Guide.pdf [retrieved: June, 2013]

[31] S. Kamara and K. Lauter, “Cryptographic cloud storage”, 14th
International Conference on Financial cryptograpy and data security,
2010, pp. 136-149.

[32] V. C. Emeakaroha, R.N. Calheiros, M.A.S. Netto, I. Brandic, and
C.A.F. De Rose, “DeSVi: An Architecture for Detecting SLA
Violations in Cloud Computing Infrastructures” 2nd International
ICST Conference on Cloud Computing, 2010.

