
              

City, University of London Institutional Repository

Citation: Krotsiani, M., Spanoudakis, G. & Mahbub, K. (2013). Incremental certification of 

cloud services. Paper presented at the SECURWARE 2013 - 7th International Conference 
on Emerging Security Information, Systems and Technologies, 25th - 31st August 2013, 
Barcelona, Spain. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/3236/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Incremental Certification of Cloud Services 

Maria Krotsiani, George Spanoudakis, Khaled Mahbub
School of Informatics 

City University London, UK 
{Maria.Krotsiani.1, G.E.Spanoudakis, K.Mahbub}@city.ac.uk 

 
 

Abstract—Cloud is becoming fast a critical infrastructure. 
However, several recent incidents regarding the security of 
cloud services clearly demonstrate that security rightly 
remains one of the major concerns of enterprises and the 
general public regarding the use of the cloud. Despite 
advancements of research related to cloud security, we are still 
not in a position to provide a systematic assessment of cloud 
security based on real operational evidence. As a step towards 
addressing this problem, in this paper, we propose a novel 
approach for certifying the security of cloud services. Our 
approach is based on the incremental certification of security 
properties for different types of cloud services, including IaaS, 
PaaS and SaaS services, based on operational evidence from 
the provision of such services gathered through continuous 
monitoring. An initial implementation of this approach is 
presented. 

Keywords–cloud services; security certification; continuous 
monitoring 

I. INTRODUCTION 
Cloud technology offers the opportunity for utilising 

computational capabilities offered as computation, data, 
storage, and network cloud services upon demand without 
owning the resources that realise and offer them [26]. The 
use of cloud services is spreading fast, formulating a market 
that is expected to reach a value of $66bn by 2016 [29]. 
Despite their fast spread, the use of cloud services has been 
associated with several security problems. These include 
breaches of integrity, confidentiality and privacy of 
customer data on clouds [6][9][18], spamming, wrapping 
and cross-site scripting attacks [6], various forms of Denial-
of-Service (DoS) attacks resulting in reduced application 
and data availability [9][24], and Authentication, 
Authorization and Accounting (AAA) vulnerabilities 
[9][18]. Thus, the use of the cloud has created significant 
concerns regarding the security of the data and services 
offered through it [6][9][18]. Frequent reports of cloud 
security incidents spanning across major providers indicate 
that these are valid concerns [14]. 

The provision and assessment of cloud service security 
is difficult and not well supported by the existing state of 
the art. Researchers have made significant progress 
delivering methods and tools for access control and identity 
management on clouds [1], secure storage protocols (e.g., 
proof-of-retrievability [3], proof-of-storage protocols [31]), 
encryption and key management [17], and secure 
virtualization [12]. Despite this work, the security of cloud 
services is far from perfect. This is due to several 
vulnerabilities of cloud service provision that are related to 

the possibility of breaches of integrity, confidentiality and 
privacy due to multi-tenancy of services; interference 
between security mechanisms operating at different layers 
of cloud services (infrastructure, platform and software 
services); interference between security and cloud 
virtualization/optimisation mechanisms (e.g., spreading of 
DoS attacks due to load balancing in cloud federations 
[24]); and subverting administrative functions of the cloud 
infrastructure. 

The risk arising from these vulnerabilities is increased 
by dependencies between services at all the layers of the 
cloud stack (i.e., IaaS, PaaS and SaaS services), which may 
also evolve dynamically (e.g., changing VMs, 
configurations of platform services, or deployed software 
services). These dependencies and their dynamic changes 
make it difficult to introduce appropriate pre-deployment 
and operation controls for assessing and guaranteeing the 
security [9][24]. Furthermore, the exact provision of cloud 
services is frequently opaque, making it difficult to assess 
cloud security through audit mechanisms. 

Under these circumstances, the security and 
trustworthiness of cloud services require continuous and 
transparent assessment. Certification has a long history as a 
mechanism for verifying properties of software systems and 
increasing trust in them, mainly due to the liability that it 
entails for the authority that issues the certificates. However, 
existing certification methods, such as those based on the 
Common Criteria model [10], focus mainly on systems with 
a stable structure that operate under stable operational 
conditions and, therefore, they are not suitable for the cloud. 
Recent research focuses on certification of service-based 
systems, whose structure can change dynamically [22]. 
However, it still ignores the deployment infrastructure and 
platform services that are involved in the provision of 
software services in a cloud. Also, SOA certification 
research [22][23] is centered on certificates produced 
through pre-deployment testing and/or formal analysis of 
services without incorporating real and continuous cloud 
service monitoring data. 

In this paper, we propose a novel cloud service 
certification approach that addresses this gap. Our approach 
is based on the creation of incremental certificates for 
security properties of cloud services. In such certificates, the 
evidence required for assessing and verifying security 
properties is acquired through continuous monitoring of the 
operation of cloud services.  Hence, the evidential basis for 
the assessment of properties can cover contextual conditions 
that might not be possible to envisage, test or simulate 
through other forms of assessment (e.g., testing and static 



analysis) before deploying a cloud service. Continuous 
monitoring can capture contextual conditions in cloud 
service provision as, for example, changes in the population 
of co-tenant services, the deployed virtualization and 
optimisation strategies and mechanisms, and network and 
middleware configurations in a cloud, which are difficult to 
take into account in static forms of assessment. It can also 
capture and adapt to the migration of SaaS cloud services 
within cloud federations, providing support for the 
adaptation of monitoring infrastructures when this happens. 

The rest of this paper is organized as follows. Section II 
overviews our approach. Section III introduces the 
certification models that drive the incremental certification 
process. Section IV details the certification process, gives 
examples of how it is carried out, and overviews the tool 
support for our approach. Section V overviews related work, 
and finally, Section VI provides concluding remarks and 
directions for future work. 

II. OVERVIEW OF INCREMENTAL CERTIFICATION 

A. Certificates and certification models 
The core model of certificates that can be issued in our 

approach is shown in Figure 1. As the model shows, a 
certificate asserts a security property regarding an asset of a 
cloud service (e.g., a specific service operation, a set of 
service operations, data managed by the service). 
Certificates are produced based on a certification model that 
is defined (or endorsed) by a certification authority, and are 
signed by this authority. The certification model is based on 
an assessment scheme determining what evidence should be 
taken into account for assessing a property. The assessment 
scheme also determines how frequently the evidence should 
be checked and when the accumulated evidence will be 
sufficient for issuing the certificate through an evidence 
aggregation scheme. 

The certification model defines also validity checks that 
should be executed before issuing a certificate. Such checks 
may, for example, require that the monitoring infrastructure, 
which is used to gather the operational evidence for the 
certificate C, has itself a certificate C’ confirming the 
integrity and non-repudiation of the monitoring data that it 
captures and provides. Also, C’ had to be valid for the entire 

period over which the particular monitoring infrastructure 
has been used to gather evidence for C.  

When the evidence gathered for a certificate type is 
sufficient for verifying the security property related to it (as 
determined by the certification model), a certificate that is 
an instance of this type could be issued. However, even after 
they are issued, certificates can be subject to changes in the 
operational conditions of the cloud service that they are 
associated with. The possible updates and other key changes 
in the life cycle of incremental certificates are described by 
a generic life cycle model that we discuss next. 

B. Lifecycle of incremental certificates 
The life cycle of incremental certificates is described by 

the UML statechart diagram of Figure 2. The first state in 
the certificate’s lifecycle is Activated. In this state, a 
certificate type is activated with a unique ID; a reference to 
the certification model that will be used for its incremental 
assessment and for issuing and updating certificates that are 
instances of it; a reference to the asset(s) of the cloud 
service that it refers to; and a digital signature of its issuer. 
The signature confirms that certificates, which are instances 
of the particular type, may be potentially issued for the 
referenced cloud service, based on the specific certification 
model and the evidence that needs to be collected. 

 
After being activated, a certificate type enters the 

SetUpMonitors state. At this state, a monitoring 
infrastructure that will be used to acquire the operational 
evidence required for the assessment of the certificate is set 
up. If a suitable monitoring infrastructure for the type can be 
identified and set up, the certificate type moves to 
UpdateCertificationModel state. At this state, a concrete 
operational specification of the security property of the 
certificate type is generated for the particular infrastructure. 
This specification will enable the monitoring infrastructure 
to determine the monitoring events (evidence) required for 
the assessment of the property and how to use them in order 
to assess the property. When these updates are completed 
and recorded in the certification model, the certificate type 
moves to Monitoring state. Note, however, that if no 
suitable monitoring configuration is found, the certificate 
type will cease to exist. 

Whilst at the monitoring state, the evidence required for 
the assessment of the certificate type is continually gathered 

Figure 2: Life cycle of incremental certificates 

Figure 1: Model Based Certificates 



by the monitoring infrastructure. When the accumulated 
evidence becomes sufficient for confirming the validity of 
the security property of the type, the certificate type gets to 
the sub state CanBeIssued.  This state indicates that 
certificates of the particular type can be issued by the 
certification platform. Whilst a certificate type is at the state 
CanBeIssued, its monitoring continues and, at specific 
checkpoints defined by the certification model, any 
additional operational evidence that is acquired for the type 
by the monitoring infrastructure is recorded in an 
aggregated format within the certification infrastructure (see 
the self-transition EvidenceUpdate). 

When a certificate type gets to the state CanBeIssued, 
any agent interested in it (whether an application or a human 
actor) can request the generation of a certificate that is an 
instance of the particular type from the certification 
infrastructure by using the certificate type’s unique ID. 
Upon such a request, the certification infrastructure will 
check if the extra validity conditions for the certificate type 
(if any) are satisfied and, if they are, it will generate a 
certificate instance and return it back to the requester. The 
generated instance will be identified by the combination of 
the ID of the certificate type and its own unique ID. The 
certificate instance will also record the expiration date of its 
type (as this date will apply to it as well). These actions are 
executed during the transition RequestInstance in Figure 2. 
The issued instance of the certificate type will incorporate 
the aggregated evidence until the last checkpoint when 
monitoring data were retrieved from the monitoring 
infrastructure and aggregated for the certificate type. It will 
also contain the timestamp of the earliest and latest available 
evidence for the security property that it asserts, in order for 
its users to know the exact period covered by the evidence.  

A certificate type that is at the state CanBeIssued may 
also be revoked. This will happen if the monitoring 
infrastructure identifies new monitoring data contradicting 
the evidence gathered so far and indicating that the relevant 
security property has been compromised. The occurrence of 
such evidence is signified by the transition Security 
Property Violation to the state Revoked.  When a certificate 
type gets to the state Revoked, all the previously generated 
instances of it will be revoked. Also, the certificate type will 
be flagged as revoked in the certification infrastructure in 
order to prevent the generation of new instances of it, and its 
monitoring will be terminated.  

In line with traditional models of certification, a 
certificate type has an expiration date. When this date is 
reached, the certificate type will move to the state Audit.  
This state signifies an audit of the certification model and 
the evidence gathered for the certificate type. The 
certification authority, which defined the certification 
model, will carry this out in order to ascertain that it may 
continue to use the certification model for producing 
certificates. If the audit is successful, the certificate type can 
be renewed: the transition Renewed brings the certificate 
back to the state where it was prior to reaching its expiration 
date and moving to the state Audit. If the audit is 
unsuccessful, the specific certificate type will be terminated. 
In this case, a notification should also be sent to owners of 

any issued instance certificates of the type to notify them 
that the type no longer exists but that the instances of it that 
have been issued will remain valid until their expiration 
date. 

Following the expiration of a certificate instance, its 
agent can request from the certification infrastructure to 
provide a renewed instance of the same certificate type. The 
infrastructure will be able to do so only if the certificate type 
at this stage is at the state CanBeIssued.  

The life cycle mode also reflects reactions to changes 
related to the cloud infrastructure where the certified service 
has been deployed, or to the monitoring infrastructure that is 
used to generate the operational evidence for the certificate. 
Such changes may require a change in the monitoring 
infrastructure that is used to gather the operational evidence 
underpinning the certificates of the given type and the 
concrete operational specification of the security property of 
the certificate type that drives the operation of the 
monitoring infrastructure. The evidence, however, that has 
been held so far in the certification infrastructure regarding 
the property may (depending on the certification model) 
remain relevant and should be maintained by the 
certification structure so that to be used when issuing new 
instances of the given type. 

Changes in the cloud infrastructure and/or the 
monitoring infrastructure will trigger the transition of the 
certificate type to the SetUpMonitors state to check whether 
after the changes, the cloud deployment infrastructure of the 
service provides the monitoring capabilities required for 
continuing the monitoring of the specific certificate type. If 
successful, the certificate will move to the 
UpdateCertificationModel during which the certification 
model will be updated as described previously. When this 
completes successfully, the certificate will transit back to 
the evidence accumulation state inside Monitoring. If, 
however, the security property cannot be monitored after the 
changes, the certificate type will cease to exist.  

C. Incremental Certification Infrastructure 
The generation of incremental certificates is supported 

by a proof-of-concept certification infrastructure (CeRTiN). 
The architecture of CeRTiN is shown in Figure 3. 

Figure 3: Certification Infrastructure 
 

CeRTiN consists of a Certificate Generator (CG), a 
service monitorability reporting tool (SMART), a set of 
translators, and a certification models registry. The 
certificate generator has the responsibility for initiating and 



managing the process of creating incremental certificates 
following the life cycle model introduced in Sect. II.B, upon 
requests for certification authorities. The operation of the 
certificate generator is driven by certification models, 
maintained as part of a model registry. To realise the 
functionality underpinning the state SetUpMonitors and 
Monitoring in the life cycle model, the generator interacts 
with SMaRT and Translators, and Monitoring components 
on cloud platforms, respectively. SMaRT has responsibility 
for checking (i) whether the cloud on which the cloud 
service to be certified is deployed has the monitors required 
for the incremental certification of the service, and (ii) for 
assembling an appropriate monitoring platform. To do so, 
SMaRT has access to the certification model to be applied 
and descriptions of the monitoring capabilities available in 
cloud platforms. Translators have the responsibility for 
translating the security property to be verified by certificates 
into an operational monitoring specification for the 
monitoring platform assembled by SMaRT. Finally, the 
monitoring components on cloud platforms have the 
responsibility for providing the raw monitoring evidence 
from cloud monitoring components. 

III. SPECIFICATION OF CERTIFICATION MODELS 
As discussed in Sect. II, the generation of incremental 
certificates is driven by certification models. In this section, 
we define the language for specifying such models as an 
XML schema. The top-level structure of this schema is 
shown in Figure 4 and the elements at this level of the 
schema are discussed below. 

A. Certification model elements 
CASignature: The element CASignature represents the 
digital signature of the certification authority that has 
defined/advocated the certification model. 

AbstractSecurityProperty: This element defines the 
security property that is to be certified by the particular 
certification model. The security property must be defined 
in an abstract form that is independent from the language 
used by the monitoring infrastructure that will be used for 
gathering operational evidence for the property. This is 
because the monitoring infrastructure that will be used for 
different certificates of the model may vary across different 
cloud platforms. Also, the monitoring infrastructure may 
change during the lifecycle of the certificate type when, for 
example, the service or the constituent services and 
components that are the subject to incremental certification 
migrate across different clouds (e.g., within a cloud 
federation). During the monitoring infrastructure set up state 
in the certificate type life cycle model, the abstract property 
is translated automatically to the concrete property that will 
then be used to drive the operational monitoring (see 
below). 

In the current implementation of our approach, the 
abstract security property is expressed using a subset of the 
language for specifying Service Level Agreements (SLAs) 
that was introduced by the SLA@SOI project, known as 
SLA* model [19]. In particular, we are using the part of the 
language that enables the definition of guaranteed terms in 

an SLA. SLA* has been chosen for two reasons. The first is 
that it defines several build-in security properties such as 
integrity, non-repudiation, availability and forms of 
confidentiality as “standard” guarantee terms. The second 
reason is that it provides the syntactic and semantic means 
for customizing the definitions of built-in properties and/or 
defining new properties. 

 

 
Figure 4: Certification model schema (top level) 

   
The certification model schema provides two options for 

specifying abstract security properties in SLA*: (1) to 
specify the property as a string, according to the BNF 
syntax of SLA*, or (2) to use the XML schema defined for 
SLA*. A full account of SLA* is beyond the scope of this 
paper and can be found in [19]. In Figure 5, however, we 
show an example of specifying the availability of a service 
as defined in SLA*.  

AssessmentScheme: This element defines conditions 
regarding the assessment of the evidence that should be 
satisfied, in addition to the adherence of the cloud service to 
the security property, for the certificate to become issuable. 
These conditions relate to the frequency and sufficiency of 
evidence collection, and are specified by the following sub-
elements of an assessment scheme:  
• EvidenceFrequency – This element defines the 

checkingPeriod, which states how often the events 
should be checked, and/or the minNoOfEvents, which 
declares the minimum number of events that should 
occur in a specific period of time. 



• SufficientEvidence – This element defines sufficiency 
conditions regarding the extent of collected evidence for 
issuing a certificate. Such conditions are specified by the 
sub-elements of SufficientEvidence, namely: 
– minMonitoredPeriod that states the minimum time 

needed for monitoring, 
– minNoOfEvents that states the minimum number of 

events (evidence) that need to be monitored. 
Validity tests: A certification model may, in addition to 

the assessment scheme, define extra validity tests as 
preconditions for issuing a certificate of a given type. These 
tests may relate, for example, to conditions regarding the 
cloud where the service is deployed (e.g., requiring that the 
cloud offers full isolation of virtual machines) or the 
adherence of other services that this service may depend on 
to standards (e.g., requiring that a storage service, which is 
used by a SaaS service implements correctly a proof-of-
retrievability protocol [3]) or the monitoring infrastructure 
itself (e.g., requiring the integrity of the transmission of 
monitoring events and results inside the infrastructure and to 
external clients of it). Such conditions are specified by the 
element validityTests in the certification model schema. Our 
approach to the specification of validity tests assumes that 
any related components will have other certificates 
confirming their adherence to the required conditions and 
therefore the validity tests are expressed as logical conditions 
against the contents of such certificates.  

MonitoringConfigurations: This element specifies the 
list of the monitoring configurations that have been used to 
collect the evidence for generating certificates. Each 
monitoring configuration includes: 
• A list of components of the monitoring environment.  

These components can be of two types: (1) sensors, 
which are components capable of capturing and 
transmitting primitive monitoring events, and (2) 
reasoners, which are components capable of analyzing 
events and checking whether monitoring conditions are 
satisfied (aka monitors). The start and end of each time 
period during which it has been used for collecting 
evidence for the specific certification model 

• ConcreteSecurityProperty – This element provides the 
concrete operational specification of the security 
property that is to be certified by the model, expressed in 
the language accepted by the reasoner(s) of the particular 
monitoring configuration. The concrete security property 
is generated automatically from the abstract security 
property once a monitoring configuration is selected as 
we discuss in Sect. IV.C.  

B. Example of Certification Model for Availability Property 
Figure 5 presents an example of a certification model for 

the availability of a service, i.e., the ratio of the period of 
time during which a service cannot respond to calls of its 
operations without producing an error (i.e., it is 
unavailable), over the total period of time during which the 
service is deployed. 

As shown in the figure, the value of the expression 
attribute in the AbstractSecurityElement is set to availability 

(i.e., a standard term of SLA* with the meaning defined 
above). The element AssessmentScheme of the model 
specifies that monitoring should be performed every 24 
hours for minimum of 1000 events in this period (see the 
attribute values of EvidenceFrequency element) and 
monitoring should be performed for at least 30 days for 
minimum 100000 events in this period in order to issue a 
certificate (see the attribute values of SufficientEvidence 
element). The ValidityTest element specifies a precondition 
that should be met to issue a certificate. The precondition in 
this example specifies that the integrity of the transmission 
of monitoring events and results should be maintained. 
Finally, in the MonitoringConfiguration element, it is 
specified the monitoring environment that will be used to 
monitor the events and collect the evidence. 

IV. CERTIFICATION PROCESS 
In the following, we give an example demonstrating the 

certification process based on the availability property 
specified in the certification model of Figure 5. 

A. Initiation of certification process 
The certification process starts when a service provider 

makes a request to a Certification Authority (CA), in order 
to certify a security property for a service. The CA may use 
an existing Certification Model (CM) if it is suitable for the 
property and the service, create a new model for it, or reject 
the request. If a CM is identified, CA submits it to the 
Certificate Generator CG). CG has then to select and 

Figure 5: Example Certification Model 

<ns1:CertificationModel  xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance' 
   xmlns:ns3='http://slasoi.org/monitoring/citymonitor/xmlrule' 
   xmlns:ns2='http://assert4soa.eu/schema/Assert_SQL' 
   xmlns:ns1='http://www.cumulus.org/certificate/model' 
   xsi:schemaLocation='http://www.cumulus.org/certificate/model 
CertificationModel-v2.xsd'> 
    <CASignature></CASignature> 
    <AbstractSecurityProperty    
        expression="http://www.slaatsoi.org/commonTerms#availability"/> 
    <AssessmentScheme> 
        <EvidenceFrequency checkingPeriod="24" periodUnit="hours"  
           minNoOfEvents ="1000"></EvidenceFrequency> 
        <SufficientEvidence minMonitoredPeriod="30" periodUnit="days"   
                minNoOfEvents="100000"></SufficientEvidence> 
    </AssessmentScheme> 
    <ValidityTests negated="false" certificateScope="SINGLE"> 
        <ns2:Condition negated="false" relation="EQUAL-TO"> 
            <ns2:Operand1> 
                <ns2:AssertOperand facetName="Assert" facetType="Assert">    
                    //ASSERTCore/SecurityProperty/@PropertyAbstractCategory 
                </ns2:AssertOperand> 
            </ns2:Operand1> 
            <ns2:Operand2> 
                <ns2:Constant type="STRING">  
                     http://www.assert4soa.eu/ontology/security/security#Integrity 
                </ns2:Constant> 
            </ns2:Operand2> 
        </ns2:Condition> 
    </ValidityTests> 
    <MonitoringConfigurations> 
        <MonitoringConfiguration> 
            <Component type="REASONER"> 
                <EndPoint>http://localhost:8888/...</EndPoint> 
            </Component> 
            … … … … 
        </MonitoringConfiguration> 
    </MonitoringConfigurations> 
</ns1:CertificationModel> 



configure a monitoring infrastructure for starting the 
incremental certification process. 

B. Selecting and configuring the infrastructure 
Assuming that the request for certification is about the 

availability of a service S, the CM of Figure 5 could be 
selected and used for the certification of S.  After identifying 
it, CG calls SMART (see Figure 3) to find if there is a 
monitoring infrastructure available in the cloud platform 
where the service is deployed that could monitor availability.  

To do so, SMART parses the security property in the 
certificate model and generates an Abstract Syntax Tree 
(AST) of the property based on the BNF grammar of the 
security property language. Then, it searches through the 
registry of the monitoring capabilities of the cloud 
infrastructure to check if there are suitable sensors for 
providing the events and analysis functions required for 
monitoring the availability property.  

The capabilities of the monitoring components that may 
be available in the infrastructure are described according to 
the monitoring capability model introduced in [16]. 
According to this model, a monitoring component in a cloud 
infrastructure is described by its unique identifier within the 
infrastructure (uuid), its type (i.e., SENSOR or REASONER 
depending on whether the component can capture and 
transmit events or can analyse them to check if a monitoring 
condition is satisfied, respectively), and a list of 
MonitoringFeatures. The latter describe either basic features 
such as event capturing and transmitting operations (e.g., 
service operation requests and responses) or more complex 
computational functions (e.g., computation of average time 
between service calls, CPU load etc.). 

SMART uses the AST for the property to find 
monitoring components, which have monitoring features 
matching each node of the tree. More specifically, a non-leaf 
node of AST would have the form (Parent: Operator (OP), 

Children: left-hand side (LHS), right-hand side (RHS)) and 
each of OP, LHS and RHS needs to be matched with a 
monitoring component with appropriate features. A full 
match of the AST with monitors constitutes a candidate 
configuration. For these, SMART also checks if they satisfy 
any validity conditions for monitors that may have been 
defined in the certification model, and maintains only the 
configurations that are compliant. If there is more than one 
such configuration, it also performs a selection. Figure 6 
shows the AST for availability and an example of a matching 
monitoring configuration. 

C. Deriving the monitoring specification 
Following, the selection of a monitoring configuration, 

CG translates the abstract security property of the 
certification model into the monitoring language accepted by 
the REASONER component in the configuration. 

In the current implementation of CeRTiN, we are using 
EVEREST (EVEnt REaSoning Toolkit [15]) to perform the 
monitoring required during the certification process.  
EVEREST is an open-source monitoring framework 
developed by the last two authors of this paper to support the 
monitoring of service-based systems. EVEREST supports 
the monitoring of properties expressed in EC-Assertion, a 
first order temporal logic language based on Event Calculus. 

EC-Assertion specifies monitorable properties in terms of 
events and fluents. An event is something that occurs at a 
specific instance of time and has instantaneous duration. 
Fluent represent system states and are initiated and 
terminated by events. The basic predicates used by EC-
Assertion for expressing events and fluents, and their 
meanings are summarized in Table I. 

 
TABLE I: EC-ASSERTION PREDICATES 

 

Based on these predicates, EC-Assertion expresses 
monitorable properties as monitoring rules of the form body 
⇒ head. The meaning of a monitoring rule is that if its body 
evaluates to True, its head must also evaluate to True. EC-
Assertion also uses monitoring assumptions, which have the 
same form as rules but their meaning is that when their body 
evaluates to True, their head can be deduced. Thus 
assumptions are used to deduce and/or record information 
about the state of the system during monitoring. 

Operational monitoring specifications in EC-Assertion 
are produced from the specification of an abstract security 
property in a certification model by transforming the AST 
of the property into EC-Assertion formulas. The translation 
process is based on the use of predefined parametric 

Predicate Meaning 
Happens(e,tℜ(tL,tU)) An event e of instantaneous durations occurs 

at some time point t within the time range 
ℜ(tL,tU) (ℜ(tL,tU)=[ tL,tU]). 

HoldsAt(f,t) A state (aka fluent) f holds at time t. This is a 
derived predicate that is true if the f has been 
initiated by some event at some time point t’ 
before t and has not been terminated by any 
other event within the range [t’,t]. 

Initiates(e,f,t) Fluent f is initiated by an event e at time t 
Terminates(e,f,t) Fluent f is initiated by an event e at time t 
Initially(f) Fluent f holds at the start of system operation. 
<rel>(x,y), <rel>::=  = 
| < | > | ≤ | ≥ | ≠ 

The relation <rel> holds between the x and y.  

Figure 6: Availability AST and matching monitoring configuration 



monitoring templates for the standard terms of the SLA* 
model. These templates are retrieved and instantiated during 
the translation process when the relevant standard term of 
SLA* is encountered in a node of the AST generated for a 
security property. The details of this translation process are 
beyond the scope of this paper and can be found in [20]. 

Table II shows the parametric template used for the 
standard Availability property in SLA*. As discussed in 
Sect. III.B, service availability is defined as the ratio of the 
period during which a service is unavailable over the total 
period of monitoring a service.  
 

TABLE II: AVAILABILITY TEMPLATE (EC-ASSERTION) 

 
The parametric availability template uses three fluents 
specific to availability computation. The fluent Unavailable 
keeps track of unavailability. The fluent has three 
parameters: (i) _PN that counts the number of unavailable 
periods for a monitored service; (ii)  _SrvId that records the 
unique ID of the monitored service, and (iii) _ST that 
records the time point when the service becomes 
unavailable. To keep track of unavailable periods the 
template uses the fluent UnavailablePeriods. This fluent has 
also three parameters: (i) _SrvId that records the unique ID 
of the monitored service; (ii) _PN that records the count of 
unavailable periods of the monitored service; and (iii) _P[] 
that records duration of each unavailable period of the 

monitored service. The third fluent in the template, i.e., 
LastMonitoringPeriod, is used to record the starting time 
point of the monitoring session. This fluent has two 
parameters. The first parameter (i.e. <_SrvId>) records the 
unique ID of the monitored service, and the second 
parameter (i.e. systemTime()) signifies a system call 
executed by the monitor to obtain the current time of the 
system where the monitoring service is running. 

 The assumptions A0 and A1 initiate the 
LastMonitoringPeriod and UnavailablePeriods fluents 
respectively for first time. A2 starts new period of 
unavailability when a non-served event occurs and increases 
the number of unavailability periods. A3 terminates a 
current period of unavailability for a service. The 
assumption A4 records the length of a terminated period of 
unavailability. Finally, the rule R checks if the availability 
of a service is greater than K. 

 In the template, <CaseId> refers to the unique id of the 
certificate to be generated. It should be noted that 
EVEREST would receive primitive call and response events 
from the sensor that has been selected by SMaRT. 
Therefore, a call to the monitored service occurred at t is 
considered as served if a corresponding response occurs 
within a predefined time range between t and t+d. The value 
of d is denoted as <D> in the templates. During the 
translation process concrete values of <_SrvId>, <CaseId> 
and <D> are chosen according to a predefined set of 
criteria.  

D. Monitoring process & reaction to changes 
 During the monitoring state in the lifecycle model of 

Figure 2, EVEREST analyses the events received from 
sensors and detects violations of the monitoring rule that 
provides the concrete operational specification of the 
security property of the certification model. EVEREST 
attempts to match events sent to it from sensors with the 
monitoring rules and assumptions. When the body of a 
monitoring rule is fully matched (instantiated) with events, 
it will expect to receive events matching the rule’s head or 
find them in its internal event database according to the 
designated time constraints. If such events are not 
found/received the rule is treated as violated. Otherwise, it is 
treated as satisfied. The same process is used for 
assumptions, except that when the body of an assumption 
becomes fully instantiated (i.e., True), the predicates in its 
head are derived and recorded in the EVEREST’s database. 
Instances of monitoring rules instantiated by the events that 
match them constitute the monitoring results, which are sent 
to CG (see [15] for a detailed description).  

In the case of the availability property example, 
EVEREST would report to CG instances of R where 
sum(_P[]) / (t2 – _lmsTime) > K (property satisfaction 
cases) as well as cases where sum(_P[]) / (t2 – _lmsTime) 
≤ K (property violations). _P[] in these results will provide 
all the durations of unavailability periods and the events 
instantiating rule R will provide the concrete evidence 
demonstrating satisfaction or violation of the property. 

〈Availability〉tdef== 
 
A0.Availability.<CaseId>: Initially(LastServiceMonitoringPeriod(<_SrvId>, 
systemTime()) 
 
A1.Availability.<CaseId>:   
Initially(UnavailablePeriods(<_SrvId> ,_PN, _P[])) 
 
A2.Availability.<CaseId>: 
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧ 
¬Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2, 
[t1,t1+<D>]) ∧  ¬∃ _PN, _ST,: HoldsAt(Unavailable(_PN, <_SrvId>, _ST), 
t1)) ∧  
∃ _PN, _P[]: HoldsAt(UnavailablePeriods(<_SrvId>, _PN, _P[]), t1))  ⇒ 
Initiates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), Unavailable(_PN+1, 
<_SrvId>, t1), t1) ∧ Terminates(e(_id1, _Snd, <_SrvId>, Call(_O), 
<_SrvId>), UnavailablePeriods(<_SrvId>, _PN, _P[]), t1) ∧ 
Initiates(e(_id1,_Snd,<_SrvId>,Call(_O),<_SrvId>),UnavailablePeriods(<_S
rvId>,_PN+1,_P[]), t1) 
 
A3.Availability.<CaseId>: 
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧ 
Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2, 
[t1,t1+<D>]) ∧∃ _PNum, _ST: HoldsAt(Unavailable(_PN, <_SrvId>, _ST), 
t1) ⇒ 
Terminates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), Unavailable(_PN, 
<_SrvId>, _ST), t1+1) 
 
A4.Availability.<CaseId>: 
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧ 
Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2, 
[t1,t1+<D>]) ∧ ∃ _PN, _ST,: HoldsAt(Unavailable(_PN, <_SrvId>, _ST), t1)) 
∧ 
∃ _PN, _P[]: HoldsAt(UnavailablePeriods(<_SrvId>, _PN, _P[]), t2)) ⇒ 
Terminates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), 
UnavailablePeriods(<_SrvId>, _PN, _P[]), t2) ∧ 
Initiates(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), 
UnavailablePeriods(<_SrvId>, _PN, append(_P[], t1 − ST)), t2) 
 
R.Availability.<CaseId>: 
Happens(e(_id1, _Snd, <_SrvId>, Call(_O), <_SrvId>), t1, [t1,t1]) ∧ 
Happens(e(_id2, <_SrvId>, _Snd, Response(_O), <_SrvId>), t2, 
[t1,t1+<D>]) ∧∃ _PN, _ST, _P []: HoldsAt(Unavailable(_PN, <_SrvId>, 
_ST), t1)) ∧ 
HoldsAt(UnavailablePeriods(<_SrvId>, _PN, _P[]), t2) ∧ 
HoldsAt(LastServiceMonitoringPeriod(<_SrvId>, _lmsTime), t2))  ⇒ 
sum(_P[]) / (t2 – _lmsTime) > K 



E. Certificate provision 
When a request for a certificate regarding the 

availability of a the service is made to CeRTiN, if the 
certificate type under monitoring is in the state 
CanBeIssued, CG will extract the monitoring results from 
its own database and generate the certificate. Prior to 
generating it however, it will also check if any extra validity 
tests required by the certification model are satisfied. 

F. Tool Support 
An early proof-of-concept implementation of CeRTiN 

has been developed using two components of the open 
source monitoring framework developed by the SLA@SOI 
project, namely SMART and EVEREST. These two 
components play the roles of monitoring configuration 
selection tool and monitors in CeRTiN. Both of these tools 
have been implemented in Java based on Eclipse Modeling 
Framework (EMF). The tool is shown in Figure 7.  

Figure 7: CeRTiN prototype 
 

The upper part of Figure 7 illustrates SMART. As 
shown in the figure, the left hand panel of the tool allows 
the user to select the certification model to be applied for a 
given service and the monitoring features (i.e., capabilities) 
that are available in a cloud infrastructure. 

The lower part of Figure 7 shows monitoring results 
produced by EVEREST. The left top panel of EVEREST 
lists the concrete security property that has been produced 
from the abstract security property that is to be monitored. 
The bottom left panel shows the monitoring specification of 
the abstract property (concrete security property) in EC–
Assertion. The top right panel of the tool shows the 
summary of the monitoring results and bottom right panel 
shows the detail description of each monitoring result. 

V. RELATED WORK 
Our approach is related to research strands in three 

different areas, namely: software and software services 
certification, cloud security and cloud monitoring.  

Existing approaches in the field of security certification 
have focused on concrete software components and provide 
human readable certificates. Thus, they cannot support 
service-based scenarios that require machine-readable 
certificates and could support dynamic service selection and 
composition [11]. 

Unlike traditional approaches, the FP7 Project 
ASSERT4SOA [22] has been focusing on formal and test-
based certification of services and has developed a 
framework for representing and using machine-readable 
service security certificates, known as ASSERTS, in service 
discovery and composition [21][22]. But overall research on 
the certification of cloud services and applications is still in 
an early stage. Some work has been done to predict the 
potential benefits of integrating certification schemes within 
cloud infrastructures [2][18], without, however, offering a 
concrete solution to this problem. Grobauer et al. [2], 
examine potential vulnerabilities in cloud computing, and 
acknowledge that the existence of such vulnerabilities is the 
lack of certification schemes and security metrics for cloud. 
Heiser and Nicolett [18] evaluate the cloud security risks and 
propose sharing IT risks with any externally provided 
service. A test based cloud certification approach has been 
proposed in [23] focusing on minimising test generation and 
execution activities in certifying cloud services. Test based 
certificates of cloud services could be combined with 
monitoring based certification, so as to produce extended 
hybrid certificates for the properties of interest. 

More work has focused on auditing cloud security. The 
Cloud Controls Matrix (CCM) of the Cloud Security 
Alliance (CSA) [5], for example, contains a comprehensive 
set of controls to assess the information security assurance in 
clouds and maps controls to existing frameworks such as PCI 
DSS [30], COBIT [7]. CCM is currently being developed 
through the Open Certification Framework (OCM) [28] into 
a 3rd party certification program. Moreover, CSA has 
published the Cloud Audit protocol [4], which provides an 
automated query interface to cloud services for audit. Our 
approach is compliant with CSA’s frameworks and we are 
investigating the potential integration of CeRTiN into OCM. 

Cloud monitoring has been supported by several 
monitoring systems, including commercial software, open 
source systems, and research prototypes. Most of these 
systems (e.g., [25][27]) focus on performance monitoring 
without checking security properties as such. Cloud security 
monitoring is supported by positioning agents at different 
key points of a cloud infrastructure to detect incidents 
[13][14]. Other systems (e.g., DeSVi [32]) support the 
detection of SLA violations. None of these systems, 
however, supports security monitoring directly and 
customers can only use them to establish performance 
baselines, which, if deviated substantially, could indicate 
some incident conditions. EVEREST [15], the monitoring 



framework that underpins CeRTiN, is in exception as it 
provides direct support for security monitoring. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have introduced a certification 

approach for the security of cloud services that is based on 
incremental assessment of security properties based on 
continuous monitoring, and have described the basic models 
and mechanisms for realising it.  

The use of evidence coming from continuous monitoring 
provides coverage of contextual conditions that might not be 
possible to envisage, test or simulate through other forms of 
assessment of security properties (e.g., testing and static 
analysis) before deploying a cloud service. Therefore, our 
approach provides an advantage over test and static analysis 
approaches. We should note, however, that our work is part 
of a broader research programme undertaken by the EU F7 
project CUMULUS, which aims to develop certification 
schemes that will enable the development of hybrid 
certification schemes, incorporating multiple types of 
evidence, including testing, static analysis and monitoring. 
Hence, we also aim to investigate how to integrate the 
certification models described in this paper with test and 
static analysis based models.  

Furthermore, we are looking into the further 
development of some elements of our approach, notably the 
development of mechanisms for filtering low level 
monitoring data and aggregating them into compound forms 
of evidence prior to including them in certificates. This will 
be necessary in order to produce scalable and auditable 
certificates. We are also planning an evaluation activity 
based on inputs from certification authorities and industrial 
stakeholders that participate in CUMULUS. 

ACKNOWLEDGMENT 
This work has been partially funded by the EU F7 project 

CUMULUS [8] (grant no 318580). 

REFERENCES 
[1] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Security and Cloud 

Computing: InterCloud Identity Management Infrastructure”, In 19th 
IEEE International Workshops on Enabling Technologies: 
Infrastructures for Collaborative Enterprises, 2010, pp. 263-265.  

[2] B. Grobauer, T. Walloschek, and E. Stocker, "Understanding Cloud 
Computing Vulnerabilities," IEEE Security & Privacy, vol. 9, 2011, 
pp. 50-57. 

[3] C. Cachin, I. Keider, and A. Shraer, “Trusting The Cloud”, IBM 
Research, Zurich Research laboratory, 2009. 

[4] Cloud Security Alliance, Cloud Audit, Available from: 
https://cloudsecurityalliance.org/research/cloudaudit/ 

[5] Cloud Security Alliance, Cloud Controls Matrix, Available from: 
https://cloudsecurityalliance.org/research/ccm/  

[6] Cloud Security Alliance, Security Guidance for Critical Areas of 
Focus in Cloud Computing vol. 2, available from: 
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf 
[retrieved: June, 2013]. 

[7] COBIT, http://www.isaca.org 
[8] CUMULUS project, http://www.cumulus-project.eu/ 
[9] D. Catteddu and G. Hogben, “Cloud Computing: Benefits, Risks and 

Recommendations for Information Security.”, European Network and 
Information Security Agency (ENISA), 2009.  

[10] D. S. Herrmann, “Using the Common Criteria for IT security 
evaluation”, Auerbach Publications, 2002. 

[11] E. Damiani, and A. Mana, “Toward WS-Certificate”, In Proc. of the 
ACM Workshop on Secure Web Services (SWS 2009), 2009, pp. 1-2. 

[12] F Lombardi and R Di Pietro, “Secure virtualization for cloud 
computing”, J. Netw. Comput. Appl. 34, 4, July 2011, pp. 1113-1122.  

[13] F. Doelitzscher, C. Reich, M. H. Knahl, and N. L. Clarke, "Incident 
detection for cloud environments", Proc. of the Third International 
Conference on Emerging Network Intelligence,2011, pp. 100-105. 

[14] F. Doelitzscher, C. Reich, M. Knahl, A. Passfall, and N. Clarke, "An 
agent based business aware incident detection system for cloud 
environments", Journal of Cloud Computing: Advances, Systems and 
Applications vol. 1:9, 2012. 

[15] G. Spanoudakis, C. Kloukinas, and K. Mahbub, “The SERENITY 
Runtime Monitoring Framework”, In Security and Dependability for 
Ambient Intelligence, Springer, 2009, pp. 213-238. 

[16] H. Foster and G. Spanoudakis, “Advanced Service Monitoring 
Configurations with SLA Decomposition and Selection”, In Proc. of 
26th  Annual ACM Symposium on Applied Computing, 2011, pp. 
1582-1589. 

[17] H. Li, Y. Dai,  and B. Yang,  "Identity-Based Cryptography for Cloud 
Security", IACR Cryptology ePrint Archive, 2011, pp.169-169. 

[18] J. Heiser and M. Nicolett, “Assessing the Security Risks of Cloud 
Computing”, Gartner technical report, June 2008. 

[19] K. Kearney, F. Torreli, and C. Kotsokalis, “SLA*: An Abstract 
Syntax for Service Level Agreements”, In Proc. Of 10th IEEE/ACM 
International Conference on Grid Computing, 2010, pp. 217-224. 

[20] K. Mahbub, G. Spanoudakis, and T. Tsigkritis, "Translation of SLAs 
into Monitoring Specifications", In Service Level Agreements for 
Cloud Computing, R. Yahyapour, P. Weider (Eds), Springer-verlag, 
2011. 

[21] L. Pino, G. Spanoudakis, “Constructing Secure Service Compositions 
with patterns” 2012 IEEE 8th World Congress on Services, 2012, pp. 
184-191. 

[22] M. Anisetti et al., “ASSERT4SOA: Toward Security Certification of 
Service-Oriented Applications”, OTM 2010 Woekshops, 2010, pp. 
38-40. 

[23] M. Anisetti, C. A. Ardagna, and E. Damiani, “A Low-Cost Security 
Certification Scheme for Evolving Services”, In Proc. Of IEEE 19th 
International Conference on Web Services, 2012, pp. 122-129. 

[24] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Iacono, “On 
Technical Security Issues in Cloud Computing”, In Proc. of the  IEEE 
International Conference on Cloud Computing, 2009, pp. 109-116. 

[25] M. L. Massie, B. N. Chun , and D. E. Culler, “The ganglia distributed 
monitoring system: design, implementation, and experience”, Parallel 
Computing,  vol. 30, 2004, pp. 817–840. 

[26] Microsoft, The Economics of Cloud for the EU Public Sector, Paper, 
2010:http://www.microsoft.eu/Portals/0/Document/EU_Public_Sector
_Cloud_Economics_A4.pdf [retrieved: June, 2013]. 

[27] Nagios, 2011.  http://www.nagios.org/ 
[28] Open Certification Framework,  

https://cloudsecurityalliance.org/research/ocf/ 
[29] Ovum, http://www.computing.co.uk/ctg/news/2113323/ovum-public-

cloud-services-market-explode  
[30] PCI Security Standards Council, PCI DSS Quick Reference Guide: 

Understanding the Payment Card Industry Data Security Standard v2, 
https://www.pcisecuritystandards.org/documents/PCI%20SSC%20Qu
ick%20Reference%20Guide.pdf  [retrieved: June, 2013] 

[31] S. Kamara and K. Lauter, “Cryptographic cloud storage”, 14th  
International Conference on Financial cryptograpy and data security, 
2010, pp. 136-149. 

[32] V. C. Emeakaroha, R.N. Calheiros, M.A.S. Netto, I. Brandic, and 
C.A.F. De Rose, “DeSVi: An Architecture for Detecting SLA 
Violations in Cloud Computing Infrastructures” 2nd International 
ICST Conference on Cloud Computing, 2010. 


