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1 Introduction

Hypergeometric functions appear ubiquitously in physics — including as they do special
cases such as Legendre polynomials and Bessel functions — and in particular are known
to appear in dimensionally-regularized perturbative quantum field theory. This ubiquity is
due in part to the extensive class of second-order differential equations that hypergeometric
functions solve, which has been the subject of much dedicated research. While many
aspects of these functions are well understood as a result of this research, they can still
prove unwieldy in practical calculations.

Generalized (or multiple) polylogarithms also appear in many places in quantum field
theory. While they are less general than hypergeometric functions, they are correspondingly
under better control; in particular, a great deal of progress has been made leveraging
motivic aspects of these functions, considered as iterated integrals on the moduli space of
the Riemann sphere with marked points [1–4]. For instance, all functional relations between
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generalized polylogarithms can in principle be exploited with the use of the coaction [5, 6],
as applied in [7–10]. There also exist public codes for the efficient numerical evaluation of
polylogarithms, for instance in GiNaC [11, 12].

In some cases, the hypergeometric functions that appear in physics can be expressed
as infinite sums of polylogarithms, allowing us to leverage this polylogarithmic technol-
ogy. This occurs, for instance, in the case of one-loop dimensionally regulated Feynman
integrals [13–15]. For finite values of the dimensional regularization parameter ε, these
integrals can be expressed in terms of hypergeometric functions, while their series expan-
sion around small values of ε can be written in terms of polylogarithms. While the sum
representation of hypergeometric functions is a useful starting point for performing this
expansion, explicitly converting the expansion coefficients into polylogarithms can prove
to be a nontrivial task. Great progress in this respect has been made in [16], where several
summation algorithms, covering a large number of cases, were presented (see also [17–19]
for their computer algebra implementation, as well as [20] for related work). Even so, these
algorithms are not always capable of carrying out the series expansion around symbolic
integer indices of hypergeometric functions. In the context of dimensionally-regularized
Feynman integrals these symbolic integers essentially correspond to propagators raised to
generic powers.

In this paper, we extend the work of [16] by presenting an algorithm for explicitly
evaluating series expansions of Gauss hypergeometric functions taking the form

2F1(k + ε1, l + ε2,m+ ε3|x), |εi| � 1, with k −m and l fixed integers , (1.1)

in terms of well-known classes of functions. Importantly, since we place only two conditions
on the integer parts of the hypergeometric indices, (1.1) is a function of an arbitrary symbolic
integer, which we will generally denote α, on top of the complex argument x. Hence, our
expansion may prove especially useful when hypergeometric functions of the form (1.1)
appear as part of a larger expression in which the symbolic integer α is summed over, or
simply because this expansion can be evaluated a single time and then used for different
values of α.1

More generally, we show how sums of the form

N∑
n=1

xn

np(n+ α)qZm1,...,md(n−1|y1, . . . , yd)Zr1,...,rh(n+α−1|z1, . . . , zh) , (1.2)

can be efficiently evaluated for symbolic values of {x, y1, . . . , yd, z1, . . . , zh} ∈ C and
{N,α} ∈ Z≥0, where (as we will review in section 2) Z-sums are given by

Zm1,...,md(N |x1, . . . , xd) =
∑

N≥i1>i2>···>id>0

xi11
im1
1
· · ·

xidd
imdd

. (1.3)

1It is also well known that all 2F1 functions whose arguments differ by integer shifts may be expressed
in terms of a basis of two functions in this family. In this sense, our algorithm could be thought of as the
explicit expansion not only of the basis, but also of the coefficients of any other function in the family. Also
note that software such as Hyperdire [21] can carry out this reduction to a basis only when α is a fixed
integer, which will not be the case here.
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In particular, the sums in (1.2) evaluate to generalized polylogarithms and Z-sums when
N is infinite, and cyclotomic harmonic sums [22] for generic N . The sums appearing in
the expansion (1.1) correspond to the special case in which xi = yi = mi = 1 and N →∞.

We achieve this result with the help of telescoping identities. In their simplest guise,
these take the form

Φ(α) =
α−1∑
µ=1

∆Φ(µ) + Φ(1) , ∆Φ(µ) = Φ(µ+1)− Φ(µ) , (1.4)

and can be used to compute Φ(α) if the quantity ∆Φ(α) is simpler than the original sum.
We will make use of a generalized identity of the form (1.4), in which the analog of ∆Φ(α)
has lower depth — that is, involves fewer nested sums — than the original sum. This will
allow us to leverage a recursion in the depth of sums taking the form (1.2), and in this
manner bring them to a form that may be evaluated with the existing algorithms of [16].

There exist of course well-established (creative) telescoping methods for deriving recur-
rence relations of symbolic sums, see for example [23–25]. While not necessarily restricted
to this case, these recurrences are typically with respect to the upper summation variable
(or variables linearly related to the latter), i.e. with respect to N in equation (1.2). The
novelty of our approach is that we not only consider α in the latter formula to be a symbolic
integer, but that we also derive a recursion with respect to the latter. In particular, at the
heart of our algorithm lies the master formula (3.8), which to the best of our knowledge
has never been considered before, and is not a simple application of existing methods.

That being said, the algorithm of [26] (see also [27] for earlier related work) in prin-
ciple offers another alternative route for converting the sums in (1.2) into nested sums for
generic values of α. Nevertheless, we find that this algorithm proves overly computationally
expensive in the cases we consider, due to the fact that it generates spurious term-wise
divergences at intermediate steps in the calculation. These divergences require regulariza-
tion, and cancel out in the final result. For sums of the form (1.2), we therefore view our
approach as simpler and more efficient.

In order to illustrate the utility of our algorithm, we apply it to two examples. First, we
consider the class of double pentaladder integrals introduced in [28]. A compact generating
function for these integrals was derived in [29], which gives rise to a sum representation
involving products of 2F1 functions that fall into the class (1.1). Using our algorithm,
we explicitly evaluate these integrals in terms of generalized polylogarithms through ten
loops. Second, we consider dimensionally-regularized one-loop self-energy diagrams for
generic masses and propagator powers. In the limit of zero external momentum, these
integrals become expressible in terms of 2F1 functions [15], and our algorithm can be used
to simultaneously expand families of integrals that have different propagator powers around
4 − 2ε dimensions. We carry out the expansion and resummation of one such family of
self-energy diagrams through O(ε6).

This paper is organized as follows. In section 2, we begin by reviewing the aspects
of Z-sums and generalized polylogarithms that will be relevant for our analysis. We then
initiate the series expansion of Gauss hypergeometric functions taking the form (1.1), and
deduce the types of nested sums they give rise to. In section 3, we present the general
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strategy of our algorithm, and state the telescoping recursion it gives rise to for sums of
the form (1.2). Finally, we derive this recursion in a simplified setting, for compactness of
presentation. Sections 4 and 5 deal with the applications of our algorithm to the double
pentaladder integrals and the massive self-energy integrals, respectively. In section 6 we
conclude. We also include two appendices, in which we derive the most general form of our
recursion and present an example involving cyclotomic harmonic sums.

In the supplementary material attached to this paper, we provide illustrative Math-
ematica code which evaluates sums of the form (1.2) into generalized polylogarithms,
Z-sums, and cyclotomic harmonic sums. This consists of a package Telescoping.wl and
a notebook of examples Examples.nb. The code employs the publicly available package
HarmonicSums [22, 30–43] for standard operations on harmonic sums, in particular stuffle
products, sum synchronization, S- to Z-sum conversion and differentiation, which we re-
view in the next section, as well as numerics. We also include computer-readable files
containing expressions for the double pentaladder integrals through six loops.

2 Z-sums, polylogarithms, and 2F1 functions

We begin by reviewing the types of sums that arise when 2F1 functions are expanded around
integer values of their indices. Although the coefficients of these expansions are known to be
expressible in terms of generalized polylogarithms around fixed integer values [44], they can
evaluate to the (more general) class of Z-sums [16] around generic symbolic integers. We
review this class of sums, and then describe how they relate to generalized polylogarithms
and 2F1 functions.

2.1 Z-sums

We give just a brief review of Z-sums, introducing notation and recalling the properties
that will prove useful in later sections. The reader is referred to [16] for more details.
Starting from any integer N and the initial definition

Z(N) ≡

1, N ≥ 0
0, N < 0 ,

(2.1)

Z-sums are defined recursively in terms of pairs of variables mi ∈ Z+ and xi ∈ C by

Zm1,...,md(N |x1, . . . , xd) ≡
N∑
i=1

xi1
im1

Zm2,...,md(i−1|x2, . . . , xd) (2.2)

=
∑

N≥i1>i2>···>id>0

xi11
im1
1
· · ·

xidd
imdd

. (2.3)

The depth of each Z-sum is defined to be its number of summation indices d, and its weight
is defined to be w =

∑d
i=1mi. In general, we will adopt an abbreviated notation in which

bold characters indicate multi-indices, for instance

Zm(N |x) ≡ Zm1,...,md(N |x1, . . . , xd) , (2.4)
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which leaves the depth of each sum implicit. We will also adopt the notation that the first
entry of primed multi-indices has been dropped, for instance m′ = m2, . . . ,md, and denote
the number of indices in m by |m|.

The Z-sums obey a stuffle algebra as a consequence of the ability to split up unordered
sums into nested ones. More precisely, a product of Z-sums that have the same upper
summation limit N (but which don’t necessarily have the same depth) may be expressed
in terms of Z-sums of higher depth by recursively applying

Zm(N |x)× Zn(N |y) =
N∑
i=1

xi1
im1

Zm′(i−1|x′)Zn(i−1|y) (2.5)

+
N∑
i=1

y1
i

in1
Zm(i−1|x)Zn′(i−1|y′)

+
N∑
i=1

(x1y1)i

im1+n1
Zm′(i−1|x′)Zn′(i−1|y′)

until the depth of the original Z-sums has been reduced to zero (after which new sums are
built up using (2.2)). For example, we can reexpress

Z1,1(N |x1, x2)× Z2(N |y) = Z1,1,2(N |x1, x2, y) + Z1,2,1(N |x1, y, x2) + Z1,3(N |x1, x2y)
+ Z2,1,1(N |y, x1, x2) + Z3,1(N |x1y, x2) . (2.6)

It is also interesting to note that this stuffle algebra has an associated coalgebra, and that
together these structures form a Hopf algebra; however, the associated coproduct is not
the coproduct usually encountered in Feynman integral calculations, which is associated
with their mixed Tate Hodge structure [4] (see for instance [45]).

Identities also exist between sums with different summation bounds. For instance,
relations between Z-sums with different upper bounds follow directly from (2.2), namely

Zm(N+M |x) = Zm(N |x) +
M∑
n=1

xN+n
1

(N + n)m1
Zm′(N+n−1|x′) (2.7)

for M,N ∈ Z+ and |m| > 0. Equation (2.7) is particularly useful for synchronizing
a product of two Z-sums with different upper summation bounds, as it can be applied
(iteratively) to replace one of the Z-sums with a linear combination of (products of) Z-
sums with shifted summation bounds.

Additionally, the sums one encounters often have different lower summation bounds
than allowed in (2.2); in particular, we will see below that expansions of gamma functions
that appear in the denominator of hypergeometric functions more naturally give rise to
S-sums, which are closely related to Z-sums [16]. Specifically, these sums satisfy

Sm(N |x) =
∑

N≥i1≥i2≥···≥id≥1

xi11
im1
1
· · ·

xidd
imdd

, (2.8)

which can be compared to (2.3). The S-sums have similar algebraic properties to the
Z-sums, but we prefer to work in terms of Z-sums as they are more directly related to
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generalized polylogarithms. S-sums can be converted to Z-sums iteratively using

Sm(N |x) = Sm1+m2,m′(N |x1x2,x′) +
N∑
i1=1

xi11
im1
1

i1−1∑
i2=1

xi22
im2
2
Sm′′(i2|x′′) , (2.9)

which separates out the contribution to these sums in which pairs of summation indices
are equal; this leaves summation bounds that fit the definition of Z-sums, at the cost of
introducing a sum of lower depth (making it clear that this recursion terminates). Notice
that we have used double primes to indicate dropping the first two indices in a multi-indix
(for example x′′ = x3, . . . , xd).

An important sub-class of the Z-sums are the Euler-Zagier sums [46], which occur
when all xi = 1; similarly, S-sums with all arguments evaluated at unity reduce to the
harmonic sums [43]. We abbreviate both cases using

Zm(N) ≡ Zm(N |1, . . . , 1) , (2.10)
Sm(N) ≡ Sm(N |1, . . . , 1) . (2.11)

These sums appear naturally in the expansion of the gamma function and its reciprocal,
and therefore also in the expansion of hypergeometric functions.

2.2 Generalized polylogarithms

Many of the quantities encountered in quantum field theory can be expressed entirely in
terms of generalized polylogarithms. This corresponds to expressing these quantities in
terms of Z-sums in which N →∞, as

lim
N→∞

Zm1,...,md(N |x1, . . . , xd) = Limd,...,m1(xd, . . . , x1) (2.12)

reproduces the normal definition of generalized polylogarithms (note the reversal of indices
and arguments) [16, 42, 47–50]. The depth and (transcendental) weight of generalized
polylogarithms coincide with the definitions they were given above as Z-sums.

Generalized polylogarithms form a closed subalgebra within the Z-sums, and thereby
inherit the algebraic properties of the larger space. Moreover, they can be given an integral
definition

Gx1,...,xn(z) ≡
∫ z

0

dt

t− x1
Gx2,...,xn , G0, . . . , 0︸ ︷︷ ︸

n

(z) ≡ 1
n! logn z , (2.13)

where z, xi ∈ C, and where the second definition accounts for the cases in which the first n
indices are zero (as the general definition diverges in these cases). This definition is related
to the sum definition by

Limd,...,m1(xd, . . . , x1) = (−1)dG0, . . . , 0︸ ︷︷ ︸
m1−1

, 1
x1
, . . . , 0, . . . , 0︸ ︷︷ ︸

md−1

, 1
xd···x1

(1) , (2.14)

and allows polylogarithms to be analytically continued outside of the region of convergence
|xi| < 1. This representation also gives rise to a new set of identities analogous to the stuffle
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identities, corresponding to the ability to triangulate unordered integration ranges (coming
from products of polylogarithms) into sums over iterated integrals; these go by the name
of shuffle identities. We refer the interested reader to the review [51] for further details.

In some of our examples, we will also make use of the harmonic polylogarithms
(HPLs) [42]. These are functions of a single argument z, and correspond to restricting
xi ∈ {0, 1,−1} in (2.13). The standard notation is given by

Hx1,...,xd(z) ≡ (−1)pGx1,...,xd(z) , (2.15)

where p is the number of indices xi that are 1. It can be useful to express functions in
terms of HPLs when possible, due to the existence of several dedicated packages for their
analytic and numerical evaluation [52–55].

2.3 Gauss hypergeometric function expansions

Having introduced some of the necessary machinery in the previous subsections, let us
now proceed with the expansion of the hypergeometric function (1.1) mentioned in the
introduction. Our starting point will be the series definition of the Gauss hypergeometric
function,

2F1(a, b, c|x) ≡ 1 + Γ(c)
Γ(a)Γ(b)

∞∑
n=1

Γ(n+ a)Γ(n+ b)
Γ(n+ c)

xn

Γ(n+ 1) . (2.16)

This sum converges for |x| < 1, as can be seen by taking the n → ∞ limit of consecutive
terms in the series.

We will be interested in expanding the indices of Gauss hypergeometric functions
around

a = k + ε1 , b = l + ε2 , c = m+ ε3 , εi → 0 , (2.17)

for integer k, l, and m. To this end, we make use of the identity

Γ(k + ε) = Γ(1 + ε)Γ(k)
∞∑
i=0

εiZ1, . . . , 1︸ ︷︷ ︸
i

(k − 1) , k ∈ Z+ . (2.18)

When we need to expand gamma functions in the denominator, we also employ ∞∑
i=0

εiZ1, . . . , 1︸ ︷︷ ︸
i

(k − 1)


−1

=
∞∑
i=0

(−1)iεiS1, . . . , 1︸ ︷︷ ︸
i

(k − 1) , (2.19)

so as to place all nested sums in the numerator. With the help of these replacements, it
is easy to see that the factor outside of the sum over n in (2.16) readily evaluates to Z-
and S-sums in the limit (2.17) (note also that the factors of Γ(1 + ε) will cancel out of the
overall expression). Therefore, the only nontrivial terms requiring evaluation in (2.16) take
the form

∞∑
n=1

xn
Γ(n+k)Γ(n+ l)
Γ(n+m)Γ(n+1)Z1, . . . ,1︸ ︷︷ ︸

i1

(n+k−1)Z1, . . . ,1︸ ︷︷ ︸
i2

(n+ l−1)S1, . . . ,1︸ ︷︷ ︸
i3

(n+m−1) (2.20)

at order εi11 ε
i2
2 (−ε3)i3 in the expansion.
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Ideally, we would like to be able to evaluate sums of the type (2.20) for general, symbolic
values of all three integers k, l, and m. However, the presence of gamma functions in the
above formula places significant obstacles on the telescoping methods mentioned in the
introduction. For this reason, in what follows we specialize to a one-dimensional subspace
of this 3D lattice, such that the aforementioned gamma functions reduce to polynomials in
n. That is, we impose the constraint that

k −m and l are fixed integers , (2.21)

which in turn allows us to replace

Γ(n+ k)
Γ(n+m) = (n+m)(n+m+ 1) · · · (n+ k −m− 1) , (2.22)

(where if k > m we simply exchange k and m) and similarly for k → l, m → 1.2 If this
replacement results in a polynomial in n in the numerator, we may use the differential
operator introduced in [16],

x− ≡ x d
dx , (2.23)

in order to reexpress each monomial in n as∑
n

xnnp = (x−)p+1∑
n

xn

n
. (2.24)

With this replacement, we can first evaluate the sum on the right-hand side, and then
differentiate the result to evaluate the original sum. The differentiation of nested sums has
already been implemented in software such as HarmonicSums [22, 30–43].

After transforming the S-sums in (2.20) to Z-sums with the help of (2.9), applying (2.7)
to synchronize them, making the replacements (2.22), and finally partial fractioning the
denominator with respect to n, we find that only a single nontrivial class of sums needs to
be evaluated: ∞∑

n=1

xn

np(n+ α)qZ1, . . . ,1(n− 1)Zr1, . . . ,rh(n+ α− 1) , (2.25)

where α is the symbolic integer that remains after imposing the constraint (2.21). One
may readily check that these sums are a special case of equation (1.3) for xi = yi = mi = 1,
and N →∞. In the next section, we present an algorithm for evaluating the more general
class of sums, and therefore also for evaluating the sums (2.25) that appear in the 2F1
expansions we are considering.

3 A telescopic nested summation algorithm

We begin this section by outlining the main idea behind our nested summation algorithm.
The reader interested in its statement and the outline of its proof may jump directly to
subsections 3.2 and 3.3, respectively.

2As the 2F1 function is symmetric under the exchange of its first two indices, we can equivalently impose
this condition after swapping l↔ m.
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3.1 Strategy of the algorithm

Let Φ(α|x) be a sum of depth d, which depends on a continuous variable x ∈ C and a
symbolic, non-negative integer α. As is typical in telescoping algorithms, our objective is
to find a systematic cancellation between the terms in this sum that either decreases the
summation range or the sum depth.

Inspired by the telescoping identity (1.4), we begin by writing the following ansatz for
this sum:

Φ(α|x) =
α−1∑
µ=1

[
Φ(µ+1|x)− xPΦ(µ|x)

]
xQ(µ) + Φ(1|x)xR, (3.1)

where P is known while Q(µ) and R are to be determined. Expanding this ansatz and
inspecting the coefficients of Φ(µ|x) for different values of µ, we see that we must have

Q(1) = R− P , (3.2)
Q(µ) = P +Q(µ− 1) for 1 < µ < α− 1 , (3.3)

Q(α− 1) = 0 , (3.4)

for (3.1) to be consistent. Solving these constraints and plugging the solution back into (3.1),
we arrive at

Φ(α|x) =
α−1∑
µ=1

∆Φ(µ|x)x(α−µ−1)P + Φ(1|x)x(α−1)P (3.5)

where we have defined

∆Φ(µ|x) = Φ(µ+1|x)− xPΦ(µ|x) . (3.6)

The form of (3.5) is analogous to equation (17) in [26], albeit much less general. However,
what we lose in generality we gain in simplicity and computational efficiency.

The strategy is then to determine whether ∆Φ(µ|x) can be reduced to simpler sums
than the original Φ(α|x). This requires analyzing the specific form of the sums under
consideration; in many cases, no reduction will occur (although in some of these cases, a
different form of the generalized telescoping identity may work). In the class of sums we
focus on in this paper, we will see that the sum ∆Φ(µ|x) has lower depth than Φ(µ|x),
allowing us to telescopically recurse. We now turn to that analysis.

3.2 Statement of the recursion

Having motivated sums of the form (2.25) by considering the expansion of Gauss hyper-
geometric functions, we now broaden the scope of our analysis to the more general class
of sums3

Sp,qm;r(α,N |x; y; z) ≡
N∑
n=1

xn

np(n+ α)qZm(n−1|y)Zr(n+α−1|z) , (3.7)

3We recall that, in accordance with the conventions established in subsection 2.1, boldface indices are
multi-indices, and the first index has been dropped from primed multi-indices; see in particular the discus-
sion under equation (2.4).
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where {x, x1, . . . , xd, y1, . . . , yh} ∈ C and {N,α} ∈ Z≥0 are all allowed to be symbolic.
We here present an algorithm for converting any sum Sp,qm;r(α,N |x; y; z) with fixed values
for {p, q} ∈ Z≥0 and {m1, . . . ,md, r1, . . . , rh} ∈ Z+ into nested sums that depend on the
remaining symbolic parameters.

Our algorithm takes the form of a recursion, in which the application of the relation

Sp,qm;r(α,N |x; y; z) = x−α
α∑
µ=2

q−1∑
i=0

(p−1+i
p−1

)
(−1)p+1αp+ix

µ Sm1,q−i
m′;r (µ,N |xy1; y′; z)

+
α−1∑
µ=1

p−1∑
i=0

(q−1+i
q−1

)
(−1)iαq+i z

µ
1S

p−i,r1
m;r′ (µ,N |xz1; y; z′) (3.8)

+ Vp,qm;r(α,N |x; y; z)

decreases the overall depth of the Z-sums appearing on the right-hand side of equation (3.7)
in each iteration. The boundary term

Vp,qm;r(α,N |x; y; z) ≡
p−1∑
i=0

(q−1+i
q−1

)
(−1)iαq+iS

p−i,0
m;r (1, N |x; y; z)

+ x−α
q−1∑
i=0

(p−1+i
p−1

)
(−1)pαp+i

[
xS0,q−i

m;r (1, N |x; y; z) (3.9)

− δ|m|,0
(
Zq−i,r(α|x, z)− xδ|r|,0

)
+ Zm(N |y)

(
Zq−i,r(N+α|x, z)− Zq−i,r(N+1|x, z)

)]

appears at each step, but can be converted into Z-sums using the techniques of [16]. Equa-
tion (3.8) can be applied until the depth of both Z-sums are zero (using the prescription
that Z-sums of negative depth vanish), whereby we are left with the sum

Sp,q∅;∅(α,N |x; ∅; ∅) =
p−1∑
i=0

(
q−1+i
q−1

)
(−1)i

αq+i
Zp−i(N |x) (3.10)

+ x−α
q−1∑
i=0

(
p−1+i
p−1

)
(−1)p

αp+i

[
Zq−i(N+α|x)− Zq−i(α|x)

]
.

We then proceed to convert the sums over µ that appeared at each step in the recursion
into nested sums. When N is taken to be infinite, these sums can be evaluated as Z-sums,
again using the methods of [16]. For generic finite N , these sums evaluate to the more
general class of cyclotomic harmonic sums [22]. Once these sums have been converted into
nested sums, we are left with sums that can be carried out explicitly for fixed values of p
and q. Altogether, this recursion converts the sum over n in (3.7) into a linear combination
of Z-sums or cyclotomic harmonic sums with coefficients that depend on α, N , x, y, and z.

In the rest of this section, as well as in sections 4 and 5, we will focus on sums for
which N is infinite; we provide more details for sums with generic N in the appendix. For
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the cases we focus on here, we abbreviate

Sp,qm;r(α|x; y; z) ≡ lim
N→∞

Sp,qm;r(α,N |x; y; z) , (3.11)

Vp,qm;r(α|x; y; z) ≡ lim
N→∞

Vp,qm;r(α,N |x; y; z) . (3.12)

A number of simplifications occur in this limit. For instance, the last line in (3.9) vanishes,
and many of the Z-sums that appear can be converted into generalized polylogarithms
using (2.12). However, there always remain Z-sums that cannot be expressed as polyloga-
rithms, as their upper summation bound only depends on α. This can be seen, for instance,
in the terminal sum (3.10), which becomes

Sp,q∅;∅(α|x; ∅; ∅) =
p−1∑
i=0

(
q−1+i
q−1

)
(−1)i

αq+i
Lip−i(x) (3.13)

+ x−α
q−1∑
i=0

(
p−1+i
p−1

)
(−1)p

αp+i

[
Liq−i(x)− Zq−i(α|x)

]
in this limit. For any specific choice of α, these remaining Z-sums evaluate to rational
functions of their arguments.

A simple illustration of the algorithm. Let us work though a example to see how this
recursion works in practice. Consider the sum S0,1

1;1 (α|x; y1; z1). Iteratively applying (3.8),
we get

S0,1
1;1 (α|x; y1; z1) = −x−α

α∑
µ=2

xµ S1,1
∅;1 (µ|xy1; ∅; z1) + V0,1

1;1 (α|x; y1; z1) , (3.14)

and then

S1,1
∅;1 (µ|xy1; ∅; z1) = 1

µ

µ−1∑
ν=1

zν1S
1,1
∅;∅ (ν|xy1z1; ∅; ∅) + V1,1

∅;1 (µ|xy1; ∅; z1) . (3.15)

At this point, the recursion terminates in an expression of the form (3.13), and we need to
convert the sums over ν and µ into Z-sums. In general, this involves some combination of
partial fractioning, reindexing sums, and applying (2.7) to shift the upper bound of existing
Z-sums. Applying these techniques, it is not hard to show that

S1,1
∅;1 (µ|xy1; ∅; z1) = 1

µ

(
Z1(µ−1|z1)− Z1

(
µ−1

∣∣ 1
xy1

))
Li1(xy1z1)

+ 1
µ
Z1,1

(
µ−1

∣∣ 1
xy1

, xy1z1
)

+ 1
µ
Z2(µ−1|z1) (3.16)

+ V1,1
∅;1 (µ|xy1; ∅; z1) ,

and that the boundary contribution is given by

V1,1
∅;1 (µ|xy1; ∅; z1) = 1

µ

(
Li1,1(z1, xy1) + Li2(xy1z1)

)
(3.17)

− (xy1)−µ

µ

(
Li1,1(z1, xy1)− Z1,1(µ|xy1, z1)

)
.
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Using these results, the sum over µ in (3.14) can be carried out using the same techniques,
whereby we find

S0,1
1;1 (α|x; y1; z1) = −x−α

((
Z1,1(α|x, z1)− Z1,1

(
α
∣∣x, 1

xy1

))
Li1(xy1z1)

+ Z1,1,1
(
α|x, 1

xy1
, xy1z1

)
+ Z1,2(α|x, z1)

+
(
Z1(α|x)− x

)(
Li1,1(z1, xy1) + Li2(xy1z1)

)
(3.18)

−
(
Z1
(
α
∣∣ 1
y1

)
− 1
y1

)
Li1,1(z1, xy1)

+ Z1,1,1
(
α
∣∣ 1
y1
, xy1, z1

)
+ Z2,1(α|x, z1)

)
+ V0,1

1;1 (α|x; y1; z1) .

To evaluate the boundary contribution V0,1
1;1 (α|x; y1; z1) we need to be slightly more careful.

Evaluating the sums over i in (3.9) for these indices and arguments, we find

V0,1
1;1 (α|x; y1; z1) = x−α

∞∑
n=2

xn

n
Z1(n− 2|y1)Z1(n− 1|z1) , (3.19)

where we have additionally shifted the summation index n→ n−1 to put the denominator
in a form that fits the definition of Z-sums. Since the summand on the right hand side is
zero when n = 1, we can change the lower summation bound back to 1. To increase the
upper summation bound of Zm(n−2), we would like to use equation (2.7); however, we
need to emend this relation so that it remains valid when n = 1. Doing so, we have

Zm(n−2|y) = Zm(n−1|y)− yn−1
1

(n− 1)m1
Zm′(n−2|y′)θ(n− 2)− δ|m|,0δn,1 , (3.20)

where θ(k) is the Heaviside function, which is equal to 1 when k ≥ 0 and 0 otherwise. The
Heaviside function makes clear that this term must vanish when n = 1 (since all other terms
in (3.20) vanish), despite the ambiguity of both its numerator and denominator evaluating
to zero. Substituting this relation into (3.19) and converting the expression into Z-sums
like above, one finds

V0,1
1;1 (α|x; y1; z1) = x−α

(
Li2,1(y1z1, x) + Li1,1,1(y1, z1, x) + Li1,1,1(z1, y1, x) (3.21)

− xLi2(xy1z1)−
(
x− 1

y1

)
Li1,1(z1, xy1)

)
.

Putting this all together, we find

S0,1
1;1 (α|x; y1; z1) = x−α

(
Li1,1,1(y1, z1, x) + Li1,1,1(z1, y1, x) + Li2,1(y1z1, x)

+ Li1,1(z1, xy1)
(
Z1
(
α
∣∣ 1
y1

)
− Z1(α|x)

)
− Li2(xy1z1)Z1(α|x)

+ Li1(xy1z1)
(
Z1,1

(
α
∣∣x, 1

xy1

)
− Z1,1(α|x, z1)

)
(3.22)

− Z1,1,1
(
α|x, 1

xy1
, xy1z1

)
− Z1,2(α|x, z1)

− Z1,1,1
(
α
∣∣ 1
y1
, xy1, z1

)
− Z2,1(α|x, z1)

)
.
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As emphasized above, this expression depends on not only polylogarithms but also Z-sums
with upper summation bound α. However, for any specific value of α, this expression
reduces to a linear combination of generalized polylogarithms with rational coefficients
that depend on x, y1, and z1.

More complicated sums of this class can be evaluated following the same strategy, but
require an increasing amount of algebra and quickly become tedious. In the supplementary
material attached to this paper, we provide a Mathematica package that can be used
to apply this algorithm to any sum in the class (3.7), up to computer memory and time
limitations.

As we also mentioned in the introduction, let us remind the reader that for specific val-
ues of m, r, p and q in equation (3.7), a recurrence in N may also be found and solved with
the help of the symbolic summation algorithms implemented in the package Sigma [25].
Nevertheless, we notice that even for S1,1

1;1 (α|x; y1; z1), which is only slightly more compli-
cated than the example of eq. (3.22), the same package produces a recurrence in α that
contains tens of thousands of terms, which cannot be solved in a reasonable amount of
time. It is in this sense, that our algorithm provides a novel, alternative route to the
computations of this class of sums.

3.3 Proof for Euler-Zagier sums

In this section we illustrate the derivation of (3.8) by proving it in the N → ∞ limit
for the case of Euler-Zagier sums, which corresponds to the restriction y = 1, . . . , 1 and
z = 1, . . . , 1 in (3.7). This simplifies the notational clutter without altering the telescopic
strategy, which can also be applied in the general case. We prove the more general result
in appendix A.

We abbreviate the sums we focus on in this section by

Sp,qm;r(α|x) ≡ Sp,qm;r(α|x; 1, . . . , 1; 1, . . . , 1) (3.23)

=
∞∑
n=1

xn

np(n+ α)qZm(n−1)Zr(n+α−1) . (3.24)

A generic sum of this form can be split into a linear combination of cases in which either
p or q is zero by partial fractioning:

Sp,qm;r(α|x) =
p−1∑
i=0

(q−1+i
q−1

)
(−1)iαq+iS

p−i,0
m;r (α|x) +

q−1∑
i=0

(p−1+i
p−1

)
(−1)pαp+iS

0,q−i
m;r (α|x) . (3.25)

Our strategy will be to find telescopic recursions for Sp,0m;r(α|x) and S0,q
m;r(α|x) separately,

after which the case of general p and q can be treated by plugging these recursive formulas
into (3.25).
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Telescoping Sp,0
m;r(α|x). To find a telescopic recursion on Sp,0m;r(α|x), we consider the

shifted sum

Sp,0m;r(α+ 1|x) =
∞∑
n=1

xn

np
Zm(n−1)Zr(n+α) (3.26)

=
∞∑
n=1

xn

np
Zm(n−1)Zr(n+α−1) (3.27)

+
∞∑
n=1

xn

np(n+ α)r1
Zm(n−1)Zr′(n+α−1)

= Sp,0m;r(α|x) + Sp,r1
m;r′(α|x) , (3.28)

where in the second line we have used identity (2.7) to shift the upper summation index
of Zr(n + α). In principle, we should treat the |r| = 0 case separately, since (2.7) can’t
be applied to depth-zero sums; however, it is easy to see that Sp,0m;∅(α|x) is independent
of α, and that (3.28) correspondingly gives the correct answer as long as we adopt the
prescription that Z-sums with negative depth evaluate to zero.

Comparing to (3.6), we see that the parameter P in our ansatz is in this case zero,
and we have

∆Sp,0m;r(α|x) ≡ Sp,0m;r(α+ 1|x)− Sp,0m;r(α|x) (3.29)
= Sp,r1

m;r′(α|x) . (3.30)

Thus, plugging this difference into (3.5), we obtain

Sp,0m;r(α|x) =
α−1∑
µ=1
Sp,r1

m;r′(µ|x) + Sp,0m;r(1|x) . (3.31)

Importantly, the sums on the right hand side of this equation are all strictly simpler than
the original; the terms in the sum over µ all involve a Z-sum of one lower depth, and the
last term does not depend on α. Note, however, that the terms in the sum over µ no longer
satisfy q = 0; thus, while we can again split these sums up into cases in which either p or
q is zero as in (3.25), we will need to be able to reduce the depth of sums with nonzero q
in order to achieve a genuine recursion in depth.

Telescoping S0,q
m;r(α|x). Following the same strategy as above, we consider

S0,q
m;r(α+ 1|x) =

∞∑
n=2

xn−1

(n+ α)qZm(n−2)Zr(n+α−1) , (3.32)

where we have shifted the summation index by n → n−1 relative to the definition (3.24).
Since the summand on the right hand side of (3.32) is zero when n = 1, we can change the
lower summation bound back to 1. To increase the upper summation bound of Zm(n−2),
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we again use equation (3.20). This gives us

S0,q
m;r(α+ 1|x) =

∞∑
n=1

xn−1

(n+ α)qZm(n−1)Zr(n+α−1)−
δ|m|,0

(α+ 1)qZr(α) (3.33)

−
∞∑
n=1

xn

nm1(n+ α+ 1)qZm′(n−1)Zr(n+α)

= 1
x
S0,q

m;r(α|x)− Sm1,q
m′;r (α+ 1|x)−

δ|m|,0
(α+ 1)qZr(α) , (3.34)

where we have shifted n → n+1 in the sum involving the Heaviside function to get the
expression into this form.

Comparing to (3.6), we see that P = −1 and that

∆S0,q
m;r(α|x) ≡ S0,q

m;r(α+ 1|x)− 1
x
S0,q

m;r(α|x) (3.35)

= −Sm1,q
m′;r (α+ 1|x)−

δ|m|,0
(α+ 1)qZr(α) . (3.36)

Therefore, our ansatz (3.5) gives the relation

S0,q
m;r(α|x) = −

α−1∑
µ=1

xµ−α+1Sm1,q
m′;r (µ+ 1|x) + x1−αS0,q

m;r(1|x) (3.37)

− x−αδ|m|,0
(
Zq,r(α|x, 1, . . . , 1)− xδ|r|,0

)
,

where we have already converted one of the sums over µ into a Z-sum. As in (3.31), all
the terms on the right hand side are simpler than the original sum; the sums in the first
line either have one lower depth or don’t depend on α, and the terms in the second line no
longer involve a sum over n.

The closed recursion for Sp,q
m;r(α|x). Substituting equations (3.31) and (3.37)

into (3.25), we obtain the recursion relation

Sp,qm;r(α|x) = x−α
α∑
µ=2

q−1∑
i=0

(p−1+i
p−1

)
(−1)p+1αp+ix

µ Sm1,q−i
m′;r (µ|x)

+
α−1∑
µ=1

p−1∑
i=0

(q−1+i
q−1

)
(−1)iαq+i S

p−i,r1
m;r′ (µ|x) + Vp,qm;r(α|x) (3.38)

which is the simplified version of (3.8) that applies to Euler-Zagier sums in cases where
N →∞. We have collected all the boundary terms into

Vp,qm;r(α|x) ≡
p−1∑
i=0

(q−1+i
q−1

)
(−1)iαq+iS

p−i,0
m;r (1|x) + x−α

q−1∑
i=0

(p−1+i
p−1

)
(−1)pαp+i

[
xS0,q−i

m;r (1|x) (3.39)

− δ|m|,0
(
Zq−i,r(α|x, 1, . . . , 1)− xδ|r|,0

) ]
.

Like the more general recursion (3.8), the relation (3.38) can be applied iteratively until
the depth of both Z-sums are zero, terminating in the sum (3.10).
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Figure 1. The double pentaladder integral Ω(L), built out of an (L−2)-loop box ladder capped on
each end by a pentagon loop. The dashed lines represent specific numerator factors.

4 Application I: the double pentaladder integrals Ω(L)

Let us now explore the power of our algorithm by considering some applications. Our
first example is a family of integrals first introduced in [28] in the context of N = 4
supersymmetric Yang-Mills theory — the double pentaladder, or Ω(L), integrals. These
integrals consist of (L−2)-loop box ladders capped on either end by a pentagon loop that
comes with a numerator factor. These diagrams are depicted in figure 1. Their numerator
renders them infrared finite and parity even, and they depend on the kinematic variables

x = 1 + 1− u− v − w +
√

∆
2uv , (4.1)

y = 1 + 1− u− v − w −
√

∆
2uv , (4.2)

z = u(1− v)
v(1− u) , (4.3)

where
∆ = (1− u− v − w)2 − 4uvw (4.4)

and
u = s12s45

s123s345
, v = s23s56

s234s123
, w = s34s61

s345s234
(4.5)

denote the more widely used dual-conformal cross-ratios of the Mandelstam invariants
si...,j = (pi + . . .+ pj)2.

In [56, 57], it was shown that Ω(L) is related to Ω(L−1) by a second-order differen-
tial equation. This differential equation was solved for generic values of the coupling g2

in [29] by

Ω(x, y, z, g2) ≡
∞∑
L=0

(−g2)L Ω(L)(x, y, z) (4.6)

=
∫ ∞
−∞

dν

2i z
iν/2 (xy)iν/2Fν(x)Fν(y)− (xy)−iν/2F−ν(x)F−ν(y)

sinh(πν) , (4.7)
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where

Fν(x) ≡ C(ν, g) 2F1

(
iν + i

√
ν2 + 4g2

2 ,
iν − i

√
ν2 + 4g2

2 , 1 + iν, x

)
(4.8)

is a hypergeometric function that has been normalized by the factor

C(ν, g) ≡
Γ
(

1 + iν+i
√
ν2+4g2

2

)
Γ
(

1 + iν−i
√
ν2+4g2

2

)
Γ(1 + iν) , (4.9)

such that Fν(1) = 1. Note that Fν(x) depends on the coupling g2, although we have left
this dependence implicit.

By virtue of Cauchy’s residue theorem, the generating function (4.7) can put in an
equivalent sum representation

Ω(x,y,z,g2) =−
∞∑
α=1

[
(−√xyz)α+

(
−
√
xy/z

)α]
F−iα(x)F−iα(y)−F0(x)F0(y) . (4.10)

Expanding this expression around small coupling with the use of (2.16), one can derive
a sum representation for each of the perturbative double pentaladder integrals Ω(L). As
noted in [29], it is advantageous to carry out this expansion in two steps: first with respect
to the small parameter

ε ≡ α

2

√1− 4g2

α2 − 1

 , (4.11)

and then by expanding ε with respect to g. In [29], the resulting sum representation for
Ω(L) was evaluated in terms of generalized polylogarithms in the u→ 1 and w → 0 limits
through eight loops. However, the techniques used there were not sufficiently powerful to
evaluate the sum in general kinematics.

Using (4.11) to replace g with ε, we see that the hypergeometric function in

F−iα(x) = Γ(1− ε)Γ(1 + α+ ε)
Γ(1 + α) 2F1(α+ ε,−ε, 1 + α, x) , (4.12)

takes the form (1.1), and thus falls into the class of hypergeometric expansions our algo-
rithm can handle. Leveraging this fact, we now proceed to evaluate the sum representation
of Ω(L) in general kinematics.

4.1 Evaluating the hypergeometric function

We begin by converting the building blocks F−iα(x) into Z-sums. Using the techniques
discussed in subsection 2.3, it is possible to express these functions as

F−iα(x) = πε

sin πε

 ∞∑
i=0

εiZ1, . . . , 1︸ ︷︷ ︸
i

(α) + g2
∞∑

i,j=0
(−1)iεi+jSi,j(α|x)

 , (4.13)
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where we have denoted the relevant specialization of the sums (3.24) by

Si,j(α|x) ≡ S1,1
1,...,1︸︷︷︸
i

;1,...,1︸︷︷︸
j

(α|x) (4.14)

=
∞∑
n=1

xn

n(n+ α)Z1,...,1︸︷︷︸
i

(n− 1)Z1,...,1︸︷︷︸
j

(n+ α− 1) (4.15)

in order to avoid notational clutter. We highlight that ε in (4.13) implicitly depends on α
and g2, as per the definition (4.11).

The α → 0 case of (4.13) may be obtained by taking the smooth limit ε → ig, as
can be seen from (4.11). In this case, the sum over n may be readily evaluated with the
techniques of [16], where after using stuffle relations to combine the product of Z-sums it
can be evaluated in terms of HPLs,

∞∑
n=1

xn

nm1
Zm2,...,md(n− 1) = Hmd,...,m1(x) , (4.16)

consistent with equation (2.15).4 In this manner we observe that

F0(x) =
∞∑
L=0

(−g2)L
L∑
l=0

(−1)lC2(L−l)H2,...,2︸︷︷︸
l

(x) , (4.17)

where H∅(x) = 1 and the constants Cl are proportional to Bernoulli numbers Bl,

Cl =
∣∣∣(2l − 2)πlBl

l!

∣∣∣ . (4.18)

For example, the first few orders of this quantity are given by

F0(x) = 1− g2
(
π2

6 −H2(x)
)

+ g4
(

7π4

360 −
π2

6 H2(x) +H2,2(x)
)

− g6
(

31π6

15120 −
7π4

360H2(x) + π2

6 H2,2(x)−H2,2,2(x)
)

+O(g8) . (4.19)

We have checked formula (4.17) up to O(g24).
4Incidentally, one can construct a non-recursive version of the relevant stuffle relation as follows. First

define the sum over all permuations of weight indices

σ(a, b) ≡
∑

σ∈Sa+b

Zσ[1,...,1︸︷︷︸
a

2,...,2︸︷︷︸
b

](n− 1).

The sum over the elements of permuation group Sa+b contains (a+b)!
a!b! ≡ ρ(a, b) elements, with each Z-sum

having weight a+ 2b. Then one has

Z1,...,1︸︷︷︸
i

(n− 1)Z1,...,1︸︷︷︸
j

(n− 1) =
min(i,j)∑
k=0

ρ(i− k, j − k)σ(i+ j − 2k, k) .
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Moving on to the α 6= 0 case, it is easy to show that the general recursion formula (3.8),
restricted to N →∞ as in (3.38), simplifies to

Si,j(α|x) = 1
α

α−1∑
µ=1

Si,j−1(µ|x) + x−α

α

α∑
µ=2

xµSi−1,j(µ|x) + Vi,j(α|x) . (4.20)

The boundary term

Vi,j(α|x) ≡ V1,1
1,...,1︸︷︷︸
i

;1,...,1︸︷︷︸
j

(α|x) (4.21)

similarly reduces to

Vi,j(α|x) = 1
α

∞∑
n=1

xn

n
Z1,...,1︸︷︷︸

i

(n− 1)Z1,...,1︸︷︷︸
j

(n)− x1−α

α

∞∑
n=1

xn

n+ 1Z1,...,1︸︷︷︸
i

(n− 1)Z1,...,1︸︷︷︸
j

(n)

+ δi,0
x−α

α

[
Z1,...,1︸︷︷︸

j+1

(α|x, 1, . . . , 1︸ ︷︷ ︸
j

)− δj,0x
]
, (4.22)

and can be expressed in terms of HPLs. Finally, the recursion terminates when both i and
j are zero, at which point (4.15) evaluates to

S0,0(α|x) = x−α − 1
α

log(1− x) + x−α

α
Z1(α|x) . (4.23)

Due to the fact that ε depends on g2, we need to evaluate Si,j(α|x) for all i + j ≤ L − 1
to compute Ω(L). We have explicitly carried out these sums for all i + j ≤ 11. These
results are easy to verify numerically for various values of α by truncating the sum over n
in equation (4.14).

4.2 Resumming Ω(L) through L = 10 loops

Having evaluated the expansion of F−iα(x) in terms of Z-sums, we now carry out the
outermost sum in equation (4.10). Denoting the perturbative expansion of this function as

F−iα(x) =
∞∑
l=0

(−g2)lF (l)
−iα(x), (4.24)

we may exploit the x↔ y and z ↔ 1/z symmetry of Ω(L) by adopting the notation

f (l)
α (x, y) ≡ 1

1 + δl,L/2
F (L−l)
−iα (x) F (l)

−iα(y) , α ≥ 0 , (4.25)

as well as by introducing the building blocks

ω(L)(r, x, y) ≡
∞∑
α=1

rα
bL/2c∑
l=0

f (l)
α (x, y), ω

(L)
0 (x, y) ≡

bL/2c∑
l=0

f
(l)
0 (x, y) , (4.26)
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where bac denotes the integer part of a. The sum representation of Ω(L) in (4.10) may then
be written as

Ω(L)(x, y, z) = −
∞∑
α=1

(rα +Rα)
L∑
l=0

f (l)
α (x, y)−

L∑
l=0

f
(l)
0 (x, y) +

(
x↔ y

)
, (4.27)

where

r ≡ −√xyz, R ≡ −
√
xy

z
, (4.28)

and finally as

Ω(L)(x, y, z) = −ω(L)(r, x, y)− ω(L)
0 (x, y) +

(
x↔ y

)
+
(
r ↔ R

)
. (4.29)

Note that the variables r and R used here differ from similarly-named variables used
in [29] by a minus sign. To evaluate the double pentaladder integral in terms of generalized
polylogarithms at a given loop order, we thus proceed as follows:

(1) We evaluate the perturbative coefficients F (l)
−iα(x) in terms of Z-sums for l ≤ L.

(2) Forming the products f (l)
α (x, y), we use stuffle relations to express them as linear

combinations of individual Z-sums.

(3) The results for f (l)
α (x, y) can now be substituted into ω(L)(r, x, y) and ω

(L)
0 (x, y),

and the remaining infinite sums may be identified as generalized polylogarithms us-
ing (2.12).

(4) The final result for Ω(L) is then given by (4.29).

In this manner, we have been able to obtain explicit expressions for the double pentaladder
integral up to L = 10 loops; beyond this loop order, applying the stuffle relations in step (2)
becomes computationally onerous. The size of these expressions grows quickly with L —
at one through ten loops, the output of equation (4.29) involves {23, 130, 653, 3205, 15562,
74717, 352153, 1626600, 7372681, 32873641} independent terms. Here we quote the building
blocks ω(L) and ω(L)

0 for one loop,

ω
(1)
0 (x,y,r) = π2

6 −Li2(x) , (4.30)

ω(1)(x,y,r) =−Li1,1(r,x)+Li1,1
(
r

x
,x

)
−Li1,1(x,r)+Li1,1(1, r)−Li2(rx)+Li2(r) , (4.31)
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and for two loops,
2ω(2)

0 (x,y,r) =Li2,2(x,y)+Li2,2(y,x)+2Li2,2(1,x)+Li4(xy)

− π2

2 Li2(x)− π2

6 Li2(y)+ π4

15 , (4.32)

2ω(2)(x,y,r) = 2Li2,2

(
x2,

r

x

)
+Li1,3(x,ry)+Li1,3(y,rx)+Li2,2(r,xy)−Li2,2

(
r

x
,xy
)

−Li2,2

(
r

y
,xy
)

+Li2,2(xy,r)+Li2,2

(
r

xy
,xy
)
−Li3,1

(
ry

x
,x
)

+Li3,1(rx,y)

−Li3,1

(
rx

y
,y
)

+Li3,1(ry,x)+Li1,1,2(x,y,r)+Li1,1,2(y,x,r)+Li1,2,1(x,r,y)

−Li1,2,1

(
x,
r

y
,y
)

+Li1,2,1(y,r,x)−Li1,2,1

(
y,
r

x
,x
)

+Li2,1,1(r,x,y)+Li2,1,1(r,y,x)

−Li2,1,1

(
r

x
,x,y

)
−Li2,1,1

(
r

x
,y,x

)
−Li2,1,1

(
r

y
,x,y

)
−Li2,1,1

(
r

y
,y,x

)
+Li2,1,1

(
r

xy
,x,y

)
+Li2,1,1

(
r

xy
,y,x

)
−3Li1,3(1, rx)+2Li1,3

( 1
x
, rx
)

+3Li1,3(x,r)−2Li2,2(r,x)−5Li2,2(x,r)+Li3,1(r,x)−Li3,1

(
r

x
,x
)
−3Li1,1,2(1,x,r)

−4Li1,1,2

(
1,x, r

x

)
+2Li1,1,2

( 1
x
,x,r

)
−3Li1,1,2(x,1, r)+4Li1,1,2

(
x,x,

r

x

)
−3Li1,2,1(1, r,x)−Li1,2,1

(
1, r
x
,x
)

+2Li1,2,1

( 1
x
, r,x

)
+2Li1,2,1

(
x,

r

x
,x
)

−Li1,3(1, ry)−Li1,3(y,r)−Li2,2(y,r)−Li3,1(r,y)+Li3,1

(
r

y
,y
)
−Li1,1,2(1,y,r)

−Li1,1,2(y,1, r)−Li1,2,1(1, r,y)+Li1,2,1

(
1, r
y
,y
)
−2Li1,3(1, r)+Li2,2(1, r)

+4Li1,1,2(1,1, r)+Li4(rxy)−Li4(rx)−Li4(ry)+ π2

3 Li2(r)−Li4(r) . (4.33)

Expressions through six loops are provided as supplementary computer files attached to
this paper. Readers interested in the results for seven, eight, nine, or ten loops may contact
the authors.

Finally, we note that similar sum representations for three additional integrals were
derived in [29]. Our evaluation method works equally well in these cases. However, these
integrals are related to the derivatives of Ω(L), so explicit polylogarithmic representations
for them can be derived more efficiently by starting from the already-resummed represen-
tation of Ω(L).

4.3 Comparison to existing results in the literature

Before closing this section, let us compare our results for Ω(L) with the existing results
in the literature. As mentioned above, the authors of [29] were able to resum Ω(L) in
the u → 1 limit and the w → 0 limit. We have compared to these results by taking the
appropriate limits of our expressions through four loops, and find complete agreement.

The double pentaladder integral Ω(L) was also computed in general kinematics via
direct integration through four loops in [58]. The comparison of our results with the
expressions presented there is a bit subtle, as these representations are manifestly real in
different regions. The sum representations of Ω(L) in (4.29) converges when x, y, |r|, |R| ≤ 1,
and is thus manifestly real when z ∼ 1 and x, y � 1. This corresponds to the neighborhood
of the point u = v = w = 1.5 Conversely, the expressions given in [58] are manifestly

5This is easiest to see from equation (A.10) of [29].
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Qµ

ν2

M2

ν1

M1

Figure 2. Self-energy diagram with masses M1 and M2, and propagator powers ν1 and ν2.

convergent in the so-called positive region, which corresponds to positive values of the
variables f1, f2, and f3 used in that paper. In particular, the point u = v = w = 1
corresponds in those variables to the limit f1, f3 → −1, f2 → ∞, well outside of the
positive region.

To compare these representations, we analytically continue the expressions for Ω(L)

in terms of f1, f2, and f3 out of the positive region to the neighborhood of the point
u = v = w = 1. To do so, we note that when f1, f2, and f3 are all small and positive,
u v, and w are also all positive. Thus, the required analytic continuation path, which
changes the signs of f1 and f3, entirely exists within the Euclidean region. This implies
that the signs of the cross-ratios u, v, and w should not change, which turns out to be
true only if f1 and f3 are analytically continued in the opposite direction. After sending
f1 → f1e

±iπ and f3 → f3e
∓iπ, we indeed find that the resulting expression is manifestly

real near u = v = w = 1. This then allows us to confirm that the two representations
match in this region.

5 Application II: self-energy diagram

Another natural use of the resummation algorithm presented in section 3.2 is the expansion
of one-loop integrals in dimensional regularization. In this section we illustrate how this
can be done for families of massive self-energy diagrams with different propagator powers.

We depict a generic massive self-energy diagram with propagator powers ν1 and ν2 in
figure 2. This diagram was evaluated in [15], where it was expressed in terms of Appell’s
F4 function. It was also studied there in various kinematic limits, including the limit of
zero external momentum, Q2 → 0. In that limit, the diagram can be written in terms of
Gauss hypergeometric functions. For M1 > M2, it is given by

ID2 (ν1,ν2;Q2→ 0,M2
1 ,M

2
2 ) =

(−1)
D
2 (−M2

1 )
D
2 −ν1−ν2

Γ
(
ν1+ν2−D

2

)
Γ
(
D
2 −ν2

)
Γ(ν1)Γ

(
D
2

) 2F1
(
ν2,ν1+ν2−D

2 ,1+ν2−D
2 |x

)

+(−1)
D
2 (−M2

1 )−ν1(−M2
2 )

D
2 −ν2

Γ
(
ν2−D

2

)
Γ(ν2) 2F1

(
ν1,

D
2 ,1+D

2 −ν2|x
)
, (5.1)

where x = M2
2

M2
1
and D = 4− 2ε. For M1 < M2 the expression is the same, but with the two

masses exchanged.
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The function ID2 (ν1, ν2; 0,M2
1 ,M

2
2 ) depends on two integers, the powers of the self-

energy diagram propagators ν1 and ν2. Thus, to make use of the methods of section 3 we
must constrain ν1 and ν2 to depend on only a single symbolic integer. For concreteness,
we impose the relation

ν1 + ν2 = 4 , (5.2)

although we could have chosen any integer on the right hand side.
After imposing the restriction (5.2), we expand the ID2 (ν1, ν2; 0,M2

1 ,M
2
2 ) around small

values of ε using (2.16). This gives us

ID2 (ν,4−ν;0,M2
1 ,M

2
2 ) = (−1)−ε(−M2

1 )−2−εΓ(−ν+ε+3)Γ(ν−ε−2)
Γ(ν)Γ(4−ν)Γ(2−ε) fε(4−ν|x) (5.3)

+(−1)−ε(−M2
1 )−ν(−M2

2 )ν−ε−2 Γ(ν−ε−1)Γ(−ν+ε+2)
Γ(ν)Γ(4−ν)Γ(2−ε) f−ε(ν|x) ,

where

fε(ν|x) =
∞∑
n=0

xn(n+1)(n+ν−1)
∞∑

i1,i2=0
(−1)i2εi1+i2Z1,...,1︸︷︷︸

i1

(n+1)S1,...,1︸︷︷︸
i2

(n+ν−2) . (5.4)

Using the methods described in sections 2 and 3, fε(ν) can be converted into Z-sums for
generic integer values of ν. We have explicitly carried out this calculation through O(ε6)
(which took a reasonable time on a laptop). The result through O(ε3) are given by

fε(ν|x) =−ε0g3+ε1
{
−g4+Z1(ν)g3−Z1(ν|x)g1+log(1−x) [g3−g1]

}
+ε2

{
2−g5+Li2(x)[g3−g1]+Z1(ν)g4+Z1(ν|x)g2

+log(1−x)
[
g2+g4−Z1(ν)[g3+g1]+Z1(ν| 1x)g3+Z1(ν|x)g1

]
−Z1,1(ν)g3−Z1,1(ν|1,x)g1+Z1,1(ν| 1x ,x)g3+Z1,1(ν|x,1)g1

}

+ε3
{

1
ν

+Li3(x)
[
g1−g3

]
+Z1(ν)[g5−2]−Z1(ν|x)g6+

+Li2(x)
[
g2+g4−Z1(ν)[g1+g3]+Z1(ν| 1x)g3+Z1(ν|x)g1

]
+Z1,1(ν|1,x)g2−Z1,1(ν)g4+Z1,1(ν| 1x ,x)g4−Z1,1(ν|x,1)g2 (5.5)

+log(1−x)
[
g7−g6+Z1(ν)[g2−g4]

+Z1(ν| 1x)g4−Z1(ν|x)g2+Z1,1(ν)[g3−g1]−Z1,1(ν|1, 1
x)g3+Z1,1(ν|1,x)g1

+Z1,1(ν| 1x ,1)g3−Z1,1(ν| 1x ,x)g3−Z1,1(ν|x,1)g1+Z1,1(ν|x, 1
x)g1

]
+Z1,1,1(ν)g3−Z1,1,1(ν|1,1,x)g1−Z1,1,1(ν|1, 1

x ,x)g3+Z1,1,1(ν|1,x,1)g1

+Z1,1,1(ν| 1x ,1,x)g3−Z1,1,1(ν| 1x ,x,1)g3−Z1,1,1(ν|x,1,1)g1+Z1,1,1(ν|x, 1
x ,x)g1

}
,
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where

g1 = x2−ν(3 + x(ν − 1)− ν)
(x− 1)3 , (5.6)

g2 = x−ν

ν(x− 1)2
[
x2(ν2 + ν − 1) + x(ν + 2) + ν − 1

]
, (5.7)

g3 = x(3− ν) + ν − 1
(x− 1)3 , (5.8)

g4 = −1 + 1
ν
− ν

(x− 1)2 −
3x

(x− 1)2 , (5.9)

g5 = 3x
x− 1 , (5.10)

g6 = x−ν(1 + 2x)
x− 1 , (5.11)

g7 = 2 + x

x− 1 . (5.12)

Unlike the sums contributing to the double pentaladders, fε(ν|x) is not of uniform tran-
scendental weight, and includes contributions ranging from weight 0 to weight n at O(εn).

Values for particular (ν1, ν2). The class of self-energy diagrams with ν1 + ν2 = 4
includes (ν1, ν2) = (1, 3), (ν1, ν2) = (2, 2), and (ν1, ν2) = (3, 1). Interestingly, for all values
of ν in this range, contributions with nonzero transcendental weight drop out of fε(ν|x).
In addition, the ε expansion truncates at low order. Specifically, we find

fε(1|x) = − 2x
(x− 1)3 ε

0 + 1 + x

(x− 1)2 ε
1 − 1

x− 1 ε
2 , (5.13)

fε(2|x) = − 1 + x

(x− 1)3 ε
0 + 1

(x− 1)2 ε
1 , (5.14)

fε(3|x) = − 2
(x− 1)3 ε

0 . (5.15)

6 Conclusions

In this paper, we have presented a telescoping relation, enabling an algorithm to convert
any sum of the form (1.2) into nested sums for symbolic values of α, N , x, yi, and zi.
For generic values of N , these sums evaluate to cyclotomic harmonic sums, while in the
N → ∞ limit they reduce to Z-sums. This algorithm allows us, in particular, to resum
the expansion coefficients of Gauss hypergeometric functions in cases where this expansion
is around integer indices that depend on a symbolic integer parameter α. While these
hypergeometric expansion coefficients cannot be expressed solely in terms of generalized
polylogarithms for generic values of α, the additional Z-sums that appear reduce to rational
functions of their arguments for any specific value of α.

We have illustrated how this new resummation technology can be applied to the cal-
culation of Feynman integrals in two examples. In the first, we considered the kinematic
expansion of the double pentaladder integrals derived in [29], and explicitly evaluated this
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sum in terms of generalized polylogarithms through ten loops. This represents a signifi-
cant advance over the previous state of the art, which leveraged the integral representation
of these diagrams and became computationally infeasible beyond four loops [58]. In the
second example, we showed how this technology can be used to simultaneously expand
massive one-loop self-energy diagrams with different propagator powers in dimensional
regularization.

Arguably the biggest shortcoming of our algorithm when applied to the expansion of
Gauss hypergeometric functions is the requirement that the symbolic integer appear with
the same coefficient in the first and third indices, and be absent from the second index.
This ensures that no binomial coefficients occur in the expansion of the hypergeometric
function. It is our hope that the general telescoping strategy outlined in section 3.1 can
also be leveraged to convert sums that depend on symbolic binomial coefficients into Z-
sums and polylogarithms, but we leave this to future work. In the meantime, we highlight
that the telescopic recursion (3.8) is significantly more general than its instantiation in the
Gauss hypergeometric case; we anticipate it will find further applications in perturbative
quantum field theory computations.

One direction in which new nested resummation technology would prove fruitful is in
the Pentagon Operator Product Expansion (POPE) representation of amplitudes in planar
N = 4 supersymmetric Yang-Mills [59–65]. The POPE represents amplitudes — or rather,
their dual null polygonal Wilson loops — at finite coupling in terms of an expansion in
flux tube states propagating across the Wilson loop. This representation can be expanded
around small coupling, resulting in infinite sum representations for perturbative amplitudes.
Building on earlier work [66, 67], the resummation of these expressions was initiated in [68],
and further continued in [69–72]. Due to the appearance of binomial coefficients, however,
this resummation cannot be carried out systematically at higher orders. We are optimistic
that a telescoping strategy will be a viable way forward in these cases.

A great deal is known about the analytic properties of Feynman integrals, and it would
be interesting to understand the implications of these properties for sum representations
of these integrals. For instance, Feynman integrals are expected to obey the Steinmann
relations [73–76], and the double pentaladder integrals are even known to obey an extended
set of Steinmann relations to all orders [29, 77]. However, it is not clear how this property
is encoded in the representation of the double pentaladder integrals in (4.10). It would also
be interesting to find a sum representation of loop-level amplitudes in planar N = 4 su-
persymmetric Yang-Mills that make the observed positivity properties of these amplitudes
manifest [78, 79], or that make connections with the cluster-algebraic properties of these
amplitudes [80–89].

Finally, it is worth highlighting that, while certain quantities in quantum field theory
are believed to be expressible in terms of generalized polylogarithms at low multiplicity or
loop order (see for instance [90–100]), Feynman diagrams seem to involve integrals of un-
bounded algebraic complexity as one goes to higher loop orders [101–106]. Given that any
dimensionally-regularized integral can be considered as a generalized hypergeometric func-
tion [107], it would be interesting to see the aforementioned types of functions appearing
in their expansion.
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A Derivation of the general nested summation algorithm

In this appendix we derive the general recursion relation (3.8) that allows one to convert
any sum of the form (3.7) into a linear combination of cyclotomic harmonic sums. The
general strategy we pursue is the same one used in section 3.3, where we treated the case
of Euler-Zagier sums and infinite N . Namely, we first partial fraction the general case into
a linear combination of sums in which either p or q is zero,

Sp,qm;r(α,N |x; y; z) =
p−1∑
i=0

(q−1+i
q−1

)
(−1)iαq+iS

p−i,0
m;r (α,N |x; y; z)

+
q−1∑
i=0

(p−1+i
p−1

)
(−1)pαp+iS

0,q−i
m;r (α,N |x; y; z) , (A.1)

and derive recursions for Sp,0m;r(α,N |x; y; z) and S0,q
m;r(α,N |x; y; z) separately.

Telescoping Sp,0
m;r(α,N |x; y; z). The steps involved in the derivation of the recursion

relation for Sp,0m;r(α,N |x; y; z) are nearly identical to those used to derive (3.31). In this
case, we find

Sp,0m;r(α+ 1, N |x; y; z) = Sp,0m;r(α,N |x; y; z) + zα1 S
p,r1
m;r′(α,N |xz1,y, z′) , (A.2)

which implies that P is still zero in the ansatz (3.5). We thus have

Sp,0m;r(α,N |x; y; z) = zα1

α−1∑
µ=1
Sp,r1

m;r′(µ,N |xz1; y; z′) + Sp,0m;r(1, N |x; y; z) . (A.3)

It is easy to check that this reproduces (3.31) when z1 = 1 and N → ∞, and that it gets
the correct answer when |r| = 0.

Telescoping S0,q
m;r(α,N |x; y; z). To find the recursion relation for S0,q

m;r(α,N |x; y; z),
we first consider

S0,q
m;r(α+ 1, N |x; y; z) =

N+1∑
n=1

xn−1

(n+ α)qZm(n−2|y)Zr(n+α−1|z) , (A.4)
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where we have shifted the summation index n→ n−1 relative to the definition (3.7), and
then used the fact that the shifted summand is zero when n = 1 to change the lower
summation bound back to 1. To increment the upper summation bound of Zm(n−2|y),
we substitute (3.20) into (A.4) to get

S0,q
m;r(α+ 1, N |x; y; z) = 1

x
S0,q

m;r(α,N + 1|x,y, z)− Sm1,q
m′;r (α+ 1, N |xy1,y′, z)

−
δ|m|,0

(α+ 1)qZr(α|z) , (A.5)

where we have shifted the index n→ n+1 in the second term to put it in this form.
Comparing to (3.6), we see that P = −1. After separating out the n = N + 1

contribution from S0,q
m;r(α,N + 1|x,y, z), we thus have

∆S0,q
m;r(α,N |x; y; z) ≡ S0,q

m;r(α+ 1, N |x; y; z)− 1
x
S0,q

m;r(α,N |x; y; z) (A.6)

= −Sm1,q
m′;r (α+ 1, N |xy1; y′; z)−

δ|m|,0
(α+ 1)qZr(α|z)

+ xN

(N + α+ 1)qZm(N |y)Zr(N+α|z) . (A.7)

Plugging this into (3.5), we find the relation

S0,q
m;r(α,N |x; y; z) = −x−α

α∑
µ=2

xµSm1,q
m′;r (µ,N |xy1; y′; z) + x1−αS0,q

m;r(1, N |x; y; z)

− x−αδ|m|,0
(
Zq,r(α|x, z)− xδ|r|,0

)
(A.8)

+ x−αZm(N |y)
(
Zq,r(N+α|x, z)− Zq,r(N + 1|x, z)

)
,

where we have already converted most of the sums over µ into Z-sums, and have shifted
µ → µ+1 in the remaining sum to simplify the summand. Notice that the third line
encodes a contribution that was absent in (3.37), which drops out when N →∞.

A closed recursion for Sp,q
m;r(α,N |x). Substituting equations (A.3) and (A.8)

into (A.1), we obtain the recursion relation (3.8) presented in section 3.2. The sums over i
can be performed explicitly for fixed integer values of p and q, while the remaining sums can
be converted into nested sums. As our most general examples involve two symbolic integer
parameters α and N , this requires invoking the class of cyclotomic harmonic sums. We
work through an example involving cyclotomic harmonic sums in appendix B. In general,
this procedure gives rise to a linear combination of generalized polylogarithms, Z-sums,
and cyclotomic harmonic sums with coefficients that depend on the symbolic parameters
α, N , x, y, and z.

B An example involving cyclotomic harmonic sums

In this appendix we illustrate how cyclotomic harmonic sums [22] appear when the
upper summation bound in (3.7) is left generic by working though the example of
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S1,1
∅;1 (α,N |x; ∅; z1). To carry out this sum, we need only apply the recursion identity once.

This give us

S1,1
∅;1 (α,N |x; ∅; z1) = 1

α

α−1∑
µ=1

zµ1S
1,1
∅;∅ (µ,N |xz1; ∅; ∅) (B.1)

+ V1,1
∅;1 (α,N |x; ∅; z1) .

Plugging these values into (3.10), we can express the terminal sum as

S1,1
∅;∅ (µ,N |xz1; ∅; ∅) = 1

µ
Z1(N |xz1)−

N∑
k=1

(xz1)k

µ(µ+ k) , (B.2)

where we have used (2.7) to convert the difference of Z-sums in the second term into the
sum over k. Plugging this back into (B.1) and evaluating the sum over µ, one finds

S1,1
∅;1 (α,N |x; ∅; z1) = 1

α

N∑
k=1

xk

k

(
Z1(α+k−1|z1)− Z1(k|z1)− zk1Z1(α−1|z1)

)
(B.3)

+ 1
α
Z1(α−1|z1)Z1(N |xz1) + V1,1

∅;1 (α,N |x; ∅; z1) .

This sum over k cannot be carried out in terms of Z-sums. Rather, we are required to
make use of cyclotomic harmonic sums, defined by

S{a1,b1,c1},...,{ad,bd,cd}(x;N) =
N∑
n=1

xn1
(a1n+ b1)c1

S{a2,b2,c2},...,{ad,bd,cd}(x
′;n) , (B.4)

where x = x1, . . . , xd is a multi-index of depth d, and S(N) = 1. As with the Z-sums,
cyclotomic harmonic sums satisfy a large number of identities, such as stuffle and synchro-
nization identities; they can also be given an iterated integral representation.

After carrying out the conversion Z1(α+k−1|z1) = Z1(α−1|z1)+zα−1S{1,α−1,1}(z1; k),
the sum over k in (B.3) can be evaluated to give

S1,1
∅;1 (α,N |x; ∅; z1) = zα−1

α
S{1,0,1},{1,α−1,1}(x, z1;N) + 1

α
Z1(N |x)Z1(α−1|z1) (B.5)

− 1
α
Z1,1(N |x, z1)− 1

α
Z2(N |xz1) + V1,1

∅;1 (α,N |x; ∅; z1) ,

while the boundary term can be evaluated using the same methods as usual:

V1,1
∅;1 (α,N |x; ∅; z1) = 1

α
Z1,1(N |x, z1) + 1

α
Z2(N |xz1) (B.6)

+ x−α

α
Z1,1(α|x, z1)− x−α

α
Z1,1(N+α|x, z1) .

Putting this all together, we find

S1,1
∅;1 (α,N |x; ∅; z1) = zα−1

α
S{1,0,1},{1,α−1,1}(x, z1;N) + 1

α
Z1(N |x)Z1(α−1|z1) (B.7)

+ x−α

α
Z1,1(α|x, z1)− x−α

α
Z1,1(N+α|x, z1) .

It is easy to check that this expression numerically reproduces (3.16) (with y1 set to 1) for
large values of N .
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