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Abstract: Rogue Base Stations (RBS), also known as 5G Subscription Concealed Identifier (SUCI)
catchers, were initially developed to maliciously intercept subscribers’ identities. Since then, further
advances have been made, not only in RBSs, but also in communication network security. The
identification and prevention of RBSs in Fifth Generation (5G) networks are among the main security
challenges for users and network infrastructure. The security architecture group in 3GPP clarified
that the radio configuration information received from user equipment could contain fingerprints of
the RBS. This information is periodically included in the measurement report generated by the user
equipment to report location information and Received Signal Strength (RSS) measurements for the
strongest base stations. The motivation in this work, then is to generate 5G measurement reports to
provide a large and realistic dataset of radio information and RSS measurements for an autonomous
vehicle driving along various sections of a road. These simulated measurement reports can then be
used to develop and test new methods for identifying an RBS and taking mitigating actions. The
proposed approach can generate 20 min of synthetic drive test data in 15 s, which is 80 times faster
than real time.

Keywords: 5G mobile communication; autonomous vehicle; rogue base station; communication
system security; measurement report; data generation

1. Introduction

Fifth Generation (5G) systems are End-to-End (E2E) service platforms that support a
mobile-connected society and provide a substantial rise in the data rate and reduction in
latency compared to previous mobile generations [1,2]. However, 5G is not just the next
development from Long-Term Evolution (LTE), the most widely adopted cellular commu-
nication standard nowadays, but a fundamental paradigm change [3,4]. 5G networks are
expected to enable various vertical industries with diverse use cases and applications [5].
5G can deliver Gigabit bandwidth, ultra-high reliability, always-on availability and massive
network capacity with 1 ms latency to support a mobile-connected society.

5G, therefore, accelerates the adoption of a huge range of vertical markets, multiple
use cases and heterogeneous services with corresponding cybersecurity requirements. It
supports multiple Radio Access Networks (RANs) including Global System for Mobile
Communications (GSM), Universal Mobile Telecommunications System (UMTS), and LTE.
Consequently, the implementation of 5G inherits the security challenges of those access
networks. The key vulnerabilities and cyber-attacks on the RAN are currently an active
topic of research [6].

There has been a significant body of research to develop accurate simulation models
of 5G radio channels. The primary focus has been on modelling variations in amplitude
and phase across the bandwidth of radio signals. These can be used to measure the
performance of the signal-processing algorithms to help to improve the performance of the
radio link [7]. A review of the literature finds that none of the propagation models, including
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WINNER/IMT-Advanced, COST 2100, and IEEE 802.11, fully satisfy our requirements and
their complexity requires a high level of radio expertise to be usable [8,9]. Since our aim
is to provide large datasets for use by data analysis researchers, it is critical to select the
appropriate model that gives results that are typical of a drive test with the least amount of
complexity. This study aims to provide a synthesized stream of received signal strength
values that would be expected to be observed by a mobile device travelling along a highway.
Installing a real 5G testbed to create the received radio signal and the measurement report
is challenging in both deployment cost and scalability [10]. Moreover, any results from
a specific drive test will inherently be only valid for that particular test and may not be
representative of any other highway section.

A simulation model is proposed to fill such gaps that can efficiently produce realistic
signal strength metrics using well-known radio propagation models. This proposal removes
the need for this expensive infrastructure to conduct research in this area. Computer science
researchers can easily use the model to quickly generate large datasets that model many
different scenarios, removing an existing research barrier. Moreover, the literature study
indicates that, there are no currently existing simulations of this nature that do not require
expert radio knowledge [7]. This solution might be beneficial to the wider 5G security
research community.

The proposed method uses a well-known propagation model, and antenna radiation
patterns for estimating the coverage [11]. The RSS values are calculated from the Friis
propagation and path loss equations, and the calculated signal level is in the range of 5G
signal standard. Drive test results are normally presented as statistical distributions or RSS
levels accumulated during the drive test rather than as a time series of measurement data.
Hence, such time series results are not readily available in any references [12]. However,
but the results are broadly compatible with the contour plots in [13]. They have contour
maps of coverage around an antenna that would give a time series similar to those resulting
from our work if a road went straight through the coverage area and passed close to the
base station.

Rogue Base Station (RBS) attacks and International Mobile Subscriber Identity (IMSI)
catchers are the most frequently published attacks on the RAN layer. In these attacks,
the IMSIs of User Equipment (UE) are targeted during the initial network registration
process and paging attacks. However, it is expected that the 5G standards and services will
address known attacks for all access types in this layer. An unencrypted IMSI, for example,
could not be transferred in 5G.

A further move toward countering the RBS is undertaken by the 3rd Generation Part-
nership Project (3GPP). The security group in 3GPP (called SA3) has outlined that radio
information received by UEs may include traces of RBS “fingerprints” [14]. Based on this
information and analyses of Measurement Report (MR), SA3 suggests recognising a frame-
work that enables cellular networks to reliably identify such RBS threats. The framework
complements other technology implemented in 5G, as described above, to protect the UEs
from RBS attacks [15].

This study focuses on the generation of realistic MR data. In D2D and V2X communi-
cation, there might be rogue gNodeB units alongside legitimate gNodeB units. The use case
includes several vehicle platooning scenarios in which an RBS is positioned along the road
and attempts to entice the platoon leader’s UE to handover to the RBS. Many scenarios
have included several RBS attacks in vehicular platooning to influence the platoon and
cause large traffic collisions with a significant threat to life. This could be performed as an
MitM attack, where the RBS imitates a legitimate BS and transmits information between the
other legitimate BS and the leader of the platoon. Eventually, the platoon leader can then
be ordered to take a manoeuvre that results in a fatal accident by changing the contents of
the control messages.

The generation of large datasets for training and testing was a priority. One could use
UE measured data gathered from a vehicle driving through a 5G coverage area, but it would
be difficult to determine whether these datasets were normal or anomalous. To preclude
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the generation of anomalous data or data that are only relevant to the specific route that
was taken, a novel method of simulation has been developed, capable of generating large
datasets for a wide range of scenarios in a fraction of the time needed to obtain UE data
from a “drive test”.

Our method runs on a standard PC and quickly generates realistic MR data reflecting
a user-defined topology of legitimate BS and RBS, BS/RBS transmission strength, speed
and direction of platoon leader, and physical position of the road surface with respect to
the BS/RBS location.

In summary, our work provides the following contributions:

• Simulation of 5G tracking areas where platooning vehicles travel and connect to the
BS situated in each tracking area.

• Building a novel flexible data generator of 5G MRs that can generate realistic streams
of radio data.

• A Handover protocol is implemented and a model for RBS antenna beams is intro-
duced to present several normal and attack scenarios.

• Developing a software platform to mimic the signals from legitimate BSs and RBSs at
variable locations and proposing several attack scenarios to enable 5G RBS investigations.

The remainder of this paper is organised as follows. In Section 2, a short summary of
studies related to RBS detection techniques is presented to establish the role of the MR and
the type of data that it contains. Section 3 describes the proposed architecture and simple
handover protocol. Section 4 describes the antenna beam model for the RBS and the attack
model. Section 5 presents the experimental results by illustrating the legitimate and attack
scenarios in detail. Finally, in Section 6, we conclude the paper by summarising the main
achievements and considering some directions for future work.

2. Background and Related Work

The privacy of network subscribers can be compromised if their IMSI are stolen. Man
in the Middle (MitM) attacks and Distributed Denial of Service (DDoS) attacks are the most
common attacks against subscribers. In mobile communication networks, MitM employs
an RBS when a malicious third party Base Station (BS) masquerades as a legitimate network
BS. DDoS attacks may involve implanted malware to simultaneously reboot all UEs in a
target 5G coverage area at the same time. This may result in excessive malicious connection
requests, constructing a storm of signalling to overload 5G RAN resources. Such an attack
makes the RAN unavailable to legitimate subscribers [6,16].

Mutual authentication between an LTE network’s Evolved Packet Core (EPC) and the
UEs is regarded as the primary technique for protecting privacy in the security architectures
of pre-5G cellular networks. The Authentication and Key Agreement (AKA) procedure
is applied to achieve mutual authentication and generate a ciphering key to protect the
encrypted data and an integrity key to derive session keys for signalling integrity. Al-
though this method has provided a multitude of benefits, it cannot completely eliminate
the risk posed by RBS attacks [17,18].

5G uses two mechanisms to boost subscriber privacy. The first mechanism encrypts
a long-term identifier to prevent stingrays and IMSI catchers [19]. 5G networks exploit
the Subscription Permanent Identifier (SUPI) rather than the IMSI as well as a Public Key
Infrastructure (PKI) to encrypt the SUPI into the Subscription Concealed Identifier (SUCI).
Furthermore, 5G changes subscribers’ short-term identifiers frequently. Both techniques
have already significantly improved resistance to RBS attacks in 5G networks compared
with previous standards [20].

Other Related Work. The most recent review of current technologies and open com-
munication difficulties focused on 5G data transmission between BSs and V2X, as well as
challenges of RBS attacks on Internet of Things (IoT) security [21,22]. We report on security
issues for V2X scenarios, and synthetic data generation, and delineate the various RBS
schemes in the 5G environment [23–26].



Appl. Sci. 2022, 12, 12516 4 of 18

The authors of [27] present an RBS detection approach to prevent violation of the
consistency of RSS reports in WiMax/802.16 wireless access networks. In this technique
if a RBS is present in a network, anomalies in the RSS reports received by mobile stations
(MSS) can be observed. For LTE and 5G technologies, their methods are not robust.

In [28], the authors described an Intrusion Detection System (IDS) to detect anomalies
and identify RBS through data traffic. Their mechanism searches for false data such as
emergency messages injected into the traffic data and informs the local administrator of
their existence before destroying them. Their method has two limitations. First, their
model only tests for the synthetic and static data traffic in a centralised BS and secondly,
the designed IDS suffers from a lack of control of BS and the handover process. Both are
addressed in this work, which considers multiple instances of BS and RBS as well as a
simulated handover.

Some solutions have mainly concentrated on large-scale RBS detection. For example,
ref. [29] introduced a large-scale RBS detection mechanism to discover and control misbe-
having traffic among UEs, especially for IoT devices demanding limited resources. This
strategy was mainly tested using synthetic dataset and was unable to monitor previously
received signals at each BS. In addition, the authors in [30] developed a shadow fading
mechanism to check large-scale suspicious synchronization signal strength and region-
matching criteria on a BS in an LTE system. Their method does not address IoT devices
and platooning applications in a 5G environment.

In [31], the authors presented an RBS metric mechanism compatible with GPRS to
detect interventions by malicious intruders in 3G (UMTS) and 4G (LTE) communications.
Their method can detect devices with a limited computational resource in a system. This
work is a practical method but suffers from a lack of real-time analysis on a platooning
platform for IoT within a 5G network, which is the focus of this work.

In [32], the authors explored an Azure scaffold environment combining various analy-
ses on the BSs to detect an RBS in an LTE network. However, this method does not address
the real-time interference in the dedicated resources of 5G networks.

The work described in [18] designed an automated system to discover RBS in a
GSM/LTE mobile network that controls the BS traffic data and recognises the invasion
in the system. Although this work is a novel and interesting addition to the field, it
does not handle traffic data over the 5G network and does not work for a platooning
platform for IoT devices. In addition, [33] proposed a time-efficient symbol-based statistical
Radio Frequency (RF) fingerprinting scheme to realise signal pattern anomalies and detect
intrusions in the network. This work is impractical for large-scale IoT devices and does not
address the actual propagation conditions considered in this study.

Finally, FBSleuth [34] is a recently designed BS-based tool that can identify RBS devices
based on minor differences in the emitted signals caused by hardware imperfections. This
defence software lacks monitoring of the platooning data traffic traversing between multiple
BS in a 5G network that is the domain of our work.

The literature reviewed here indicates a wide range of RBS detection schemes and
some of their drawbacks. Although the approaches are varied, they all operate by some
kind of data analysis, hence, the availability of a large quantity of realistic MR data is a key
component in the development of RBS detection techniques. It is the provision of this data
that is the focus of our work. This motivates the potential future use of Machine Learning
(ML) approaches that require a very large dataset that covers many different scenarios. This
motivated the development of a simple simulator that can generate such datasets which is
the focus of this study.

3. Proposed System Model

Simulation models for 5G radio channels have been developed through a body of
research to model the amplitude and phase variation of the radio signal. They are used to
determine the performance of different aspects of the system, such as the signal processing
algorithms that contribute to the improvement of the radio link. These models are usually
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rather complicated and must be used appropriately with a high level of skill. The proposed
simulation model can efficiently produce realistic signal strength metrics using well-known
radio propagation models to simplify this task. Data science communities and researchers
can easily use this model to develop large datasets for the training and testing of RBS
detection procedures. Furthermore, to the best of our knowledge, there are no simulations
of this type that do not require deep radio signal expertise. This is beneficial for the broader
5G security community.

The literature review above indicates the importance of detecting RBS activity to
prevent the unauthorised capture of a UE channel. The work presented here is therefore
motivated by the need to generate synthetic data that are reasonably representative of
the measurement report data that would be observed by a vehicle driving through a 5G
coverage area serviced by several base stations. By generating realistic synthetic data, it is
possible to quickly create a large dataset that can be used to investigate new mechanisms
to prevent handover to an RBS.

3.1. Considered Architecture

The coverage of the cellular communication network is split into a series of tracking
areas, each containing a gNodeB serving the region. Each gNodeB is identified by its Cell
Identifier (CID) and Tracking Area Code (TAC). Figure 1 shows a scenario in which some
legitimate BS provide 5G coverage for an area containing a segment of a motorway along
which platoons of vehicles regularly travel. The physical location of the platoon leader is
given by (Xpos, Ypos) which is used to calculate the distance between each BS and the leader.

Figure 1. Outline of the 5G coverage area showing the 5G uplink/downlink and the Xn interface
between gNBs.

The moving UE elements here are vehicles that travel approximately 80 km/h. The pla-
toon leader regularly exchanges messages every few milliseconds with the application
server in a 5G core [35]. This presents very challenging latency requirements that are
satisfied by the Ultra-Reliable Low-Latency Communications (URLLC) mode as defined
in the 5G standards. Two modes of communication were used: V2V [36] between cars
in the platoon and V2N between the platoon leader and BS. Of these, V2V is satisfied by
URLLC, but V2N can be compromised by the presence of an RBS. To develop techniques to
protect against such attacks, we require realistic BS transmission data—this is the focus of
this study.

3.2. Propagation Model

The details of the propagation model are given in [37], but the key aspects are sum-
marised here for completeness. As the goal is to generate realistic synthetic data, the radio
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propagation model is based on a version of Friis’s free-space propagation equation [38],
as shown in (1):

Pr =
PtGtGrλ2

(4πd)2 (1)

where Pr is the received signal strength (in watts) received by the UE from each specific base
station and Pt is the transmit power (in watts) of the BS. Gt is the gain of the transmitting
antenna at the base station and Gr is the gain of the receiving antenna at the UE. Variable
d is the distance (in metres) between the BS and the platoon leader (UE) and λ is the
wavelength (in metres) of the transmitted signal.

The MR data are generated by a MATLAB simulation that calculates the location of
the platoon leader every second and the propagation distance as follows:

d =

√(
V × T − XBSi

)2
+
(
YBSi

)2 (2)

where V is the vehicle speed (m/s), T is the time taken by the simulation clock (s), and the
coordinates of the ith BS are (XBSi , YBSi ). At T = 0, the leader is considered to be on the
left side of the scenario. The substitution of (2) into (1) yields a simple calculation of the
expected value of the received signal strength at the UE for each time step of the simulation:

Pr =
PtGtGr

(V × T − XBSi )
2 +

(
YBSi

)2

(
λ

4π

)2
(3)

To model the variation in path loss due to the presence of other vehicles and buildings
and radio fading events, a standard statistical model of radio propagation [39], was applied.
In this case, the variation is bounded between zero and two to model destructive and
constructive interference. The expected power level is then multiplied by this randomised
variable and the received power is converted to the dBm scale as follows:

Rxlev = 10 log10(Pr × x(t)) + 30 (4)

where the channel’s random variation is given by x(t).

3.3. Generation of Single BS

Figure 2a depicts the simulated signal strength observed by a UE moving along a road
segment in the coverage area of a legitimate BS. When the platoon leader is within range
of the legitimate BS, the Reference Signal Received Power (RSRP) is calculated once every
second. RSRP is an average power received and typically ranges from −44 dBm (good
signal strength) to −140 dBm (poor signal strength) [40].

As illustrated in Figure 2b the modelled RSRP of the mobile UE is calculated every
second by averaging adjacent values to reduce the effect of noise. In our experiment,
the RSRP begins at an initial value of approximately −105 dBm and increases as the vehicle
approaches its closest point to the BS at a peak value of about −68 dBm before attenuating
as the car moves away.
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Figure 2. Realistic signal strength of a platoon’s leader from a legitimate BS.

3.4. Simple Handover Protocol

The usefulness of the generated data can be illustrated by a simple simulation of
three legitimate BS units with physical positions to emulate a short stretch of a 5G urban
motorway, as illustrated in Figure 3a. The frequency of communication used is 3.8 GHz,
part of the 5G New Radio spectrum. The RSRP for each BS is determined for each second
that the mobile UE (platoon leader) is in the BS coverage area, as shown in Figure 3b. The
handover decision in 5G RAN is based primarily on the details found in the UE MR [41].
The mobile UE (the platoon leader) calculates the signal strength of the BS units from which
it can receive a signal. The UE handover from one BS to another occurs when the signal
strength from the 2nd BS exceeds a given threshold. As shown in Figure 3c, in this example,
the threshold for handover is 5 dB [42].
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Figure 3. Received signal strength of a mobile UE in the legitimate model. (a) The geography diagram.
(b) The pattern of signals generated. (c) RSS of the serving gNodeB upon handover.

4. Proposed Antenna Beam Model for RBS

In the scenario of an RBS targeting road segments, it is reasonable to assume that the
radio equipment is less sophisticated than a commercial 5G BS. In particular, it is assumed
that such equipment will have limited power amplification capabilities at the transmitter;
thus, a directional antenna with a relatively high gain is required to deceive a UE. The use
of a directional antenna will radiate the radio signal in a relatively small beam so that the
malicious actors will need to point the beam along the road segment to some extent to
maximise the amount of road that is within the “rogue cell”.
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Here, a real antenna that would be suitable for mounting in a vehicle that can be
parked at a vantage point with a good line of sight to the desired road segment was
modelled. The radiation pattern of the main lobe is represented by a blue line in Figure 4
which shows the extremely steep roll-off of the beam at the edges. These data are related
to a commercially available antenna, the specifics of which have been redacted to avoid
educating potential malicious actors. Because the goal of this work is to generate realistic
RSS measurements from a fast and simple simulation, it is important to model the antenna
radiation pattern in a manner that captures the characteristics that are likely to help identify
an RBS. The model used in this simulator approximates the main lobe of the antenna with
a single gain value (17 dBi) and a defined beamwidth, as indicated by the yellow line in
Figure 4 as a yellow line. Similarity of the steep sides of the real and simplified radiation
patterns were clearly captured which validates the use of the simple model in this particular
use case.

Figure 4. Radiation patterns of a real antenna and the simplified model used in the simulator.

4.1. Deploy RBS to the Motorway (Attack Scenario)

The outline of a suggested potential RBS attack scenario is proposed here. An intruder
establishes an RBS in close proximity to the road segment, indicated by the red shape in
Figure 5. A rogue agent attempts to entice the UE to attach to it by spoofing the TAC and
CID of a legitimate BS that is slightly further away [37].

Figure 5 shows an RBS with two beams. Usually, a single beam would suffice, but in a
“real” scenario only one of the red beams would be present depending on the direction in
which the antenna is pointed. Nevertheless, Figure 6a clearly shows that both RBS beams
are actually generated.

It is unlikely that attackers would implement an RBS with high transmission power
because of the high cost and physical size of the required infrastructure. For this reason,
the simulated RBS has been specified with a lower transmit power than the legitimate
BS units in the area and uses a narrow beam directional antenna that covers part of the
motorway with higher gain to deceive the UE.

The antenna gain is also inversely proportional to the beamwidth of the antenna as
shown in Equation (5) [38]:

G(dB) = 10 log10

(
APC

BWθ BWφ

)
(5)

The antenna pattern was assumed as a rectangular area in the proposed model, and the
APC (Antenna Pattern Constant) takes a fixed value of 41,253 if the beamwidth dimensions
are in degrees [15]. The horizontal and vertical beamwidths are considered to be approxi-
mately equal in the simulation, therefore an antenna beamwidth is estimated based on the
given gain by (5). The position of the RBS is being used to determine when the UE falls
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below the RBS coverage. This is also used to measure the timespan during which the UE is
covered by the narrow beams of the RBS identified as TA and TB as shown in Figure 5.

Figure 5. RBS attack scenario, BWθ : beamwidth angles; (XBS, YBS): location of the base station; TAC:
Tracking Area Code; CID: Cell Identifier; V2V: Vehicle-to-Vehicle communications; and, TA, TB: edges
of narrow beams.
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Figure 6. The received signal strength of a mobile UE in the attack model.

The RBS generates a higher RSS that can defraud the mobile UE, as shown in Figure 6a.
As expected, there are two areas in which the RBS power is higher when two beams are
used. The first beam is pointed down to the road at 30 degrees; thus, we can see a higher
received signal, but for a shorter time than the second beam which is positioned on the
road at 60 degrees.

Typically, the 5G standard does not allow a legitimate BS to handover a UE to an RBS
that is unknown to the 5GCore (5GC). The 5GC Access and Mobility Management Function
(AMF) would normally maintain a list of legitimate BS-IDs in the respective tracking area.
This should prevent the RBS from stealing the UE communication link at the user plane
level. Thus, at first glance, injecting malicious information into a platoon leader may not
be possible.

However, in the technical specification of enhanced 5G security against RBS, the 3GPP
identifies that the handover decision making in 5G systems is centred on the information
included in the UE MR. The UE evaluates the RSS of nearby BS units on the basis of
the syncing signal that transports the synchronisation and information block without
additional security [43]. Consequently, as shown in Figure 6b, the RBS attempts to forge
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the identification parameters of the second BS such as its Mobile Country Code (MCC) and
Mobile Network Code ( MNC). It then masquerades as the second legitimate BS with a
higher RSS and declares itself to be available for connection.

To design an RBS detection mechanism, designers need data that are equivalent to
that contained in the MR from a UE. As a first step, a simulation tool was constructed to
generate MR data based on the simulation of received signal values from multiple base
stations. This includes the ability to specify simulated RBS actors at varying positions to
model a range of scenarios—such as when the RBS is detected against a falling BS signal,
when the difference in RSS between BS and RBS is small, when the RBS is detected against
a rising BS signal, and when the difference in RSS between BS and RBS is large.

As shown in Figure 7, the simulation generates signal profiles for the RBS in a range
of different positions relative to the peak signal received from a legitimate BS which we
refer to as the “phase” of the BS.
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(a) RBS is contained within the BS waveform.
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(b) A falling trend with a small difference.
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(c) Falling trend but large difference.
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(d) Handover is never considered.
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(f) Handover to rogue.
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(g) Rising trend of the BS signal with a large difference.
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Figure 7. Cont.
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(i) Handover to rogue.
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(j) Handover to rogue.

Figure 7. Rogue base station established in various position against a legitimate base station to
challenge the detection model.

Figure 7a illustrates a situation in which the RBS is completely included within the
legitimate BS waveform. In this case, as illustrated in Figure 7d, a handover is never
considered since the RBS is assumed not to be the strongest candidate BS to which to attach.
Figure 7b,c show the cases when the RBS is detected against a falling BS signal when the
difference in RSS between the BS and RBS is small and large respectively. On the other
hand, the RBS may be positioned against a rising BS signal such as in Figure 7g where
the difference in RSS between BS and RBS is large, or in Figure 7h where the difference is
small. In all cases, handover depends on a comparison between the RSS of BS and RBS
with respect to the threshold, as illustrated in Figure 7e,f,i,j. These are the scenarios for
which we aimed to generate realistic synthetic data.

4.2. RBS Activated Period

This section looks more closely at the handover to an RBS by considering in detail the
period during which an RBS is active as a candidate BS. Figure 8a illustrates the situation
where the RSS of an RBS rises steeply between time t = 360 and time t = 385. The RBS then
maintains a strong RSS until time t = 450 after which it drops sharply.

(a) Three legitimate BS and an RBS (b) Final handover protocol

Figure 8. The scenario focusing on the period in which the RBS is activated.

As shown in the figure, for the period when t < 380, the moving UE is connected
to the orange BS2 and remains connected until the difference in signal strength between
“orange” and “purple” passes the threshold (around t = 410). At that point, the strongest
received signal is found to be from the RBS, so the UE hands over to the RBS at that time
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as shown in Figure 8b. The vertical axis scale was enlarged to observe the steep rise and
the threshold.

The period immediately before connection to the RBS is key in preserving the security
of the network. The steep rise in RSS between t = 360 and t = 380 should trigger this
signal to represents an RBS, so the handover logic should discount any candidate BS that
exhibits this pattern from the handover calculation. Potential future work will focus on
the development of techniques to analyse the RSS profile of candidate BS elements so that
those that fit the profile of a rogue can be ignored before they are connected to it.

5. Experimental Results

This section provides an overview of the simulation results to verify the proposed
attack model.

5.1. Simulation Setup

The experiment was conducted in MATLAB on a quad-core Dell machine with an
Intel Core i5-8250U CPU and 16 GB of RAM. The simulation parameters are presented in
Table 1. The following sections provide a thorough explanation of the results of the various
simulation scenarios.

Table 1. Parameter Setting of Simulation in the Attack Model.

Parameter Value Parameter Value

Platoon’s Speed 80 Km/h RBS Number 1
Frequency 3.8 GHz Road Width 50 m

Power of RBS 1 (watt) Road Length 22,500 m
Power of BS 10 (watt) RBS Gain 15 (dBi)
BS Number 3 BS Gain 1 (dBi)

5.2. A Flexible Data Generator

This section describes the system developed to model a potential RBS attack scenario
in a scalable realistic environment. The geography of this simulation includes a motorway
50 m wide and 500 km long.

A random number of BS units in random positions along the road and a smaller
number of RBS units in the proximity of the roadway are established, as illustrated by the
green and red dots, respectively, in Figure 9. X is the distance along the road and Y is the
distance from the road at which the BS/RBS is positioned. Each RBS is positioned such that
it appears in different parts of the BS phase, that is, when BS is rising, when BS is falling,
when BS is at its peak, and in the “gap” between BS peaks.

Figure 9. The simulation geography for the flexible data generator, motorway width = 50 m, motor-
way length = 500 km, number of BS = 30, and number of rogue base stations = 6.

As illustrated in Figure 10, the RSRP for a moving UE from a collection of standalone
base stations at random positions is computed. The legitimate BS units provide 5G coverage
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for a particular area comprising a section of an urban roadway on which autonomous
vehicle platoons travel.

When the platoon leader is in the range of the BS units, the RSRP is calculated every
second. From this, we observe that the range of the signal is between −115 dBm to −65 dBm
as an approximation of realistic network configurations. When the RSRP is greater than
−80 dBm, the signal strength is deemed to be excellent and can be described as a strong
signal with maximum data speeds. When it is between −80 dBm and −90 dBm it depicts a
strong signal with good data rates. From −90 dBm to −100 dBm the signal strength was
fair to poor. In this case, a reliable data transfer rate may be attained; however, dropouts are
possible. As the signal approaches −100 dBm, the performance drops drastically, whereas
at less than −100 dBm disconnection may occur.

(a) Standalone BSs with random positions
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(b) Legitimate handover

(c) RBS in different parts of the BS phase
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(d) Final Handover

Figure 10. Received signal strength for a platoon’s leader in a flexible signal generator model.

The model presented here is based on a combination of simple radio propagation,
statistical variation of the path loss and simple Newtonian models of moving objects and
the use of high gain antennas at the RBSs. With the randomised placement of the base
stations and the speed of the platoon, the model therefore produces values of the expected
RSRP as the platoon moves along a road that does not actually exist, but that contains
normally encountered radio propagation artifacts. The validity of the model is evident
from the results in Figure 10a as the peak RSRP for each BS occurs at the point where
the distance between the BS and the UE is a minimum and the value of that peak varies
depending on the randomised distance between the BS and the road.

In Figure 10a,b, the 5G handover decision protocol is implemented considering only
the legitimate BS units. Decision making is based on the RSRP values measured by the
UE from the surrounding BS units. In the first second, the BS with the maximum RSRP is
chosen as the serving BS. The figure shows how the moving UE moves from BS to BS when
the RSRP from the second BS is greater than the 5 dB threshold specified.
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Figure 10c introduces a number of RBS units positioned in different parts of the BS
phase, i.e., when the BS is rising, falling, at its peak, and in the “gap” between BS peaks.
The RBS need to produce a higher received signal (including the threshold) to defraud
the UE.

Figure 10d shows that some of these RBSs are located such that they can deceive UEs
and compete against legitimate BSs for the handover protocol. When the received signal at
the platoon is more than 5 dB higher than the BS, the UE switches from BS to RBS, and the
rogue can cause sudden turns resulting in dangerous road accidents.

To date, an attempt has been made to design a software platform that mimics the
real signals from legitimate BS and rogue BS so that they can be used for our generated
dataset to test its effectiveness in various scenarios. The platform enables the user to control
anything that might be variable in terms of the location of each BS, the proximity to the
road, the separation between BS units and, the BS power output, and the velocity of the
platoon leader to create a realistic dataset. The velocity varies during the simulation and is
implemented based on the Markov model and according to the maximum and minimum
highway speeds in the UK. Thus, we can easily generate a wide range of simulations with
different parameters, resulting in a variety of signal profiles. From the perspective of the
platoon leader, each BS might look different as the road curves and the linear distance
between the platoon leader and BS units vary. Similarly, the distance from the road of the
RBS can be varied.

This study generates realistic data without the need for a complex, expensive 5G
testbed. We can do this simply using the software we obtained very realistic results, which
allowed us to simulate multiple scenarios more quickly. The simplicity of the simulation
model enables the rapid and effective generation of data for any scenario in which RBS
elements are positioned in a location that can potentially interfere with a 5G network.
Changing parameters and geography of the simulation makes it possible to produce MR
data for any UE in a dynamic environment and develop strategies to prevent such attacks.

The simulator described here generates received signal level reports that are calculated
from a defined geographical arrangement of base stations and roadways. This will allow
the essential parameters of a UE’s measurement reports to be generated, which can then be
used to devise new methods to prevent RBS attacks.

The time series measurement data were not available in any references as it is normal
for drive test [12] results to be shown as a distribution of different RSS ranges accumulated
throughout the drive test, but the results are broadly compatible with the contour plots
in [13].

6. Discussion and Conclusions

RBS attacks pose a significant threat to cellular communication networks and sub-
scribers which can have devastating effects in V2X scenarios. This paper describes the
simulation of a platoon of autonomous vehicles moving through an area of 5G radio cov-
erage, and periodically calculates the RSS. As can be seen from various attack scenarios,
there is potential for a compromised BS to be masqueraded by the RBS, which will assume
control of the UE. When such an event occurs, an UE can be captured for tens of seconds.
This is sufficient time to steal information or cause a car accident.

The simulation model can generate a realistic dataset of radio information and RSS
measurements in a reconfigurable scenario with multiple legitimate base stations and a
numerous rogues. The dataset is created using radio propagation models and aims to
generate measurement reports that exhibit characteristics that would be normally evident
in a real drive test. Our experiments show that a dataset that would represent a 20-min
drive test can be obtained in only 15 s of simulation. Consequently, this method enables
researchers to quickly develop various geographical and radio scenarios and generate MR
data in the absence of abnormal radio propagation situations.

As the broadcast channels of gNodeB elements in 5G and previous standards must
contain unciphered information so that UEs can identify each BS and decide whether to
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attach, RBS attacks are always possible. However, by exploiting the data provided in the
MRs, the network may look for aberrant behaviour to indicate that an RBS is trying to
capture the UE. The work to date described in this paper presents the specifications of a
tool for generating realistic streams of RSS data. A software platform was developed to
simulate signals from legitimate BS units and variable positioned RBSs. The dataset yielded
from this stage was approximately 7 h of drive test results passing 30 legitimate BSs. It
seems likely that an ML-based solution can yield a robust and adaptive RBS identification
mechanism that can be trained on a large set of signal strength measurements covering
many different scenarios.

The proposed novel flexible data generator creates received signal-level reports based
on vehicles platooning scenarios. Users can generate a highway scenario that is hundreds
of kilometres long with randomised locations of base station and variable speed of the
vehicles. The simulation runs 80 times faster than real time so that we can generate large
time series datasets of a UE’s measurement reports, which can then be used to design new
techniques for detecting RBS attacks.

The next step of this work will involve using this dataset to develop high-performance
models for the detection of RBS so that they can be rejected before being considered for
handover. This will exploit the output from the simulator to design ML methods to identify
RBS attacks and protect against them.
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