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A R T I C L E I N F O A B S T R A C T

Editor: Hubert Saleur In this paper, we propose a new representation of the minimal form factors in integrable quantum 
field theories. These are solutions of the two-particle form factor equations, which have no poles 
on the physical sheet. Their expression constitutes the starting point for deriving higher particle 
form factors and, from these, the correlation functions of the theory. As such, minimal form 
factors are essential elements in the analysis of integrable quantum field theories. The proposed 
new representation arises from our recent study of form factors in TT-perturbed theories, where 
we showed that the minimal form factors decompose into elementary building blocks. Here, 
focusing on the paradigmatic sinh-Gordon model, we explicitly express the standard integral 
representation of the minimal form factor as a combination of infinitely many elementary terms, 
each representing the minimal form factor of a generalised TT perturbation of the free fermion. 
Our results can be readily extended to other integrable quantum field theories and open various 
relevant questions and discussions, from the efficiency of numerical methods in evaluating 
correlation functions to the foundational question of what constitutes a “reasonable” choice for 
the minimal form factor.

1. Introduction

In 2016, Smirnov and Zamolochikov published an investigation of the “space of integrable quantum field theories” [1]. They 
showed that for every integrable quantum field theory (IQFT), with its associated factorised scattering (𝑆) matrix (that would 
include the sine-Gordon, sinh-Gordon and Ising models, for instance), we can construct an infinite family of IQFTs whose 𝑆-matrix 
differs from the original by CDD factors [2].1 The fact that the 𝑆-matrix bootstrap equations admit a CDD ambiguity was not a 
new result, but the interpretation and form of these CDD factors were. They showed that the space of all CDD factors is spanned by 
exponentials of hyperbolic functions, with exponents proportional to the one-particle eigenvalues of the local conserved quantities of 
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1 What this means is that the 𝑆-matrix of the new theory is the product of the original 𝑆-matrix times factors which trivially satisfy all physical requirements 
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(Lorenz invariance, unitarity, hermitian/real analyticity, etc.) but do not introduce any new poles, that is, they do not change the particle spectrum of the model.
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the IQFT (of which there are infinitely many because of integrability). They showed that each of these exponential factors, in turn, 
can be interpreted as arising from a perturbation of the action of the original IQFT by an irrelevant operator. The simplest of these 
operators is the TT field, the composition of the holomorphic and anti-holomorphic components of the stress-energy tensor. If the 
original theory has a single-particle spectrum with a two-body scattering matrix 𝑆𝟎(𝜃), where 𝜃 is the rapidity difference between 
two scattering particles, then in the perturbed model, the scattering matrix would be

𝑆𝜶(𝜃) ∶= 𝑆𝟎(𝜃)Φ𝜶(𝜃) , with log(Φ𝜶(𝜃)) = −𝑖
∑
𝑠∈

𝛼𝑠𝑚
2𝑠 sinh(𝑠𝜃) , (1)

where 𝜶 ∶= {𝛼𝑠}𝑠∈ is a set of coupling constants, 𝑚 is a mass scale, and 𝑠 are integers taking values in the set  .  is typically the 
set of spins of local conserved quantities. Thus, for every choice of the set 𝜶, there is a distinct integrable 𝑆-matrix.

Following this result, TT-perturbed theories (corresponding to having only one term in the sum, i.e. 𝑠 = 1) and their generali-

sations have been extensively studied from many different viewpoints. In fact, there were already a few interesting related results, 
even before [1]. One of the first studies of the operator TT was presented in [3], while [4] investigated the correlation functions of 
the bosonic version of the sinh-Gordon model, showing they display certain properties related to the interpretation of the model as 
sinh-Gordon perturbed by infinitely many irrelevant operators. Following these works, an analysis of the form factors of the operator 
TT in unperturbed theories appeared in [5,6].

The famous thermodynamic Bethe ansatz (TBA) study carried out in [7] provided a new viewpoint on the infrared (IR) and 
ultraviolet (UV) physics of these models. For a single TT perturbation, the properties of the theory are fundamentally different 
depending on the sign of the coupling 𝛼 ∶= 𝛼1. In particular, for 𝛼 < 0, a so-called Hagedorn transition takes place, which is associated 
with a square-root branch point appearing in the free energy at a finite, positive value of the compactification radius. In addition, 
the TBA equations dictate that while the perturbation does not change the IR properties of the model, it profoundly alters its UV 
behaviour. In fact, it is no longer a quantum or conformal field theory in the standard sense. This fact is sometimes described as a “lack 
of UV completion” or “UV fragility” and has been discussed in various places2 [11–13]. The TBA approach allowed the analysis of 
several generalisations of the TT deformation3 [24–30]. These have also been studied by other methods such as perturbed conformal 
field theory [31–38], string theory [39–42], holography [43–51], quantum gravity [13,52–56], out-of-equilibrium conformal field 
theory [57,58], long-range spin chains [59–62], and the generalised hydrodynamics (GHD) approach [63–65]. The latter treatment 
provides an alternative interpretation of the special features of generalised TT perturbations. In particular, for TT, we may see the 
CDD factor in the 𝑆-matrix as a phase factor that induces a particle length. Thus, the fundamental degrees of freedom become 
extended with positive or negative length, depending on the sign of 𝛼, which provides a new interpretation of the UV physics of 
these models. An important contribution of [63] is the realisation that the CDD factor above can be further generalised to include the 
full set of extensive conserved charges of the IQFT. A generalised perturbation in the above sense can then give rise to the 𝑆-matrices 
of any IQFT, hence achieving the original aspiration of [1] of truly constructing “the space of IQFTs”. This result goes hand in hand 
with a much better understanding of the critical role played by non-local charges in the dynamics of out-of-equilibrium integrable 
models (see e.g. [66]). This means, in particular, that the CDD factors – with some abuse of nomenclature – can also be generalised 
to introduce new bound states, in which case the spectrum of the original unperturbed theory needs to be consistently completed, as 
discussed in [63].

Recently, in a series of papers involving two of the present authors [67–69] (see also [70]), a study of the operator content of 
theories with 𝑆-matrix (1) was carried out. We employed the form factor program [71,72], a standard approach to computing the 
matrix elements of local and semi-local fields in IQFT, and applied it to generalised TT-perturbed theories. We found solutions for 
the form factors of various models and fields, establishing that, like the 𝑆-matrix, the form factors of perturbed theories factorise 
into the unperturbed form factors and a function of 𝜶. We found that the form factors may depend on additional arbitrary constants 
𝜷 = {𝛽𝑠}𝑠∈′ that arise in the solution to the minimal form factor (MFF) equations. MFFs are a fundamental building block of all 
form factor solutions. For the 𝑆-matrix (1), there is a single MFF, which satisfies the equations

𝑓 (𝜃;𝜶) = 𝑆𝜶(𝜃)𝑓 (−𝜃;𝜶) = 𝑓 (−𝜃 + 2𝜋𝑖;𝜶) . (2)

In [67,68], we showed that the most general solution to these equations is

𝑓 (𝜃;𝜶) = 𝑓 (𝜃;𝟎)𝜑𝜶(𝜃)𝐶𝜷 (𝜃) , (3)

with 𝑓 (𝜃; 𝟎) the MFF of the unperturbed theory, while4

log(𝜑𝜶(𝜃)) =
𝜃 − 𝑖𝜋
2𝜋

𝑖 log(Φ𝜶(𝜃)) , and log(𝐶𝜷 (𝜃)) =
∑
𝑠∈′

𝛽𝑠𝑚
2𝑠 cosh(𝑠𝜃) . (4)

As mentioned above, an interesting property of this solution is the presence of free parameters 𝜷, which are absent in the 𝑆-matrix. 
Whereas the function 𝜑𝜶(𝜃) is essential in solving (3), the function 𝐶𝜷 (𝜃) is a sort of CDD factor of the MFF, in the sense that any 
solution 𝜑𝜶(𝜃) can be multiplied by a function 𝐶𝜷 (𝜃) for any choice of parameters 𝜷 and any choice of integers 𝑠 ∈  ′ and still gives 

2 The nature of the UV regime has also been explored with a careful analysis of the spectrum of TT-deformed 2D Yang-Mills in [8–10].
3 An interesting generalisation is the so-called root TT deformation [14–19] which is intimately related to the Modified Maxwell (ModMax) theory [20–23].
4 The formula for 𝜑𝜶 (𝜃) was, to our knowledge, first derived by I.M. Szécsényi in an unpublished work, while its massless version appeared in an investigation in 
2

Nambu-Goto theory [11], which later turned out to be the TT deformation of a free, massless, 2-dimensional scalar field theory.
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a solution to (3). The presence of factors 𝐶𝜷 (𝜃) changes the asymptotic properties of the MFF, hence also of higher particle form 
factors, where products of 𝑓 (𝜃; 𝜶) are typically involved. According to the usual interpretation that each distinct solution to the form 
factor equations corresponds to a different local or semi-local field, it is tempting to interpret each choice of 𝜷, that is, each choice of 
the MFF, as the choice of a different building block for the form factors of local and semi-local fields. In other words, the couplings 𝜷
parametrise some kind of background feature of the theory itself, which couples to and alters all local and semi-local fields. However, 
at the moment, we do not possess enough evidence to support this interpretation, so we refrain from making a definitive statement. 
We believe this question to be important and plan to investigate it in future works.

In the analysis of [67,68], the choice 𝜷 = 𝟎 was made. Since most of the work focused on TT-perturbed theories, only a single non-

zero parameter appeared in (4). In this paper, we will see that, while the role of the parameters 𝜷 in the form factors of generalised 
TT-perturbed theories is not entirely clear, the functions 𝐶𝜷 (𝜃) play a fundamental part in the computation of the MFFs of more 
standard IQFTs.

The works [69,70] extended the study of [67,68] to a class of fields called branch point twist fields (BPTFs). These fields are 
important in the context of entanglement measures [73]; therefore, their form factors are also of interest. BPTFs emerge in replica 
theories, that is, models consisting of 𝑛 identical copies of a given IQFT and where a large amount of symmetry is present. BPTFs are 
associated with cyclic permutation symmetry, and their form factors satisfy the generalised equations proposed in [73]. The solution 
procedure also centres around an MFF which, for generalised TT-perturbed theories and particles in the same copy, satisfies a slightly 
modified version of (4), that is

𝑓𝑛(𝜃;𝜶) = 𝑆𝜶(𝜃)𝑓𝑛(−𝜃;𝜶) = 𝑓𝑛(−𝜃 + 2𝜋𝑖𝑛;𝜶) . (5)

The most general solution to this equation was simultaneously found in [69,70] and has a very similar structure to that discussed 
earlier, except that solutions now depend also on 𝑛:

𝑓𝑛(𝜃;𝜶) = 𝑓𝑛(𝜃;𝟎)𝜑𝑛𝜶(𝜃)𝐶
𝑛
𝜷
(𝜃) , (6)

with 𝑓𝑛(𝜃; 𝟎) the MFF of the unperturbed theory with 𝑓1(𝜃; 𝜶) ∶= 𝑓 (𝜃; 𝜶), and

log(𝜑𝑛
𝜶
(𝜃)) = 𝜃 − 𝑖𝜋𝑛

2𝜋𝑛
𝑖 log(Φ𝜶(𝜃)) , and log(𝐶𝑛

𝜷
(𝜃)) =

∑
𝑠∈′

𝛽𝑠𝑚
2𝑠
𝑛 cosh 𝑠𝜃

𝑛
. (7)

Even if the representation (1) suggests that the scattering matrices of generalised TT-perturbed IQFTs are fundamentally different 
from those of “standard” IQFTs, the fact is that there is no difference between the two sets provided we allow the sum over spins in (1)

to contain infinitely many terms. Stated differently, any factorisable 𝑆-matrix admits a representation (1) (or a suitable generalisation 
for a multi-particle spectrum), provided the appropriate choice of the parameters 𝛼𝑠 is made. In many cases, this choice involves 
a sum over infinitely many parameters, in which case the CDD factor Φ𝜶(𝜃) typically becomes a product of ratios of hyperbolic 
functions of the rapidities [26].

One way to think about the above statement is to consider the renowned sinh-Gordon model, which we will use as a representative 
example in this paper. The 𝑆-matrix of the sinh-Gordon model is well known to be a simple ratio of hyperbolic tangent functions of 
the rapidity and the sinh-Gordon coupling [74,75]. At the same time, it is clear that the sinh-Gordon 𝑆-matrix is a CDD factor that is 
a solution to all consistency equations for the 𝑆-matrix, which has no poles on the physical strip in rapidity space. It follows, then, 
that the sinh-Gordon 𝑆-matrix must admit a representation of the form Φ𝜶(𝜃) for particular values of 𝛼𝑠, which, as we show below, 
it does. Therefore, we expect the MFF of this theory for local, semi-local and BPTFs to be of the form (4)-(7), representations that 
are very different from the usual integral ones first proposed in [71] (and in [73] for the BPTF). Here, we will show that these two 
representations are truly equivalent, provided the functions 𝐶𝜷 (𝜃), 𝐶𝑛

𝜷
(𝜃) take a specific, non-trivial form. Our results for sinh-Gordon 

can be easily extended to other IQFTs, especially to those which are very directly related to sinh-Gordon, such as the Lee-Yang model 
[76] and the first breather sector of the sine-Gordon model [77,78].

We organised this paper as follows. Section 2 reviews some facts about the structure of the 𝑆-matrices and minimal form factors 
of IQFTs, focusing on their integral representations. In Section 3, we introduce the 𝑆-matrix of the sinh-Gordon model and recast it 
as a generalised TT-perturbed Ising field theory. In Section 4, we do the same for the MFF of the sinh-Gordon model for the case 
of local and semi-local fields. We generalise to the BPTF in Section 5. Section 6 discusses the analyticity, asymptotics and other 
properties of the MFF. We conclude in Section 7. We collect the technical derivations in Appendices A to E.

2. Building blocks and integral representations: a brief history

It is well known that the scattering amplitudes of diagonal IQFTs – that is, theories where there is no back-scattering – can be 
expressed in terms of blocks of the form [79,80]

(𝑥)𝜃 ∶=
sinh 1

2 (𝜃 + 𝑖𝜋𝑥)

sinh 1
2 (𝜃 − 𝑖𝜋𝑥)

. (8)

Such blocks are extremely natural since they easily allow for the construction of two-body scattering amplitudes 𝑆𝑎𝑏(𝜃) satisfying 
3

the properties of unitary and crossing
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𝑆𝑎𝑏(𝜃)𝑆𝑏𝑎(−𝜃) = 1 , 𝑆𝑎𝑏(𝑖𝜋 − 𝜃) = 𝑆𝑏�̄�(𝜃) = 1 . (9)

Here 𝑆𝑎𝑏(𝜃) is the scattering amplitude of the process 𝑎 + 𝑏 ↦ 𝑎 + 𝑏, and �̄� is the particle conjugate to 𝑎. In many cases, such as when 
there is a single particle in the spectrum (𝑆𝑎𝑏(𝜃) ∶= 𝑆(𝜃)), or when there is parity invariance (𝑆𝑎𝑏(𝜃) = 𝑆𝑏𝑎(𝜃)), and particles are 
self-conjugate (�̄� = 𝑎), all functions in (9) are the same. Then, it is immediate to see that the following particular block combination

[𝑥]𝜃 ∶= −(𝑥)𝜃(1 − 𝑥)𝜃 =
tanh 1

2 (𝜃 + 𝑖𝜋𝑥)

tanh 1
2 (𝜃 − 𝑖𝜋𝑥)

, (10)

satisfies the relations

[𝑥]𝜃[𝑥]−𝜃 = 1 and [𝑥]𝜃 = [𝑥]𝑖𝜋−𝜃 . (11)

This implies that any function consisting of products of these blocks will automatically satisfy unitarity and crossing. These are, 
however, not the only constraints when constructing the scattering matrices of an IQFT. The spectrum of the theory and, especially, 
its bound state structure play a critical role in deciding which specific blocks – (𝑥)𝜃 or [𝑥]𝜃 – and which values of 𝑥 are present 
in which scattering amplitude. One usually imposes these constraints via the 𝑆-matrix bootstrap equations. These will play no role 
in our work, so we will not discuss them here. As examples of the above, let us mention that the sinh-Gordon model [74,75] and 
Lee-Yang model [76] both have 𝑆-matrices consisting of just a single block [𝑥]𝜃 (in the Lee-Yang case this block also has a physical 
pole), whereas the family of minimal and affine Toda field theories generally have complicated multi-particle spectra but still admit 
𝑆-matrix representations [81,82] built out of the blocks above. Even for non-diagonal theories, such as the sine-Gordon model, the 
blocks (8) and (10) are useful. In sine-Gordon, there is a diagonal part of the spectrum (the breather sector) where the 𝑆-matrices 
can be expressed in terms of them [77,78]. Even for the non-diagonal sector, the scattering amplitudes admit integral representations 
of the same type as those that can be written for (𝑥)𝜃 and [𝑥]𝜃 . This naturally brings us to the topic of integral representations.

It is easy to show that5

(𝑥)𝜃 = −exp
⎛⎜⎜⎝2

∞

∫
0

𝑑𝑡

𝑡

sinh 𝑡(1 − 𝑥)
sinh 𝑡

sinh 𝑡𝜃
𝑖𝜋

⎞⎟⎟⎠ , (13)

for 0 < 𝑥 < 16 and, similarly,

[𝑥]𝜃 = exp
⎛⎜⎜⎝−8

∞

∫
0

𝑑𝑡

𝑡

sinh 𝑡(1−𝑥)
2 sinh 𝑡𝑥

2 sinh 𝑡

2
sinh 𝑡

sinh 𝑡𝜃
𝑖𝜋

⎞⎟⎟⎠ . (15)

It follows that all diagonal scattering matrices admit a representation in terms of products of the integral blocks above. The integral 
representations are helpful in many contexts. For instance, they allow for a universal representation of all the 𝑆-matrices of affine 
Toda field theory [82]. These are, in turn, very useful in the context of TBA and in Toda theories, to an algebraic structure which 
links the particle content of the theory to the Dynkin diagram of a finite Lie algebra [83–87].

Another context where an integral representation of the 𝑆-matrix is useful is when solving the form factor equations (2) and (5). 
It was shown in [71] that the MFF associated with an 𝑆-matrix of the form

𝑆(𝜃) = exp
⎛⎜⎜⎝

∞

∫
0

𝑑𝑡

𝑡
𝑔(𝑡) sinh 𝑡𝜃

𝑖𝜋

⎞⎟⎟⎠ , (16)

admits the representation

𝑓 (𝜗) = exp
⎛⎜⎜⎝

∞

∫
0

𝑑𝑡

𝑡

𝑔(𝑡)
sinh 𝑡

sin2
(
𝑡𝜗

2𝜋

)⎞⎟⎟⎠ , (17)

5 The minus sign can be absorbed into the integral representation by employing the formal relation

−1 = exp
⎛⎜⎜⎝±2

∞

∫
0

𝑑𝑡

𝑡
sinh 𝑡𝜃

𝑖𝜋

⎞⎟⎟⎠ , (12)

as we have done in (15).
6 For −1 < 𝑥 < 0 we can use the equality (𝑥)𝜃 = (−𝑥)−1

𝜃
, thus we have the representation

(𝑥)𝜃 = −exp
⎛⎜⎜⎝−2

∞

∫
0

𝑑𝑡

𝑡

sinh 𝑡(1 + 𝑥)
sinh 𝑡

sinh 𝑡𝜃
𝑖𝜋

⎞⎟⎟⎠ , (14)
4

instead. This is in fact the representation that is required in the sinh-Gordon case where the 𝑆-matrix is the block [−𝐵∕2]𝜃 with 0 < 𝐵 < 2.
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where 𝜗 = 𝑖𝜋 − 𝜃 and  is a normalisation constant. Here, we use the notation 𝑓 (𝜗) for the MFF. Comparing (16) to (13) and (15), 
it is clear that each 𝑆-matrix block will, in turn, contribute a factor of the type (17) to the minimal form factor.

The same ideas can be applied to the minimal form factor of BPTFs, as shown in [73]. In this case, the MFF is

𝑓𝑛(𝜗) = exp
⎛⎜⎜⎝

∞

∫
0

𝑑𝑡

𝑡

𝑔(𝑡)
sinh(𝑛𝑡)

sin2
(
𝑡𝜗

2𝜋

)⎞⎟⎟⎠ , (18)

with 𝜗 = 𝑖𝜋𝑛 − 𝜃. As expected, this reduces to 𝑓 (𝜗) for 𝑛 = 1. By construction,  = 𝑓𝑛(0). Since 2 sin2
(
𝑡𝜗

2𝜋

)
= − cos 𝑡𝜗

𝜋
+ 1, it is 

convenient to choose

 = exp
⎛⎜⎜⎝−1

2

∞

∫
0

𝑑𝑡

𝑡

𝑔(𝑡)
sinh(𝑛𝑡)

⎞⎟⎟⎠ , (19)

so that

𝑓𝑛(𝜗) = exp
⎛⎜⎜⎝−1

2

∞

∫
0

𝑑𝑡

𝑡

𝑔(𝑡)
sinh(𝑛𝑡)

cos 𝑡𝜗
𝜋

⎞⎟⎟⎠ , and 𝑓1(𝜗) ∶= 𝑓 (𝜗) . (20)

These MFFs look a priori quite different from the solutions (4) and (7). However, since the blocks (𝑥)𝜃 , [𝑥]𝜃 can also be interpreted as 
CDD factors, 𝑆-matrices made out of these blocks must be related to the deformation Φ𝜶 (𝜃) (1). Consequently, the MFFs must admit 
a representation in the form of (4) and (7). In the next section, we will see that this is indeed the case by focusing on the sinh-Gordon 
model.

We end this section by recalling that, in the literature, different MFF representations are used besides (20). A good review 
of relevant identities in this regard is the Appendix of [88]. A widely used representation is obtained by employing the integral 
representation of the Γ-function to express the formula above as an infinite product of Γ-functions. For the sinh-Gordon model, such 
a representation can be found, for example, in [89], and its generalisation to BPTFs was given in [73]. In [89], a mixed representation 
containing an integral part and a Γ-function part was also employed and motivated by the higher efficacy of its numerical evaluation. 
A mixed representation of the minimal form factor of BPTFs is presented in the Appendix of [90], where the focus was on the minimal 
𝐸8 Toda theory. However, as far as we know, a representation of the type (4) or (7) has never been investigated. The main result of 
this paper is the derivation of such a representation and a detailed study of its asymptotic and analyticity properties.

3. The sinh-Gordon model 𝑺-matrix as a CDD factor

The sinh-Gordon 𝑆-matrix is simply the block [−𝐵∕2]𝜃 = [𝐵∕2]−1
𝜃

, where 𝐵 is the sinh-Gordon coupling, which takes values 
between 0 and 2. The 𝑆-matrix is invariant under the exchange 𝐵 ↦ 2 − 𝐵, a general property of affine Toda field theories (of 
which sinh-Gordon is the simplest example) known as weak-strong duality. To simplify the following computations, we will use the 
“shifted” coupling 𝑏 = 𝐵 − 1 so that the so-called self-dual point corresponds to 𝐵 = 1, 𝑏 = 0. In terms of 𝑏, the 𝑆-matrix can be 
written as

𝑆(𝜃) =
[
− 𝑏+ 1

2

]
𝜃
=

sinh𝜃 − 𝑖 cos 𝜋𝑏2
sinh𝜃 + 𝑖 cos 𝜋𝑏2

. (21)

One way to find a generalised TT representation of this 𝑆-matrix is to start by finding an expansion for its logarithmic derivative

−𝑖
𝑑 log𝑆(𝜃)

𝑑𝜃
=

4cos 𝜋𝑏2 cosh𝜃
cos(𝜋𝑏) + cosh(2𝜃)

, (22)

and then integrate the result in 𝜃. We note that (22) admits an expansion in powers of 𝑒−|𝜃| for |𝜃| large, which is easily inferred 
from the first few terms

−𝑖 𝑑
𝑑𝜃

log𝑆(𝜃) = 4cos 𝜋𝑏
2
𝑒−|𝜃| − 4cos 3𝜋𝑏

2
𝑒−3|𝜃| + 4cos 5𝜋𝑏

2
𝑒−5|𝜃| +(

𝑒−7|𝜃|) . (23)

The pattern is clear, and to revert to an expression which is smooth and symmetric under 𝜃→ −𝜃, we can simply replace 𝑒−(2𝑘+1)|𝜃|
with cosh(2𝑘 + 1)𝜃, and propose the ansatz

−𝑖 𝑑
𝑑𝜃

log𝑆(𝜃) = 4
∞∑
𝑘=0

(−1)𝑘 cos (2𝑘+ 1)𝜋𝑏
2

cosh((2𝑘+ 1)𝜃) .

Integrating in 𝜃, multiplying by 𝑖 and exponentiating, we find the representation

𝑆(𝜃) = −exp
⎡⎢−4𝑖 ∞∑

(−1)𝑘+1
cos (2𝑘+1)𝜋𝑏

2 sinh((2𝑘+ 1)𝜃)
⎤⎥ . (24)
5

⎢⎣ 𝑘=0 2𝑘+ 1 ⎥⎦
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Fig. 1. The coefficients 𝛼𝑠𝑚
2𝑠 in the sinh-Gordon model for 𝑠 = 1,3,5,7,15,45. The higher the value of 𝑠, the larger the number of oscillations. Except for 𝑠 = 1.

Note that the overall minus sign comes from the integration constant, which we fix by requiring 𝑆(0) = −1. Comparing to the 
𝑆-matrix (1) we find that the sinh-Gordon 𝑆-matrix is exactly of the type

𝑆(𝜃) = 𝑆𝟎(𝜃)Φ𝜶(𝜃) , with 𝑆𝟎(𝜃) = −1, (25)

with the non-vanishing couplings fixed to

𝛼𝑠𝑚
2𝑠 = 4𝑖𝑠+1

𝑠
cos 𝑠𝑏𝜋

2
, with 𝑠 ∈ 2ℤ+ − 1 . (26)

We plotted them against 𝑏 for a few values of 𝑠 in Fig. 1.

Therefore, the sinh-Gordon 𝑆-matrix can be seen as that of the Ising field theory deformed by infinitely many irrelevant pertur-

bations. The deep connection between the two theories is, however, not new. For instance, in [91], the Ising model was recovered 
as a limit of the staircase model [92], related to sinh-Gordon by allowing 𝑏 to take imaginary values.

We can write

𝑆(𝜃) = −ΦshG
𝜶

(𝜃) , with 𝜶 ∶=
{

4𝑖𝑠+1

𝑠𝑚2𝑠 cos
𝑠𝑏𝜋

2

}
𝑠∈2ℤ+−1

, (27)

where we introduced the superscript ‘shG’ to distinguish this CDD factor from the general one. The sinh-Gordon model also provides 
an instructive example of how the sum log(Φ𝜶(𝜃)) can have radically different analytical properties when it runs over an infinite 
number of terms. Whereas a single irrelevant perturbation (say TT) gives rise to 𝑆-matrices that are, in a sense, abnormal – for 
instance, having very unusual asymptotic properties in rapidity space – an infinite number of such perturbations can give rise to 
𝑆-matrices which have nice physical properties and result from the (relevant) perturbation of a UV critical point.7 It is also worth 
pointing out that this analysis is easy to generalise to other IQFTs, in particular for the Lee-Yang model, whose 𝑆-matrix can be 
obtained from that sinh-Gordon by allowing |𝑏| to be larger than 1 (in fact 𝑏 = −5

3 ).

4. A new look at the sinh-Gordon minimal form factor

Now that we have seen that the sinh-Gordon 𝑆-matrix can be formally written as (24), the results of our works [67,68] tell us 
that the MFF of the sinh-Gordon model must admit a representation of the type (4) for the values of 𝛼𝑠𝑚2𝑠 given in (26) and some 
choice of the parameters 𝜷 . Here, we show how to derive this representation. Using (20), (15), and (21), we can write the logarithm 
of the MFF of the sinh-Gordon model as

𝜔(𝜗) ∶= log𝑓 (𝜗) = −4

∞

∫
0

𝑑𝑡

𝑡

sinh
(
1+𝑏
4 𝑡

)
sinh

(
1−𝑏
4 𝑡

)
sinh 𝑡

2

sinh2 𝑡
cos 𝜗𝑡

𝜋

= −

∞

∫
0

𝑑𝑡

𝑡

cos 𝜗𝑡
𝜋

sinh 𝑡
+

∞

∫
0

𝑑𝑡

𝑡

sinh
(
1+𝑏
2 𝑡

)
sinh2 𝑡

cos 𝜗𝑡
𝜋

+

∞

∫
0

𝑑𝑡

𝑡

sinh
(
1−𝑏
2 𝑡

)
sinh2 𝑡

cos 𝜗𝑡
𝜋
. (28)

Recall that 𝜗 = 𝑖𝜋 − 𝜃. Differentiating w.r.t. 𝜗, we obtain

𝜔′(𝜗) = 𝑔(𝜗) − ℎ(𝜗;𝑏) − ℎ(𝜗;−𝑏)
𝜋

, (29)

7 We wish to stress here that there is no simple and direct causal relation between the asymptotic properties of an 𝑆-matrix and the (non-)existence of a UV 
fixed point. In fact, as shown in [26,27], there exist models whose 𝑆-matrices display a “normal” asymptotic behaviour – akin to, say, sinh-Gordon or affine 
Toda field theories – and nonetheless fail to have a usual UV fixed point. Two particularly simple examples are models with 𝑆-matrices 𝑆(𝜃) = −[−𝐵∕2]𝜃 and 
6

𝑆(𝜃) = [−𝐵∕2]𝜃 [−𝐵′∕2]𝜃 , with 𝐵, 𝐵′ ∈ (0, 2).
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where

𝑔(𝜗) =

∞

∫
0

𝑑𝑡
sin 𝜗𝑡

𝜋

sinh 𝑡
, ℎ(𝜗;𝑏) =

∞

∫
0

𝑑𝑡

sinh
(
1+𝑏
2 𝑡

)
sinh2 𝑡

sin 𝜗𝑡
𝜋
. (30)

Note that when reconstructing 𝜔(𝜗) from its derivative, we need to take care of an integration constant. We will fix it below.

The evaluation of the integrals (30) is straightforward and yields

𝑔(𝜗) = 𝜋

2
tanh 𝜗

2
, ℎ(𝜗;𝑏) = 1

4
(𝑏+ 1)𝜋 sinh𝜗− 2𝜗 cos 𝜋𝑏2

cosh𝜗+ sin 𝜋𝑏

2

. (31)

These expressions can be checked by numerical integration8 or by setting 𝑛 = 1 in the results of Section 5, cf. (54). It is also useful to 
point out that the same kind of integrals are involved when we consider the contributions of individual blocks (𝑥)𝜃 , so these results 
are widely applicable. We elaborate on this in more detail in Appendix C. Thus we have

𝜔′(𝜗) =
tanh 𝜗

2
2

− 1
𝜋

𝜋

(
cosh𝜗− 𝑏 sin 𝜋𝑏

2

)
sinh𝜗− 2𝜗 cosh𝜗 cos 𝜋𝑏2

cosh2𝜗+ cos𝜋𝑏
. (32)

Looking at the expression above, we can already see a contribution involving the function (22), which we would expect from the 
formula (4). Indeed, after integration, we find the following form

𝜔(𝜗) = 1
2
log2 + log cosh 𝜗

2
− 𝑖𝜗

2𝜋
log

[
𝑖 cos 𝜋𝑏2 − sinh𝜗

𝑖 cos 𝜋𝑏2 + sinh𝜗

]

− 1
4
log

[(
cosh𝜗+ sin 𝜋𝑏

2

)(
cosh𝜗− sin 𝜋𝑏

2

)]
− 𝑏

4
log

[
cosh𝜗+ sin 𝜋𝑏

2

cosh𝜗− sin 𝜋𝑏

2

]
− 𝑖

4𝜋

[
Li2

(
−𝑖𝑒𝜗−𝑖

𝜋

2 𝑏
)
− Li2

(
𝑖𝑒
𝜗−𝑖 𝜋2 𝑏

)
+ Li2

(
−𝑖𝑒𝜗+𝑖

𝜋

2 𝑏
)
− Li2

(
𝑖𝑒
𝜗+𝑖 𝜋2 𝑏

)
+ (𝜗→ −𝜗)

]
,

(33)

where 𝜗 = 𝑖𝜋 − 𝜃, Li2(𝑧) denotes the dilogarithm

Li2(𝑧) =
∞∑
𝑘=1

𝑧𝑘

𝑘2
, (34)

and 12 log2 is the integration constant that we fixed by imposing the asymptotic condition9

lim|Re(𝜗)|→∞
𝜔(𝜗) = 0 . (35)

Remarkably, we obtain a convergent formula for the logarithm of the MFF, which is explicit and contains no integrals or infinite 
sums. Concerning the numerical evaluation of the MFF, this representation is very efficient. Our numerical experiments – performed 
with Mathematica on a standard laptop – have found that a mixed representation for the MFF takes the order of 10−3 seconds to 
evaluate, while our formula takes the order of 10−4 seconds. The evaluation speed largely depends on the particular implementation 
of the dilogarithm function used by Mathematica and may be different for other packages. In Appendix D, we comment more on the 
numerical evaluation, extension to values of |𝑏| in the region 1 < |𝑏| < 2, and the treatment of the function’s branch cuts. We present 
the numerically most efficient form of (33) for real 𝜃 values in Appendix E.

The formula (33) contains several clearly identifiable contributions:

1. The term

log cosh 𝜗
2
= log

(
−𝑖 sinh 𝜃

2

)
, (36)

contributes a factor −𝑖 sinh 𝜃

2 to the minimal form factor. This results from isolating the factor −1 in the 𝑆-matrix (the Ising 
𝑆-matrix) and produces the MFF of the Ising field theory.

8 In practice, the integrals are oscillatory, so it is best to use a cutoff Λ ≫ 1. Note also that these results are, in principle, valid for |Im(𝜃)| < 𝜋. However, we can 
consider Im(𝜃) = 𝜋 as a limiting value. We will, in any case, check the final expression, so this can be considered as some kind of ansatz, to be verified ex-post.
7

9 Strictly speaking, this holds for Im(𝜃)∕𝜋 ∈ℤ, and |𝑏| < 1. For other values of 𝜃 and 𝑏, see Appendix D.
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Fig. 2. The modulus square of the MFF for 𝑏 = 0 (red), 𝑏 = 0.7 (blue) and 𝑏 = 0.9 (green). Plotted with Mathematica from the formula (33).

2. The term

− 𝑖𝜗

2𝜋
log

[
𝑖 cos 𝜋𝑏2 − sinh𝜗

𝑖 cos 𝜋𝑏2 + sinh𝜗

]
= − 𝑖(𝑖𝜋 − 𝜃)

2𝜋
log

[
𝑖 cos 𝜋𝑏2 − sinh𝜃

𝑖 cos 𝜋𝑏2 + sinh𝜃

]
= 𝜃 − 𝑖𝜋

2𝜋
𝑖 log(ΦshG

𝜶
(𝜃)) , (37)

which is precisely the structure of 𝜑𝜶(𝜃) for 𝜶 chosen as in (26).

We now replace 𝜗 = 𝑖𝜋 − 𝜃 everywhere and, with some abuse of notation, we call the logarithm of the MFF 𝜔(𝜃). We can write (33)

as

𝜔(𝜃) = log
(
−𝑖 sinh 𝜃

2

)
+ 𝜃 − 𝑖𝜋

2𝜋
𝑖 log(ΦshG

𝜶
(𝜃)) + log(

√
2𝐶shG

𝜷
(𝜃)) , (38)

where

log(𝐶shG
𝜷

(𝜃)) = −1
4
log

[(
cosh𝜗+ sin 𝜋𝑏

2

)(
cosh𝜗− sin 𝜋𝑏

2

)]
− 𝑏

4
log

[
cosh𝜗+ sin 𝜋𝑏

2

cosh𝜗− sin 𝜋𝑏

2

]

− 𝑖

4𝜋

[
Li2

(
𝑖𝑒

−𝜃−𝑖 𝜋𝑏2
)
− Li2

(
−𝑖𝑒−𝜃−𝑖

𝜋𝑏

2
)
+Li2

(
𝑖𝑒

−𝜃+𝑖 𝜋𝑏2
)
− Li2

(
−𝑖𝑒−𝜃+𝑖

𝜋𝑏

2
)
+ (𝜃→ −𝜃)

]
. (39)

Although it is not evident from the above expression, the function log(𝐶shG
𝜷

(𝜃)) expands as predicted by (4)

log(𝐶shG
𝜷

(𝜃)) =
∑
𝑠∈′

𝛽𝑠𝑚
2𝑠 cosh(𝑠𝜃) . (40)

The derivation of this identity and the specific 𝛽𝑠 coefficients are presented in Appendix A.

5. Minimal form factor of branch point twist fields

For the BPTF, the MFF has the general form (20). In this section, we will show that this standard MFF also admits a representation 
of the type (7). The steps are very similar to those in the previous section. However, the analytic computation of the resulting integrals 
is more difficult. Similar to (28) for the BPTF, we can write

𝜔𝑛(𝜗) ∶= log(𝑓𝑛(𝜗)) = −4

∞

∫
0

𝑑𝑡

𝑡

sinh
(
𝑡(1+𝑏)

4

)
sinh

(
𝑡(1−𝑏)

4

)
sinh 𝑡

2

sinh(𝑛𝑡) sinh 𝑡
cos 𝑡𝜗

𝜋
, (41)

where we now call the MFF 𝑓𝑛(𝜗), and we recall that 𝜗 = 𝑖𝜋𝑛 − 𝜃. Just as in the previous section, we have that

𝜔′
𝑛
(𝜗) = 1

𝜋

∞

∫
0

𝑑𝑡
sin 𝑡𝜗

𝜋

sinh(𝑛𝑡)
− 1
𝜋

∞

∫
0

𝑑𝑡

sinh
(
𝑡(1+𝑏)

2

)
sin 𝑡𝜗

𝜋

sinh(𝑛𝑡) sinh 𝑡
− 1
𝜋

∞

∫
0

𝑑𝑡

sinh
(
𝑡(1−𝑏)

2

)
sin 𝑡𝜗

𝜋

sinh(𝑛𝑡) sinh 𝑡

= 1
𝜋

[
𝑔𝑛(𝜗) − ℎ𝑛(𝜗;𝑏) − ℎ𝑛(𝜗;−𝑏)

]
. (42)

We now evaluate these integrals explicitly. We find10

𝑔𝑛(𝜗) =
𝜋

2𝑛
tanh 𝜗

2𝑛
. (43)
8

10 This is identity BI (264)(16) in [93], page 509.



Nuclear Physics, Section B 1000 (2024) 116459O.A. Castro-Alvaredo, S. Negro and I.M. Szécsényi

Fig. 3. The integration contour for integral (47).

However, the integral ℎ𝑛(𝜗, 𝑏) for 𝑛 ≠ 1 is considerably more involved than the case 𝑛 = 1. Using standard methods to compute it 
(such as expanding the sinh 𝑡 in the denominator of the integrand), we immediately find ourselves with an infinite sum of Γ-functions, 
one of the standard representations of the MFF. Alternatively, we can employ contour integration as follows.

Consider again the integral

ℎ𝑛(𝜗;𝑏) =
1
2

∞

∫
−∞

𝑑𝑡
sinh 𝑡(1+𝑏)

2 sin 𝑡𝜗

𝜋

sinh(𝑛𝑡) sinh 𝑡
, (44)

where, w.r.t. the original definition, we just doubled the integration region. We introduce the integral

𝐼(𝐴,𝐵) ∶=

∞

∫
−∞

𝑑𝑡𝐹 (𝐴,𝐵, 𝑡) , with 𝐹 (𝐴,𝐵, 𝑡) = 𝑒𝐵𝑡𝑒𝑖𝐴𝑡

sinh(𝑛𝑡) sinh 𝑡
. (45)

Clearly, (44) is reproduced by the following sum

ℎ𝑛(𝜗;𝑏) =
1
8𝑖

(
𝐼

(
𝜗

𝜋
,
1 + 𝑏
2

)
− 𝐼

(
− 𝜗
𝜋
,
1 + 𝑏
2

)
− 𝐼

(
𝜗

𝜋
,−1 + 𝑏

2

)
+ 𝐼

(
− 𝜗
𝜋
,−1 + 𝑏

2

))
. (46)

We will now compute (45) by suitably deforming the integration contour.

Consider a rectangular, positively oriented contour (see Fig. 3) with horizontal segments at 𝑦 = 0 and 𝑦 = 𝜋 and vertical segments 
at 𝑥 = ±𝑅 with 𝑅 →∞. The integrand 𝐹 (𝐴, 𝐵, 𝑡) has double poles at 𝑧 = 0, 𝑖𝜋 and simple poles inside the contour at 𝑧 = 𝑖𝜋𝑘

𝑛
with 

𝑘 = 1, … , ⌈𝑛⌉ − 1 where ⌈𝑛⌉ is the ceiling function. Our integral 𝐼(𝐴, 𝐵) can then be obtained by writing

∮ 𝑑𝑧𝐹 (𝐴,𝐵,𝑧) = 𝐼(𝐴,𝐵) + (−1)𝑛𝑒𝑖𝜋𝐵−𝐴𝜋𝐼(𝐴,𝐵) +
⎡⎢⎢⎢⎣∫𝐶1 +∫

𝐶2

⎤⎥⎥⎥⎦𝐹 (𝐴,𝐵,𝑧)𝑑𝑧
= 2𝜋𝑖

⌈𝑛⌉−1∑
𝑘=1

Res
𝑧= 𝑖𝜋𝑘

𝑛

𝐹 (𝐴,𝐵,𝑧) , (47)

where the contours 𝐶1, 𝐶2 are semicircles above 𝑧 = 0 and below 𝑧 = 𝑖𝜋, and we assume – this can be easily shown – that the 
contributions of the vertical segments vanish when 𝑅 → ∞. We also used the fact that the contribution of the line 𝑧 ∈ ℝ + 𝑖𝜋 is 
proportional to the contribution of the integral along the real axis. We now compute each contribution, starting with the simplest 
one, the residua of the simple poles at 𝑖𝜋𝑘∕𝑛:

2𝜋𝑖Res
𝑧= 𝑖𝜋𝑘

𝑛

𝐹 (𝐴,𝐵,𝑧) = (−1)𝑘 2𝜋𝑒
𝑖𝜋𝑘

𝑛
(𝐵+𝑖𝐴)

𝑛 sin 𝑘𝜋

𝑛

. (48)

The integrals over the two semicircles are also easy to evaluate as half the residue at the relevant pole (with an additional sign in the 
case of 𝐶1 due to the orientation of the contour). This gives

∫
𝐶1

𝐹 (𝐴,𝐵,𝑧)𝑑𝑧 = − 𝑖𝜋(𝐵 + 𝑖𝐴)
𝑛

, and ∫
𝐶2

𝐹 (𝐴,𝐵,𝑧) = 𝑒𝑖𝜋(𝐵+𝑖𝐴)(−1)𝑛 𝑖𝜋(𝐵 + 𝑖𝐴)
𝑛

. (49)
9

Hence, we have
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𝐼(𝐴,𝐵) + (−1)𝑛𝑒𝑖𝜋𝐵−𝐴𝜋𝐼(𝐴,𝐵) +
⎡⎢⎢⎢⎣∫𝐶1 +∫

𝐶2

⎤⎥⎥⎥⎦𝐹 (𝐴,𝐵,𝑧)𝑑𝑧
= 𝐼(𝐴,𝐵)

(
1 + (−1)𝑛𝑒𝑖𝜋(𝐵+𝑖𝐴)

)
− 𝑖𝜋

𝑛
(𝐵 + 𝑖𝐴)(1 + (−1)𝑛+1𝑒𝑖𝜋(𝐵+𝑖𝐴))

=
⌈𝑛⌉−1∑
𝑘=1

(−1)𝑘 2𝜋𝑒
𝑖𝜋𝑘

𝑛
(𝐵+𝑖𝐴)

𝑛 sin 𝑘𝜋

𝑛

. (50)

So, 𝐼(𝐴, 𝐵) receives two contributions, one from the semicircles and one from the residua. We can write

𝐼(𝐴,𝐵) = 𝐼1(𝐴,𝐵) + 𝐼2(𝐴,𝐵) , (51)

with

𝐼1(𝐴,𝐵) ∶=
𝑖𝜋

𝑛
(𝐵 + 𝑖𝐴) 1 − (−1)𝑛𝑒𝑖𝜋(𝐵+𝑖𝐴)

1 + (−1)𝑛𝑒𝑖𝜋(𝐵+𝑖𝐴)
, (52)

and

𝐼2(𝐴,𝐵) ∶=
𝑛−1∑
𝑘=1

2𝜋(−1)𝑘

𝑛 sin 𝜋𝑘

𝑛

𝑒
𝑖𝜋𝑘

𝑛
(𝐵+𝑖𝐴)

1 + (−1)𝑛𝑒𝑖𝜋(𝐵+𝑖𝐴)
. (53)

With the help of Mathematica, it is relatively easy to show that

ℎ𝑛(𝜗;𝑏) =
1
4𝑛

(𝑏+ 1)𝜋 sinh𝜗+ (−1)𝑛2𝜗 cos 𝜋𝑏2
cosh𝜗− (−1)𝑛 sin 𝜋𝑏

2

+ 1
8𝑖

(
𝐼2

(
𝜗

𝜋
,
1 + 𝑏
2

)
− 𝐼2

(
− 𝜗
𝜋
,
1 + 𝑏
2

)
− 𝐼2

(
𝜗

𝜋
,−1 + 𝑏

2

)
+ 𝐼2

(
− 𝜗
𝜋
,−1 + 𝑏

2

))
,

(54)

and the contribution from the functions 𝐼1(𝐴, 𝐵, 𝑡) to the sum ℎ𝑛(𝜗; 𝑏) + ℎ𝑛(𝜗; −𝑏) is

(−1)𝑛2𝜗 cosh 𝜋𝑏

2 cosh𝜗+ 𝜋(cosh𝜗+ (−1)𝑛𝑏 sin 𝜋𝑏

2 ) sinh𝜗
𝑛(cosh2𝜗+ cos(𝜋𝑏))

. (55)

Note that all the (−1)𝑛 terms are cancelled out if we rewrite the formulae in terms of 𝜃 rather than 𝜗. The integral of this term 
will give us a non-trivial part of the minimal form factor. In particular, the first term is proportional to (22), so its integration will 
produce the logarithm of the 𝑆-matrix that we expect from (7). We can also see it simplifies to part of (32) in the 𝑛 = 1 limit.

Putting everything together, we then have

𝜔′
𝑛
(𝜗) = 1

2𝑛
tanh 𝜗

2𝑛
−

(−1)𝑛2𝜗 cosh 𝜋𝑏

2 cosh𝜗+ 𝜋(cosh𝜗+ (−1)𝑛𝑏 sin 𝜋𝑏

2 ) sinh𝜗
𝜋𝑛(cosh2𝜗+ cos(𝜋𝑏))

− 1
8𝑖𝜋

(
𝐼2

(
𝜗

𝜋
,
1 + 𝑏
2

)
− 𝐼2

(
− 𝜗
𝜋
,
1 + 𝑏
2

)
− 𝐼2

(
𝜗

𝜋
,−1 + 𝑏

2

)
+ 𝐼2

(
− 𝜗
𝜋
,−1 + 𝑏

2

)
+ (𝑏↦ −𝑏)

)
.

(56)

Now, we need to integrate these functions. The first line is similar to the 𝑛 = 1 case and gives a similar result. However, the 
contribution from 𝐼2(𝐴, 𝐵) is unique to the BPTF and is indeed vanishing for 𝑛 = 1 (the sum over residues is not present in this case). 
Using Mathematica, we can show that

∫
(
𝐼2

(
𝜗

𝜋
,𝐵

)
− 𝐼2

(
− 𝜗
𝜋
,𝐵

))
𝑑𝜗 =

𝑛−1∑
𝑘=1

2𝜋(−1)𝑘

𝑘 sin 𝜋𝑘

𝑛

(𝜗,𝐵,𝑘) , (57)

with

(𝜗,𝐵,𝑘) = 𝑒
𝑖𝜋𝑘𝐵

𝑛

[
−𝑒−

𝑘𝜗

𝑛 + 𝑒−
𝑘𝜗

𝑛 2𝐹1(1,−
𝑘

𝑛
,1 − 𝑘

𝑛
; (−1)𝑛+1𝑒−𝑖𝜋𝐵+𝜗)

−𝑒
𝑘𝜗

𝑛 2𝐹1(1,
𝑘

𝑛
,1 + 𝑘

𝑛
; (−1)𝑛+1𝑒𝑖𝜋𝐵+𝜗)

]
=(−𝜗,𝐵,𝑘) , (58)

given in terms of hypergeometric functions. For integer 𝑘, 𝑛 while 𝑘 < 𝑛, the following relations hold

2𝐹1

(
1, 𝑘
𝑛
,1 + 𝑘

𝑛
;𝑧
)
= − 𝑘

𝑛
𝑧−𝑘∕𝑛

∑𝑛−1
𝑙=0 𝑒

−2𝜋𝑖𝑙𝑘∕𝑛 log(1 − 𝑧1∕𝑛𝑒2𝜋𝑖𝑙∕𝑛) , (59)

2𝐹1

(
1,−𝑘

𝑛
,1 − 𝑘

𝑛
;𝑧
)
= 1 + 𝑘

𝑛
𝑧𝑘∕𝑛

∑𝑛−1
𝑙=0 𝑒

2𝜋𝑖𝑙𝑘∕𝑛 log(1 − 𝑧1∕𝑛𝑒2𝜋𝑖𝑙∕𝑛) . (60)
10

Utilising this, we can simplify the combinations of the  terms. By introducing
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Fig. 4. The square of the MFF for 𝑏 = 0 (red), 𝑏 = 0.7 (blue) and 𝑏 = 0.9 (green) and for 𝑛 = 2 and 𝑛 = 7. Plotted with Mathematica from the formula (62). Although 
both figures, as well as Fig. 2, look almost identically, they are all subtly different.

(𝜗, 𝑏, 𝑘) = log
[
cos 𝑏𝜋

2𝑛
+ cos 𝑘𝜋 + 2𝑖𝜗

2𝑛

]
, (61)

the logarithm of the MFF of the BPTF takes the form

𝜔𝑛(𝜗) =
2𝑛− 1
2𝑛

log2 + log cosh 𝜗

2𝑛
+ 𝑖𝜗(−1)𝑛

2𝜋𝑛
logΦshG

𝜶
(𝜗)

− 1
4𝑛

log
[(

cosh𝜗− (−1)𝑛 sin 𝜋𝑏
2

)(
cosh𝜗+ (−1)𝑛 sin 𝜋𝑏

2

)]
− 𝑏

4𝑛
log

[
cosh𝜗− (−1)𝑛 sin 𝜋𝑏

2

cosh𝜗+ (−1)𝑛 sin 𝜋𝑏

2

]

+ 𝑖(−1)𝑛

4𝜋𝑛

[
Li2

(
−𝑖𝑒𝜗−𝑖

𝜋

2 𝑏
)
− Li2

(
𝑖𝑒
𝜗−𝑖 𝜋2 𝑏

)
+ Li2

(
−𝑖𝑒𝜗+𝑖

𝜋

2 𝑏
)
− Li2

(
𝑖𝑒
𝜗+𝑖 𝜋2 𝑏

)
+ (𝜗→ −𝜗)

]
−

⌊𝑛∕2⌋∑
𝑘=1

𝑛+ 1 − 2𝑘
2𝑛

[(𝜗, 𝑏,3 − 4𝑘) +(−𝜗, 𝑏,3 − 4𝑘) −(𝜗, 𝑏,1 − 4𝑘) −(−𝜗, 𝑏,1 − 4𝑘)] ,

(62)

where 𝜗 = 𝑖𝜋𝑛 − 𝜃.

The above expression is, once again, a new convergent and explicit representation of the MFF, which no longer involves any 
integrals or infinite sums.11 Recall that ΦshG

𝜶
(𝜗) = −𝑆(𝜃). As before, the requirement for the asymptotics fixes the integration constant. 

The term log cosh 𝜗

2𝑛 is the logarithm of the MFF in the Ising field theory, and the term involving ΦshG
𝜶

(𝜗) is the main term in the 
representation (7). As in the previous section, with some abuse of notation, we rewrite the function completely in terms of the 
variable 𝜃 and get

𝜔𝑛(𝜃) = log
(
−𝑖 sinh 𝜃

2𝑛

)
+ 𝜃 − 𝑖𝜋𝑛

2𝜋𝑛
𝑖 log(ΦshG

𝜶
(𝜃)) + log(21−

1
2𝑛 𝐶shG

𝜷
(𝜃;𝑛)) . (63)

The function 𝐶shG
𝜷

(𝜃; 𝑛) can be expanded in terms of functions cosh 𝑠𝜃

𝑛
as shown in Appendix B. The constant term in the represen-

tation (62) is fixed by the asymptotics for |𝜗| large. As we see in Fig. 4, this is such that the modulus tends to value 1 in this limit. 
We comment on the possible branch cuts, the extension for theories with 1 < |𝑏| < 2 and the numerical evaluation of the function in 
Appendix D. A slight modification of (62) and of its 𝑛 = 1 version (33), which is more numerically efficient by halving the number of 
the dilogarithm functions involved, is presented in Appendix E.

6. Important properties of the MFF

The relationship between the MFF of the sinh-Gordon model and the MFF of a generalised TT-perturbed theory that we have 
established in the previous two sections is instructive, especially in helping us understand the role of the functions 𝐶𝜷 (𝜃) and 𝐶𝑛

𝜷
(𝜃)

in the minimal form factors (4) and (7).

On the one hand, we know that these functions are not essential for solving the form factor equations. Indeed, in our works 
[67–69], we set them to 1. We have, in fact, infinitely many minimal solutions to the two-particle form factor equations, each 
parameterised by a particular choice of 𝜷 . In the TT context, this is problematic since we have no physical intuition that helps us 
single out a specific choice of the parameters 𝜷 .

On the other hand, we have just shown that the standard representations of MFFs (20) correspond to a very precise, non-trivial 
choice of the functions 𝐶𝜷 (𝜃) and 𝐶𝑛

𝜷
(𝜃). Why is this then the “canonical” choice? A simple answer is that the integral representation 

satisfies the bootstrap equations in a very “natural” way. In other words, given the 𝑆-matrix (16), the function (20) is an obvious 
solution to the equations (2). However, the fundamental mathematical properties that come into play are asymptotics and analyticity.

11 Note that all the factors (−1)𝑛 are cancelled when we write the formula in terms of the variable 𝜃 using 𝜗 = 𝑖𝜋𝑛 − 𝜃. This is important if we want to analytically 
11

continue the formula for non-integer values of 𝑛. This can be done only after expressing everything in terms of 𝜃.
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1. Analyticity: MFFs are minimal, meaning they only have poles on the physical strip if these are related to bound state formation, 
and such poles are located at specific points on the imaginary 𝜃 axis.12 From the 𝑆-matrix (21), we see that in the case of 
sinh-Gordon theory, i.e. 0 ⩽ |𝑏| < 1, there are no bound state poles, but in the case of 1 < |𝑏| ⩽ 2, the singularity of the 𝑆-matrix 
leads to poles at 𝜃 = 𝑖 𝜋2 (|𝑏| − 1) and 𝜃 = 𝑖 𝜋2 (5 − |𝑏|) inside the physical strip for the MFF.

However, the singularity structure of the MFF would be even more involved if the function 𝐶shG
𝜷

(𝜃) were not present. The term 
− 𝑖𝜗

2𝜋 logΦ
shG
𝜶

(𝜃) has singularities at

𝜃±
𝑘
= 𝑖𝜋

2
(1 ± 𝑏) + 𝑖𝜋𝑘 , (64)

that would produce non-physical poles and zeros for the MFF inside the physical strip. The role of the logarithm contributions in 
log(𝐶shG

𝜷
(𝜗)) is exactly to cancel out these extra singularities. The logarithm terms also introduce branch cuts into 𝜔(𝜗), and we 

must be careful in defining the continuous function that reproduces the MFF. We present the details of the extra pole cancellation 
and the definition of 𝜔(𝜗) without unphysical discontinuities (see Appendix D for more details).

2. Asymptotics: The asymptotic properties of the representation (20) are under exceptionally good control for the type of functions 
𝑔(𝑡) that result from standard 𝑆-matrix blocks. It is easy to show that an integral of the type

exp
⎡⎢⎢⎢⎣2

∞

∫
0

𝑑𝑡

𝑡

cosh
(
(𝛼 − 1

2 )𝑡
)

sinh(𝑛𝑡) cosh 𝑡

2

sin2 𝑡𝜗
2𝜋

⎤⎥⎥⎥⎦ , (65)

grows as −𝑖𝑒
𝜃

2𝑛 for |Re(𝜃)| →∞. This can be shown by changing variables to 𝑥 = 𝑡𝜃 and then expanding the integrand for small 
values of 𝑥∕𝜃 and integrating the result. For the standard minimal form factor, the same applies to 𝑛 = 1.

In the sinh-Gordon case, we have the interplay of the exponential behaviour of two blocks and the Ising minimal form factor for 
large |𝜗| that produces constant asymptotics. This is a feature of the MFFs of many IQFTs.

The contribution − 𝑖𝜗

2𝜋 logΦ
shG
𝜶

(𝜗) scales as − |𝜗|
2 for large |𝜗|, which is compensated by the Ising MFF. We can then ask what is 

the role played by the function 𝐶shG
𝜷

(𝜗) in determining this asymptotics. It is easy to show from (39) that

log(𝐶shG
𝜷

(𝜗)) ≈ 1
2
log2 for |Re(𝜗)|→∞ . (66)

If we look in detail at how this asymptotics is achieved, we have that the two logarithmic terms in the first line of (39) scale 
as |𝜗|2 + 1

2 log2 while the dilogarithms in the second line scale as − |𝜗|
2 , hence producing constant asymptotics. As we discussed 

in the previous point, the proper analytic behaviour of the MFF demands the presence of the logarithmic terms, but such terms 
on their own would alter the asymptotics of the MFF. Thus, the dilogarithm terms are crucial in compensating for this effect 
without introducing new singularities inside the physical strip. Note that the dilogarithm function has a branch cut, but it is 
regular at the branch point (Li2(1) = 𝜋2∕6); hence it does not introduce new poles/singularities.

3. Other properties: It is worth mentioning that one of the most useful properties of the MFF of the sinh-Gordon model, i.e.

𝑓 (𝜗)𝑓 (𝑖𝜋 − 𝜗) = sinh𝜗
sinh𝜗+ 𝑖 cos 𝜋𝑏2

. (67)

This plays a central role in determining the exact form of higher particle form factors, including their asymptotic properties. Any 
term in 𝐶shG

𝜷
(𝜃) that involves odd couplings 𝛽2𝑘+1 does not contribute to this property simply because

cosh((2𝑘+ 1)𝜗) + cosh((2𝑘+ 1)(𝑖𝜋 − 𝜗)) = 0 . (68)

On the contrary, the even couplings 𝛽2𝑘 all contribute and are instrumental for the property (67) to hold.

In summary, the function 𝐶shG
𝜷

(𝜃) is crucial to ensure the analyticity and asymptotic properties of the MFF. Every part of the function 
plays a significant role, which in terms of the couplings 𝜷 means that all couplings, both with even and odd indexes, with their 
particular values as determined in Appendix A, are relevant to achieving the MFF’s desired properties. It also plays a role in the 
expression of the polynomial part (not including the poles) of higher particle form factors, but in this case, only terms associated 
with couplings 𝛽2𝑘 with even index play a role. This means, in particular, that the dilogarithm functions are not involved; only 
elementary functions contribute to determining the elementary symmetric polynomials that characterise the higher particle form 
factors of the sinh-Gordon model, as famously established in [89,94,95].

Our focus on asymptotics stems from the fact that it plays an important role in the convergence of correlation functions. Indeed, 
the growth of form factors for particular local fields is constrained by the short-distance asymptotics of two-point functions. This was 

12 In some conventions, the bound state singularities are factored out of the MFF, and there are no singularities in the physical strip. However, (28) and (41) are 
defined in such a way as to include such singularities for the appropriate choice of the coupling 𝑏. This is further discussed in Appendix D when examining the 
12

Lee-Yang theory.
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established in [96,97] by showing that the form factor expansion of a two-point function ⟨(0)†(𝑟)⟩ can only be convergent if the 
form factors of  diverge at most as

lim|𝜃𝑖|→∞
𝐹
𝑘
(𝜃1,… , 𝜃𝑘) ∼ 𝑒𝑦|𝜃𝑖| , with 𝑦 ⩽Δ , (69)

where Δ is the conformal dimension of the field in the underlying UV theory.

A further constraint comes from the property of cluster decomposition in momentum space [98], which states that

lim
𝜆→∞

𝐹
1
𝑝 (𝜃1 + 𝜆,… , 𝜃𝑘 + 𝜆, 𝜃𝑘+1,… , 𝜃𝑝) ∼ 𝐹

2
𝑘

(𝜃1,… , 𝜃𝑘)𝐹
3
𝑝−𝑘(𝜃𝑘+1,… , 𝜃𝑝) , (70)

where, in many cases, all three fields are the same, as assumed in [98], but not always. For example, in the Ising model, the form 
factors of the fields 𝜎 and 𝜇 mix under clustering and in more complicated theories, there can be a rich structure emerging from 
clustering (see, for instance, [99]). These properties provide strict constraints that allow for the identification of the field content of 
the theory.

6.1. Generalised TT perturbations

Having discussed the sinh-Gordon case, seen as the Ising model perturbed by an infinite set of generalised TT perturbations, we 
now consider what our conclusions say about the case of a finite number of perturbations, for example, just TT. One of the aims of 
this study was to get an understanding of the role played by the generic functions 𝐶𝜷(𝜃) in (4), and we have seen that this function 
plays a key role in standard IQFTs and that its main role is to ensure analyticity of the MFF.

In the TT case, however, the function logΦ𝜶(𝜃) is generally analytic since Φ𝜶(𝜃) is a simple exponential. Thus, the role of 𝐶𝜷 (𝜃)
must be a different one. In this case, the asymptotics of the MFF is also very different from that found for sinh-Gordon. As discussed in 
[67,68], it is dominated by either double-exponential growth (if the coupling of the most divergent term 𝛼𝑠 or 𝛽𝑠 is greater than zero) 
or double-exponential decrease when the coupling is negative. In the case of double-exponential growth, the form factor expansion 
of two-point functions is clearly divergent since the form factors violate the constraint (69). In the case of a double-exponential 
decrease, the constraint (69) is certainly respected, and therefore two-point functions scale as power-laws at short distances.

As for clustering, the limit above 𝜆 ↦∞ produces either a divergent result (for positive coupling) or zero (for negative coupling); 
hence cluster decomposition does not allow for the construction of new solutions from known ones.

We may consider whether it is possible to choose 𝐶𝜷 (𝜃) in such a way as to produce an MFF which tends asymptotically to a 
constant. While this is not possible with a finite number of 𝛽s, it may be possible if infinitely many 𝛽s are non-zero. Preliminary 
results suggest that, in that case, the price to pay is loss of analyticity, hence solving a problem by creating a worse one.

In summary, the role played by the function 𝐶𝜷 (𝜃) is clear for a model such as sinh-Gordon and allows us to develop a new 
appreciation for the delicate balance of properties that are achieved by the standard integral representation of MFFs. However, for 
theories perturbed by a finite number of irrelevant perturbations, the physical and mathematical constraints that should be imposed 
on this function remain elusive for now.

7. Conclusion

In this paper, we have shown that the minimal form factor, a function which plays a very important role in the computation 
of form factors in IQFTs via the form factor program [71,72], admits a new representation. This representation is inspired by the 
corresponding representation found for generalised TT-perturbed IQFTs and provides support for the statement that – at least most 
– IQFTs can be interpreted in two equivalent ways: as relevant massive perturbation of a conformal critical point or as theories 
constructed via a finely tuned infinite set of irrelevant perturbations away from a known IQFT. In fact, the sinh-Gordon example 
suggests that this known IQFT might always be either a free boson or a free fermion theory, depending on whether 𝑆𝑎𝑎(0) = ±1. This 
is in agreement with the conclusions of [63] where this precise statement was shown in more generality. A nice discussion of how a 
set of irrelevant perturbations can be used to “redirect” the RG flow to a different critical point can be found in [29,30,100].

Our study is easily generalisable to other diagonal IQFTs. In some cases, this generalisation is immediate, like for the Lee-Yang 
model, where the 𝑆-matrix is obtained by setting the sinh-Gordon coupling to a specific value 𝑏 = 𝐵 − 1 = −5

3 beyond its usual 
range (this introduces a pole in the 𝑆-matrix) but does not change the spectrum of the theory since the bound state pole is the same 
fundamental particle (i.e. 𝑎 + 𝑎 ↦ 𝑎). Even in the sine-Gordon model, our results find a direct application since the sinh-Gordon 
𝑆-matrix is precisely the first breather 𝑆-matrix after an appropriate analytic continuation of the coupling. More generally, the 
sinh-Gordon 𝑆-matrix is a standard block from which all diagonal IQFT 𝑆-matrices can be built.

Our work provides an interesting new perspective on a very old problem, the computation of the MFF, and extends the connection 
between known IQFT 𝑆-matrices and the 𝑆-matrices of TT-perturbed theories to a connection between their respective MFFs. It also 
provides new insights into how the key analyticity and asymptotic properties of MFFs result from a subtle balancing act between 
different contributions, which are neatly separated in our TT-inspired representation.

We find it remarkable that nearly 45 years after the work [71], we now have a new representation of their MFF. This is given in 
terms of a small number of elementary and dilogarithm functions, and it involves no integrals, no infinite sums or infinite products. It 
is also a very numerically efficient representation, and we expect it will be useful in future numerical studies of correlation functions 
13

in IQFTs.
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Appendix A. The expansion of function 𝑪𝐬𝐡𝐆
𝜷

(𝜽)

Consider the function (39). For simplicity, we will restrict ourselves to 𝜃 ∈ℝ and |𝑏| < 1. The second line, involving dilogarithms, 
admits an expansion in terms of cosh(𝑠𝜃) functions, with 𝑠 odd since, for any constant 𝑎

Li2
(
𝑎𝑒𝜃

)
+ Li2

(
𝑎𝑒−𝜃

)
= 2

∞∑
𝑘=1

𝑎𝑘 cos(𝑘𝜃)
𝑘2

, (71)

thus

Li2
(
𝑖𝑒

−𝜃−𝑖 𝜋𝑏2
)
− Li2

(
−𝑖𝑒−𝜃−𝑖

𝜋𝑏

2
)
+ Li2

(
𝑖𝑒

−𝜃+𝑖 𝜋𝑏2
)
− Li2

(
−𝑖𝑒−𝜃+𝑖

𝜋𝑏

2
)
+ (𝜃→ −𝜃)

= 8𝑖
∞∑
𝑘=1

cos 𝑏𝑘𝜋2 sin 𝑘𝜋

2
𝑘2

cos(𝑘𝜃) = 8𝑖
∞∑
𝑘=0

(−1)𝑘 cos 𝑏(2𝑘+1)𝜋2
(2𝑘+ 1)2

cosh((2𝑘+ 1)𝜃) . (72)

As for the other functions, we obtain contributions proportional to either

log
(
−cosh𝜃 + sin 𝜋𝑏

2

)(
−cosh𝜃 − sin 𝜋𝑏

2

)
= 2 log( 𝑒

|𝜃|
2

) + 2
∞∑
𝑘=1

(−1)𝑘+1 cos𝜋𝑘𝑏
𝑘

𝑒−2𝑘|𝜃| , (73)

or

log

(
−cosh𝜃 + sin 𝜋𝑏

2

−cosh𝜃 − sin 𝜋𝑏

2

)
= 4

∞∑
𝑘=0

(−1)𝑘 sin 𝜋(2𝑘+1)𝑏
2

2𝑘+ 1
𝑒−(2𝑘+1)|𝜃| . (74)

Symmetrising in 𝜃 allows us to replace all exponentials with cosh functions. Putting everything together, we then find:

log(𝐶shG
𝜷

(𝜃)) = 1
2
log2 − 1

2

∞∑
𝑘=1

(−1)𝑘+1 cos𝜋𝑘𝑏
𝑘

cosh(2𝑘𝜃)

−𝑏
∞∑
𝑘=0

(−1)𝑘 sin 𝜋(2𝑘+1)𝑏
2

2𝑘+ 1
cosh((2𝑘+ 1)𝜃)

+ 2
𝜋

∞∑
𝑘=0

(−1)𝑘 cos 𝑏(2𝑘+1)𝜋2
(2𝑘+ 1)2

cosh((2𝑘+ 1)𝜃) . (75)

This result shows that the function 𝐶𝜷 (𝜃) that enters the general solution (3) and which we set to 1 in our previous works [67–69], 
plays an important role in the usual representation of the MFF. In addition, we see that both even and odd values of spin are involved 
14

and that there are infinitely many terms.
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Appendix B. The expansion of function 𝑪𝐬𝐡𝐆
𝜷

(𝜽; 𝒏)

We have from Section 5 that

log𝐶shG
𝜷

(𝜃;𝑛) = 1
𝑛
log𝐶shG

𝜷
(𝜃) (76)

+ 𝑖

4

⌈𝑛⌉−1∑
𝑘=1

(−1)𝑘

𝑘 sin 𝜋𝑘

𝑛

[(𝜗, 1 + 𝑏
2

, 𝑘) −(𝜗,−1 + 𝑏
2

, 𝑘) +(𝜗, 1 − 𝑏
2

, 𝑘) −(𝜗,−1 − 𝑏
2

, 𝑘)
]
.

Consider once more 𝜃 ∈ℝ and |𝑏| < 1. Then, the first line admits the same expansion we found in Appendix A, whereas the second 
line is a combination of exponential and hypergeometric functions that we now proceed to expand. From the definition (58) we can 
write

(𝑖𝜋𝑛− 𝜃,𝐵,𝑘) = (−1)𝑘𝑒
𝑖𝜋𝑘𝐵

𝑛

[
−𝑒

𝑘𝜃

𝑛 + 𝑒
𝑘𝜃

𝑛 2𝐹1(1,−
𝑘

𝑛
,1 − 𝑘

𝑛
;−𝑒−𝑖𝜋𝐵−𝜃)

−𝑒−
𝑘𝜃

𝑛 2𝐹1(1,
𝑘

𝑛
,1 + 𝑘

𝑛
;−𝑒𝑖𝜋𝐵−𝜃)

]
, (77)

and since (𝑖𝜋𝑛 − 𝜃, 𝐵, 𝑘) =(𝑖𝜋𝑛 + 𝜃, 𝐵, 𝑘) (this can be checked numerically but also shown from the properties of hypergeometric 
functions) we can also symmetrise in 𝜃 to

(𝑖𝜋𝑛− 𝜃,𝐵,𝑘) = 1
2
(−1)𝑘𝑒

𝑖𝜋𝑘𝐵

𝑛

[
−2cosh 𝑘𝜃

𝑛
+ 𝑒

𝑘𝜃

𝑛 2𝐹1(1,−
𝑘

𝑛
,1 − 𝑘

𝑛
;−𝑒−𝑖𝜋𝐵−𝜃)

+𝑒−
𝑘𝜃

𝑛 2𝐹1(1,−
𝑘

𝑛
,1 − 𝑘

𝑛
;−𝑒−𝑖𝜋𝐵+𝜃) − 𝑒−

𝑘𝜃

𝑛 2𝐹1(1,
𝑘

𝑛
,1 + 𝑘

𝑛
;−𝑒𝑖𝜋𝐵−𝜃)

−𝑒
𝑘𝜃

𝑛 2𝐹1(1,
𝑘

𝑛
,1 + 𝑘

𝑛
;−𝑒𝑖𝜋𝐵+𝜃)

]
. (78)

We have that

2𝐹1(1,±
𝑘

𝑛
,1 ± 𝑘

𝑛
;𝑥) = 1 + 𝑘

∞∑
𝑝=1

𝑥𝑝

𝑘± 𝑝𝑛
. (79)

So,

(𝑖𝜋𝑛− 𝜃,𝐵,𝑘) = −(−1)𝑘𝑒
𝑖𝜋𝑘𝐵

𝑛 cosh 𝑘𝜃
𝑛

+ (−1)𝑘𝑒
𝑖𝜋𝑘𝐵

𝑛 𝑘

∞∑
𝑝=1

(−1)𝑝𝑒−𝑖𝜋𝑝𝐵 cosh (𝑘−𝑝𝑛)𝜃
𝑛

𝑘− 𝑝𝑛

−(−1)𝑘𝑒
𝑖𝜋𝑘𝐵

𝑛 𝑘

∞∑
𝑝=1

(−1)𝑝𝑒𝑖𝜋𝑝𝐵 cosh (𝑘+𝑝𝑛)𝜃
𝑛

𝑘+ 𝑝𝑛
, (80)

and, the combinations in (77) give

(𝑖𝜋𝑛− 𝜃,𝐵,𝑘) −(𝑖𝜋𝑛− 𝜃,−𝐵,𝑘) = −2𝑖(−1)𝑘 sin 𝜋𝑘𝐵
𝑛

cosh 𝑘𝜃
𝑛

+2𝑖(−1)𝑘𝑘
∞∑
𝑝=1

(−1)𝑝 sin (𝑘−𝑝𝑛)𝐵
𝑛

cosh (𝑘−𝑝𝑛)𝜃
𝑛

𝑘− 𝑝𝑛

−2𝑖(−1)𝑘𝑘
∞∑
𝑝=1

(−1)𝑝 sin (𝑘+𝑝𝑛)𝐵
𝑛

cosh (𝑘+𝑛𝑝)𝜃
𝑛

𝑘+ 𝑝𝑛
. (81)

This shows that indeed, in the case of the BPTF, the MFF does include terms of the form cosh 𝑠𝜃

𝑛
which we can associate with 

fractional spin and such terms are essential in the construction of a MFF, which has the desired asymptotic properties. The presence 
of this type of terms was first postulated in [69,70].

Appendix C. Minimal form factor contribution for a basic 𝑺-matrix block

We have already mentioned that our discussion of the sinh-Gordon model is easily generalisable to any theories with diagonal 
𝑆-matrices. However, in order to make our results more readily usable, we present here the derivation of the minimal form factor 
contribution of the most basic 𝑆-matrix block, that is (𝑥)𝜃 defined in equation (8). Let us also recall equation (14), which we write 
here again

(𝑥)𝜗 = −exp
⎛⎜−2 ∞

𝑑𝑡 sinh 𝑡(1 + 𝑥) sinh 𝑡𝜗
⎞⎟ = exp

⎛⎜2 ∞
𝑑𝑡 sinh 𝑡− sinh 𝑡(1 + 𝑥) sinh 𝑡𝜗

⎞⎟ . (82)
15

⎜⎝ ∫
0

𝑡 sinh 𝑡 𝑖𝜋 ⎟⎠ ⎜⎝ ∫
0

𝑡 sinh 𝑡 𝑖𝜋 ⎟⎠
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Following the construction of Section 2, we know that such a block would give rise to a corresponding minimal form factor block of 
the form

𝑓𝑥(𝜗) = exp
⎛⎜⎜⎝−

∞

∫
0

𝑑𝑡

𝑡

sinh 𝑡− sinh 𝑡(1 + 𝑥)
sinh2 𝑡

cos 𝑡𝜗
𝜋

⎞⎟⎟⎠ . (83)

Proceeding as in Section 4, we call the logarithm of the function above 𝜔𝑥(𝜗) and compute its derivative

𝜔𝑥(𝜗) = −

∞

∫
0

𝑑𝑡

𝑡

cos 𝑡𝜗
𝜋

sinh 𝑡
+

∞

∫
0

𝑑𝑡

𝑡

sinh 𝑡(1 + 𝑥)
sinh2 𝑡

cos 𝑡𝜗
𝜋
, (84)

so

𝜔′
𝑥
(𝜗) =

∞

∫
0

𝑑𝑡

𝜋

sin 𝑡𝜗

𝜋

sinh 𝑡
−

∞

∫
0

𝑑𝑡

𝜋

sinh 𝑡(1 + 𝑥)
sinh2 𝑡

sin 𝑡𝜗
𝜋
. (85)

Comparing with equations (29)-(30) we have that

𝜔′
𝑥
(𝜗) = 𝑔(𝜗) − ℎ(𝜗; 1 + 2𝑥)

𝜋
, (86)

with 𝑔(𝜗) and ℎ(𝜗; 1 + 2𝑥) given by the same formulae (31) which we recall below

𝑔(𝜗) = 𝜋

2
tanh 𝜗

2
, ℎ(𝜗; 1 + 2𝑥) = 1

2
(1 + 𝑥)𝜋 sinh𝜗+ 𝜗 sin𝜋𝑥

cosh𝜗+ cos𝜋𝑥
. (87)

The integral of 𝑔(𝜗) is simple and was already given earlier in (36). The integral of ℎ(𝜗; 1 − 2𝑥) can also be done and expressed in 
terms of both elementary and dilogarithm functions

𝜔𝑥(𝜗) = 𝑐 + logcosh 𝜗
2
− 1 + 𝑥

2
log(cosh𝜗+ cos𝜋𝑥) + 𝑖(1 + 2𝑥) tan−1

(
tan 𝜋𝑥

2
tanh 𝜗

2

)
+𝑥
2
log(𝑥)𝜗 −

𝑖

2𝜋
Li2

(
(−𝑥)𝜗𝑒𝑖𝑥𝜋

)
+ 𝑖

2𝜋
Li2

(
1 − 2𝑖𝑒−𝑖𝜋𝑥 sin𝜋𝑥

1 + 𝑒𝜗−𝑖𝜋𝑥

)
(88)

In this case, we do not get a term proportional to −𝑖𝜗 log(−(𝑥)𝜗). This is because the block (𝑥)𝜗 is not a CDD factor on its own: it needs 
to be combined with (1 − 𝑥)𝜗 to achieve this. Nonetheless, the representation above can be used, and it is numerically efficient.13

Unlike the case of the blocks [𝑥]𝜗 which we studied in the sinh-Gordon case, the minimal form factor contribution resulting from 
a block (𝑥)𝜗 does not tent asymptotically to a constant but instead decays exponentially (thus the function 𝜔𝑥(𝜗) scales linearly with 
𝜗 for large 𝜗. In fact, it is not hard to prove that the linear scaling comes from the first two terms (besides the constant 𝑐). Indeed

log cosh 𝜗
2
− 1 + 𝑥

2
log(cosh𝜗+ cos𝜋𝑥) ≈ −𝑥

2
|𝜗| for |𝜗|→∞ , (89)

whereas the next two terms tend to a complex value which exactly compensates for the imaginary part of the dilogarithms:

𝑖(1 + 2𝑥) tan−1
(
tan 𝜋𝑥

2
tanh 𝜗

2

)
+ 𝑥

2
log(𝑥)𝜗 ≈ 𝑖(1 + 𝑥)

𝜋𝑥

2
for |𝜗|→∞ . (90)

Finally, the dilogarithms scale as

− 𝑖

2𝜋
Li2

(
(−𝑥)𝜗𝑒𝑖𝑥𝜋

)
+ 𝑖

2𝜋
Li2

(
1 − 2𝑖𝑒−𝑖𝜋𝑥 sin𝜋𝑥

1 + 𝑒𝜗−𝑖𝜋𝑥

)
≈ − 𝑖

2𝜋
Li2

(
𝑒2𝑖𝑥𝜋

)
+ 𝑖

2𝜋
Li2 (1)

= − 𝑖

2𝜋
Li2

(
𝑒2𝑖𝑥𝜋

)
+ 𝑖𝜋

12
for |𝜗|→∞ . (91)

We can fix the constant 𝑐 by requiring a certain asymptotic behaviour. For example, we may require

𝜔𝑥(𝜗) ≈ −𝑥
2
|𝜗| for |𝜗|→∞, (92)

in which case, we simply need to take

𝑐 = 𝑖

2𝜋
Li2

(
𝑒2𝑖𝑥𝜋

)
− 𝑖𝜋

12
− 𝑖(1 + 𝑥)𝜋𝑥

2
= −

Li2(𝑒−2𝜋𝑖𝑥) − Li2(𝑒2𝜋𝑖𝑥)
4𝜋𝑖

. (93)

13 Note that the overall minus sign which is present in the representation (82) and which ultimately gives rise to the contribution 𝑔(𝜗) may not be there when 
considering a full scattering amplitude which typically includes products of many such blocks. Whether the log cosh 𝜗

is ultimately present in the minimal form factor 
16

2
or not will depend on whether or not any minus signs are “left over” when writing the full scattering amplitude.
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Appendix D. Analytic structure

D.1. Cancellation of unphysical poles on the physical strip

As mentioned in Section 6, the MFF should only have physically motivated poles inside the physical strip, i.e. 0 ⩽ Im(𝜃) ⩽ 2𝜋𝑛. 
The logarithmic terms in (62) can have singularities on the imaginary axis at positions

𝜃±
𝑘
= 𝑖 𝜋

2
(1 ± 𝑏) + 𝑖𝜋𝑘 , (94)

where 𝑘 ∈ℤ. This leads to the behaviour

exp
(
𝜔𝑛(𝜃)

)
∼ (𝜃 − 𝜃±

𝑘
)𝛿

±
𝑘 . (95)

We want to calculate the 𝛿±
𝑘

exponent that belongs to possible poles inside the physical strip and show the cancellation of the 
non-physical poles.

The dilogarithm functions do not have singularities, while the log
[
−𝑖 sinh 𝜃

2𝑛

]
term in (62) has only singularities to satisfy the 

exchange axiom (5) for 𝜃 = 0, i.e. 𝑓𝑛(0) = 𝑓𝑛(𝑖2𝑛𝜋) = 0, but are regular around 𝜃±
𝑘

. Three logarithmic terms in (62) are singular at 
every 𝜃±

𝑘
point with the behaviour

exp
(
− 1
4𝑛

log
[(

cosh𝜃 − sin 𝜋𝑏
2

)(
cosh𝜃 + sin 𝜋𝑏

2

)])
∼ (𝜃 − 𝜃±

𝑘
)−

1
4𝑛 , (96)

exp

(
− 𝑏

4𝑛
log

[
cosh𝜃 − sin 𝜋𝑏

2

cosh𝜃 + sin 𝜋𝑏

2

])
∼ (𝜃 − 𝜃±

𝑘
)±(−1)

𝑘 𝑏

4𝑛 , (97)

exp

(
𝑖
𝜃 − 𝑖𝜋𝑛
2𝜋𝑛

log

[
𝑖 cos 𝜋𝑏2 − sinh𝜃

𝑖 cos 𝜋𝑏2 + sinh𝜃

])
∼ (𝜃 − 𝜃±

𝑘
)−

1±𝑏+2𝑘−2𝑛
4𝑛 (−1)𝑘

. (98)

The logarithms of the form

(𝜗, 𝑏, 𝑙) = ̃(𝜃, 𝑏, 𝑙) = log
[
cos 𝑏𝜋

2𝑛
− cos 𝑙𝜋 − 2𝑖𝜃

2𝑛

]
, (99)

have singularities at positions 𝜃 ∼ 𝑖 𝜋2 (−𝑙 ± 𝑏) + 𝑖2𝑛𝜋𝑝 with 𝑝 ∈ℤ. The singular exponents are

exp
(
−𝑛+ 1 − 2𝑙

2𝑛
̃(𝜃, 𝑏,3 − 4𝑙)

)
∼ (𝜃 − 𝜃±2𝑛−2𝑙+1+2𝑛𝑝)

− 𝑛+1−2𝑙
2𝑛 , (100)

exp
(
−𝑛+ 1 − 2𝑙

2𝑛
̃(−𝜃, 𝑏,3 − 4𝑙)

)
∼ (𝜃 − 𝜃±2𝑙−2+2𝑛𝑝)

− 𝑛+1−2𝑙
2𝑛 , (101)

exp
(
𝑛+ 1 − 2𝑙

2𝑛
̃(𝜃, 𝑏,1 − 4𝑙)

)
∼ (𝜃 − 𝜃±2𝑛−2𝑙+2𝑛𝑝)

𝑛+1−2𝑙
2𝑛 , (102)

exp
(
𝑛+ 1 − 2𝑙

2𝑛
̃(−𝜃, 𝑏,1 − 4𝑙)

)
∼ (𝜃 − 𝜃±2𝑙−1+2𝑛𝑝)

𝑛+1−2𝑙
2𝑛 , (103)

where 𝑙 = 1, 2, … ⌊𝑛∕2⌋.

Let us focus on the singular behaviour around 𝜃±
𝑘

for 𝑘 = 0, 1, … , 2𝑛 − 1, that means 𝑝 = 0 for the ̃ terms. Combining all the 
exponents leads to

𝛿±
𝑘
= 0 , (104)

for 𝑘 = 0, 1, … , 2𝑛 − 1. One subtlety is the case when 𝑛 is odd, since there is no contribution from the ̃ terms to 𝛿±
𝑛

and 𝛿±
𝑛+1; 

however, they are zero nonetheless.

There are two more exponents we want to calculate, namely 𝛿+−1 and 𝛿−2𝑛. They both get contributions from the first three 
logarithms and also from ̃(−𝜃, 𝑏, −1) or ̃(𝜃, 𝑏, −1). We can show that

𝛿+−1 = 𝛿
−
2𝑛 = −1 . (105)

Now we have all the ingredients to discuss the analyticity of the MFF inside the physical strip. The result depends on the coupling 
𝑏. Since the 𝑆-matrix (21) only depends on cos(𝜋𝑏∕2), it is enough to focus only on the region 0 ⩽ 𝑏 ⩽ 2 to describe the MFF. We will 
see that the two regions 0 ⩽ 𝑏 < 1 and 1 < 𝑏 ⩽ 2 have different analyticity structures. For 𝑏 = 1, 𝜔𝑛(𝜃) = 0.

In the case of 0 ⩽ 𝑏 < 1, only the potential singularities around 𝜃±
𝑘

for 𝑘 = 0, 1, … , 2𝑛 − 1 are inside the physical strip. The 
analyticity of the MFF is governed by their 𝛿±

𝑘
exponents. As shown above, they all vanish, and the MFF is analytic inside the 

physical strip.

In case of 1 < 𝑏 ⩽ 2, the potential singularities inside the physical strip are around 𝜃+
𝑘

for 𝑘 = −1, 0, … , 2𝑛 − 2 and 𝜃−
𝑘

for 
𝑘 = 1, 2, … , 2𝑛. As shown above, their exponent all vanishes apart from 𝛿+−1 and 𝛿−2𝑛. Their exponents signal single order poles at 𝜃+−1
17

and 𝜃−2𝑛. These singularities are related to the poles of the 𝑆-matrix, which can be seen from the exchange axiom (5). In this way, 
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they are acceptable physical singularities of the MFF. For example, when 𝑏 = 5
3 (or alternatively 𝑏 = −5

3 ), the 𝑆-matrix corresponds 
to the Lee-Yang model, and the pole of the MFF corresponds to bound state formation.

To summarise, all the logarithmic terms in 𝐶shG
𝜷

(𝜃; 𝑛) play a substantial part in shaping the analytic behaviour of the MFF and 
cancelling out the unwanted singularities of 𝜔𝑛(𝜗). This analysis also applies to the function 𝜔(𝜗) defined in (33) by setting 𝑛 = 1.

D.2. Asymptotics and continuous definition of 𝜔𝑛(𝜃)

𝜔𝑛(𝜗) in (62) is a real and continuous function on the Im(𝜗) = 0 line, i.e. Im(𝜃) = 𝑛𝜋, where it coincides with the integral 
representation (41). However, the logarithm and dilogarithm functions have branch cuts on the complex rapidity plane. In our 
formula for 𝜔𝑛(𝜗) we take the principal branch of all functions involved. Therefore, we need to be careful while continuing 𝜔𝑛(𝜃)
away from the Im(𝜗) = 0 line, which generally involves the inclusion of additional “correction” terms.

We choose the branch cuts canonically. log(𝑧) has a branch cuts running along the negative real axis, i.e. 𝑧 ∈ (−∞, 0], and its 
discontinuity is an integer multiple of 2𝜋𝑖. For the dilogarithm, Li2(𝑧), the branch cut runs along 𝑧 ∈ [1, ∞), and the discontinuity 
is proportional to 2𝜋𝑖 log(𝑧). As a consequence, (62) has branch cuts originating at the imaginary axis at points Im(𝜃) = 𝑘

𝜋

2 , and 
Im(𝑧) = ± 𝜋

2 (1 ± 𝑏) + 𝑘𝜋 with 𝑘 ∈ℤ, and run parallel to the real axis, i.e. Re(𝜃) ∈ (−∞, 0] or Re(𝜃) ∈ [0, ∞).
The correction terms to compensate for the branch cuts are also important to ensure the desired asymptotic behaviour

lim|Re(𝜃)|→∞
𝜔𝑛(𝜃) = 0 , (106)

for all values of Im(𝜃).
Let us examine the large |Re(𝜃)| limit of 𝜔𝑛(𝜃) term by term. The limits depend on the value of Im(𝜃), 𝑏, and Re(𝜃). We find the 

following behaviours

log
[
−𝑖 sinh 𝜃

2𝑛

]
∼ −log(2) + |Re(𝜃)|

2𝑛
+ 𝑖𝜋𝜂Re

×
⎛⎜⎜⎜⎝
[(

Im(𝜃)
𝜋

+ 𝑛
)

mod 4𝑛
]

2𝑛
− 1

⎞⎟⎟⎟⎠ ,
− 1
4𝑛

log
[(

cosh𝜃 − sin 𝜋𝑏
2

)(
cosh𝜃 + sin 𝜋𝑏

2

)]
∼

log(2)
2𝑛

− |Re(𝜃)|
2𝑛

−
𝑖𝜋𝜂Re
2𝑛

×
([(

Im(𝜃)
𝜋

− 1
2

)
mod 1

]
− 1

2

)
,

− 𝑏

4𝑛
log

[
cosh𝜃 − sin 𝜋𝑏

2

cosh𝜃 + sin 𝜋𝑏

2

]
∼ 0 ,

𝑖
𝜃 − 𝑖𝜋𝑛
2𝜋𝑛

log

[
𝑖 cos 𝜋𝑏2 − sinh𝜃

𝑖 cos 𝜋𝑏2 + sinh𝜃

]
∼ −

|Re(𝜃)|+ (Im(𝜃) − 𝑖𝜋𝑛)𝜂Re
2𝑛

𝜂𝑏𝜂Im ,

Li2
(
±𝑖𝑒𝜃+𝑖

𝜋

2 𝑏
)
+ Li2

(
±𝑖𝑒−𝜃+𝑖

𝜋

2 𝑏
)
∼ −𝜋

2

6
− 1

2

(|Re(𝜃)|− 𝑖𝜋 + 𝑖𝜋
[
𝜂ReIm(𝜃)

𝜋
+ 𝑏

2
± 1

2
mod 2

])2

,

̃(±𝜃, 𝑏, 𝑙) ∼ − log(2) + |Re(𝜃)|
𝑛

− 𝜂Re𝑖𝜋 +
𝜂Re𝑖𝜋

2𝑛

[
2Im(𝜃)
𝜋

± 𝑙 mod 4𝑛
]
,

(107)

where we introduced the notation

𝜂𝑏 = sign
(
cos 𝜋𝑏

2

)
,

𝜂Re = sign (Re(𝜃)) ,

𝜂Im = sign (cos (Im(𝜃))) ,

(108)

used the definition of ̃ in (99), and the relation

Li2 (𝑧) + Li2
(1
𝑧

)
= −𝜋

2

6
− 1

2
log2(−𝑧) . (109)

We can write the asymptotics of all the logarithm and dilogarithm terms in (62) as

−2𝑛− 1
2𝑛

log(2) −𝐾(𝜃, 𝑛, 𝑏) , (110)
18

where the function 𝐾(𝜃, 𝑛, 𝑏) contains all the dependence on 𝑏 and 𝜃.
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The full formula for 𝐾(𝜃, 𝑛, 𝑏) is straightforward to write down from (62) and (107), however, it is complicated and not en-

lightening. We omit its presentation here and will only show its simplified form for the parameter range that is relevant to our 
purposes.

From the structure of (62) and (107) we see that

𝐾(𝜃, 𝑛, 𝑏) =𝐾(𝜃, 𝑛,−𝑏) , and 𝐾(𝜃, 𝑛, 𝑏) =𝐾(𝜃, 𝑛, 𝑏+ 4) , (111)

and we can restrict 𝑏 to the two regions, i.e. 0 ⩽ 𝑏 < 1 and 1 < 𝑏 ⩽ 2 to describe the whole 𝐾(𝜃, 𝑛, 𝑏) function. Furthermore, we 
focus only on the range −𝜋 < Im(𝜃) < 2𝑛𝜋 since it contains the physical strip and the region that can be relevant for the bound state 
bootstrap equation in case of appropriate 𝑏 value.

After some simplification, in region 0 ⩽ 𝑏 < 1 we get

�̃�(𝜃, 𝑛, 𝑏) =
2𝑛−1∑
𝑘=−1

(−1)𝑘𝜂Re

×
[
Θ
(
Im(𝜃)
𝜋

− 𝑘− 1 − 𝑏
2

)
Θ
(
𝑘+ 1

2
− Im(𝜃)

𝜋

)(
𝜃

2𝑛
− 𝑖𝜋

2𝑛

(
𝑘+ 1 − 𝑏

2

))
+ Θ

(
𝑘+ 1 − 1 − 𝑏

2
− Im(𝜃)

𝜋

)
Θ
(
Im(𝜃)
𝜋

− 𝑘− 1
2

)(−𝜃
2𝑛

+ 𝑖𝜋

2𝑛

(
𝑘+ 1 − 1 − 𝑏

2

))]
+ 𝜂Re2𝜋𝑖Θ

(
1
4
−
(
Im(𝜃)
𝜋

+ 1
)2

)
,

(112)

while for the region 1 < 𝑏 ⩽ 2, the result is

�̃�(𝜃, 𝑛, 𝑏) =
2𝑛−1∑
𝑘=−1

(−1)𝑘𝜂Re

×
[
Θ
(
Im(𝜃)
𝜋

− 𝑘− 𝑏− 1
2

)
Θ
(
𝑘+ 1

2
− Im(𝜃)

𝜋

)(−𝜃
2𝑛

+ 𝑖𝜋

2𝑛

(
𝑘+ 𝑏− 1

2

))
+ Θ

(
𝑘+ 1 − 𝑏− 1

2
− Im(𝜃)

𝜋

)
Θ
(
Im(𝜃)
𝜋

− 𝑘− 1
2

)(
𝜃

2𝑛
+ 𝑖𝜋

2𝑛

(
−𝑘− 1 + 𝑏− 1

2

))]
+

2𝑛∑
𝑘=0

(−1)𝑘𝜂Re
𝑖𝜋(𝑛− 𝑘)

𝑛
Θ

(
1
4
−
(
Im(𝜃)
𝜋

− 𝑘
)2

)

+ 𝜂Re𝜋𝑖
𝑛− 1
𝑛

Θ

(
1
4
−
(
Im(𝜃)
𝜋

+ 1
)2

)
,

(113)

where Θ(𝑥) denotes the Heaviside step-function and the ∼ on �̃� indicates it is only valid in the −𝜋 < Im(𝜃) < 2𝑛𝜋 strip. With this 
definition, the continuous definition of 𝜔𝑛(𝜃) on this strip becomes

𝜔𝑛(𝜃) =
2𝑛− 1
2𝑛

log2 + log
[
−𝑖 sinh 𝜃

2𝑛

]
− 1

4𝑛
log

[(
cosh𝜃 − sin 𝜋𝑏

2

)(
cosh𝜃 + sin 𝜋𝑏

2

)]
− 𝑏

4𝑛
log

[
cosh𝜃 − sin 𝜋𝑏

2

cosh𝜃 + sin 𝜋𝑏

2

]
+ 𝑖 𝜃 − 𝑖𝜋𝑛

2𝜋𝑛
log

[
𝑖 cos 𝜋𝑏2 − sinh𝜃

𝑖 cos 𝜋𝑏2 + sinh𝜃

]
+ 𝑖

4𝜋𝑛

[
Li2

(
−𝑖𝑒𝜃−𝑖

𝜋

2 𝑏
)
− Li2

(
𝑖𝑒
𝜃−𝑖 𝜋2 𝑏

)
+ Li2

(
−𝑖𝑒𝜃+𝑖

𝜋

2 𝑏
)
− Li2

(
𝑖𝑒
𝜃+𝑖 𝜋2 𝑏

)
+ (𝜃→ −𝜃)

]
− 1

2𝑛

⌊𝑛∕2⌋∑
𝑘=1

(𝑛+ 1 − 2𝑘)
[̃(𝜃, 𝑏,3 − 4𝑘) + ̃(−𝜃, 𝑏,3 − 4𝑘) − ̃(𝜃, 𝑏,1 − 4𝑘) − ̃(−𝜃, 𝑏,1 − 4𝑘)

]
+𝐾(𝜃, 𝑛, 𝑏) ,

(114)

which has the desired asymptotics (106) and reproduces perfectly the integral representation (41). The results for 𝜔(𝜃) trivially 
follow by setting 𝑛 = 1.

We note that the expression 𝜔𝑛(𝜃) might have short branch cuts along segments of the imaginary axis, i.e. where the imaginary 
part of 𝜔𝑛(𝜃) jumps while crossing the imaginary axis. These cuts also appear in the integral representation but do not produce cuts 
for the MFF (20); rather, they fix its complex phase.

Appendix E. The most numerically effective representation

In terms of numerical evaluation, the most time-consuming part of our formulae is the evaluation of the eight dilogarithm 
19

functions in (114). This number can be easily halved by using the relation (109). If we further assume 𝜃 ∈ ℝ, we can write our 
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formula in terms of the variable 𝜃 as

𝜔Im(𝜃)=0
𝑛

(𝜗) = 2𝑛− 1
2𝑛

log2 + log
[
−𝑖 sinh 𝜃

2𝑛

]
− 1

4𝑛
log

[(
cosh𝜃 − sin 𝜋𝑏

2

)(
cosh𝜃 + sin 𝜋𝑏

2

)]
− 𝑏

4𝑛
log

[
cosh𝜃 − sin 𝜋𝑏

2

cosh𝜃 + sin 𝜋𝑏

2

]
+ 𝑖 𝜃 − 𝑖𝜋𝑛

2𝜋𝑛
log

[
𝑖 cos 𝜋𝑏2 − sinh𝜃

𝑖 cos 𝜋𝑏2 + sinh𝜃

]
+ 𝑖

2𝜋𝑛

[
Li2

(
−𝑖𝑒𝜃+𝑖

𝜋

2 𝑏
)
+Li2

(
−𝑖𝑒𝜃−𝑖

𝜋

2 𝑏
)
− Li2

(
𝑖𝑒
𝜃+𝑖 𝜋2 𝑏

)
−Li2

(
𝑖𝑒
𝜃−𝑖 𝜋2 𝑏

)
+ 𝜂𝑏𝑖𝜋𝜃

]
− 1

2𝑛

⌊𝑛∕2⌋∑
𝑘=1

(𝑛+ 1 − 2𝑘) log
⎡⎢⎢⎢⎣
(
cos 𝑏𝜋2𝑛 − cos (3−4𝑘)𝜋+2𝑖𝜃

2𝑛

)(
cos 𝑏𝜋2𝑛 − cos (3−4𝑘)𝜋−2𝑖𝜃

2𝑛

)
(
cos 𝑏𝜋2𝑛 − cos (1−4𝑘)𝜋+2𝑖𝜃

2𝑛

)(
cos 𝑏𝜋2𝑛 − cos (1−4𝑘)𝜋−2𝑖𝜃

2𝑛

)⎤⎥⎥⎥⎦
+

1 − 𝜂𝑏
2

𝜂Re𝑖𝜋 ,

(115)

where

𝜂𝑏 = sign
(
cos 𝜋𝑏

2

)
=

{
+1 0 ⩽ 𝑏 < 1
−1 1 ⩽ 𝑏 < 2

, (116)

and we recall that 𝜂Re = sign(Re(𝜃)).
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