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FeTS Challenge 2022 Task 1: Implementing
FedMGDA+ and a new partitioning
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Abstract. Federated Learning is becoming ubiquitous in settings where
privacy and data ownership make sharing raw data infeasible. Medi-
cal imaging presents a prominent such scenario. Despite fervent interest
in Federated Learning from the Medical Imaging community, there is
a general lack of standardised test-beds, datasets, and challenges that
can fast-track progress in the domain. The Federated Tumour Segmen-
tation Challenge attempts to fill that gap for the task of brain tu-
mour segmentation. For this iteration of FeTS, we present two addi-
tional dataset splits for prototyping and test how the FedMGDA+ al-
gorithm performs on the problem. Code for this report is provided at
https://github.com/siomvas/FeTS_2022

Keywords: Federated Learning - Tumour Segmentation - Medical Imag-
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1 Introduction

In this short study, we take a look at the challenges of the competition, develop
two new splits that reduce the idle time and allow us to perform more aggrega-
tion calls, and implement the FedMGDA+5] algorithm to provide a model that
performs well across all institutions.

Federated Learning[6] is a collaborative learning paradigm where clients can
jointly train a machine learning model without their local data leaving the
premises; instead, only model updates are exchanged, aggregated, and redis-
tributed in an iterative process. This inherent data protection mechanism is
appealing in all the scenarios where data privacy and ownership are paramount,
such as Medical Imaging. However, despite the momentum that research into
Federated Learning has gathered [12, 14, 13, 2, 4], there is a distinct lack of
standard experiment settings, which are necessary to facilitate fair comparisons
[7]. The FeTS initiative[9] is the largest federation of medical institutions, and
the FeTS Challenge is one of the first federated learning challenges in the medical
imaging community.

Task 1 of the competition concerns the study of robust aggregation meth-
ods that leverage the clients’ local updates most effectively to produce a global
model. for this reason, an infrastructure is provided with only specific modifica-
tions allowed in four areas: collaborator sampling, aggregation, hyper-parameter
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choice, and dataset partitioning. The infrastructure stack consists of OpenFL[11]
to handle the federated logic and GaNDLF[10] to handle the deep learning logic.

2 Data

FeTS 2022 is the second iteration of the Federated Tumour Segmentation Chal-
lenge. The challenge dataset and format are based on the BraTS Challengel1],
except the data in FeTS cannot leave the local sites. This year’s training set
contains mpMRI (T1, T1-Gd, T2, T2-FLAIR) brain scans from 1251 patients
across 33 institutions. The data has been centrally pre-processed and expertly
annotated, as described in the challenge manuscript[9].

2.1 Partitioning

The organisers have provided three splits for the challenge. A split corresponds to
the number of clients in the federation, and the patient records at each simulated
federated site.

— A small split with a handful of samples for debugging purposes.

— The natural split; each collaborator corresponds to a different physical in-
stitution.

— An artificial refinement of the natural split, where the records from the
biggest collaborators were split to different artificial collaborators based on
each record’s tumour size compared to the median tumour size for the origi-
nal collaborator. More concretely, the 5 biggest collaborators were split into
3 new collaborators each.

Early on in the challenge, we emphasised training using the original split, as it
introduces no confounding variables, such as an appropriate metric or threshold
to use for splintering a collaborator’s samples or aggregating the samples from
smaller collaborators. However, the challenge’s simulated time limit means the
original split is quite restrictive; in the original split, the largest contributor takes
25 simulated hours to complete one epoch of training, capping the maximum
possible number of rounds to 6 (using the minimum of 1 local epoch). Moreover,
the number of local epochs has to be the same for all collaborators, essentially
imposing idle time for every collaborator proportional to the difference between
the size of their data and the size of the biggest collaborator’s data.

This incentivizes us to fraction the dataset into smaller, more uniformly sized
participants to minimise idle time and maximise the number of federated rounds
that fit within the simulation threshold.

Additionally, since the total number of records is high, training on the full
dataset takes a lot of wall time. For the purposes of prototyping and exploring
the potential of different hyperparameters and aggregation methods, we pro-
pose the following splits, based on the original method of splitting the largest
collaborators according to the tumour size:
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— A small split, which includes a total of 117 patients ( 10% of the origi-

Patients

nal dataset) from 7 collaborators, containing the records of all the physical
collaborators that contributed between 10 and 30 records. This ensures no
collaborator dominates the split, and that the heterogeneity mimics a real-
world scenario.
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Fig. 1. The small split for prototyping.

— A medium split, which includes all the natural collaborators except the two

Patients

biggest ones, which we split into 10 bins each, based on tumour volume, then
include the middle two bins only. This leads to a dataset with 536 patients
( 42% of the original size) from 25 collaborators. We find this to present
an adequate middle ground between the small and original split, both in
imbalance and size.
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Fig. 2. The medium split for scaling up experiments.
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— An alternative split of the full dataset, for which we use the same method-
ology as the original artificial partitioning, but we splinter the two largest
participants into 10 instead of 3 quantiles, based on tumour volume, resulting
in 41 collaborators. As shown in figure 3, this new split greatly smooths out
the imbalance of the original split, alleviating the aforementioned problems
of maximum federated rounds and idle time on smaller collaborators.
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Fig. 3. The full new split compared to the given artificial split.

3 Methods

3.1 Sampling participants

One crucial dimension of control in federated learning systems is the choice
of the participating clients in each round. This choice is especially important in
scenarios with millions of possible clients, such as smartphone users. In cross-silo
scenarios, like the one for the challenge, where all participants can participate
in every round, we argue constant and full participation is needed to allow each
local site’s characteristics to influence the model, in line with our ultimate goal
of personalised FL models, as described in section 1. Hence, we used all the
collaborators in every round.

3.2 Hyperparameter choice

The default available hyperparameters are the learning rate and the number of
epochs e. As e had to be an integer, and, as explained in section 2, more local
epochs extend the idle time for all collaborators except the largest, we keep
e fixed at 1. Regarding the learning rate, we found that doubling the default
learning rate to le-4 improved performance.
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Additionally, while the MGDA algorithm automatically tunes the collabo-
rator weights without any hyperparameters, FedMGDA+ interpolates between
that result and a uniform weighing based on a hyper-parameter €. Setting e equal
to 0 recovers FedAvg, while setting it equal to 1 recovers MGDA. We used ¢=0.5
for our experiments.

3.3 Aggregation function

Task 1 focuses on aggregation methods that can effectively pool the information
from the participants’ local updates. The collaborator computes the weights of
the global model as the weighted sum of the local weights:

N
W= AW (1)
=1

The popular Federated Averaging algorithm[8] sets these coefficients to be
the ratio of the clients’ local data to the total dataset size, thus biasing the up-
date towards the optima of the contributors with the largest number of records.
Instead of treating the Federated Learning aggregation problem as a server trying
to find a single model that performs best on average across different client distri-
butions, we can attempt to find a Pareto optimal solution, such that no client is
disadvantaged by the aggregation. Especially in cross-silo[6] scenarios, where the
trained model will be deployed to the institutions that participated in the train-
ing, or others with local datasets similar to those of the original participants,
instead of a heuristic approach to determine the aggregation weights, we can
use the Multiple Gradient Descent Algorithm, borrowed from multi-objective
optimisation, to determine the common descent direction for all participants.
This ensures optimisation moves only towards areas of the solution space that
do not worsen the model’s performance on any client. One such method is the
FedMGDA+[5] algorithm, which interpolates between an even weighing of 1/N
and the common descent direction as produced by the Multiple Gradient Descent
Algorithm (MGDA)[3].

For every federated round, every participating client executes an SGD step,
in parallel:

wit = w; =V fi(w;) (2)

Instead of equation 1, MGDA uses the following update rule:

wi”'1 =

wi—nd, do=Jp(w)N, A7 =argmin | Jrw)A | (3)

Here 7 is a server learning rate (assumed to be 1 in our case), and the vector of
coefficients A is found by solving a simple quadratic programming problem once
per federated round. We note that the MGDA algorithm requires the gradient
of the models to compute the Jacobian, and the vector A. In the case of multiple
local epochs, we would instead have to approximate the gradients by the model
delta, i.e. the difference between the weight values at the beginning and end of
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the round, but since we use a single epoch to minimise the idle time as explained
in section 1, the delta is the model gradient.
FedMGDA+ refines that, by setting the update rule to be:

Ay = arg 1T (we) A | (4)

min
AEA,[[A=Xo]loo<e

meaning the solution for A is forced to lie close to the FedAvg solution, with the
closeness dictated by e.

4 Results

Despite the theoretical reasoning, we found that FedMGDA+ actually under-
performed the Fed Avg baseline in the challenge’s setting. Our hypothesis is that
due to the large number of participants in our split, and the small number of
records in some participants, optimising towards the common descent direction
performs worse on average than biasing the updates towards the biggest collab-
orators as FedAvg does.

Table 1. ET test scores using our new split

ET Dice H95 |Sensitivity|Specificity
FedMGDA+[0.56|44.13|  0.52 0.99
FedAvg |0.67(36.57| 0.65 0.99

Table 2. TC test scores using our new split

TC Dice H95 |Sensitivity|Specificity
FedMGDA+{0.59|30.25 0.57 0.99
FedAvg ]0.69(23.63| 0.69 0.99

Table 3. WT test scores using our new split

WT Dice H95 |Sensitivity|Specificity
FedMGDA+[0.67|24.73|  0.59 0.99
FedAvg [0.77|35.62 0.81 0.99
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5 Discussion

5.1 Memory Requirements

We found training with the full dataset to be very memory demanding, requiring
130 GB of RAM during the preprocessing phase, and increasingly more of it
while training continued. After investigation, we found that the culprit is the
pin_memory argument in the configuration files, which caused the whole dataset
to be pinned to CPU memory during the initial pre-processing. By setting this to
false, we find that initial processing only takes 10GB of RAM, with no negative
performance impact on training; on the contrary, training was significantly sped
up for a 128GB RAM system which previously had to use disk swapping to run
the experiment. There is an additional memory leak that causes memory to fill
proportionally to the number of rounds in an ongoing run, but restoring from a
checkpoint can alleviate that.

5.2 Time constraints

This year, all the collaborators had to use the same number of local epochs
regardless of their size. Additionally, there was a fixed time limit calculated
based on the time the biggest collaborator needed to complete training.

The combination of these two factors imposed idle/wasted time in all but the
biggest collaborators, and perhaps even more importantly, heavily deincentivised
training for more than a single local epoch, as the idling/wasted time increases
linearly with the number of local epochs.

This limits the solution space, while not mirroring real-world conditions.
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