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London EC1V 0HB, United Kingdom 

 

Abstract 

 

  Flexural-torsional buckling analysis of columns is widely covered in the literature. By 

contrast, there are hardly any corresponding publications on axial-flexural buckling. This is 

because there appears to be a commonly held view that in a column, the axial deformation is 

perceived to be small and therefore its coupling with the flexure can be neglected when 

predicting its critical buckling load. This paper counters this view by focusing on the buckling 

behaviour of axial-flexural coupled columns. The usefulness for this research stems from the 

fact that there are many practical columns which have cross-sections that exhibit axial-flexural 

coupling as opposed to flexural-torsional coupling, and thus, the axial-flexural coupling is 

likely to have significant effects on buckling behaviour. The problem does not appear to have 

been adequately addressed by investigators. Starting from the derivation of the governing 

differential equation with the inclusion of shear deformation, the stiffness matrix of an axial-

flexural coupled column is derived in an exact sense, and subsequently applied through the 

implementation of the Wittrick-Williams algorithm as solution technique to determine the 

critical buckling load of some illustrative examples. The results are validated by alternative 

methods. Finally. some conclusions are drawn. 
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1 Introduction 

 

  The literature is inundated with research papers on flexural-torsional buckling of columns 

[1-8]. These publications are predominantly based on the premise that the axial deformation 

arising from the application of a compressive load in a column is assumed to be somehow 

negligible, suggesting that any coupling arising from the axial deformation of the column is 

insignificant or unimportant. A similar viewpoint prevailed amongst vibration researchers who 

studied the free vibration behaviour of flexure-torsion coupled beams [9-13] over a long time, 

until recently when beams displaying axial-flexural coupling as opposed to flexural-torsional 

coupling were investigated [14-15] for their free vibration characteristics. These latter 

investigations have shown that axial-flexural coupling can have profound effects on the free 

vibration behaviour of beams. A review of buckling literature indicates that any possible 

consequences of axial-flexural coupling effect on the critical buckling load of a column have 

not been sufficiently addressed. This is rather surprising, and therefore, this paper focuses on 

this issue by developing an exact stiffness matrix for an axial-flexural coupled column with the 

inclusion of shear deformation to examine its buckling behaviour. A brief outline of the work 

described in this paper was presented in a recent conference [16]. The conference paper was 

restrictive and limited in its scope and at best, it could be regarded as a scene setter to pave the 

way for the present paper. This is because unlike the present paper, the theory was insufficiently 

developed, and no attempt was made in the conference paper to derive explicit expressions for 

the elements of the stiffness matrix through the application of symbolic computation. The 

conference paper was essentially a work in progress with a handful of selective results. The 

preliminary developments are now significantly enhanced by broadening the appeal of the 

paper not only through the application of symbolic computation, but also by enriching the 

application aspects of the paper markedly, in a much wider context. The validation and 

verification of the theory have now been strongly accentuated by extensive numerical studies, 

using finite element and other methods, in contrast to the restrictive conference paper [16].  

  The principle of virtual work is invoked to derive the governing differential equations for 

an axial-flexural coupled column whilst including the effects of shear deformation. The 

solutions of the governing differential equations yielded the displacement vector comprising 

the expressions for axial and flexural displacements and the cross-sectional rotation. Next, the 

corresponding force vector comprising the expressions for the axial force, shear force and 

bending moments was obtained. The force vector and displacement vector are finally related 
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via the stiffness matrix. The ensuing stiffness matrix is used to determine the critical buckling 

load of an axial-flexural coupled column for various boundary conditions. 

Within the above pretext, it is worth noting that there are many published works [17-25] on 

the flexural buckling of columns with the inclusion of shear deformation, but without 

considering the effects of axial-flexural coupling. These publications reveal that shear 

deformation can have significant effect on the critical buckling load of columns, particularly 

with smaller slenderness ratios. Engesser [17, 18] was probably the earliest investigator who 

published the effect of shear deformation on the critical buckling of a column more than a 

century ago. His work was given due recognition by Timoshenko in his well-publicised text 

[19]. Engesser’s research was apparently overlooked for many years, until relatively recently 

when the interest in shear deformable columns resurfaced [20-25]. These latter investigations 

are without doubt significant and noteworthy, but they focus on the flexural buckling of shear 

deformable columns without the effect of the coupling between the axial and flexural 

deformations. The current paper addresses this shortcoming and demonstrates the effects of 

both axial-flexural coupling and shear deformation and on the critical buckling of columns. 

This is achieved by developing an exact stiffness matrix using linear small deflection theory. 

The developed stiffness matrix is applied through the implementation of the Wittrick-Williams 

algorithm [26] as solution technique. The results from the theory are validated by alternative 

methods such as the applications of plate theory based software VICONOPT [27] and the 

commercially available finite element software ABAQUS [28]. Furthermore, beam element 

based exact computer program BUNVIS-RG [29] which permits eccentric connections of 

individual members (beams or columns) at nodes and thus allows simulation of axial bending 

coupled beams in an ingenuous way, has also been used to validate the present theory. Some 

background information leading to the motivation for this work might be instructive and useful 

to readers who wish to develop this research further. In this respect, the following comments 

are relevant.  

Basically, the impetus for this research came from the author’s earlier work on the dynamic 

stiffness method (DSM) which was pioneered by Kolousek [30-31] in the early forties in Czeck 

Republic and of course, since then the method has been continually developed by the author 

and several other investigators over the years [32-34]. Although buckling analysis which is the 

focus of the present paper, is essentially a static problem wherein the inertia properties of the 

structure are not involved, the fundamental concept of the DSM generally used in dynamic 

analysis, can still be exploited, particularly when using exact member theory, as in the present 
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case. Essentially, both buckling and free vibration analyses lead to an eigen value problem in 

which, the eigen parameter is the load factor in buckling problem whereas it is the square of 

the frequency in free vibration problem. There is clearly a duality between the buckling and 

the free vibration problems, and logically the solution procedure for both problems is 

analogous. Thus, buckling analysis is often considered to be a free vibration analysis at zero 

frequency. However, it must be recognised that the DSM has a much wider applicability. This 

is clearly evident from the literature. For instance, Naprstek and Fischer [35, 36] demonstrated 

an effective generalisation of the DSM when they carried out an in-depth analysis of a 

differential system on an oriented graph. They showed that for a structural system, the 

conditions of equilibrium usually formulated for nodes are in fact conditions of a unique 

solution when the DSM is applied. It is worth noting that Naprstek and Fischer [35, 36] implied 

some suggestions on the future developments of the DSM in other domains of engineering and 

science, indicating how the DSM research will evolve and unfold potential possibilities. 

 

2 Theory 

 

  In what follows, an exact stiffness matrix of an axial-flexural coupled column with the 

inclusion of shear deformation is developed by using linear small deflection theory. First, the 

governing differential equations are derived using the principle of virtual work. Next, the exact 

solutions for the displacements and forces are obtained in closed analytical form. Finally, the 

stiffness matrix is obtained by imposing the boundary conditions, and thus linking the force-

displacement relationship.  

 

1.1. Derivation of the governing differential equations and solution 

 

  In a right-handed Cartesian coordinate system, Fig. 1 shows a uniform column of length L 

with its flexural or elastic axis which is the locus of shear centre of the cross-sections, 

coinciding with the Y-axis. A compressive axial force P is acting through the shear centre and 

hence, along the flexural axis of the column, as shown. The coupling between axial and flexural 

displacements for such a column will occur because of the eccentricity between the centroid 

(Gc) and shear centre (Es) of the cross-section. There are many practical cross-sections for 

which the centroid and shear centre are non-coincident, but the inverted T section is shown in 

Fig. 1 only for convenience. The centroidal axis and the flexural axis of the column which are 
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respectively the loci of the centroid and shear centre of the column cross-section are separated 

by a distance z, as shown. 

 
 

Fig. 1. Coordinate system and notation for an axial-flexural coupled column. 

 

  If 𝑣, 𝑤 and 𝜃 are axial displacement, flexural displacement and bending rotation of a point at 

a distance y from the origin and at a height z from the flexural axis, i.e., the point (y, z) in the 

coordinate system (see Fig. 1), one can write 

𝑣 = 𝑣0 − 𝑧𝜃 ,             𝑤 =  𝑤0 (1) 

where 𝑣0 and w0 are the corresponding displacement components of the point (y, 0) on the Y-

axis (i.e., the elastic or flexural axis). 

    Using linear, small deflection elasticity theory, the expression for the normal strain 𝜀𝑦 and 

shearing strain (𝛾𝑦𝑧) can be expressed as [15] 

𝜀𝑦 = 𝑣0
′ − 𝑧𝜃′,       𝛾𝑦𝑧 = 𝑤0

′ − 𝜃 (2) 

where a prime denotes differentiation with respect to y. 

 

L 
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  The potential or strain energy U1 of the beam resulting from normal and shear strains is given 

by 

𝑈1 =
1

2
∫ ∫ 𝐸𝜀𝑦

2

𝐴

𝐿

0

𝑑𝐴𝑑𝑦 +
1

2
∫ ∫ 𝑘𝐺𝛾𝑥𝑦

2

𝐴

𝐿

0

𝑑𝐴𝑑𝑦 (3) 

where E and G are the Young’s modulus and modulus of rigidity (shear modulus) of the column 

material, respectively, k is the shear correction or shape factor, and the integrations are carried 

out over the cross-sectional area A and length L of the column. 

 

  Substituting 𝜀𝑦 and 𝛾𝑦𝑧 from Eq. (2) into Eq. (3), and integrating over the uniform beam cross-

section, we obtain 

𝑈1 =
1

2
∫{𝐸𝐴(𝑣0

′ )2 − 2𝐸𝐴𝑧𝛼𝑣0
′𝜃′ + 𝐸𝐼𝑒(𝜃

′)2 + 𝑘𝐴𝐺(𝑤0
′ − 𝜃)2}

𝐿

0

𝑑𝑦 (4) 

where A and 𝐼𝑒 are the area of cross-section and second moment of area about the flexural axis 

so that EA and EIe are the extensional and flexural stiffnesses of the column, respectively. 

 

    The potential energy due to the externally applied compressive force P (see Fig. 1) is given 

by 

𝑈2 = −
1

2
𝑃 ∫(𝑤0

′)2𝑑𝑦

𝐿

0

 

(5) 

 

 

 

  Thus, the total potential energy U = U1 + U2 is given by 

 

𝑈 =
1

2
∫{𝐸𝐴(𝑣0

′ )2 − 2𝐸𝐴𝑧𝛼𝑣0
′𝜃′ + 𝐸𝐼𝑒(𝜃

′)2 + 𝑘𝐴𝐺(𝑤0
′ − 𝜃)2 − 𝑃𝑤0

′2}

𝐿

0

𝑑𝑦 (6) 

 

  By the postulate of the principle of virtual work, a conservative system such as the axial-

flexural coupled column shown in Fig. 1, will be in equilibrium if and only if the total potential 

energy of the system is stationary. That is 

𝛿𝑈 = 0 (7) 

Substitution of Eq. (6) into Eq. (7) gives 

∫{
𝐸𝐴𝑣0

′𝛿𝑣0
′ − 𝐸𝐴𝑧𝛼𝑣0

′𝛿𝜃′ − 𝐸𝐴𝑧𝛼𝜃′𝛿𝑣0
′ + 𝐸𝐼𝑒𝜃

′𝛿𝜃′ + 𝑘𝐴𝐺(𝑤0
′ − 𝜃)𝛿𝑤0

′

−𝑘𝐴𝐺(𝑤0
′ − 𝜃)𝛿𝜃 − 𝑃𝑤0

′𝛿𝑤0
′ }

𝐿

0

𝑑𝑦 = 0 (8) 
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  Carrying out the integration by parts leads to the following governing differential equations 

and the expressions for axial force f, shear force s, and bending moment m. 

Governing differential equations: 

𝐸𝐴𝑣0
′′ − 𝐸𝐴𝑧𝛼𝜃′′ = 0   (9) 

 𝐸𝐼𝑒𝜃
′′ − 𝐸𝐴𝑧𝛼𝑣0

′′ + 𝑘𝐴𝐺(𝑤0
′ − 𝜃) = 0 (10) 

𝑘𝐴𝐺(𝑤0
′′ − 𝜃′) − 𝑃𝑤0

′′ = 0 (11) 

 

𝐴𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒:                                 𝑓 = −𝐸𝐴𝑣0
′ + 𝐸𝐴𝑧𝛼𝜃′ (12) 

𝑆ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒:                                𝑠 = −𝑘𝐴𝐺(𝑤0
′ − 𝜃) + 𝑃𝑤0

′  (13) 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡:                     𝑚 = 𝐸𝐴𝑧𝛼𝑣0
′ − 𝐸𝐼𝑒𝜃

′ (14) 

 

  Introducing the non-dimensional length 𝜉 = 𝑦 𝐿⁄  and then eliminating the 𝑣0 and 𝜃 terms 

from Eqs. (9)-(11) gives the following differential equation in w0. 

𝐷2{𝐷2 + 𝜆2}𝑤0 = 0 (15) 

where 

𝐷 = 
𝑑

𝑑𝜉
; 𝜆2 =

𝑝2

(1 − 𝑝2𝑠2)(1 −
𝜇2

𝑟2)
 (16) 

with 

𝑝2 =
𝑃𝐿2

𝐸𝐼𝑒
;     𝑠2 =

𝐸𝐼𝑒
𝑘𝐴𝐺𝐿2

;     𝜇2 =
𝑧𝛼

2

𝐿2
;      𝑟2 =

𝐼𝑒
𝐴𝐿2

 (17) 

  The solution of the governing differential equation, i.e., Eq. (15) is given by 

𝑤0(𝜉) = 𝐶1 + 𝐶2𝜉 + 𝐶3 cos 𝜆𝜉 + 𝐶4 sin 𝜆𝜉 (18) 

where 𝐶1 − 𝐶4 are arbitrary constants of integration. 

  It can be shown with the help of Eqs. (9)-(11) that the axial displacement 𝑣0 and bending 

rotation 𝜃 are given by 

                           𝑣0(𝜉) = 𝜇𝐶2 + 𝐶3𝜇𝜓 sin𝜆𝜉 − 𝐶4 𝜇𝜓 cos 𝜆𝜉 + 𝐶5 + 𝐶6𝜉                                  (19) 

                           𝜃(𝜉) =
1

𝐿
(
𝑝2𝑠2

𝜆2 𝐷3𝑤0 + 𝐷𝑤0)                                                                      

                                   =
1

𝐿
{𝐶2 + 𝐶3𝜓sin𝜆𝜉 − 𝐶4𝜓cos𝜆𝜉}                                                          (20) 

where 

                         𝜓 = −𝜆(1 − 𝑝2𝑠2)                                                                                         (21) 

 

 

  

and 𝐶5 and  𝐶6 in Eq. (19) are two different additional constants. 
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  With the help of Eqs. (12)-(14) and Eqs. (18)-(20), the expressions for axial force (f), shear 

force (s) and bending moment (m) can be written as 

𝑓(𝜉) = −
𝐸𝐴

𝐿
(
𝑑𝑣0

𝑑𝜉
− 𝑧𝛼

𝑑𝜃

𝑑𝜉
) = −

𝐸𝐴

𝐿
𝐶6 (22) 

𝑠(𝜉) =
𝐸𝐼𝑒
𝐿3

(−
1

𝑠2

𝑑𝑤0

𝑑𝜉
+

1

𝑠2
𝜃𝐿 + 𝑝2

𝑑𝑤0

𝑑𝜉
) =

𝐸𝐼𝑒
𝐿3

𝑝2𝐶2 (23) 

𝑚(𝜉) = −
𝐸𝐼𝑒
𝐿2

(𝐿
𝑑𝜃

𝑑𝜉
−

𝜇

𝑟2

𝑑𝑣0

𝑑𝜉
) = −

𝐸𝐼𝑒
𝐿2

(−𝐶6

𝜇

𝑟2
+ 𝐶3𝜏

2 cos 𝜆𝜉 + 𝐶4 𝜏2 sin 𝜆𝜉) (24) 

where 

    𝜏2 = 𝜆𝜓(1 −
𝜇2

𝑟2
)                     (25) 

 

2.2 Derivation of the stiffness matrix 

  The expressions for the axial displacement (v0), bending displacement (w0) and bending 

rotation () together with the expressions for axial force (f), shear force (s) and bending moment 

(m) given above can now be used to derive the stiffness matrix of the coupled axial-flexural 

column by applying the boundary conditions. Referring to the sign convention for positive 

axial force, shear force and bending moment shown in Fig. 2, the following boundary 

conditions for displacements and forces as shown in Fig. 3 are applied. 

 

            At 𝜉 = 0:  𝑣0 = 𝑉1 ; 𝑤0 = 𝑊1;  𝜃 = 𝛩1;  𝑓 = 𝐹1;  𝑠 = 𝑆1;  𝑚 = 𝑀1       (26) 

           At 𝜉 = 1:  𝑣0 = 𝑉2 ;  𝑤0 = 𝑊2;  𝛩 = 𝛩2;  𝑓 = −𝐹2;  𝑠 = −𝑆2; 𝑚 = −𝑀2     (27) 

 

 

                                                                                                                                                                              

 

+ + + f f 

s 

s m m 
 

Fig. 2. Sign convention for axial force f, shear force s and bending moment m. 
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                                                                   L 

 

ξ = 0 ξ = 1 

V1, F1 V2, F2 

W1, S1 W2, S2 

M1, 1 M2, 2 

1 2 

 
Fig. 3. Boundary condition for displacements and forces for a coupled axial-flexural column. 

 

  The displacement vector 𝛅 and the force vector F of the column connecting the ends (nodes) 

1 and 2, see Fig. 3, can be expressed as: 

 

                              𝛅 = [𝑉1 𝑊1 𝛩1 𝑉2 𝑊2 𝛩2]
𝑇;      𝐏 = [𝐹1 𝑆1 𝑀1 𝐹2 𝑆2 𝑀2]

𝑇      (28) 

 

where the upper suffix T denotes a transpose. 

 

  The displacement vector 𝛅 and the constant vector C (with Ci, i = 1,2, …6) can now be related 

using Eqs. (18)-(20) and Eqs. (26)-(27) to give 

 

                                                 𝛅 =  𝐀 𝐂                                                                                          (29) 

 

where  

 

        𝐀 =

[
 
 
 
 
 
0 𝜇 0 −𝜇𝜓 1 0
1 0 1 0 0 0
0 1/𝐿 0 −𝜓/𝐿 0 0
0 𝜇 𝜇𝜓 sin 𝜆 −𝜇𝜓 cos 𝜆 1 1
1 1 cos 𝜆 sin 𝜆 0 0
0 1/𝐿 𝜓 sin 𝜆 /𝐿 −𝜓 cos 𝜆 /𝐿 0 0]

 
 
 
 
 

                                                  (30) 

 

  In a similar manner, the relationship between the force vector F and the constant vector C is 

established by using Eqs. (22)-(24) and Eqs. (26)-(27) to give  

 

                                                 𝐅 = 𝐁 𝐂                                                                                     (31) 

where  
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𝐁 =

[
 
 
 
 
 
 
 
 
 0 0 0 0 0 −

𝐸𝐴

𝐿

0
𝐸𝐼𝑒

𝐿3 𝑝2 0 0 0 0

0 0 −
𝐸𝐼𝑒

𝐿2 𝜏2 0 0
𝐸𝐼𝑒

𝐿2 𝜇/𝑟2

0 0 0 0 0
𝐸𝐴

𝐿

0 −
𝐸𝐼𝑒

𝐿3 𝑝2 0 0 0 0

0 0
𝐸𝐼𝑒

𝐿2 𝜏2 cos 𝜆
𝐸𝐼𝑒

𝐿2 𝜏2 sin 𝜆 0 −
𝐸𝐼𝑒

𝐿2 𝜇/𝑟2
]
 
 
 
 
 
 
 
 
 

                             (32) 

 

  By eliminating the constant vector C from Eqs. (29) and (31), P and 𝛅 can now be related to 

give the stiffness matrix of the axial-bending coupled column as 

                                                           𝐅 = 𝐊 𝛅                                                                          (33) 

where  

                                                           𝐊 = 𝐁 𝐀−1                                                                       (34) 

with 

[𝐊] =

[
 
 
 
 
 
  𝑘11   

𝑘12

𝑘13

𝑘14

𝑘15

𝑘16

𝑘12

𝑘22

𝑘23

𝑘24

𝑘25

𝑘26

   𝑘13   

𝑘23

𝑘33

𝑘34

𝑘35

𝑘36

𝑘14

𝑘24

𝑘34

𝑘44

𝑘45

𝑘46

   𝑘15   

𝑘25

𝑘35

𝑘45

𝑘55

𝑘56

𝑘16

𝑘26

𝑘36

𝑘46

𝑘56

𝑘66]
 
 
 
 
 

                          (35) 

It should be noted that the stiffness matrix K of Eqs. (34)-(35) will be always symmetric. Now 

this stiffness matrix of Eq. (35) can be used in conjunction with the Wittrick-Williams 

algorithm [26] to compute the critical buckling load of axial-flexural coupled columns with the 

effects of shear deformation. 

  The task of generating explicit algebraic expression for individual element of the stiffness 

matrix K of Eqs. (34)-(35) by inverting the A matrix of Eq. (30) and pre-multiplying the 

resulting matrix by the B matrix of Eq. (32) was carried out by symbolic computation using 

REDUCE [37, 38].  The expressions for the elements of K are given below in concise forms. 

𝑘11 = 𝑘44 = −𝑘14 =
𝐸𝐴

𝐿
                (36) 

𝑘13 = −𝑘16 = −𝑘34 = 𝑘46 = −
𝐸𝐴

𝐿
(𝜇𝐿)           (37) 

𝑘22 = 𝑘55 = −𝑘25 =
𝐸𝐼𝑒

𝐿3

𝑝2𝜆(1−𝑝2𝑠2) sin𝜆

Δ
           (38) 

𝑘23 = 𝑘26 = −𝑘35 = −𝑘56 =
𝐸𝐼𝑒

𝐿2

𝑝2(1−cos𝜆)

Δ
          (39) 

𝑘33 = 𝑘66 =
𝐸𝐼𝑒

𝐿

{2𝜇2𝜓(1−cos𝜆)+(𝜇2𝜓2+𝑟2𝜏2) sin𝜆+𝑝2𝑟2𝜏2 cos𝜆}

𝑟2𝜓Δ
     (40) 
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𝑘36 = −
𝐸𝐼𝑒

𝐿

{2𝜇2𝜓(1−cos𝜆)+(𝜇2𝜓2+𝑟2𝜏2) sin𝜆+𝑝2𝑟2𝜏2}

𝑟2𝜓Δ
        (41) 

𝑘12 = 𝑘15 = 𝑘24 = 𝑘45 = 0               (42) 

with 

Δ = 2(1 − cos 𝜆) + 𝜓 sin 𝜆                (43) 

3 Application of the theory 

 

  The stiffness matrix derived above is now applied to determine the critical buckling load of 

some illustrative columns coupled in axial and flexural deformation. This is achieved by 

applying the Wittrick-Williams algorithm [26] which is well-covered in the literature with 

hundreds of papers available about its application. Therefore, the details of the algorithm are 

not elaborated here. Basically, the algorithm, by following the Sturm sequence property of the 

stiffness matrix, ascertains with certainty the required eigenvalue, which for buckling problem, 

is the critical load-factor in the structure, i.e., the ratio between the applied load on the structure 

and its critical buckling load. The computer implementation of the algorithm is simple unlike 

its proof, but interested readers are referred to [13-15, 26] for further details. 

 

4 Results and discussion 

 

  The first illustrative example chosen to demonstrate the theory, is a column with an inverted 

T cross-section, shown in Fig. 4. The dimensions used for the analysis are b = 40 mm, h = 20 

mm, t = 4 mm, and the length of the column L was set to 1 m. The distance between the shear 

centre and centroid of the cross-section was worked out to be z = 4 mm. The material 

properties used in the analysis are that of aluminium with Young’s modulus E = 70 GPa and 

shear modulus G = 26.92 GPa. The shear correction factor k (also known as shape factor) was 

taken to be 2/3. Using these data, the stiffness properties of the column needed for the present 

theory were worked out as follows. The axial or extensional stiffness EA = 1.68×107 N, the 

flexural stiffness about the elastic axis EIe =1008.0 Nm2 and shear stiffness kAG = 4.2×106 N. 

Side by side to the analysis carried out by applying present theory, comparative results using 

plate element based program VICONOPT [27], and 3D solid (brick) elements through the 

application of the commercial finite element software ABAQUS [28] were also computed. 

Table 3 show the results for the critical buckling load of the column with pinned-simple support 

(P-S) boundary conditions using the present theory as well as by using VICONOPT [27] and 

ABAQUS [28]. Note that in the present theory, the pinned support (P) prevents both horizontal 
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and vertical displacements whereas the simple support (S) prevents only vertical displacement, 

but rotation is allowed in both cases. As can be seen, the agreement of results using the present 

theory with those from VICONOPT and ABAQUS is really good, the discrepancy being 

around 0.3% and 9%, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

G 

E 
z 

t 

h 

t 

b 

 

Fig. 4. Cross-sectional details of an axial-flexural coupled column represented by an inverted 

T-section (centroid: G, shear centre: E). 

 

Table 1. Critical buckling load of an inverted T-section column with P-S boundary conditions 

using present theory and plate theory of VICONOPT [27] and solid elements of ABAQUS [28] 

Critical buckling load Pcr (kN) 

Present theory VICONOPT [27] result ABAQUS [28] result 

 

7.283 7.262 7.952 

 

  The results from the present theory shown in Table 1 was further verified by using the exact 

computer program BUNVIS-RG [29] which uses the dynamic stiffness method, but 

importantly, it allows eccentric connections of beams or columns at some chosen nodes so that 

axial-flexural coupled beam can be replicated exactly, without involving any approximations. 
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The BUNVIS-RG idealisation of an axial-flexural coupled beam is shown in Fig. 5 where the 

connecting nodes lie on the centroidal axis, but the beam or column axis coincides with the 

elastic axis located at a distance z from the centroidal axis. (Note that different z values can 

be used for the two connecting nodes in BUNVIS-RG, but for the current problem of uniform 

column, the two offset values of z are the same.) As exact member theory is used in BUNVIS-

RG, one element idealisation of the column was sufficient to compute the critical buckling load 

to any desired accuracy. The result from BUNVIS-RG agreed completed with the result 

obtained using the present theory, i.e., Pcr= 7.283 kN, as shown in Table 1. Note that in the 

BUNVIS-RG model, the nodes are located on the centroidal axis and therefore, the flexural 

rigidity used must be about the centroidal axis instead of the elastic axis (i.e., EIg, not EIe). 

                                                                                Centroidal axis 

         Node 1                                                                                                 Node 2 

 

 

                                                                            Elastic axis 

Fig.5. BUNVIS-RG idealisation of an axial-flexural coupled column using eccentric 

connections at nodes. 

 

  The next illustration is that of an open section thin-walled square box beam-column whose 

cross-section is shown in Fig. 6. This example is selected because for this cross-section, the 

coupling between the axial and flexural deformations will be pronounced, as expected from an 

open section of such type. The problem was investigated by Banerjee [39] earlier, but in the 

context of free vibration analysis which considered bending-torsional coupling as opposed to 

axial-bending coupling. Thus, the cross-sectional dimensions taken from [39] are b = 0.073 m 

(centre line dimensions) and t = 0.003m. The Young’s modulus (E), shear modulus (G) and the 

shear correction factor (k) are taken to be 74.55 GPa, 28.06 GPa and 0.66667, respectively. The 

section properties are worked out as, EA=6.5306×107 N, EIe = 4.3521×105 Nm2, kAG= 

16.387×106 N and z = 0.076m. The length L of the column is set to 1 m. The critical buckling 

z 

P P 
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loads (Pcr) of the column with clamped-free (C-F), pinned-simply supported (P-S), and 

clamped-clamped (C-C) boundary conditions were computed including (s2 ≠ 0) and excluding 

(s2 = 0) the effect of shear deformation and the results are shown in Table 2. The effects of 

shear deformation for these three boundary conditions resulted in the reduction of critical 

buckling load by 0.87%, 3.4% and 14%, respectively.  The results of Table 2 agreed completely 

with the results computed by BUNVIS-RG [29] which used eccentrically connected columns 

in an exact manner when simulating the axial-flexural coupled column. 

 

 

 

 

                                                                   t 

                          b            Gc 

 

                                                                          z 

 

                                        Es 

b 

 

Fig. 6. A thin-walled open square box section 

 

 

Table 2. Critical buckling load of an axial-flexural coupled column with an open square box 

cross-section. 

Boundary 

Conditions 

Critical Buckling Load Pcr (kN) 

With shear deformation effects 

(s2≠0) 

Without shear deformation effects 

(s2=0) 

C-F 141.88 143.12 

P-S 553.14 572.47 

C-C 2009.1 2289.86 

 

 

  The buckled mode shapes of the column for the P-S, C-F and C-C boundary conditions 

computed from the present theory with the inclusion of the effects of shear deformation are 
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shown in Figs. 7-9, respectively, indicating substantial coupling between the flexural and axial 

deformations. 

 

Fig. 7. Buckled mode shape of the open section thin-walled column with C-F boundary 

condition. 

                          Flexural displacement;                                          Axial displacement 

 

Fig. 8. Buckled mode shape of the open section thin-walled column with P-S boundary 

condition. 

                          Flexural displacement;                                          Axial displacement 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Pcr=141.88 kN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Pcr=553.14 kN
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Fig. 9. Buckled mode shape of the open section thin-walled column with C-C boundary 

condition. 

                          Flexural displacement;                                          Axial displacement 

 

 

  The final illustrative example is a tapered axial-flexural coupled column shown in Fig. 10 for 

which the principal cross-sectional dimensions b, h, t and z vary linearly from the left hand 

end to the right hand end with taper ratio c so that in the axis system of Fig. 1 

𝑏(𝑦) = 𝑏0 (1 − 𝑐
𝑦

𝐿
); ℎ(𝑦) = ℎ0 (1 − 𝑐

𝑦

𝐿
); 𝑡(𝑦) = 𝑡0 (1 − 𝑐

𝑦

𝐿
); 𝑧𝛼(𝑦) = 𝑧𝛼0

(1 − 𝑐
𝑦

𝐿
)   (44) 

where b0, h0, t0 and 𝑧𝛼0 represent the dimensions at the thick end of the column. 

  As a result of the linear variation of the principal dimensions given by Eq. (44), the axial (EA) 

and flexural (EIe) and shear (kAG) rigidities will vary in the following manner. 

𝐸𝐴(𝑦) = 𝐸𝐴0 (1 − 𝑐
𝑦

𝐿
)
2

;  𝐸𝐼𝑒(𝑦) = 𝐸𝐼𝑒0
(1 − 𝑐

𝑦

𝐿
)
4

;  𝑘𝐴𝐺(𝑦) = 𝑘𝐴𝐺0 (1 − 𝑐
𝑦

𝐿
)
2

   (45) 

where EA0, EIe0 and kAG0 are the axial, flexural and shear rigidities at the thick end of the 

tapered beam, respectively. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Pcr=2009.1 kN
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Fig. 10. An axial-flexural coupled tapered column with inverted T cross-section  

  The numerical values for the cross-sectional dimensions of the tapered column shown in 

Fig.10 are chosen as b0 = 40 mm, h0 = 36 mm, t0 = 4 mm with the taper ratio c = 0.5 and the 

column material is that of aluminium with Young’s modulus E = 70 GPa and Poisson’s ratio  

= 0.3. The shear correction factor (also known as shape factor) was set to 5/6. Based on these 

parameters, the axial, flexural and shear rigidities at the thick end of the tapered beam were 

worked out to be EA0 = 2.1280×107 N, EIe0= 5135.6 Nm2, kAG0 = 6.8205×106 N. The length 

of the column was set to 0.5m and the distance between the centroid (Gc) and shear centre (Es) 

at the thick end was calculated to be z0 = 0.0094737m.  The critical buckling load of the 

tapered column was computed using the present theory as well as by using the computer 

program BUNVIS-RG [29]. To achieve this, the tapered column (see Fig. 10) was idealised by 

splitting it into several uniform columns both in the present theory and in BUNVIS-RG [29]. 

Such a stepped representation of the tapered column would not give exact result, but with 
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increasing number of elements N used, the result will approach exact result for the critical 

buckling load. In the representation of the tapered column using BUNVIS-RG [29], N number 

of uniform columns were eccentrically connected at the nodes to simulate the axial-flexural 

coupling effect, arising from the non-coincident centroid and shear centre. The BUNVIS-RG 

[29] model for the tapered column is shown in Fig. 11 in which the tapered column is split into 

N elements A1-A2, A2-A3, A3-A4,….AN-AN+1, along the elastic axis and the elements are 

eccentrically connected to the corresponding nodes 1, 2, 3,….N+1. 
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Fig. 11. Idealisation of a coupled axial-bending tapered column with an axial load P by using 

BUNVIS-RG [29]. 

 

  Using the present theory and the above idealisation for BUNVIS-RG [29], the critical 

buckling load of the tapered column was obtained for clamped-free (C-F), Pinned-Simply 

supported (P-S) and clamped-clamped (C-C) boundary conditions including and excluding the 

effects of shear deformation and the results are shown in Table 3. The results without the effect 

of shear deformation are shown in the parenthesis.  Clearly the results from the present theory 

are in very close agreement with the results computed by BUNVIS-RG [29]. The very small 

differences in the results can be attributed to the fact that z used when applying the present 

theory for each component of the uniform column representing the tapered column was based 
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on the average value of the two ends whereas in BUNVIS-RG, the data used for the 

eccentrically connected columns correspond to the exact two end values of z, not the average. 

For the tapered column investigated, the effect of shear deformation on the critical buckling 

load is not so pronounced as can be seen in Table 3. 

Table 3. Critical buckling load of an axial-flexural coupled shear deformable tapered column 

(Results in parentheses correspond to cases when the effects of shear deformation are 

excluded). 

 

Boundary 

Condition 

Critical Buckling Load Pcr (kN) 

N=10 N=20 

Current theory BUNVIS-RG Current theory BUNVIS-RG 

C-F 13.272 (13.346) 13.271 (13.345) 13.219 (13.294) 13.219 (13.293) 

P-S 31.704 (32.086) 31.701 (32.083) 31.519 (31.900) 31.516 (31.897) 

C-C 124.47 (129.96) 122.46 (129.95) 122.63 (127.98) 122.62 (127.97) 

 

5 Conclusions 

 

  An exact stiffness matrix for an axial-flexural coupled column with the inclusion of shear 

deformation has been developed. Explicit expressions for the elements of the stiffness matrix 

derived with the help of symbolic computation are presented. The ensuing stiffness matrix is 

applied with particular reference to the Wittrick-Williams algorithm to investigate the buckling 

behaviour of some illustrative examples for axial-flexural coupled columns. Representative 

buckling mode shapes revealing significant coupling between axial and flexural displacements 

are illustrated. The applicability of the theory is extended to axial-flexural coupled tapered 

columns. The correctness of the theory is confirmed by numerical studies using plate theory 

and finite element-based computer programs. The investigation is particularly significant for 

columns with smaller slenderness ratios and with cross-sections having wide separation 

between the centroid and the shear centre. The research described in this paper fills an 

important gap in the literature. 
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