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ABSTRACT

Automatic transcription of polyphonic music has been an active re-

search field for several years and is considered by many to be a key

enabling technology in music signal processing. However, current

transcription approaches either focus on detecting pitched sounds

(from pitched musical instruments) or on detecting unpitched sounds

(from drum kits). In this paper, we propose a method that jointly

transcribes pitched and unpitched sounds from polyphonic music

recordings. The proposed model extends the probabilistic latent

component analysis algorithm and supports the detection of pitched

sounds from multiple instruments as well as the detection of un-

pitched sounds from drum kit components, including bass drums,

snare drums, cymbals, hi-hats, and toms. Our experiments based on

polyphonic Western music containing both pitched and unpitched

instruments led to very encouraging results in multi-pitch detection

and drum transcription tasks.

Index Terms— Music signal analysis, automatic music tran-

scription, multi-pitch detection, drum transcription

1. INTRODUCTION

Automatic music transcription refers to the process of converting an

acoustic musical signal into some form of music notation, and is con-

sidered to be a key problem in the field of music signal processing,

having several applications in music information retrieval, interac-

tive music systems, and computational musicology [1]. However,

the area of automatic transcription is split into two strands, with one

focusing on transcription of pitched sounds (i.e. multi-pitch detec-

tion) and the other on transcribing unpitched sounds (typically drum

sounds). Even though research is active in both topics, currently no

attempt has been made to jointly transcribe pitched and unpitched

musical instruments, even though a large subset of recorded music

contains instances of both (e.g. pop, rock, jazz).

Regarding automatic transcription of harmonic sounds, a large

subset of current approaches employs spectrogram factorization

techniques [2], such as non-negative matrix factorization (NMF)

and probabilistic latent component analysis (PLCA). Related work

includes the PLCA-based system of Grindlay and Ellis [3], which

supports multiple spectral templates for each pitch and instrument

source and models fixed spectral templates as a linear combination

of basic instrument models. Also, Fuentes et al. [4] proposed a

pitched transcription system based on PLCA, which decomposes an

input music signal into a harmonic component and a noise compo-

nent. The harmonic signal represents each note as a weighted sum of

narrowband log-spectra which are also shifted across log-frequency.
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Finally, the authors in [5] proposed a PLCA-based pitched sound

transcription model which supports multiple templates per pitch and

instrument, and also uses pre-shifted and pre-extracted templates

across log frequency for supporting tuning changes and frequency

modulations (the model of [5] is used as the pitched component for

the proposed model).

Related work on drum transcription includes the system of

Lindsay-Smith et al. [6], who employ convolutive NMF for tran-

scribing solo drum loops and represent each drum template as a

time-frequency patch. Gillet and Richard [7] proposed a system for

transcribing and separating drums from polyphonic music signals,

using a harmonic/noise decomposition and Wiener filtering-based

separation. Finally, Paulus and Klapuri [8] transcribed drum sounds

using a network of connected hidden Markov models, using the

ENST drums dataset for evaluation.

In this work, we propose a novel system for joint transcrip-

tion of pitched and unpitched sounds from polyphonic music. To

the authors’ knowledge, this is the first transcription system to per-

form joint transcription of multiple pitches and drum sounds. The

model extends the PLCA algorithm [2] and decomposes an input

log-frequency spectrogram into a pitched and an unpitched compo-

nent. The pitched component supports multiple-instrument poly-

phonic music, as well as tuning changes and frequency modula-

tions. The unpitched component supports the detection of overlap-

ping sounds from drum kit instruments (bass drum, snare drum, hi-

hats, cymbals, toms). For evaluation, we use a recordings from the

TRIOS [9] and RWC [10] databases which contain pitched and un-

pitched sounds. For the RWC data, we also create temporally aligned

ground truth by applying the music synchronization algorithm of

[11] to the non-aligned annotations found in the database. A good

level of accuracy on multi-pitch detection and drum transcription is

reported on complex polyphonic recordings containing pitched and

unpitched sounds.

The outline of this paper is as follows. In Section 2, the pro-

posed transcription model is presented, along with the algorithm for

parameter estimation and the postprocessing procedure. Section 3

describes the datasets used for training and testing, the evaluation

metrics, and the experimental results. Finally, conclusions are drawn

and future directions are indicated in Section 4.

2. PROPOSED METHOD

In the following, we describe a method for the automatic transcrip-

tion of both pitched and unpitched sounds from polyphonic Western

music. The proposed model will be able to detect multiple pitches

produced by multiple instruments, using several spectral templates

per pitch and instrument source. Tuning changes and frequency

modulations will be supported by incorporating shift-invariance



across log-frequency. In addition, the model will be able to detect

and classify unpitched sounds produced by drum kit components,

including bass drums, snare drums, hi-hats, cymbals, and toms.

2.1. Model

The proposed model extends the transcription model for detecting

pitched sounds introduced in [5], which was based on probabilistic

latent component analysis (PLCA) [2] and used pre-extracted note

templates from multiple harmonic instruments. In the following, we

extend the approach of [5] by incorporating an additional unpitched

component that adds the ability to model the various instruments in

a drum kit. The proposed model uses as input a normalised log-

frequency spectrogram and decomposes it as a pitched component

(which is modelled according to [5]) and an unpitched component,

supporting several drum kit instruments.

The model approximates the input log-spectrogram Vω,t (where

ω stands for log-frequency and t stands for time) as a bivariate prob-

ability distribution P (ω, t), which is factored as:

P (ω, t) = P (t)P (ω|t) (1)

where P (t) is the frame probability (known quantity) and P (ω|t)
is the conditional distribution over log-frequency bins. P (ω|t) is

further decomposed as a pitched and unpitched component:

P (ω|t) = P (r = h|t)Ph(ω|t) + P (r = u|t)Pu(ω|t) (2)

where Ph(ω|t) is the spectrogram approximation for the pitched

component of the signal and Pu(ω|t) is the approximation for the

unpitched component. The probability P (r|t) (r ∈ {h, u}) corre-
sponds to the weights of the pitched and unpitched components over

time.

The pitched component is decomposed as:

Ph(ω|t) =
∑

p,f,s

Ph(ω|s, p, f)Ph(f |p, t)Ph(s|p, t)Ph(p|t) (3)

where p ∈ {21, . . . , 108} denotes pitch in MIDI scale, s denotes

the pitched instrument index, and f is the shifting parameter across

log-frequency, denoting small pitch changes. Ph(ω|s, p, f) are the

log-spectral templates per pitch p and instrument s, which are also

shifted across log-frequency according to parameter f . Our time-

frequency representation has a spectral resolution of 5 bins per semi-

tone and, by constraining parameter f to f ∈ {1, . . . , 5}, the spec-
tral templates can be shifted by ±0.5 semitones (thus, f = 3 de-

notes the ideal tuning position). Ph(f |p, t) is the time-varying log-

frequency shifting per pitch, Ph(s|p, t) denotes the instrument con-

tribution per pitch over time (useful for instrument assignment eval-

uation), and finally Ph(p|t) is the pitch activation, which is used to

evaluate the model for multi-pitch detection.

The unpitched component is decomposed as:

Pu(ω|t) =
∑

d,z

Pu(ω|d, z)Pu(d|t)Pu(z|d, t) (4)

where d denotes the drum kit component (in this paper, it can be bass

drum, snare drum, hi-hat, cymbals, or toms) and z is the index for the

‘exemplars’ that are used for each component. Thus, Pu(ω|d, z) de-
notes the z-th log-spectral template for drum component d, Pu(d|t)
is the drum component activation (used for drum transcription eval-

uation), and finally Pu(z|d, t) is the exemplar contribution per drum

component over time.

2.2. Parameter Estimation

The unknown parameters in the model are P (r|t), Ph(f |p, t),
Ph(s|p, t), Ph(p|t), Pu(d|t), and Pu(z|d, t). The pitched and un-

pitched templates (Ph(ω|s, p, f) and Pu(ω|d, z), respectively) are
pre-extracted and thus remain fixed.

In order to estimate unknown model parameters, we use the

expectation-maximization (EM) algorithm [12]. Given the input log-

frequency spectrogram Vω,t, the model log-likelihood is given by:

L =
∑

ω,t

Vω,t log
(

P (ω, t)
)

. (5)

In the Expectation step, the posterior distribution over the hidden

variables (p, s, f, d, z) is calculated using Bayes’ theorem:

P (s, p, f, r = h|ω, t) =

P (r = h|t)Ph(ω|s, p, f)Ph(f |p, t)Ph(s|p, t)Ph(p|t)

P (ω|t)
(6)

P (d, z, r = u|ω, t) =
P (r = u|t)Pu(d|t)Pu(z|d, t)

P (ω|t)
(7)

For the Maximization step, we utilise the posteriors of (6-7) for

maximizing the log-likelihood of (5), resulting in the following up-

date equations for the pitched components:

P (r = h|t) ∝
∑

s,p,f,ω

Vω,tP (s, p, f, r = h|ω, t) (8)

Ph(f |p, t) =

∑

ω,s
Vω,tP (s, p, f, r = h|ω, t)

∑

ω,s,f
Vω,tP (s, p, f, r = h|ω, t)

(9)

Ph(s|p, t) =

∑

f,ω
Vω,tP (s, p, f, r = h|ω, t)

∑

f,ω,s
Vω,tP (s, p, f, r = h|ω, t)

(10)

Ph(p|t) =

∑

s,f,ω
Vω,tP (s, p, f, r = h|ω, t)

∑

s,f,ω,p
Vω,tP (s, p, f, r = h|ω, t)

(11)

The update equations for the unpitched components of the model

are as follows:

P (r = u|t) ∝
∑

d,z,ω

Vω,tP (d, z, r = u|ω, t) (12)

Pu(d|t) =

∑

z,ω
Vω,tP (d, z, r = u|ω, t)

∑

z,ω,d
Vω,tP (d, z, r = u|ω, t)

(13)

Pu(z|d, t) =

∑

ω
Vω,tP (d, z, r = u|ω, t)

∑

ω,z
Vω,tP (d, z, r = u|ω, t)

(14)

Eqs. (8) and (12) are normalised by the sum of their re-

spective numerators, i.e.
∑

s,p,f,ω
Vω,tP (s, p, f, r = h|ω, t) +

∑

d,z,ω
Vω,tP (d, z, r = u|ω, t). For estimating the unknown pa-

rameters, eqs. (8)-(14) are iterated until convergence. By keeping

the spectral templates Ph(ω|s, p, f) and Pu(ω|d, z) fixed, the model

required about 20-30 iterations for convergence.

Since typically in polyphonic music only few notes are active at

a given time frame and that few instruments are responsible for pro-

ducing a specific note at a time frame, we also impose sparsity con-

straints on model parameters. In specific, we impose sparsity con-

straints on the pitched component through Ph(p|t) and Ph(s|p, t), as
well as on the unpitched component through Pu(z|d, t). The moti-

vation for imposing sparsity on Pu(z|d, t) is for not allowing combi-

nations of many drum exemplars to approximate an input unpitched
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Fig. 1. Bass drum transcription for the ‘Take Five’ recording, using

templates from the same source. (a) The transcription probability

Pu(d = bd |t), where bd denotes the bass drum. (b) The respective

ground truth.

sound, as the model itself is very rich. The aforementioned con-

straints are incorporated similarly to the method described in [13],

by modifying update equations (10), (11), and (14), by setting the

numerators and denominators to a power greater than 1, thus sharp-

ening the probability distributions. In this work, the sparsity param-

eter for the aforementioned distributions is set to 1.1.

2.3. Postprocessing

The resulting MIDI-scale transcription for the pitched component is

given by:

Ph(p, t) = P (t)P (r = h|t)Ph(p|t) (15)

The pitched component of the model can also output a high-

resolution time-pitch representation by exploiting information from

the pitch shifting parameter Ph(f |p, t):

Ph(f, p, t) = P (t)P (r = h|t)P (f |p, t)P (p|t) (16)

By stacking together slices of Ph(f, p, t) for all p, a time-pitch rep-

resentation Ph(f
′, t) with a spectral resolution equivalent to the res-

olution of the input time-frequency representation can be created,

which is useful for visualising pitch content for extracting tuning

information.

In addition, the resulting drum transcription (using the unpitched

model components) is given by:

Pu(d, t) = P (t)P (r = u|t)P (d|t) (17)

In order to derive a binary piano-roll and “drum-roll” representa-

tion, a post-processing procedure is used to analyse the pitched and

unpitched transcriptions in (15) and (17). As in the vast majority

of automatic transcription systems using spectrogram factorization

techniques (e.g. [14, 13]), we perform thresholding on the transcrip-

tions. For the pitched transcription, we additionally remove detected

events with a duration less than 80ms; short events are not removed

from the unpitched transcription due to the percussive nature of drum

sounds.

For example, in Fig. 1, the bass drum transcription for the ‘Take

Five’ recording used in the evaluations can be seen, along with the

ground truth. In Fig. 2, the pitched transcription of the same record-

ing can be seen; even though the note durations are not well esti-

mated, there are very few spurious notes and note onsets are for the

most part at their correct positions.

t (sec)

(b)

(a)

8 10 12 14 16 18 20 22 24

8 10 12 14 16 18 20 22 24

30

40

50

60

70

80

90

30

40

50

60

70

80

90

Fig. 2. Pitched transcription for the ‘Take Five’ recording. (a) The

piano-roll transcription. (b) The respective ground-truth.

3. EVALUATION

3.1. Training Data

For training the system with pre-extracted templates of pitched

sounds, we used isolated note samples of piano, saxophone, and

double bass, taken from the RWC and MAPS databases [15, 10].

The complete note range of the instruments is used, given the avail-

able training data. For the pre-extracted drum templates, we used

isolated drum sounds from bass drums (7 recordings), snare drums

(43 recordings), hi-hats (25 recordings), cymbals (28 recordings),

and toms (33 recordings), taken from the RWC database [10]. In ad-

dition, we extracted templates for bass drum, snare drum, and cym-

bals using individual tracks of the multi-track ‘Take Five’ recording

from the TRIOS dataset [9], which is used in some of our experi-

ments. As a time-frequency representation, we use the constant-Q

transform with spectral resolution of 60 bins/octave [16]. Pitched

templates are computed using the PLCA algorithm with one com-

ponent [2]. Due to the transient nature of drum sounds, we simply

added exemplars directly to the dictionary Pu(ω|d, z), by sampling

at the CQT spectrograms with a 40ms step.

3.2. Test Data

For testing, we used the complete mix of the ‘Take Five’ recording

from the TRIOS dataset [9], which additionally contains manually-

aligned MIDI ground truth for the piano, saxophone, and drum

tracks (it is the only recording in the dataset that also contains

drums). For comparative purposes, we evaluated the recording us-

ing drum templates from the RWC database and also from drum

templates directly extracted from the drum tracks of the recording

(as to show the potential upper limit in drum transcription using the

proposed method).

We conducted additional experiments using five pieces taken

from the RWC Jazz database [10], which comprise both harmonic

and percussive instruments (pieces RWC-MDB-J 16-20). While

MIDI files provided by the RWC database encode the notes and

instruments played in each piece, they are not temporally aligned

with the audio and thus do not show when the notes are played.

To generate a ground truth transcription from these MIDI files, we

employ a high-resolution music synchronization approach described



Fmp Fbd Fsd Fcym

RWC drums 77.47% 29.51% 48.18% 49.37%

RWC + TRIOS drums 77.18% 92.00% 57.52% 60.76%

Table 1. Transcription results for the ‘Take Five’ recording from the

TRIOS dataset, using drum templates from the RWC database only

and the RWC + TRIOS databases.

in [11]. The procedure is based on Dynamic Time Warping (DTW)

and chroma features but extends previous synchronization methods

by introducing onset-based features to yield a higher alignment ac-

curacy. Using the resulting alignment we determine for each note

event the corresponding position in the audio and update its onset

position and duration in the MIDI file accordingly. Due to cer-

tain mis-alignments in sections where only drums are present, we

evaluated the first two minutes of all five recordings.

3.3. Metrics

We evaluate the performance of the proposed system for multi-pitch

detection and drum transcription, using onset-based metrics which

are used in the MIREX note tracking evaluations [17]. For multi-

pitch detection, a detected note is considered correct if its pitch

matches a ground truth pitch and its onset is within a 50ms tolerance

of a ground-truth onset. For drum transcription, a drum event is

considered correct if it belongs to the correct drum kit component

and its onset is within a 50ms tolerance of a ground-truth onset.

Duplicates found within the same tolerance interval are considered

false alarms. Since the ground truth generated using the automatic

alignment procedure is not as precise as manually generated anno-

tations, we additionally conducted comparative experiments on the

RWC test data using a slightly increased tolerance of 100ms.

As evaluation metrics, we use the onset-based precision, recall,

and F-measure (defined e.g. in [18]). In the following, the F-measure

for multi-pitch detection is denoted as Fmp , whereas the F-measure

for the bass drum, snare drum, hi-hat, and cymbals is denoted by

Fbd , Fsd , Fhh , and Fcym , respectively. Also, an average drum tran-

scription metric is used, namely Fdr , averaging all metrics for the

drum components. It should be noted that the test recordings do not

contain sounds from toms, although the proposed system does con-

tain and support tom templates.

3.4. Results

Transcription results using the ‘Take Five’ recording from the

TRIOS dataset are shown in Table 1. It can be seen that the drum

transcription performance using templates from the same recording

can radically increase performance, as is especially evident for the

bass drum. By examining the spectral shape of the templates, it can

be seen that the RWC templates for the bass drum are tuned much

higher. Irrespective of the drum dictionary, the pitched transcription

performance remains the same. For multi-pitch detection the preci-

sion (81.88%) is much higher than the recall (72.98%), indicating

that the proposed method has more issues with missed detections

than with false alarms.

Results using the 5 piano, bass, and drum recordings from the

RWC database are shown in Table 2. The performance in both multi-

pitch detection and drum transcription is much lower compared to

the recording taken from the TRIOS dataset, which can be partly at-

tributed to inaccuracies in the ground truth resulting from the use of

an automatic alignment procedure. Other reasons include the much

Fmp Fbd Fsd Fhh Fcym Fdr

50ms 37.42% 20.06% 27.27% 60.81% 35.36% 35.88%

100ms 47.98% 26.26% 40.09% 68.15% 52.56% 46.77%

Table 2. Average transcription results for the 5 RWC recordings,

using 50ms and 100ms onset tolerance for evaluation.

more complex nature of the pieces, with rapid piano playing and

multiple overlapping drum sounds. However, it is worth noting that

the multi-pitch detection performance and the drum transcription

performance are on similar levels. When using 100ms as an onset

tolerance, the transcription performance rises to 48% for multi-pitch

detection and 47% for drum transcription. Given that current multi-

pitch detection performance for pitched-only recordings of similar

complexity is at about 60% (e.g. [17, 18]), we consider the tran-

scription performance of the proposed system using complex pieces

containing both pitched and unpitched elements very encouraging.

Regarding the average precision and recall for multi-pitch detec-

tion, a similar trend is observed using the TRIOS recording, with

a reported precision of 46.31% and a recall of 31.81%. It should

be noted that for the drum components, the precision and recall are

much more balanced.

Finally, we perform a comparison on multi-pitch detection per-

formance using the method of [5], which is essentially the pitched

component of the proposed model1. For the ‘Take Five’ record-

ing, the method of [5] reached Fmp = 75.68% and for the RWC

recordings the average F-measure is 36.64% (with 50ms tolerance),

which indicates that modelling percussive instruments can actually

increase the multi-pitch detection performance for music comprising

both pitched and unpitched sound sources.

4. CONCLUSIONS

In this work, a novel system was proposed for the automatic tran-

scription of polyphonic music containing both pitched and unpitched

sounds. The system was able to detect multiple temporally over-

lapping notes as well as overlapping sounds from several drum kit

components. We also created temporally aligned ground truth files

for recordings from the RWC database that contain both harmonic

and percussive sounds. Experiments on multi-pitch detection and

drum transcription demonstrated encouraging results in both tasks,

and also showed that the support of unpitched sounds can improve

the multi-pitch detection performance for recordings containing both

harmonic and percussive components. The source code for the pro-

posed system is also available online2.

In the future, we will further extend the proposed system and

incorporate shift-invariance not only for harmonic sounds but also

for percussive instruments; this way, the system will be enabled to

account for tuning differences between drum kits. In addition, for

further improving drum transcription performance, we will represent

drum sounds as time-frequency patches and incorporate them into a

joint model for pitched and unpitched music transcription. Finally,

we will investigate the use of varying-Q time-frequency represen-

tations [19] for an improved temporal resolution of both high- and

low-frequency content.

1It should be noted that the method of [5] had high scores and ranked first
for the MIREX 2013 public transcription evaluations [17].

2https://code.soundsoftware.ac.uk/projects/pu_

amt
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