

City, University of London Institutional Repository

Citation: Gàmez-Montolio, A., Florit, E., Brain, M. & Howe, J. (2024). Efficient Normalized

Reduction and Generation of Equivalent Multivariate Binary Polynomials. Paper presented
at the Workshop on Binary Analysis Research, 1 Mar 2024, San Diego, USA. doi:
10.14722/bar.2024.23014

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/32695/

Link to published version: https://doi.org/10.14722/bar.2024.23014

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Efficient Normalized Reduction and Generation of
Equivalent Multivariate Binary Polynomials

Arnau Gàmez-Montolio∗†, Enric Florit‡, Martin Brain∗ and Jacob M. Howe∗
∗City, University of London

{arnau.gamez-montolio, martin.brain, j.m.howe}@city.ac.uk
†Activision Research

‡Universitat de Barcelona
enricflorit@ub.edu

Abstract—Polynomials over fixed-width binary numbers
(bytes, Z/2wZ, bit-vectors, etc.) appear widely in computer
science including obfuscation and reverse engineering, pro-
gram analysis, automated theorem proving, verification, error-
correcting codes and cryptography. As some fixed-width binary
numbers do not have reciprocals, these polynomials behave
differently to those normally studied in mathematics. In par-
ticular, polynomial equality is harder to determine; polynomials
having different coefficients is not sufficient to show they always
compute different values. Determining polynomial equality is a
fundamental building block for most symbolic algorithms. For
larger widths or multivariate polynomials, checking all inputs is
computationally infeasible. This paper presents a study of the
mathematical structure of null polynomials (those that evaluate
to 0 for all inputs) and uses this to develop efficient algorithms
to reduce polynomials to a normalized form. Polynomials in such
normalized form are equal if and only if their coefficients are
equal. This is a key building block for more mathematically so-
phisticated approaches to a wide range of fundamental problems.

I. INTRODUCTION

A. Preliminary

A polynomial function over values of w bits (with wrap-
ping) is called a binary polynomial. The following definitions
are equivalent and can be found spread throughout literature;
choosing one usually comes down to the author’s background,
preferences and underlying motivation for the study.

• Polynomials over Z2w = Z/2wZ, the ring of integers
modulo 2w.

• Polynomials over fixed-size bit-vectors of w bits.

When talking about binary polynomials in literature, it
is implicitly assumed that they refer to univariate binary
polynomials. Unless otherwise specified, we will also follow
this naming convention. From a pure mathematical standpoint,
binary polynomials constitute just a particular case of the
broader research area of polynomial functions over the ring of
integers modulo powers of prime numbers [6], [10]. Or, even

more generally, over the ring of integers modulo an arbitrary
integer [14], [23].

B. Context

Our main motivation for the study of binary polynomi-
als comes from practical applications to code obfuscation
and analysis within the field of software protection [2], [7].
However, the ability to reason about equivalent instances has
applications in many other research and engineering areas.
Binary polynomial reduction techniques have been used in the
formal verification of Register-Transfer Level (RTL) code for
processor datapath [8], [22]. Within the field of Satisfiability
Modulo Theories (SMT), authors have also pointed out the
fundamental need for algebraic techniques to deal with non-
linear formulae over R, Z and Z2w (a.k.a. the theory of bit-
vectors), which have long been regarded as a particularly chal-
lenging area. The practical manifestation of these challenges
is that many modern SMT solvers struggle to solve problems
containing even low-order polynomials in low bit-widths or
few variables. Approaches have been proposed [5] but it
remains a pressing open problem. The particular properties of
binary polynomials have also been used in program analysis
[21]. Moreover, the use of binary permutation polynomials
(i.e., invertible binary polynomials) over a ring [15] (instead
of the usual assumption of polynomials over a finite field
[11], [12]) has been crucial in the development of classic
cryptographic algorithms like RSA [13], [17] or RC6 [16], as
well as in the design of interleavers for turbo codes [18], [19],
[24]–[26], error-correcting codes widely deployed in mobile
and satellite communication systems.

C. Motivation

As stated before, the initial field that sparked our interest in
binary polynomials is code obfuscation and analysis. Several
obfuscation mechanisms exist that can benefit from a deeper
understanding and efficient generation of (equivalent) binary
polynomials. More concretely, binary permutation polynomi-
als are leveraged as obfuscation primitives in a number of
semantics-preserving transformations that increase the com-
plexity and diversity of the underlying code. In particular, we
are not only interested in the direct application of polynomial
transformations but also in combining them with state-of-
the-art Mixed Boolean-Arithmetic obfuscation techniques [9],
[27], [28]. We briefly showcase some of these constructions.

Workshop on Binary Analysis Research (BAR) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-0-7
https://dx.doi.org/10.14722/bar.2024.23014
www.ndss-symposium.org

1) Data encodings: prevent data values used for arbitrary
computations from being revealed during program execution.
An initial encoding function is first applied to the values to
be hidden. An inverse decoding function is later applied in
combination with (and possibly blended within) the operations
that manipulate the initial data in order to preserve the original
semantics.

Let P,Q be inverse binary permutation polynomials over
Z232 (in other words, over 32-bit variables) defined as

P (x) = 1789355803x+ 1391591831

Q(x) = 3537017619x+ 624260299.

and consider the snippet of C-like code in Listing 1.

uint32_t a, b, r;
...
a = key1;
b = key2;
r = foo(a*b);

Listing 1. Original code before data encoding.

Now use P,Q as encoding and decoding functions to
protect (obfuscate) the values of key1, key2 and their usage:
a = P (key1), b = P (key2) and r = foo(Q(a)Q(b)). We
obtain the obfuscated C-like code shown in Listing 2.

uint32_t a, b, r;
...
a = 1789355803*key1 + 1391591831;
b = 1789355803*key2 + 1391591831;
r = foo(4112253801*a*b + 1966380049*a + 1966380049*b

↪→ + 1062639865);

Listing 2. Obfuscated code after data encoding.

2) Insertion of identities: increase the syntactic complexity
of an algebraic (MBA) expression by wrapping it with the
identity function generated by the composition of two inverse
functions (e.g., binary permutation polynomials).

Let P,Q be inverse binary permutation polynomials over
Z28 (8-bit variables) defined as

P (x) = 8x2 + 151x+ 111

Q(x) = 200x2 + 183x+ 223.

and consider the snippet of C-like code in Listing 3.

uint8_t x, y, z;
x = ...;
y = ...;
z = x + y;

Listing 3. Original code before identity insertion.

Now wrap the expression that computes z with the identity
given by the composition of P and Q: z = P (Q(x+ y)). We
obtain the obfuscated C-like code shown in Listing 4.

uint8_t x, y, z;
x = ...;
y = ...;
z = 8*(200*(x + y)*(x + y) + 183*(x + y) + 223)

↪→ *(200*(x + y)*(x + y) + 183*(x + y) + 223) +
↪→ 151*(200*(x + y)*(x + y) + 183*(x + y) + 223)
↪→ + 111;

Listing 4. Obfuscated code after identity insertion.

3) Opaque constants: conceal (the use of) sensitive con-
stants by replacing them with an algebraic (MBA) expres-
sion on an arbitrary number of variables. This expression
will always evaluate to the opaqued constant during runtime
computation, regardless of the concrete values its variables are
assigned to.

Working over Z28 (8-bit variables), let E be a null MBA
expression (i.e., an MBA expression that always evaluates to
0), P,Q be inverse permutation polynomials defined as

E(x, y) = x− y + 2(¬x ∧ y)− (x⊕ y)

P (x) = 248x2 + 97x

Q(x) = 136x2 + 161x

and consider the snippet of C-like code in Listing 5.

uint8_t k = 123;
foo(k);

Listing 5. Original code before opaque constant.

Now replace the constant k = 123 with the expression
obtained from expanding P (E(x, y)+Q(k)). It is easy to see
that the runtime evaluation of such expression will be equal
to k regardless of the concrete values of the variables x, y,
since P (E(x, y) + Q(k)) = P (0 + Q(k)) = P (Q(k)) = k.
We obtain the obfuscated C-like code show in Listing 6.

uint8_t x, y;
x = ...;
y = ...;
foo(195 + 97*x + 159*y + 194*˜(x | ˜y) + 159*(x ˆ y)

↪→ + (163 + x + 255*y + 2*˜(x | ˜y) + 255*(x ˆ
↪→ y)) * (232 + 248*x + 8*y + 240*˜(x | ˜y) +
↪→ 8*(x ˆ y)));

Listing 6. Obfuscated code after opaque constant.

It is clear that generating arbitrary equivalent binary poly-
nomials directly enables the possibility of introducing a higher
diversity in any obfuscation transformation that relies on binary
polynomials as obfuscation primitives. Furthermore, being
able to produce a normalized reduction of such polynomial
transformations is certainly meaningful from a reverse engi-
neering, program analysis and general algebraic manipulation
perspective.

D. Approach

Due to the ubiquitous usage of binary permutation polyno-
mials, several authors have focused on the inversion problem.
An initial study of the inversion of the quadratic case for turbo
codes’ interleavers was presented in [20]. An algorithm to
generate (a rather small set of) pairs of same-degree inverse
binary permutation polynomials was introduced in [28] within
the context of MBA obfuscation techniques. There have also
been recent research efforts aiming to provide a more general
and efficient approach to computing inverse binary permutation
polynomials, also influenced by obfuscation purposes [3], [4].

However, we take a step back from permutation polynomi-
als and the inversion problem and address more fundamental
questions about binary polynomials in general. While the
pure mathematical and theoretical development of polynomial
functions over the ring of integers modulo powers of primes or

2

arbitrary integers [6], [10], [14], [23] is undoubtedly valuable
and a necessary starting point, it is at the same time too generic
and does not provide explicit enough results (let alone efficient
computation algorithms) that can be directly applied to the
real-world scenarios described, where binary polynomials are
of great, immediate and very concrete relevance.

Thus, influenced and motivated by the many practical
applications, we focus on the theoretical (yet concrete) study
and development of binary polynomials in particular, with the
end goal of obtaining explicit results and efficient algorithms
to deal with the problem of generation, normalization and
algebraic manipulation of equivalent binary polynomials.

E. Contributions

This paper makes the following contributions:

1) We perform an exhaustive study and theoretical de-
velopment of the mathematical structure and proper-
ties of null binary polynomials (see Section III).

2) We provide a minimal set of generators for the ideal
of null binary polynomials (see Theorem III.10).

3) We give a formula to compute the number of equiv-
alent binary polynomials up to a chosen degree (see
Proposition III.13).

4) We propose an efficient algorithm to, given a binary
polynomial, compute a normalized equivalent binary
polynomial with the lowest possible degree (see The-
orem III.4, Lemma III.11 and Algorithm 1).

5) We propose an efficient algorithm to, given a binary
polynomial, arbitrarily compute equivalent binary
polynomials up to a chosen degree (see Algorithm 2).

6) We generalize these results (see Section IV) and
algorithms (see Section V-C) to multivariate binary
polynomials. The procedure we obtain is particularly
effective when dealing with sparse polynomials (see
Algorithm 3).

II. NOTATION

Throughout the paper, we work with the standard notions
of (unitary and commutative) rings and their ideals, which the
reader can find in Chapter 1 of [1]. We recall them briefly.
A (commutative) group is a triple (G,+, 0), where + is a
binary commutative operation on G such that 0 + x = x +
0 = x for all x ∈ G, opposites exist (x + (−x) = 0), and
the standard associativity rules hold. A ring (R,+, 0, ·, 1) is a
tuple such that (R,+, 0) is a group, · is an associative binary
operation which distributes with respect to +, and 1 is the
neutral element for ·.

The central concept we need is that of an ideal. An ideal
I of a ring R is a subset I ⊂ R which is itself a group, and
such that α · x ∈ I for every α ∈ R and x ∈ I . For example,
an ideal I of the integers (Z,+, 0, ·, 1) always consists of the
multiples of a single integer n ∈ Z, called a generator of I .

If g1, . . . , gn are fixed elements of R, we can form the
ideal generated by them, denoted

⟨g1, . . . , gn⟩,

which consists of all sums of the form α1g1 + · · · + αngn
for all possible α1, . . . , αn ∈ R. The elements g1, . . . , gn are

called generators of the ideal. There can be more than one set
of generators for the same ideal. In general, ideals cannot be
generated by a single element (see the ideals Zw and Zw,k

below).

More generally, an R-module is a group M with an action
of R. This means having an operation R ×M → M which
for every α ∈ R and m ∈ M yields an element α ·m ∈ M .
Ideals are a particular case of modules. The full definition and
some properties of modules can be found in Chapter 2 of [1].
We will mostly use modules when considering subgroups of
ideals, M ⊂ I .

Modules can be thought of as generalizations of vector
spaces. When an R-module can be described as a cartesian
product M = Rn = R×· · ·×R (or more generally, an infinite
product of copies of R), we say M is free. Equivalently, the
module has a set of generators g1, . . . , gn which are linearly
independent in the usual sense. We say g1, . . . , gn form a basis
of M . The size of a basis is called the rank of M .

Given a ring R, R[x] denotes the ring of univariate poly-
nomials with coefficients in R. Given some positive integer k,
the ring R[x1, . . . , xk] is the ring of polynomials in k variables
and coefficients in R. These rings are in turn free R-modules.
An R-basis for R[x] is the canonical basis, {1, x, x2, . . . }.

We occasionally also mention tensor products, which are
introduced in Chapter 2 of [1]. If M and N are R-modules,
their tensor product is denoted by M⊗RN . If we assume that
they are free so that they have R-bases

{m1,m2, . . . }, {n1, n2, . . . }

then {mi ⊗ nj}i,j is a basis for the free R-module M ⊗R N .
This is completely analogous to the case of vector spaces and
can be taken as a definition. Notably, this applies to polynomial
rings, which are free (of countable rank). The example relevant
to us is the isomorphism

R[x1, . . . , xk] ≃ R[x1]⊗R · · · ⊗R R[xk].

This is made explicit by saying that

{xr1
1 xr2

2 · · ·x
rk
k }r1,...,rk≥0

is an R-basis for R[x1, . . . , xk], while

{xr1
1 ⊗ xr2

2 ⊗ · · · ⊗ xrk
k }r1,...,rk≥0

is an R-basis for R[x1]⊗R · · · ⊗R R[xk].

If t is any real number, [t] denotes its floor, which is the
largest integer m such that m ≤ t. For a nonzero integer n,
we write ν2(n) for the largest r such that 2r divides n. We
also write ν2(0) = ∞. The function ν2 : Z → N ∪ {∞} is
called the 2-adic valuation and satisfies the usual properties:

1) ν2(ab) = ν2(a) + ν2(b),
2) ν2(a+ b) ≥ min(ν2(a), ν2(b)).

It will be relevant to know the 2-adic valuation of a factorial
number, n!, which is seen to be

ν2(n!) =

∞∑
r=1

[n

2r

]
.

Note that this is in fact a sum of finitely many nonzero terms,
since there is always some r ≥ 1 such that n

2r < 1.

3

For every nonnegative integer n, we define its superfacto-
rial by the formula

sf(n) =

{
1, n = 0

1! · 2! · · ·n!, n > 0.

III. NULL POLYNOMIALS MODULO 2w

Let R be a ring. Every polynomial P (x) ∈ R[x] defines by
evaluation a function R→ R. If we take another Q(x) ∈ R[x]
defining the same function as P , then P −Q is a polynomial
which vanishes identically on all of R (that is, the function
given by P − Q is constant equal to 0). This motivates the
following.

Definition III.1. We say a polynomial P (x) ∈ R[x] is a null
polynomial if P (a) = 0 for all a ∈ R.

The set Z of all null polynomials for R is easily seen to
form an ideal of R[x].

Remark. We say an arbitrary function f : R → R is
polynomial if there is some polynomial P (x) ∈ R[x] such that
f(a) = P (a) for all a ∈ R. The set of polynomial functions
forms a ring under addition and multiplication. It is easy to
show that this ring is isomorphic to the quotient ring R[x]/Z.
In other words, “two polynomials defining the same function”
is an equivalence relation.

If R is a subring of C, it is well-known that there are no
(nonzero) null polynomials in R[x]. The situation is different
if R is a ring with finitely many elements. From now on we
fix some integer w ≥ 1 and let R := Z2w = Z/2wZ.

We denote the ideal of null polynomials in Z2w [x] by
Zw. For every positive integer d, Z2w [x]d denotes the set of
polynomials of degree at most d. It is convenient for us to
define Zw

d := Zw ∩ Z2w [x]d, the subgroup of polynomials
P ∈ Zw of degree at most d. Then we have

Zw
d ⊆ Zw

d+1 and Zw =

∞⋃
d=0

Zw
d .

We will later see that Zw is not a principal ideal, i.e. Zw is
not generated by a single element. By Hilbert’s basis theorem,
it has a finite number of generators as a Z2w [x]-ideal. In
particular, we will provide an explicit minimal set of Z2w [x]-
generators for Zw.

Let P (x) ∈ Z2w [x] be a polynomial of degree d and fix
an integer δ ≥ d. It follows from the previous remark that the
number of polynomials of degree at most δ defining the same
function as P equals #Zw

δ . Hence, we just need to compute
#Zw

δ to know the number of equivalent polynomial functions
over Z2w [x] up to degree δ. We will make this computation
more explicit at the end of this section.

Let us show some first properties of Zw.

Lemma III.2. The following statements hold:

1) #Zw
d is a power of 2.

2) Every h ∈ Zw has constant term equal to 0.
3) Zw

0 = Zw
1 = {0}.

Proof: To see 1), we note that Zw
d is a subgroup of

Z2w [x]d, which has order 2w(d+1). To see 2), let h(x) ∈ Zw,
which we write as

h(x) = adx
d + · · ·+ a1x+ a0.

By definition we have h(a) ≡ 0 (mod 2w) for all a ∈ Z2w .
In particular, this must be the case for h(0), but then h(0) ≡
a0 ≡ 0 (mod 2w). This also shows Zw

0 = {0}, which is the
first part of 3).

To see Zw
1 = {0}, let h(x) ∈ Zw

1 . We already know that
h(x) = a1x for some a1 ∈ Z2w . But again by definition we
must have h(1) ≡ 0 (mod 2w), showing a1 ≡ 0 (mod 2w).

The polynomials 1, x, x2, . . . form the canonical basis of
Z2w [x]. For consistency and convenience, we use the notation
in [14] to write polynomials in terms of factorial powers. Let
x(0) = 1 and x(1) = x. For every j ≥ 2 we define the
polynomial

x(j) = x(x− 1) · · · (x− j + 1),

which has degree j. The polynomials x(0), x(1), . . . , x(d) form
a Z2w -basis for Z2w [x]d, called the factorial basis. To check
this, we write their coefficients in matrix form, placing each
polynomial in a row starting with the independent term, and
we obtain a triangular matrix with ones in the diagonal. Hence
the determinant equals 1, and this is indeed a basis.

For j ≥ 0, we let

cj := 2max(w−ν2(j!),0) and Gj(x) := cjx
(j).

For example, if w = 8, then G2(x) := 27x(x − 1) =
128x2−128x. This is clearly a null polynomial since either x
or x−1 will be even. Thus, we can always write x(x−1) = 2x′

for some x′, and G2(x) = 28x′ ≡ 0 (mod 28) trivially.

Remark. In general, we think of the polynomials Gj in
Z2w [x], but sometimes we will consider cj as a proper integer.

Lemma III.3. For j ≥ 0, Gj(x) is a null polynomial of degree
j, i.e. Gj ∈ Zw

j .

Proof: For all integers 0 ≤ k < j we have x(j)(k) = 0.
Let k ≥ j. The equality x(j)(k) = 0 then follows from the
fact that the product of j consecutive integers is divisible by
j!. Indeed, the binomial coefficient

(
k
j

)
can be expressed as(

k

j

)
=

k!

(k − j)!j!
=

k(k − 1) · · · (k − j + 1)

j!
=

x(j)(k)

j!

and is always an integer. This implies that ν2(x(j)(k)) ≥ ν2(j!)
for every integer k ≥ j, and therefore Gj(k) ≡ 0 (mod 2w)
for all integers k.

The following result characterizes all polynomials in Zw.

Theorem III.4. The group Zw
d is generated as a (non-

free) Z2w -module by G2, G3, . . . , Gd. More concretely, every
H(x) ∈ Zw

d can be uniquely written as

H(x) =

d∑
j=2

hjGj ,

4

where hj ∈ Z2w is the residue class of an integer 0 ≤ h̃j ≤
2min(ν2(j!),w) − 1.

Proof: We follow the proof of [14, Theorem 2.1]. By
Lemma III.3, any H(x) as in the statement is a null polyno-
mial. Conversely, let

H(x) =

d∑
j=0

hjx
(j)

be any polynomial in Zw
d . The difference operator

∆H(x) := H(x+ 1)−H(x)

is linear and satisfies

∆jx(i) = i(i− 1) · · · (i− j + 1)x(i−j).

Hence we have ∆jH(0) ≡ hjj! ≡ 0 (mod 2w), so that

hj ≡ 0 (mod 2max(w−ν2(j!),0)).

If h̃j is any integer representing this residue class, this is
equivalent to the divisibility condition cj | h̃j . This proves
any H(x) ∈ Zw

d has the form in the statement. The unique-
ness comes from standard results on congruences, plus the
conditions hj ≡ 0 (mod 2max(w−ν2(j!),0)) and hj ∈ Z2w . In
particular, we have h0 ≡ h1 ≡ 0 (mod 2w).

Definition III.5. We denote by dw the smallest positive integer
such that

ν2(dw!) ≥ w.

Recall that a polynomial P (x) ∈ Z2w [x] is said to be monic
if its leading coefficient is equal to 1.

Lemma III.6. Let t be the smallest integer for which Zw
t

contains a monic polynomial. Then t = dw.

Proof: The leading coefficient of Gdw is cdw =
2max(w−ν2(dw!),0) = 20 = 1. Therefore Zw

dw
contains a monic

polynomial, and t ≤ dw.

Suppose by way of contradiction that t < dw. Let H(x) ∈
Zw

t be an arbitrary polynomial. By Theorem III.4, H(x) can
be written as

H(x) =
t∑

j=2

hjGj ,

with some condition on each hj . Let k ≤ t be the largest
index such that hk ̸= 0. Then the leading coefficient of H is
a multiple of that of Gk, which equals ck = 2max(w−ν2(k!),0).
By assumption, k ≤ t < dw, and by definition of dw we have
w − ν2(k!) > 0. Thus, H has leading coefficient (a multiple
of) ck = 2w−ν2(k!) ̸= 1.

Since H was arbitrary, we have reached a contradiction,
because Zw

t does not contain any monic polynomial. It follows
that t = dw.

Definition III.7. If P (x) ∈ Zw
dw

is monic, we say P is a
least-degree monic null polynomial.

Remark. The least-degree monic null polynomial is not
unique, which can be seen by adding any nonzero null poly-
nomial of strictly smaller degree.

For practical applications, it will be convenient to have a
straightforward formula that computes the value of d2k .

Lemma III.8. If w = 2k, then dw = w+2. As a consequence,
for general values of w we have the inequalities

2[log2(w)] + 2 ≤ dw ≤ 2[log2(w)]+1 + 2.

In other words, dw = O(w).

Proof: We use the formula ν2(n!) =
∑∞

r=1

[
n
2r

]
. By

direct computation, we have

ν2(w!) = ν2(2
k!) =

∞∑
r=1

[
2k

2r

]
=

k∑
r=1

2k−r

=

k−1∑
s=0

2s = 2k − 1 = w − 1.

It follows that dw > w. In fact, because w+1 is odd, we have
ν2((w+1)!) = ν2(w!), so dw ≥ w+2. And because w+2 is
even, we have

ν2((w+2)!) = ν2(w+2)+ν2(w!) = ν2(w+2)+w−1 ≥ w.

We conclude dw = w + 2.

For the inequalities, we let k = [log2 w]. Then 2k ≤ w ≤
2k+1. The map w 7→ dw is nondecreasing, so we obtain d2k ≤
dw ≤ d2k+1 . But we have already shown that d2k = 2k + 2
and d2k+1 = 2k+1 + 2.

Next we relate the different submodules Zw
d of Zw. We

introduce the following notation:

(1 + x)Zw
d = {P (x) + xQ(x) | P,Q ∈ Zw

d }.

Proposition III.9. For every d ≥ 0, we have the inclusion
(1 + x)Zw

d ⊆ Zw
d+1. Moreover, this inclusion is an equality

whenever d is even.

Proof: To see the inclusion, let P (x), Q(x) ∈ Zw
d be null

polynomials of degree at most d. Then, P + xQ is also a
null polynomial of degree at most d + 1. It is then clear that
P + xQ ∈ Zw

d+1.

Suppose now that d is even. We know that Zw
d

(respectively, Zw
d+1) is generated by G2, . . . , Gd (resp.

G2, . . . , Gd, Gd+1). We observe that Gd and Gd+1 have
the same leading coefficient. Indeed, Gd has leading coef-
ficient 2max(w−ν2(d!),0), while Gd+1 has leading coefficient
2max(w−ν2((d+1)!),0). But now

ν2((d+1)!) = ν2((d+1) · d!) = ν2(d+1)+ ν2(d!) = ν2(d!),

since d + 1 is odd and therefore ν2(d + 1) = 0. Hence we
can write Gd+1 = Gd · (x − d) ∈ (1 + x)Zw

d , concluding
(1 + x)Zw

d = Zw
d+1.

With the above inclusion result, we are ready to find
generators of Zw as a Z2w [x]-ideal.

Theorem III.10. If d ≥ dw, then (1 + x)Zw
d =

Zw
d+1. In particular, Zw is generated as a Z2w [x]-ideal

by the set {G2, G4, . . . , Gdw
}. Moreover, this is a min-

imal generating set for Zw, in the sense that Gj ̸∈
⟨G2, . . . , Gj−2, Gj+2, . . . , Gdw

⟩, for every j = 2, 4, . . . , dw.

5

Proof: Let d ≥ dw and P (x) ∈ Zw
d+1. Let Q(x) ∈ Zw

d
be a null polynomial with leading coefficient 1. Writing P as

P (x) = ad+1x
d+1 + · · ·+ a1x+ a0,

we see that the polynomial P − ad+1xQ has degree d.
Therefore P−ad+1xQ ∈ Zw

d , and so there is some h(x) ∈ Zw
d

such that P = h + ad+1xQ. The equality is now clear since
h+ ad+1xQ ∈ (1 + x)Zw

d .

From the equality (1 + x)Zw
d = Zw

d+1, we can obtain a
generating set for Zw from a generating set for Zw

dw
, which

by Theorem III.4 can be taken to be G2, G3, G4, . . . , Gdw . But
since we are considering Z2w [x]-multiples, we can obviate the
odd-degree polynomials by using Proposition III.9.

To see that G2, G4, . . . , Gdw
is a minimal generating set,

it is enough to observe that Gj+2 ̸∈ ⟨G2, . . . , Gj⟩ for all j =
2, 4, . . . , dw − 2. Otherwise, the leading coefficient cj+2 =
2max(w−ν2((j+2)!),0) of Gj+2 would have to be a multiple of
cj . But this is never the case for j ≤ dw, because ν2(j!) is
strictly smaller that ν2((j + 2)!).

To end this section, we go back to equivalent polynomials.

Lemma III.11. Let f : Z2w → Z2w be any polynomial
function. There exists a polynomial Q(x) ∈ Z2w [x] of degree
deg(Q) < dw defining the same function as f .

Proof: Let P (x) ∈ Z2w [x] be a polynomial representing
the function f . Because Gdw

is a monic polynomial, we can
perform Euclidean division of P by Gdw

. This means that
there are polynomials b(x) and Q(x) such that

P = Gdwb+Q,

with deg(Q) < deg(Gdw
) = dw. Since Gdw

is a null
polynomial, we indeed have f(a) = P (a) ≡ Q(a) (mod 2w)
for every a ∈ Z2w .

Definition III.12. Given a polynomial P (x) ∈ Z2w [x], we
let the reduced degree of P be the degree of the smallest
polynomial Q defining the same function as P . We denote it
by rdeg(P).

As we hinted above, we can now compute the number of
polynomials equivalent to a fixed one up to a certain degree.

Proposition III.13. Let P (x) ∈ Z2w [x] be a polynomial and
fix some integer δ ≥ rdeg(P). The number of polynomials in
Z2w [x]δ defining the same function as P (x) is

#Zw
δ =

{
2v2(sf(δ)), δ < dw
2v2(sf(dw−1)) · 2w(δ−dw+1), δ ≥ dw

where sf(n) is the nth superfactorial.

Proof: By Theorem III.4, every H(x) ∈ Zw
δ is written

uniquely as

H(x) =

δ∑
j=2

hjGj ,

where hj ∈ Z2w is the residue class of an integer 0 ≤
h̃j ≤ 2min(ν2(j!),w) − 1. The number of possible tuples

(h2, h3, . . . , hδ), and therefore the number of elements in Zw
δ ,

is then equal to
∏δ

j=0 2
min(ν2(j!),w). By definition of dw, if

δ < dw then
δ∏

j=2

2min(ν2(j!),w) =

δ∏
j=2

2ν2(j!)

= 2
∑δ

j=2 ν2(j!)

= 2ν2(
∏δ

j=2 j!)

= 2v2(sf(δ)).

The equality ν2(
∏δ

j=2 j!) = sf(δ) is clear, since ν2(0!) =
ν2(1!) = 0. If δ ≥ dw instead, we have

δ∏
j=0

2min(ν2(j!),w) =

dw−1∏
j=0

2ν2(j!) ·
δ∏

j=dw

2w

= 2ν2(sf(dw−1)) · 2w(δ−dw+1).

IV. THE MULTIVARIATE CASE

We now generalize the results of the previous section to
null polynomials in the ring Z2w [x1, . . . , xk] of polynomials
in k variables. As before, this can be applied to the study of
polynomial functions Zk

2w → Z2w .

To deal with degrees in Z2w [x1, . . . , xk] we let N be the
natural numbers starting from 0, and consider multi-degrees
d ∈ Nk. Given d = (d1, . . . , dk) and d′ = (d′1, . . . , d

′
k) ∈ Nk,

we write d ≤ d′ if di ≤ d′i for every i = 1, . . . , k 1. If d ≤ d′

but d ̸= d′, we write d ≨ d′. We denote the zero vector by
0. We let ei be the vector in Nk which has a 1 in the ith

component and zeros in every other component. The notation
xd denotes the monomial

∏k
i=1 x

di
i .

We denote the ideal of null polynomials in Z2w [x1, . . . , xk]
by Zw,k. As in the univariate case, Zw,k is not a principal
ideal. Given d ∈ Nk, we let Zw,k

d be the subgroup of
polynomials P ∈ Zw,k where the maximum degree of the
variable xi in a given term is at most di. Then we have

Zw,k
d ⊆ Zw,k

d+ei

Zw,k =
⋃

d∈Nk

Zw,k
d

As in the univariate case, we want to use a factorial basis
for Z2w [x1, . . . , xk]. Given a multi-degree d = (d1, . . . , dk) ∈
Nk, we let

x(d) :=

k∏
i=1

x
(di)
i

(this notation should not be confused with the monomial
xd). The set {x(d′)}d′≤d is a Z2w -basis of Z2w [x1, . . . , xk]d,
the Z2w -vector space of polynomials whose monomials have
multi-degree at most d. For every j ∈ Nk, we let

cj := 2max(w−
∑k

i=1 ν2(ji!),0)

Gj(x1, . . . , xk) := cjx
(j1)
1 · · ·x(jk)

k = cjx
(j).

1This is not standard notation. We remark that this is only a partial order,
and in particular it is not a monomial order.

6

For example, if w = 8 and we consider two variables x, y,
then G(2,2)(x, y) := 26x(x− 1)y(y− 1) = 64x2y2− 64xy2−
64x2y + 64xy. This is clearly a null polynomial since either
x or x− 1 will be even, and either y or y− 1 will be even as
well. Thus, we can always write x(x−1)y(y−1) = 22x′y′ for
some x′, y′, and G(2,2)(x, y) = 28x′y′ ≡ 0 (mod 28) trivially.

Remark. The fact that {x(d)}d∈Nk is a basis is equivalent to
the isomorphism of rings

Z2w [x1, . . . , xk] ≃ Z2w [x1]⊗Z2w
· · · ⊗Z2w

Z2w [xk],

where ⊗Z2w
denotes the tensor product of Z2w -algebras. This

observation will be useful to our algorithmic approach to
reduce the multivariate case to the univariate setting.

Theorem IV.1 (Generalization of Theorem III.4). The group
Zw,k

d is generated as a Z2w -module by the set of polynomials
{Gj}j≤d. More concretely, every H(x1, . . . , xk) ∈ Zw,k

d can
be uniquely written as

H(x1, . . . , xk) =
∑
j∈Nk

j≤d

hjGd,

where hj ∈ Z2w is the residue class of an integer 0 ≤ h̃j ≤
2
∑k

i=1 ν2(ji!) − 1.

Proof: Adapting the proof of Lemma III.3, one sees that
every Gj is a null polynomial. Therefore, every H(x) as in
the statement belongs to Zw,k

d . Conversely, let

H(x) =
∑
j≤d

hjx
(j)

be some null polynomial in Zw,k
d . We define the ith partial

difference operator ∆i by

∆iH(x1, . . . , xk) := H(x1, . . . , xi + 1, . . . , xk)

−H(x1, . . . , xi, . . . , xk).

A short computation shows that ∆ix
(j) = ix(j−ei), and

therefore

∆t
ix

(j) = ji(ji − 1) · · · (ji − t+ 1)x(j−tei).

It follows that

∆j1
1 ∆j2

2 · · ·∆
jk
k H(0) ≡ h(j1,...,jk)j1! · · · jk! ≡ 0 (mod 2w),

and therefore h(j1,...,jk) ≡ 0 (mod 2max(w−
∑

ν2(ji!),0)). The
rest of the argument is identical to the proof of Theorem III.4.

Proposition IV.2. For every d = (d1, . . . , dk) ∈ Nk and every
index i = 1, . . . , k, we have the inclusion (1 + xi)Zw,k

d ⊆
Zw,k

d+ei
. Moreover, this inclusion is an equality whenever di is

even.

Proof: The proof is a generalization of Proposition III.9.
To see the inclusion, let P (x), Q(x) ∈ Zw,k

d be null polyno-
mials where the exponent of each variable xi is at most di. If
we fix an index i, then P + xiQ is also a null polynomial in
which the degree of the variable xi is at most di+1. It is then
clear that P + xiQ ∈ Zw,k

d+ei
.

Suppose now that di is even. We know that Zw,k
d (respec-

tively, Zw,k
d+ei

) is generated by {Gj}j≤d (resp. {Gj}j≤d+ei).

We observe that Gdi
and Gdi+1 have the same leading

coefficient, as ν2((di + 1)!) = ν2((di)!). Hence we can write
Gd+ei

= Gd · (xi − di) ∈ (1 + xi)Zw,k
d , concluding (1 +

xi)Zw,k
d = Zw,k

d+ei
.

It is now convenient for us to introduce the following
notation before proceeding further. Consider the sets of indices

J = {(j1, . . . , jk) ∈ 2Nk | 0 <

k∑
i=1

ν2(ji!) < w},

Jm =

{
j+ 2ei

∣∣∣∣ j+ 2ei ̸∈ J ;
j+ 2ei − 2ei′ ∈ J ∀i′ = 1, . . . , k

}
.

With this, consider the sets of polynomials

B1 = {Gj | j ∈ J },
B2 = {Gj | j ∈ Jm}.

The polynomials in B1 are set so that they are analogs of the
polynomials {Gj}j=2,...,dw−2 in the univariate case. As for
B2, the definition ensures that the sum of valuations for every
index goes “just above” w.

The following result generalizes Theorem III.10.

Theorem IV.3. Let d = (d1, . . . , dk) ∈ Nk. If
∑k

i=1 ν2(di!) ≥
w, then

(1 + xi)Zw,k
d = Zw,k

d+ei

for every i = 1, . . . , k. Moreover, Zw,k is generated as a
Z2w [x1, . . . , xk]-ideal by the minimal set B := B1 ∪ B2.

Proof: See Appendix A

V. ALGORITHMS

A. Univariate algorithms

We now describe algorithms to work with polynomials
defining equivalent functions Z2w → Z2w . As Theorem III.4
shows, the natural basis to obtain equivalent polynomials is
the factorial basis of Z2w [x].

Since we need to work using a finite basis, we let d be a
fixed degree, and let F be the matrix describing the change of
basis from {1, x, . . . , xd} to {1, x(1), . . . , x(d)}. We let C =
F−1. The rows of the matrix C are obtained by expanding
each polynomial x(i) of the factorial basis and reading their
coefficients. These can also be generated recursively using the
identity

x(i+1) = (x− i) · x(i).

The matrices C and F are triangular, an important property
towards implementation efficiency. We use the notations F [r, c]
and C[r, c] to indicate taking the first r rows and c columns
of the corresponding matrix. For our algorithms, we assume
that the necessary matrices have been precomputed.

Definition V.1. Let P (x) ∈ Z2w [x] be any polynomial. The
normalization of P is the unique polynomial P̃ such that

• deg(P̃) = rdeg(P) < dw,

7

• P (a) ≡ P̃ (a) (mod 2w) for every a ∈ Z2w ,

• P̃ =
∑rdeg(P)

j=0 ajx
(j) with 0 ≤ aj ≤ 2w−ν2(j!) − 1.

The normalized polynomial P̃ exists by Lemma III.11 and
is unique by Theorem III.4.

Given a polynomial

P (x) = a0 + a1x+ · · ·+ adx
d ∈ Z2w [x]

we let vP = (a0, a1, . . . , ad) be the vector whose components
are the coefficients of P . Conversely, we may interpret a vector
v ∈ Zd+1

2w as a degree-d polynomial. We index the entries of
v as v[j] for j = 0, 1, . . . , d.

Recall that we have defined cj = 2w−ν2(j!), for 0 ≤ j ≤
dw − 1.

Algorithm 1 Reduction of a univariate polynomial
function NORMALIZEPOLYNOMIAL(vP)

ℓ← min(deg(P) + 1, dw)
u← F [ℓ,deg(P) + 1] · vP
for j ← 2, . . . , ℓ do

u[j]← u[j] % cj
end for
ṽ ← C[ℓ, ℓ] · u
return ṽ

end function

Proposition V.2. Algorithm 1 computes the normalization
P̃ (x) of P (x) correctly in O(w · deg(P)) operations in Z2w .

Proof: Write the polynomial P (x) in the factorial basis,
so that

P (x) =

deg(P)∑
i=0

aix
(i).

We observe that the polynomial

Q(x) =

ℓ−1∑
i=0

aix
(i),

where ℓ = min(deg(P) + 1, dw), defines the same function
Z2w → Z2w as P , since x(j) = Gj is a null polynomial for
every j ≥ dw. The normalization of P is therefore equal to the
normalization of Q. In turn, Q̃ can be obtained by reducing ev-
ery coefficient ai modulo 2w−ν2(i!), for i = 0, 1, . . . ,deg(Q).
This shows the correctness of the Algorithm.

Regarding the complexity, the dominating step is the mul-
tiplication

F [ℓ,deg(f) + 1] · vP ,

which is equivalent to performing no more than dw scalar
products between vectors of dimension deg(P)+1. This yields
the complexity O(dw · deg(P)). Finally, we have the equality
O(dw) = O(w) from Lemma III.8.

Proposition V.3. Let f(x) ∈ Z2w [x]. Algorithm 2 produces
a polynomial Q(x) ∈ Z2w [x] of degree δ ≥ rdeg(P) defining
the same function as P . In fact, every such polynomial is given
by this procedure.

Algorithm 2 Generate equivalent univariate polynomial
Require: δ ≥ rdeg(P)

function EQUIVALENTPOLYNOMIAL(vP , δ)
u← F [δ + 1,deg(P) + 1] · vP
for j ← 2, . . . , δ + 1 do

choose an arbitrary sj , 0 ≤ sj ≤ 2min(ν2(j!),w) − 1
u[j]← u[j] + sj · cj

end for
v′ ← C[δ + 1, δ + 1] · u
return v′

end function

Proof: As in the proof of Proposition V.2, the coordinates
of the vector

u = F [δ + 1,deg(f) + 1] · vP
represent a polynomial Q in factorial basis of degree at most
δ defining the same function as P . Adding a multiple of cj =
2max(w−ν2(j!),0) to any of the jth component of u is the same
as adding a multiple of Gj to the polynomial Q. But Gj defines
the zero function, so we again obtain the same function defined
by P . Finally, Theorem III.4 says that any zero polynomial we
can add is of this form.

Remark. The for loops in Algorithms 1 and 2 are paralleliz-
able, as coefficients in factorial basis are independent from
one another. This is a particular advantage of working with
this basis instead of the canonical one.

B. A univariate example

We show an example with w = 8. As w = 23 is a power of
2, we know that the smallest degree of a monic null polynomial
is dw = w + 2 = 10. Consider the polynomial

P (x) = 140x14 + 91x13 + 188x12 + 170x11 + 130x10

+ 174x9 + 176x8 + 132x7 + 19x6 + 160x5

+ 143x4 + 67x3 + 112x2 + 193x.

The vector of coefficients of P in the canonical basis is

vP = (0,193, 112, 67, 143, 160, 19, 132,

176, 174, 130, 170, 188, 91, 140).

In the notation of Algorithm 1, we have

ℓ = min(deg(P) + 1, dw) = min(15, 10) = 10

and so we need to use the change of basis matrix

F [ℓ,deg(P) + 1] = F [10, 15].

The larger matrix F [15, 15] can be found below on pg. 11. The
other matrix needed is C[ℓ, ℓ] = C[10, 10], see also pg. 11.
Then, the vector of coefficients in the factorial basis is

u = F [10, 15] · v = (0, 103, 30, 166, 162, 72, 51, 166, 60, 172).

We have to reduce the jth coefficient of u modulo cj =
2max(w−ν2(j!),0). The vector of cjs equals

c = (256, 256, 128, 128, 32, 32, 16, 16, 2, 2).

After reducing u, we obtain

u′ = (0, 103, 30, 38, 2, 8, 3, 6, 0, 0).

8

Finally, we multiply C[10, 10] · u′ to obtain the normalized
polynomial

P̃ (x) = 6x7+133x6+245x5+119x4+159x3+16x2+193x.

A short computation shows that indeed P (a) ≡ P̃ (a)
(mod 2w) for all a ∈ Z2w .

C. Multivariate algorithms

To complement the univariate algorithms, we explain how
to adapt them to perform multivariate reduction and generation
of equivalent polynomials in Z2w [x1, . . . , xk]. We first define
normalized polynomials.

Definition V.4. Let P (x) ∈ Z2w [x1, . . . , xk] be a polynomial.
The normalization of P is the unique polynomial P̃ such that

• P (a1, . . . , ak) ≡ P̃ (a1, . . . , ak) (mod 2w) for all
a1, . . . , ak ∈ Zk

2w ,

• P̃ =
∑

j≤(d,...,d) bjx
(j) in factorial basis, and

• if j = (j1, . . . , jk) is such that
∑k

i=1 ν2(ji!) ≥ w,
then bj = 0.

• For every j with bj ̸= 0, we have

0 ≤ bj ≤ cj − 1 = 2w−
∑k

i=1 ν2(ji!) − 1.

The normalized polynomial P̃ exists and is unique by
Theorem IV.1 and the fact that {x(d)}d∈Nk is a basis.

According to Theorem IV.1 and the exposition around
it, one can build the matrices of change of basis between
{xd}d∈Nk and {x(d)}d∈Nk . In practice it is ineffective to
generate the full matrices, especially if we want to use them
to alter sparse polynomials.

Instead, we do as follows. Fix a positive integer d and
let d = (d, . . . , d) ∈ Nk. We know that {xr1

1 · · ·xrk
r }ri≤d is

a basis of Z2w [x1, . . . , xk]d. On the other hand, a basis of
Z2w [x1]d ⊗Z2w

· · · ⊗Z2w
Z2w [xk]d is given by {xr1

1 ⊗ · · · ⊗
xrk
r }ri≤d. We have an isomorphism of Z2w -modules

Z2w [x1]d ⊗Z2w
· · · ⊗Z2w

Z2w [xk]d ≃ Z2w [x1, . . . , xk]d

which consists in mapping xr1
1 ⊗ · · · ⊗ xrk

r to xr1
1 · · ·xrk

r .
Therefore, this isomorphism maps

x
(j1)
1 ⊗ · · · ⊗ x(jk)

r 7→ x
(j1)
1 · · ·x(jk)

r .

At this point we need to introduce the Kronecker product of
two matrices: if A is an m×n matrix and B is a p×q matrix,
then its Kronecker product is given by

A⊗B =

 a00B · · · a0(n−1)B
...

. . .
...

a(m−1)0B · · · a(m−1)(n−1)B

 .

The reason to index matrices from 0 will be clear shortly. The
entry in row r and column c of A⊗B is computed by

(A⊗B)r,c = a[r/m],[c/n] · br mod p,c mod q (1)

The matrices changing between the bases {xd′}d′≤d and
{x(d′)}d′≤d are then given by the Kronecker product matrices

F⊗k := F ⊗ k· · · ⊗ F, C⊗k := C ⊗ k· · · ⊗ C.

This corresponds to changing the basis in each component of
the tensor product Z2w [x1]d⊗Z2w

· · ·⊗Z2w
Z2w [xk]d. To make

sense of the orderings of the bases, one needs to take the
inverse lexicographic monomial ordering.

With this, we do not need to generate the matrices for
changing bases in Z2w [x1, . . . , xk]d, it is enough to compute
our original F and C to change bases in Z2w [x]d. However,
this is not significantly faster than generating the full matri-
ces F⊗k, C⊗k, it just makes the process tidier. The actual
improvement comes from computing only portions of these
matrices.

Say we want to compute the coefficients in the factorial
basis of the monomial xc1

1 · · ·x
ck
k . In the inverse lexicographic

ordering of Z2w [x1, . . . , xk]d, this monomial lies in position

c =

k∑
i=1

ci(d+ 1)i−1 (2)

(observe that we are labeling positions in the basis from 0 to
(d + 1)k − 1, this also makes matrix indexing work). Hence,
if a polynomial P (x) has nonzero coefficient in the monomial
xc1
1 · · ·x

ck
k , then we need to know the cth column of the matrix

F⊗k. We do this for every monomial appearing in P in order to
express P in factorial basis. A similar reasoning shows us how
to go from factorial to canonical basis by indexing columns of
the matrix C⊗k.

It remains to see how to compute a particular column of
F⊗k. In fact, it is possible to index the entry in the rth row
and cth column of F⊗k, we denote this number by F⊗k

r,c . We
do this by producing the base-d expansion of r and c,

r =

k∑
i=1

ri(d+ 1)i−1, c =

k∑
i=1

ci(d+ 1)i−1,

with 0 ≤ ri, ci ≤ d, and then we obtain

F⊗k
r,c =

k∏
i=1

Fri,ci .

This generalizes Equation (1) for the case of tensor powers of
square matrices. Iterating over every 0 ≤ r ≤ (d+1)k− 1 we
obtain the necessary column of F⊗k.

To put the procedure described in algorithm form, we first
let dP be the maximum degree in any variable of a polynomial
P ∈ Z2w [x1, . . . , xk]. We assign to P a vector vP ∈ Z(dP+1)k

2w ,
where the cth entry corresponds to the coefficient of xci

1 · · ·x
ck
k

according to the base-(dP + 1) expression for c in (2).
Conversely, every vector in Z(dP+1)k

2w can be interpreted as
a polynomial in Z2w [x1, . . . , xk] via the same expression.

Once we have the coordinates of a multivariate polynomial
in factorial basis, we can perform reduction as in Algorithm 1
according to Theorem IV.1.

Proposition V.5. Algorithm 3 computes the normalization P̃
of P correctly in O((dP + 1)2k) operations in Z2w . If P has
n nonzero coefficients in canonical basis, then the algorithm
runs in O(n(dP + 1)k + d2kw) operations in Z2w .

Proof: The proof is similar to Proposition V.2.

9

Algorithm 3 Reduction of a multivariate polynomial
function NORMALIZEPOLYNOMIAL(vP)

dP ← maximum degree of P in any variable
For each nonzero entry vP [c], compute the cth column

of F [dP + 1, dP + 1]⊗k

u← F [dP + 1, dP + 1]⊗k · vP (sparse multiplication)
for j ← 0, . . . , (dP + 1)k do

Let j1, . . . , jk be the base-(dP + 1) expansion of j
u[j]← u[j] % cj1,...,jk

end for
remove all rightmost zeros from u
ṽ ← C[dw, dw]

⊗k · u
return ṽ

end function

We remark that it is possible to optimize Algorithm 3
whenever dP ≥ dw. It is also easy to combine Algorithms 2
and 3 to create polynomials defining equal functions Zk

2w →
Z2w .

D. A multivariate example

Consider the following polynomial in Z28 [x, y], we have
k = 2 variables.

P (x, y) = x3y8 + 228x3y7 + 253x2y8 + 66x3y6 + 84x2y7

+ 2xy8 + 4x4y4 + 88x3y5 + 58x2y6 + 200xy7

+ 232x4y3 + 89x3y4 + 248x2y5 + 132xy6 + 44x4y2

+ 68x3y3 + 217x2y4 + 176xy5 + 232x4y + 4x3y2

+ 220x2y3 + 202xy4 + 224x3y + 193x2y2 + 248xy3

+ 8x2y + 16xy2 + 48xy.

The maximum degree in y is dP = 8, so we need the matrix
F [9, 9]⊗2. Computing only the appropriate columns of this
matrix, we obtain the factorial basis expression of P ,

P (x, y) = x(1,1) + x(2,1) + x(1,2) + x(2,2) + 4x(4,4) + x(3,8).

To perform the reduction of coefficients, we find the coeffi-
cients cj,

c(1,1) = 28−ν2(1!)−ν2(1!) = 28 = 256

c(2,1) = c(1,2) = 28−ν2(2!)−ν2(1!) = 27 = 128

c(2,2) = 28−ν2(2!)−ν2(2!) = 26 = 64

c(4,4) = 28−ν2(4!)−ν2(4!) = 22 = 4

c(3,8) = 28−ν2(3!)−ν2(8!) = 20 = 1.

Hence, the normalization of P in factorial basis reads

P̃ (x, y) = x(1,1) + x(2,1) + x(1,2) + x(2,2).

Using the inverse lexicographic ordering, the coefficients of P̃
in the factorial basis {x(i,j)}0≤i,j≤2 of Z28 [x, y](2,2) are

u = (0, 0, 0, 0, 1, 1, 0, 1, 1),

according to the rule that x(i,j) corresponds to the entry i+3j.

The matrix C[3, 3]⊗2 = C[3, 3]⊗ C[3, 3] equals

1 0 0 0 0 0 0 0 0
0 1 255 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 255 0 0
0 0 0 0 1 255 0 255 1
0 0 0 0 0 1 0 0 255
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 255
0 0 0 0 0 0 0 0 1


.

Hence we have

ṽ = C[3, 3]⊗2 · u = (0, 0, 0, 0, 0, 0, 0, 0, 1)

which corresponds to P̃ (x, y) = x2y2.

We stress that, in practice, we would never compute the full
matrices C[3, 3]⊗2 or F [9, 9]⊗2, and the previous is displayed
only for illustrative purposes.

VI. CONCLUSION

This paper presents a thorough mathematical study of
binary polynomial properties and the characterization of equiv-
alent instances, both in the univariate and multivariate cases.
This theoretical foundation supports the introduction of explicit
algorithms to generate arbitrary equivalent binary polynomials
that define the same function. In particular, we provide com-
putationally efficient algorithms to reduce binary polynomials
to a normalized form that uniquely determines the underlying
function. These results are very encouraging and might lead to
the development of more generic algorithms for equivalence
generation and normalized reduction of polynomials modulo
powers of prime numbers or an arbitrary integer.

ACKNOWLEDGMENT

Enric Florit was partially supported by the Spanish Min-
istry of Universities (FPU20/05059).

REFERENCES

[1] M. F. Atiyah and I. G. Macdonald, Introduction to
commutative algebra (Addison-Wesley Series in Mathe-
matics), economy. Westview Press, Boulder, CO, 2016,
pp. ix+128, For the 1969 original see [MR0242802].

[2] S. Banescu and A. Pretschner, “Chapter five - a tutorial
on software obfuscation,” in ser. Advances in Com-
puters, A. M. Memon, Ed., vol. 108, Elsevier, 2018,
pp. 283–353.

[3] L. Barhelemy, N. Eyrolles, G. Renault, and R. Roblin,
“Binary permutation polynomial inversion and applica-
tion to obfuscation techniques,” ser. SPRO ’16, Vienna,
Austria: Association for Computing Machinery, 2016,
pp. 51–59.

[4] L. Barthelemy, D. Kahrobaei, G. Renault, and Z. Šunić,
“Quadratic time algorithm for inversion of binary per-
mutation polynomials,” in Mathematical Software –
ICMS 2018, ser. LNCS, vol. 10931, Cham: Springer
International Publishing, 2018, pp. 19–27.

[5] M. Brain, “Further steps down the wrong path: Improv-
ing the bit-blasting of multiplication,” in International
Workshop on Satisfiability Modulo Theories, 2021.

10

[6] L. Carlitz, “Functions and polynomials (mod pn),”
eng, Acta Arithmetica, vol. 9, no. 1, pp. 67–78, 1964.

[7] C. Collberg and J. Nagra, Surreptitious Software: Obfus-
cation, Watermarking, and Tamperproofing for Software
Protection, 1st. Addison-Wesley Professional, 2009.

[8] T. Drane and G. Constantinides, “Leap in the formal
verification of datapath,” DAC Knowledge Center, 2012.

[9] N. Eyrolles, “Obfuscation with Mixed Boolean-
Arithmetic Expressions : reconstruction, analysis and
simplification tools,” Theses, Université Paris-Saclay,
Jun. 2017.

[10] G. Keller and F. R. Olson, “Counting polynomial func-
tions (mod pn),” Duke Mathematical Journal, vol. 35,
no. 4, pp. 835–838, 1968.

[11] R. Lidl and G. L. Mullen, “When does a polynomial
over a finite field permute the elements of the field?”
The American Mathematical Monthly, vol. 95, no. 3,
pp. 243–246, 1988.

[12] R. Lidl and G. L. Mullen, “When does a polynomial
over a finite field permute the elements of the field?, ii,”
The American Mathematical Monthly, vol. 100, no. 1,
pp. 71–74, 1993.

[13] R. Lidl and W. B. Müller, “Permutation polynomials in
RSA-cryptosystems,” in Annual International Cryptol-
ogy Conference, 1983.

[14] G. Mullen and H. Stevens, “Polynomial functions
(mod m),” Acta Mathematica Hungarica, vol. 44, no. 3,
pp. 237–241, Sep. 1, 1984.

[15] R. L. Rivest, “Permutation polynomials modulo 2w,”
Finite Fields and Their Applications, vol. 7, no. 2,
pp. 287–292, 2001.

[16] R. L. Rivest, M. Robshaw, R. Sidney, and Y. Yin, The
RC6 block cipher, version 1.1, 1998.

[17] R. L. Rivest, A. Shamir, and L. M. Adleman, “A
method for obtaining digital signatures and public-key
cryptosystems,” Communication of the ACM, vol. 26,
pp. 96–99, 1978.

[18] J. H. Ryu, “Permutation polynomial based interleavers
for turbo codes over integer rings: Theory and appli-
cations,” Ph.D. dissertation, The Ohio State University,
The Ohio State University, 2007.

[19] J. Ryu and O. Takeshita, “On quadratic inverses for
quadratic permutation polynomials over integer rings,”
IEEE Transactions on Information Theory, vol. 52,
no. 3, pp. 1254–1260, 2006.

[20] J. Ryu and O. Takeshita, “On quadratic inverses for
quadratic permutation polynomials over integer rings,”
IEEE Transactions on Information Theory, vol. 52,
no. 3, pp. 1254–1260, 2006.

[21] T. Seed, C. Coppins, A. King, and N. Evans, “Polyno-
mial analysis of modular arithmetic,” in Static Analysis,
M. V. Hermenegildo and J. F. Morales, Eds., Cham:
Springer Nature Switzerland, 2023, pp. 508–539.

[22] N. Shekhar, P. Kalla, M. B. Meredith, and F. Enescu,
“Simulation bounds for equivalence verification of poly-
nomial datapaths using finite ring algebra,” IEEE Trans-

F [15, 15] =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 3 7 15 31 63 127 255 255 255 255 255 255
0 0 0 1 6 25 90 45 198 209 114 85 254 249 234
0 0 0 0 1 10 65 94 165 90 57 86 173 178 193
0 0 0 0 0 1 15 140 26 39 29 202 72 21 27
0 0 0 0 0 0 1 21 10 86 43 31 132 96 85
0 0 0 0 0 0 0 1 28 206 248 243 196 224 128
0 0 0 0 0 0 0 0 1 36 238 104 51 92 192
0 0 0 0 0 0 0 0 0 1 45 131 3 78 26
0 0 0 0 0 0 0 0 0 0 1 55 169 157 112
0 0 0 0 0 0 0 0 0 0 0 1 66 127 18
0 0 0 0 0 0 0 0 0 0 0 0 1 78 39
0 0 0 0 0 0 0 0 0 0 0 0 0 1 91
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Fig. 1. Matrix of change of basis for Z28 [x]14, from canonical to factorial.

C[10, 10] =



1 0 0 0 0 0 0 0 0 0
0 1 255 2 250 24 136 208 80 128
0 0 1 253 11 206 18 28 12 240
0 0 0 1 250 35 31 88 180 108
0 0 0 0 1 246 85 33 113 44
0 0 0 0 0 1 241 175 88 177
0 0 0 0 0 0 1 235 66 72
0 0 0 0 0 0 0 1 228 34
0 0 0 0 0 0 0 0 1 220
0 0 0 0 0 0 0 0 0 1


Fig. 2. Matrix of change of basis for Z28 [x]9, from factorial to canonical.

11

actions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 4, pp. 376–387, 2008.

[23] D. Singmaster, “On polynomial functions (mod m),”
Journal of Number Theory, vol. 6, no. 5, pp. 345–352,
1974.

[24] L. Trifina and D. Tarniceriu, “Analysis of cubic permu-
tation polynomials for turbo codes,” Wireless Personal
Communications, vol. 69, no. 1, pp. 1–22, 2013.

[25] L. Trifina and D. Tarniceriu, “On the equivalence of
cubic permutation polynomial and arp interleavers for
turbo codes,” IEEE Transactions on Communications,
vol. 65, no. 2, pp. 473–485, 2017.

[26] H. Zhao, P. Fan, and V. Tarokh, “On the equivalence of
interleavers for turbo codes using quadratic permutation
polynomials over integer rings,” IEEE Communications
Letters, vol. 14, no. 3, pp. 236–238, 2010.

[27] Y. Zhou and A. Main, “Diversity via code transforma-
tions: A solution for NGNA renewable security.,” The
NCTA Technical Papers, Tech. Rep., 2006.

[28] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Informa-
tion hiding in software with Mixed Boolean-Arithmetic
transforms,” in Information Security Applications, S.
Kim, M. Yung, and H.-W. Lee, Eds., ser. LNCS,
vol. 4867, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2007, pp. 61–75.

APPENDIX A
A PROOF OF THEOREM IV.3

Recall from Section IV that we defined the indices

J = {(j1, . . . , jk) ∈ 2Nk | 0 <

k∑
i=1

ν2(ji!) < w},

Jm =

{
j+ 2ei

∣∣∣∣ j+ 2ei ̸∈ J ;
j+ 2ei − 2ei′ ∈ J ∀i′ = 1, . . . , k

}
.

With this, we considered sets of polynomials

B1 = {Gj | j ∈ J },
B2 = {Gj | j ∈ Jm}.

We need the following simple lemma.

Lemma A.1. The following properties hold:

1) J ∩ Jm = ∅.
2) For every j ∈ Jm, Gj is monic.
3) If j, j′ ∈ 2Nk satisfy 0 ̸= j ≤ j′ and j′ ∈ J , then

j ∈ J .

Proof: (1) Holds by definition of Jm. For (2), note that
every j ∈ Jm satisfies

∑k
i=1 ν2(ji!) ≥ w, and therefore cj =

20 = 1. Finally, (3) holds because the inequality 0 ̸= j ≤ j′

(and the entries of the vectors being even) implies

0 <

k∑
i=1

ν2(ji!) ≤
k∑

i=1

ν2(j
′
i!) < w.

We are ready to prove Theorem IV.3.

Theorem. Let d = (d1, . . . , dk) ∈ Nk. If
∑k

i=1 ν2(di!) ≥ w,
then

(1 + xi)Zw,k
d = Zw,k

d+ei

for every i = 1, . . . , k. Moreover, Zw,k is generated as a
Z2w [x1, . . . , xk]-ideal by the minimal set B := B1 ∪ B2.

Proof: For the first statement, it is enough to see the
inclusion Zw,k

d+ei
⊆ (1 + xi)Zw,k

d . The proof is identical to
the univariate case, where (1 + x)Zw,1

d = Zw,1
d+1 for d ≥ dw

(see the proof of Theorem III.10).

Let us show that B is a generating set. By Theorem IV.1,
it is enough to see that for every j = (j1, . . . , jk) ∈ Nk, Gj is
a Z2w [x1, . . . , xk]-combination of polynomials in B.

Recall from Definition III.5 and Lemma III.6 that dw is
the smallest positive integer such that Zw,1

dw
contains a monic

polynomial. If j is such that ji > dw for some i = 1, . . . , k,
then Gj is a Z2w [x1, . . . , xk]-combination of polynomials Gj′

with j′ ≨ j. Therefore, we may assume j ≤ (dw, . . . , dw).
Moreover, by Proposition IV.2 we may assume j1, . . . , jk are
even. Finally, we assume the induction hypothesis that for
every j′ ≨ j, Gj′ is a Z2w [x1, . . . , xk]-combination of elements
in B.

Given the above simplifications, assume further that j is
such that Gj ̸∈ B. Then we know that

•
∑k

i=1 ν2(ji!) ≥ w, and

• there is some i0 = 1, . . . , k such that j− 2ei0 ̸∈ J .

If we now consider the multi-index j − 2ei0 , we are one
step closer to finding some multi-index in Jm. In fact, by
applying these conditions repeatedly, we arrive to some vector
f = (f1, . . . , fk) ∈ Nk with even components such that

• f ≨ j,

•
∑k

i=1 ν2(fi!) ≥ w, and

• for every i = 1, . . . , k, f − 2ei ∈ J .

In other words, f ∈ Jm. Therefore, we find that Gf ∈ B2
and is monic. In particular Gj−xj−fGf can be expressed as a
Z2w -combination of polynomials Gj′ with j′ ≨ j, and we are
done by the induction hypothesis.

It remains to show that B is a minimal generating set, in
the sense that no Gj ∈ B can be written as a Z2w [x1, . . . , xk]-
combination of other elements in B. Suppose otherwise that

Gj =
∑

j′∈J∪Jm

j′ ̸=j

pj′Gj′

for polynomials pj′ ∈ Z2w [x1, . . . , xk]. For every j′ with pj′ ̸=
0, we necessarily have j′ ≨ j. If j ∈ J , then every j′ ∈ J
by Lemma A.1. If we choose some j′0 such that pj′0 ̸= 0 and
ν2(cj′0) is minimal, then cj is a multiple of cj′0 . But j′0 ≨ j
implies ν2(cj′0) < ν2(cj), which is a contradiction.

If on the other hand j ∈ Jm, then there must be some
j′0 = (j′1, . . . , j

′
k) ∈ Jm with pj′0 ̸= 0. Because j′0 ≨ j, there

must be some i = 1, . . . , k such that j′i < ji. Therefore

j′0 ≤ j− 2ei,

and the latter is an element of J . Therefore we also have
j′0 ∈ J , which is again a contradiction. It follows that no
element Gj ∈ B is a Z2w [x1, . . . , xk]-combination of other
elements, and therefore B is a minimal generating set.

12

	Introduction
	Preliminary
	Context
	Motivation
	Data encodings
	Insertion of identities
	Opaque constants

	Approach
	Contributions

	Notation
	Null polynomials modulo 2w
	The multivariate case
	Algorithms
	Univariate algorithms
	A univariate example
	Multivariate algorithms
	A multivariate example

	Conclusion
	Appendix A: A proof of Theorem IV.3

