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Abstract. The paper describes a cloud-based platform that utilizes Artificial In-

telligence (AI) and Explainable AI techniques to deliver evidence-based, person-

alized interventions to individuals over 65 suffering or at risk of hearing loss, 

cardiovascular disease, cognitive impairments, balance disorders, or mental 

health issues, while supporting efficient remote monitoring and clinician-driven 

guidance. As part of the SMART BEAR integrated project, this platform has been 

developed to support its large-scale clinical trials. The platform consists of a 

standards-based data harmonization and management layer, as well as a security 

component, a Big Data Analytics system, a Clinical Decision Support system, 

and a dashboard component to facilitate efficient data collection across pilot sites. 

Keywords: Cloud, AI, semantic interoperability, HL7 FHIR, Healthcare, GDPR, 

Evidence-based, Ageing, Hearing Loss, Cardiovascular Disease, Balance disor-

der 



2 

1 Introduction 

The EU-funded SMART BEAR project1 develops an integrated platform to provide 

evidence-based personalized support for several pressing healthcare issues faced by the 

aging EU societies, including hearing loss, cardiovascular disease, cognitive disease, 

and balance disorders. Providing support for these health-related issues to the ageing 

population, in order to promote healthy and independent living, is particularly im-

portant in the EU societies since ageing can have a significant social and financial im-

pact due to a higher incidence of these issues.  

In SMART BEAR, continuously collected data from a variety of sensors, assistive 

medical and mobile devices will be harmonized and analyzed in order to provide effec-

tive recommendations and personalized interventions. The developed SMART BEAR 

platform will be tested with five thousand elderly participants from six EU countries: 

France, Greece, Italy, Romania, Portugal, and Spain.  The large-scaled project is sched-

uled to commence in autumn 2022 and run for 24 months. Prior to this, a smaller-scaled 

pilot study, named Pilot-of-Pilots (PoP), with 100 participants is already underway in 

the island of Madeira, Portugal since June 2022.  

There has been an increased interest in e-health monitoring systems situated at 

homes in recent years, leading to the creation of Health Smart Homes. Such technolo-

gies can facilitate monitoring patients’ activities, in order to improve the quality of care 

for the elderly and increase their well-being in a non-obtrusive way. Health Smart 

Homes can also enable efficient and decentralized healthcare services at home, which 

allows for greater independence and empowerment, preventing social isolation for the 

individuals, and maintaining good health longer. Furthermore, elderly individuals can 

avoid being placed in institutions such as nursing homes and hospitals for as long as 

possible, thus reducing the burden on the healthcare system (Mshali et al., 2018).  

Health Smart Homes are powered by the Internet of Things (IoT), and more specif-

ically, Medical IoT, which refers to the increasing range of applications of IoT in the 

medical domain (Akyildiz et al., 2015). Major advancements in wireless technology 

and computing power have enabled the current wide use of IoT and has led to the pro-

liferation of specialized and diverse Medical IoT devices that can generate and transmit 

data through an open protocol, which can then be analyzed subsequently. Among the 

benefits of Medical IoT are ease of service delivery, early diagnosis, improved patient 

management, and reduced manual errors (Adhikary et al., 2020). 

The growth of Medical IoT monitoring devices for medical and well-being measure-

ments is not the only factor that is changing the landscape in consumer health and per-

sonalized medicine. Through a connected infrastructure of medical devices, software 

applications, health systems and services, as well as the data generated at an accelerated 

rate, are transforming the delivery of healthcare. Today, e-health systems equipped with 

Big Data Analytics (BDA) capabilities enable the provision of high-quality decision 

support, thus improving the quality of care. Information exchange and data reusability, 

combined with the application of data mining and machine learning (ML) analytics, 

can facilitate the conversion of information into knowledge (Dash et al., 2019). 

 
1 https://www.smart-bear.eu/ 

https://www.smart-bear.eu/


3 

Despite significant progress in this domain, challenges remain. As the scientific 

community does not have a commonly accepted method of systematically evaluating 

the captured information and derived knowledge, the challenge remains in determining 

how these resources can be utilized productively without being exploited commer-

cially. A well-known specification for the representation of clinical data is the HL7 

(Health Level Seven) FHIR (Fast Healthcare Interoperability Resources) standard – and 

we use it as the underlying basis for our data harmonization solution. HL7 FHIR also 

incorporates a well-defined semantics which is captured using widely accepted ontolo-

gies such as LOINC2 and SNOMED-CT3. Standardizing the data representations will 

facilitate the development of analytics and decision models, with the potential to pro-

vide accurate, personalized interventions.  

Data protection must also be adequately addressed in addition to knowledge produc-

tion. All applicable legal requirements and privacy obligations must be met when pro-

cessing sensitive personal data, including those imposed by the General Data Protection 

Regulation (GDPR), which is an EU legal framework that fundamentally changed how 

personal data is managed lawfully in the European Union. In this context, it is not suf-

ficient just to have implemented organizational procedures and IT-enabled processes 

for exercising certain GDPR rights. Vulnerabilities do occur even in the most well-

designed and well-coded IT applications. Furthermore, 82% of the healthcare providers 

have reported to experience attacks against their Medical IoT according to the Health 

Insurance Portability and Accountability Act statistics4. Therefore, continuous security 

and privacy assurance measures must be implemented, to ensure the security and pri-

vacy of the stored data, as well as the integrity of any platform on which they are stored 

and managed (integrity, confidentiality, and availability of data at rest, in transit, and 

during processing for data flows). In light of the legal obligations imposed by the GDPR 

and the state-of-the-art guidelines, such as the NIST encryption guidelines5, data mini-

mization, pseudo-anonymization, transparency in the processing of personal data, and 

audit support are among the appropriate technical (and organizational) measures that 

need to be considered, preferably at an early stage, to ensure that all legal requirements 

are met. 

Last but not least, BDA systems for healthcare decision-making must not only focus 

on the production of ML knowledge but also convey it in an easy-to-use way. Currently, 

e-health systems do not appear to be rated satisfactorily in terms of their usability 

(Basdekis et al., 2012), while understanding ML models still remains an open question 

(Liao et al., 2020).  Furthermore, the integration of ML models in the healthcare field 

continues to be criticized for not adhering to high standards of accountability, reliabil-

ity, and transparency (Anderson, 2018). These limitations can be addressed by utilizing 

Explainable Artificial Intelligence (XAI) techniques, which aims to make ML results 

more understandable to humans, to increase the trust of end-users in the ML algorithms 

 
2https://loinc.org/ 
3https://www.snomed.org/ 
4https://www.hipaajournal.com/82-of-healthcare-organizations-have-experienced-a-cyberat-

tack-on-their-iot-devices/ 
5https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines 

https://loinc.org/
https://www.snomed.org/
https://www.hipaajournal.com/82-of-healthcare-organizations-have-experienced-a-cyberattack-on-their-iot-devices/
https://www.hipaajournal.com/82-of-healthcare-organizations-have-experienced-a-cyberattack-on-their-iot-devices/
https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines
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that produced them, and eventually their confidence in applying ML algorithms in sen-

sitive domains. These systems, in particular, are being used within a high-stress envi-

ronment, by non-technical end-users, and perhaps with time constraints that made the 

situation even worse. Thus, the acceptance and usability by the involved end-users of 

such functionality is a critical factor for its success and a key requirement in the 

SMART BEAR project. 

The presented paper is an extended version of an earlier research paper (Peretokin et 

al., 2022). The discussion of the components in the SMART BEAR infrastructure has 

been greatly expanded here. 

2 The SMART BEAR Architecture 

 

Fig. 1. The SMART BEAR Architecture (Peretokin et al., 2022) 

 

There are three main systems in the SMART BEAR architecture as shown in Figure 1, 

namely the mobile phone application (SB@App), the SMART BEAR Home Hub 

(HomeHub), and the SMART BEAR Cloud (SB@Cloud). Data are continuously col-

lected from all linked portable devices via the Mobile SB@App (e.g., hearing aid pro-

gram, steps measurement, and blood pressure), and through the Mobile SB@App itself 

(e.g., questionaries about the diet, mood, sleep quality, or medication adherence). The 

HomeHub then accumulates data from different home-based sensors, such as move-

ment sensors and weight scales. Finally, SB@Cloud is the core system that is respon-

sible for the secure storage and model-driven big data analysis of the collected data, as 

well as personalized decision-making. There are several components within 

SB@Cloud, namely the BDA Engine, the Data Repository and its underlying Infor-

mation Model, the Synthetic Data Generator, Decision Support System (DSS), and the 

Dashboard.  

SB@Cloud interacts with the SB@App and the HomeHub, as well as the external 

medical system and device vendor clouds through Representational State Transfer 
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(RESTful) interfaces. All collected data from the SB@App and the HomeHub reaching 

the SB@Cloud are already anonymized before the transmission and are then stored in 

the Data Repository in compliance with the GDPR rules.  

All components inside the SB@Cloud are also interconnected with the RESTful in-

terfaces. The REST layer in the SB@Cloud is used for retrieving, saving, or analyzing 

the data that are store in the database, as well as provides the interfaces to both the 

Dashboard and external components to SB@Cloud. The REST services also allow in-

teractions between the BDA Engine and the Data Repository, so that the end-users can 

perform a data analytics workflow with multiple tasks to the BDA Engine for analysis. 

Communications between components, as well as authentication at the Dashboard, are 

secured according to GDPR through the security component, which also ensures all 

security mechanisms are functioning correctly. Moreover, the security component fa-

cilitates interoperability with external platforms that represent medical/usage data using 

the FHIR standard. Finally, the Dashboard implements the user interface, allowing us-

ers to interact with the project infrastructure such as enter data, set up data Analysis 

Workflow models, validate and execute these models, register/unregister external data 

sources, and retrieve/visualize execution results. A secure, privacy-preserving, ma-

chine-to-machine bridge between two platforms, which was developed within the 

Smart4Health6 and Holobalance7 EU-funded projects, is currently being tested in the 

PoP.  

3 The SMART BEAR Mobile Phone Applications 

The SB@App component serves as a backbone for integration between the devices that 

are supplied to the recruited participants and the SB@Cloud system. These devices, 

depending on the comorbidities of the participants, are hearing aids, smart watch, smart 

blood pressure tracker, smart weight scale, smart glucometer, and smart phone. There-

fore, SB@App is the main point of interaction between participants and the SMART 

BEAR platform. The SB@App interface aims to be user-friendly and contains func-

tionalities that target the six medical comorbidities targeted by SMART BEAR, namely 

MyHeart, MyBalance, MyMood, MyDiary, MyDiet, MyHearing, MyMemory, 

MyMedication, MySmartBear and MyAppointments.  

SB@App is responsible for sending all collected data to SB@Cloud, as well as re-

ceiving informational material and data analysis results performed by the platform. Fur-

thermore, the functionalities of SB@App also include notifications/alerts management, 

calendar-based appointment setup with clinicians, questionnaire and surveys, and re-

porting on participants’ interaction with the SMART BEART platform. SB@App con-

nects to the available devices using either their Application Programming Interface 

(API) or their respective Software Development Kit, depending on what is available for 

each.  

 
6Smart4Health: Citizen-centered EU-HER exchange for personalized health. 

https://smart4health.eu/   
7Holobalance: Holograms for personalized virtual coaching and motivation in an ageing popula-

tion with balance disorders. https://holobalance.eu/  

https://smart4health.eu/
https://holobalance.eu/
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4 The SMART BEAR Home Hub 

The SMART BEAR HomeHub component is based on the openHAB platform8 – an 

open-source implementation towards a common approach in addressing security/soft-

ware development and protocol connectivity concerns of Smart IoT. In SMART BEAR, 

the HomeHub monitors the use of light sources, temperature, humidity, and movement 

inside a patient's home. Another reason why openHAB was chosen as the HomeHub 

solution is because it allows sensors or devices from different vendors to be integrated 

in a single solution.  

5 The SMART BEAR Cloud Components 

A detailed discussion of each SB@Cloud component is presented in this section to al-

low a fuller picture of their utility and how they fit to the overall architecture.  

5.1 Data Repository  

 

Database Implementation  

 

The data repository component of SB@Cloud contains a combination of FHIR-

compliant and non-FHIR databases. The FHIR database stores those data that represent 

medical entities, whereas the non-FHIR database stores data related to non-medical en-

tities. The non-FHIR database contains data that are not mapped to FHIR models, such 

as dashboard user settings or intermediate results of the analytics models when these 

are applied to FHIR data.  Data transmitted by the HomeHub can also be stored in the 

non-FHIR database. Finally, intervention, notifications, and alerts generated by the 

DSS are also stored in the non-FHIR database. 

Data Model Specification Compliant with FHIR 

 

HL7 FHIR is the latest standard from HL7, an international standards development or-

ganization that has been publishing healthcare interoperability standards since 1989. 

The FHIR standard incorporates the best of and builds upon the lessons learned from 

the different approaches taken previously by HL V2 and HL7 V3, while simultaneously 

using well-known, modern technologies such as REST and JSON. In addition to provid-

ing out-of-the-box tooling, the standard is published for free and is open source. There-

fore, FHIR was chosen to be used within SMART BEAR as the standard for clinical 

 
8https://www.openhab.org/ 

https://www.openhab.org/
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data for its speed and ease of implementation, as well as the fact that REST and JSON 

are an especially good fit for mobile applications, which the project makes use of.  

The FHIR standard is also used by a number of leading international organizations 

that provide solutions to specific healthcare problems. Among these organizations is 

Integrating the Healthcare Enterprise (IHE)9, which is an initiative by healthcare pro-

fessionals and industry to improve the way computer systems share health information, 

as well as the Personal Connected Health Alliance (PCHA)10, which is a membership-

based Healthcare Information and Management Systems Society Innovation Company 

that develops the Continua Design Guidelines (CDG) in order to advance patient-cen-

tered health, wellness, and disease prevention. IHE and PCHA are updating their tech-

nical specifications to incorporate FHIR. Furthermore, FHIR is also used nationally in 

The Netherlands as part of the MedMij project11, and is implemented in Estonia's na-

tional electronic health record system as well. Several countries, including the Nether-

lands, Switzerland, and Belgium, have established national core profiles for FHIR that 

standardize clinical information relevant to the respective countries. A standard that is 

gaining such strong acceptance in Europe will make it easier to support future needs in 

data exchange. 
Due to the nature of the data treated in the project, and in accordance with the FHIR 

standard, an Implementation Guide (IG) was required. For this reason, an analysis of 

the IGs published on the FHIR registries was carried out. Among these, particular at-

tention was paid the Personal Health Device (PHD)12 and International Patient Sum-

mary (IPS)13 IGs. 
The PHD IG adapts FHIR resources to transmit measurements and supporting data 

from PHDs to different types of systems, such as electronic medical records and clinical 

decision support platforms. This IG is of particular interest due to the fact that it is based 

on the CDG as well as the ISO/IEEE 11073 PHD Domain Information Model (Huang 

et al., 2020). In spite of this, given that many health data gathered in SMART BEAR 

are questionnaires rather than PHDs, this IG was not considered appropriate for the 

SMART BEAR project. 

The IPS IG defines the rules to produce a document containing the essential 

healthcare information about a subject of care. IPS is designed for, but not limited to, 

supporting unplanned, cross-border care. Although this IG provides an important con-

tribution to identify a minimal, specialty-agnostic, condition-independent, clinically 

relevant dataset for a patient, it was also not considered relevant for the SMART BEAR 

project.  

For these reasons, the project defined a dedicated SMART BEAR IG in compliance 

with the FHIR standard and in line with the choices adopted in many European projects. 

A set of identified FHIR resources is used to profile the SMART BEAR IG, along with 

the terminologies individuated from the international standard code systems, as well as 

internal value sets. The tool chosen for modelling the FHIR information model is 

 
9 https://www.ihe.net/ 
10 https://www.pchalliance.org/ 
11 https://medmij.nl/en/home/ 
12 http://hl7.org/fhir/uv/phd/ 
13https://hl7.org/fhir/uv/ips/ 

https://www.ihe.net/
https://www.pchalliance.org/
https://medmij.nl/en/home/
http://hl7.org/fhir/uv/phd/
https://hl7.org/fhir/uv/ips/
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SUSHI14, considering that it integrates well with the IG publisher which is an official 

tool provided by HL7. Currently, the published IG consists of 84 profiles (of type Ob-

servation, Condition, Questionnaires, Bundle, Patient, DeviceUseStatement, Fami-

lyMemberHistory, MedicationStatement, ResearchSubject), 2 extensions, 33 value 

Sets, and 133 examples. 

The Clinical Data Repository  

 

The SMART-BEAR Clinical Data Repository (CDR) is based on the Health Data Hub, 

which is built around the HL7 FHIR standard. The CDR is also able to structure and 

dispose of clinical information using the FHIR standard as the specification. Thus, 

SMART BEAR CDR is capable of storing and serving clinical information in a secure, 

scalable, and HL7 standardized manner. Furthermore, this allows the BDA and DSS 

developers to focus on developing algorithms and applications appropriate to the re-

quirements of the SMART BEAR pilot program, enabling them to create a common set 

of products and solutions that are seamlessly connected using standardized information. 

SNOMED-CT will be used to annotate medical terminology that is not fully covered 

by FHIR. By adapting the Atos Terminology Server (ATS), some of the different clin-

ical terminologies commonly used across the healthcare industry, such as ICD9 and 

LOINC, will become interoperable. The implementation and customization of the ATS 

will occur in the second phase after the finalization of the PoP, and a RESTful API will 

also be provided. As a result of this API, clinical information may be accessed safely 

through interaction with the FHIR database for terminology purposes.  

5.2 Synthetic Data Generator  

In order to ensure fitness for purpose of a system of such complexity during its devel-

opment, it is essential to test it with realistic data and use this information to guide its 

design and development. Therefore, we have adopted Synthea15, a synthetic patient 

generator that generates realistic patient records pertaining to the entire life of a patient, 

including condition onset, encounters with physicians, observations, and prescriptions. 

5.3 Security  

Data protection is considered a critical issue, especially when dealing with special cat-

egories of personal data (Article 9, GDPR). In this context, SB@Cloud, by virtue of its 

design, supports privacy. In particular, the Security Component provides mechanisms 

that handle data minimization, authentication, and other security and privacy aspects 

through pseudonymization and resource identifier reassociation (Basdekis et al., 2019). 

In order to protect the transmission of any (sensitive or not) data, this component sup-

ports Role-based Access Control authentication and authorization of all RESTful API 

 
14 https://fshschool.org 
15 https://synthea.mitre.org/ 

https://fshschool.org/
https://synthea.mitre.org/
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endpoints and introduces services for the management of privacy-related requests in 

order to demonstrate compliance with GDPR. More specifically, the RESTful API im-

plements token-based access via encrypted HTTPS connections. Due to the fact that 

the data is stored in two separate repositories, where pseudonymized medical and usage 

data are stored in the CDR and personal data and Personalized Identifiable Information 

are stored in a separate encrypted repository, it is possible to continue analyzing fully 

anonymized data after the project has concluded, provided all personal information has 

been deleted. Therefore, after the completion of the SB project, the Security Component 

data will no longer be needed for research purposes (e.g., analytics and interventions) 

and will be disposed of. 

In parallel, The Security Component is also responsible for monitoring, testing, and 

assessing the security and privacy of all platform operations. A comprehensive audit of 

key infrastructure components and processes will also be performed, as well as lever-

aging monitoring mechanisms developed in the context of the project to provide an 

evidence-based, certifiable assessment of the platform's security posture, along with 

accountability provisions for changes in the security posture and analyses of the cas-

cading effects of those changes. In addition to several built-in security assessments ad-

dressing Confidentiality, Integrity, and Availability principles, custom metrics related 

to the platform's components will be used, utilizing an evidence-based approach to pro-

vide security and privacy assurance assessments with certifiable results. 

5.4 Information Model 

As described above, data is partitioned across two databases in SMART BEAR – clin-

ical data in the FHIR database, and non-clinical or private information that is not ex-

posed to analytics in a non-FHIR one. 

Due to the fact that FHIR is a platform specification meant to be confined to a spe-

cific use case, we have profiled various resources in the FHIR database according to 

our requirements (Figure 2). Basic demographic information such as name, age, and 

ethnicity are stored in the Patient resource, whereas most of the clinical information is 

stored in Conditions and Observations, which are tied to the Encounter resource. 

Each assessment is represented by an Encounter resource instance, since patient as-

sessments are performed by clinicians in SMART BEAR. This Encounter resource is 

central to the information model, as all other resources either link to or from it, creating 

a graph in which all relevant nodes (resources) can be reached. The Conditions resource 

records any clinical issues that were noted during an assessment. FHIR Observations 

contain issues of lesser importance, as well as 'negations' - issues that a clinician has 

determined that the patient does not have. As a result of this fine but important distinc-

tion between a lack of data (unknown value) and a refuting observation (known nega-

tive), we can develop more accurate analytics algorithms. Furthermore, a significant 

part of the data acquired by the clinical assessments comes in a form of over 20 Ques-

tionnaires; these are internationally recognized; standard data collection points whose 

outcome scores will be used for analytical purposes. 
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Fig. 2. Information Model of FHIR Resources in Use (Peretokin et al., 2022) 

Most Observations follow a simple 'key-value' pattern, where Observation.code 

identifies the type of measurement, or type of condition in case of Conditions, and Ob-

servation.value[x] records the measurement value. As an example, in case of the patient 

having anxiety, Condition.code will be populated with “197480006 |Anxiety disorder|” 

from SNOMED. Should they not be affected by anxiety, Observation.code will have 

the same terminology code but Observation.valueCodeableConcept will be populated 

with “260385009 |Negative|”. 

FHIR Vital Signs standard profiles is also adhered to where possible. For example, 

in the case of blood pressure, the Observation.component is utilized to record sys-

tolic/diastolic measurements, BodySite for the left or right arm, and LOINC codes are 

used to indicate the patient's standing/supine position. SMART BEAR IG contains a 

wealth of Conditions, as well as positive and negative Observation examples to assist 

users in understanding the FHIR database. 

Furthermore, specialized resources are used where appropriate. FamilyMemberHis-

tory for example is used to record the family history of hearing loss and ResearchSub-

ject is used to record the source of referral to our clinical study. MedicationStatement 

records both the list of medications the patient is taking using the Anatomic Therapeutic 

Chemical value set endorsed by the World Health Organization (WHO), and the diet 

they are prescribed. 

Previously mentioned Conditions and Observations relied on over 120 terminology 

mappings, with most codes coming from SNOMED, to link the semantic meaning 

within. Codes from LOINC and MeSH16 complement the rest of the mappings. In order 

to prevent the development of new medical knowledge, the creation of custom codes 

was avoided as much as possible. Only four new codes have been introduced in 

 
16 https://www.nlm.nih.gov/mesh/meshhome.html 

https://www.nlm.nih.gov/mesh/meshhome.html
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SMART BEAR, which have no equivalents in any of the searched code systems. Sev-

eral food/diet-related concepts that are not available in the SNOMED international core, 

but are available in the Australian edition, were used for this reason. We have verified 

that this does not impose any additional licensing constraints on SNOMED. 

To adhere to the principle that introducing new codes should be avoided as much as 

possible, two SNOMED post-coordinated expressions were crafted to accurately rep-

resent very specific concepts: "number of non-scheduled visits due to volume overload 

in subjects with heart failure" as: 

4525004 |emergency department patient visit| :362981000 |qualifier value| = 
260299005 |number|, 42752001 |due to| = 21639008 |hypervolemia| 

and “number of Visits to the Emergency Room due to Hypertension peak” as: 

4525004 |emergency department patient visit| :362981000 |qualifier value| = 
260299005 |number|, 42752001 |due to| = 38341003 |hypertension| 

We chose to re-use the FHIR extension and value set published by the German 

Corona Consensus Data Set project (Sass et al., 2020), which is partially based on WHO 

ISARIC eCRF value set when it came to recording the patient's ethnicity. As a result of 

the reuse of existing knowledge, long-term interoperability is enhanced. 

Analytics are a crucial aspect of the system, as it provides the necessary intelligence 

for the task at hand. They are driven by the BDA Engine, which has several require-

ments placed upon it – raw data processing, incremental updates, and scalability. Clin-

ical data are stored in the system in a FHIR repository, as previously mentioned. Despite 

its advantages as an excellent interface for clinical data, FHIR interfaces make compro-

mises when processing bulk data. It is for this reason that the BDA engine requires the 

capability of converting and flattening the hierarchical format of FHIR into a relational 

format that is more appropriate for bulk data processing. In order to run analytics con-

tinuously, this conversion should be possible to do incrementally as new data is re-

ceived in the clinical repository, as well as being able to scale to large data volumes. 

5.5 BDA Engine 

The BDA Engine mainly addresses the functionalities required for processing Data 

Analysis Workflows, as well as providing and storing the execution results. A set of 

APIs is provided to perform analysis on raw data. In terms of ML, a preliminary ex-

traction of data analytics - which will be carried out on the pre-processed datasets - are 

going to indicate variables or combinations of variables for the feature selection ap-

proach. It is important to note that all ML methods and techniques are data-driven, and 

the "best" method will be determined after its application. A longer, more detailed, dis-

cussion of how the BDA component's AI & XAI capabilities are planned to be used, in 

particular in the setting of the Hearing Loss comorbidity, is presented elsewhere (Ili-

adou et al., 2022).  
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The preliminary extraction of data analytics is performed by the following subcom-

ponents featured in the BDA Engine architecture: Delta Lake 17, Spark18, Trino19, and 

Airflow20. A bottom-up approach will be used to describe the components, with the 

layers at the bottom being closest to the data repositories. Figure 3 illustrates its archi-

tecture, which is an expanded version of the architecture presented in (Anisetti et al., 

2021). 

A cloud object store, Delta Lake, provides ACID21 table storage and is the closest 

component to the data repositories. With Delta Lake, a Lakehouse Architecture can be 

built using existing storage systems, including Amazon S3, Azure Data Lake Storage, 

Google Cloud Storage, and Hadoop Distributed File System (HDFS)22 (Armbrust et al., 

2020). The Lakehouse Architecture also enables Business Intelligence and ML analysis 

on all data. In the case of SMART BEAR, the adopted standard is HDFS.  

 

Fig. 3. The BDA Architecture (Peretokin et al., 2022) 

On the third layer from the bottom, Spark and Trino are collocated together, provid-

ing the capability to access data and perform queries on those datasets. Spark is a multi-

language engine supporting data engineering, data science, and ML on both single-node 

machines and clusters. Spark was chosen due to its capabilities of processing tasks en-

compassing custom analytics on large data volumes, as well as the fact that it features 

many bindings with other commonly used Data Science and ML libraries. Additionally, 

Spark is capable of handling batch and streaming data. Trino on the other hand provides 

 
17 https://delta.io/ 
18 https://spark.apache.org/ 
19 https://trino.io/ 
20 https://airflow.apache.org/ 
21ACID is an acronym refers the four properties that define a transaction: Atomicity, Consistency, 

Isolation, and Durability.  
22 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html 

https://delta.io/
https://spark.apache.org/
https://trino.io/
https://airflow.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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the capability of accessing and processing data from multiple systems in a highly par-

allel and distributed manner. In addition to supporting HDFS data, Trino also provides 

the BDA Engine with the ability to manage On-Line Analytical Processing queries and 

data warehousing tasks. 

Airflow is located on the fourth layer from the bottom and allows programmatic 

authoring, scheduling, and monitoring of workflows written in Python.  

5.6 Decision Support System  

The DSS is intended to aid clinicians in assessing every patient in terms of the optimal 

assessments that must be completed to assess the patient, and to provide them with the 

optimal combination of devices to monitor their health during the pilot study. As a re-

sult of the continuous collection and analysis of data that will be digested into the plat-

form, this component is designed to evolve throughout the project. Initially, the DSS 

available for the PoP was developed in accordance with the rules and medical guide-

lines provided by the clinicians so as to establish a ground truth system that is based on 

the most current medical knowledge. For each of the monitoring conditions of the 

SMART BEAR project (Hearing Loss, Cardiovascular Diseases, Mild Cognitive Im-

pairment, Mild Depression, Balance Disorders, and Frailty), the medical teams provide 

the rules-based scenarios and relevant interventions that should be administered to the 

participants. Rules-based algorithms take into account the personalized thresholds that 

are set for each patient individually. Cardiovascular Diseases, for example, have opti-

mal and extreme cut-off values for blood pressure, which trigger notifications and alerts 

to the patient and clinical care team. 

Data collected at the PoP will be used to develop BDA engine models, and the output 

from the analytics will be analyzed in conjunction with the measured parameters in 

order to determine the extent to which patients are satisfied and what adjustments need 

to be made to the personalized thresholds. It is possible for the DSS to be extended to 

support all the new interventions that will be provided by clinicians if the results of the 

analytics provide insights that lead to new interventions. It must be noted that any new 

intervention must first be validated by the clinicians before it is included in the inter-

ventions provided to the patient. 

 

 

 



14 

5.7 Dashboard 

 

Fig. 4. Dashboard Homepage (Peretokin et al., 2022) 

The SMART BEAR Dashboard is a component aimed at providing clinicians with a 

user-friendly graphical user interface. The Dashboard home page is shown in Figure 4. 

Clinicians can utilize the Dashboard to create and manage patients, taking into account 

their devices and medications, conducting first visits and check-ups, performing ana-

lytics on data, and developing interventions. All collected data are stored in FHIR and 

non-FHIR repositories depending on their clinical value: the first collection takes place 

during the Baseline Assessment of a patient, which includes medical history, physical 

examinations, and questionnaire responses. By analyzing the information provided, the 

dashboard visualizes suggestions about the eligibility of prospective participants for the 

SMART BEAR pilot studies. According to the conditions detected, the profiling func-

tionality suggests specific tabs and questionnaires that should be activated by the clini-

cian. Although the patient's profile is ultimately selected by a clinician, the profiling 

functionality redirects users to the clinical tools and devices that are required to match 

a patient's profile consistently with the SMART BEAR protocol, regardless of which 

clinical tool is chosen. Upon creation and eligibility determination of a patient, the 

Dashboard displays specific tabs that enable patient management and provide infor-

mation regarding demographics, such as living situation and ethnicity, participation in 

synergies, and type and status of devices provided. 
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Fig. 5. Patient Management Page (Peretokin et al., 2022) 

As shown in Figure 5, the patient management tab is another featured functionality 

that allows users to visualize the delivered notifications. Currently, the analytics and 

intervention mechanism are still in the development phase. These mechanisms aim to 

assist the clinicians to perform analytics on the collected data either targeting all pa-

tients or only a specific subgroup defined by certain parameters, in order to monitor the 

patients in the future with a determined condition. Based on the outcome of the analyt-

ics and with support from the DSS, the Dashboard visualizes suggestions for clinicians 

on the interventions to be delivered. The final choice of the intervention is still to be 

made by clinicians, and they will also be able to monitor the intervention outcome. 

Examples of analytics to be made available in the Dashboard are discussed in (Bellandi 

et al., 2021).  

6 Interaction Specifications 

Having introduced each component in the SMART BEAR architecture, this section 

presents an example of how these cooperate, though some interaction specification di-

agrams. These diagrams are representative of the main data flows in SMART BEAR 

(Kloukinas et al., 2020). The example described here is the MyDiet functionality of the 

SB@App.  

In order for the MyDiet functionality to suggest appropriate dietary recommenda-

tions to a participant, their current weight needs to be collected first by using the smart 

weight scale. If the vendor of the smart weight scale has its own mobile application, 

then this vendor-provided application will be available to the participant and will trans-

fer the new measurements to the vendor cloud, from where the Data Repository of 

SB@Cloud will retrieve this information periodically. This smart weight scale – vendor 

application – vendor cloud – Data Repository data flow is shown in Figure 6.  
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Fig. 6. Data flow of smart weight scale to the SMART BEAR Data Repository (Kloukinas 

et al., 2020) 

In the case the vendor of the smart weight scale does not have its own mobile appli-

cation, Figure 7 shows the alternative data flow where the new weight measurements 

will be collected by the SB@App and transmit them to the HomeHub, which then trans-

mits them to the Data Repository.  

  

 

Fig. 7. Alternative data flow of smart weight scale to the SMART BEAR Data Repository 

– in the case of absence of vendor-provided mobile application (Kloukinas et al., 2020) 

Figure 8 shows an alternative data flow of Figure 7 if the HomeHub is not available. 

In this case, SB@App anonymizes its own data and connects directly to the SB@Cloud 

to in order to transfer the data to the Data Repository.  
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Fig. 8. Alternative data flow of smart weight scale to the SMART BEAR Data Repository 

– in the case of absence of the HomeHub (Kloukinas et al., 2020) 

Finally, Figure 9 shows how the DSS takes into account the measurements stored in 

the Data Repository, along with other data such as particular dietary requirements from 

the participant’s profile, to form a set of recommended recipes for the participant. This 

recommendation is then transmitted to the SB@App and notes the choices made by the 

participant through the MyDiet functionality. The choice is then transmitted back to the 

Data Repository to allow future analysis of appropriate recipes and uptake of the sug-

gestions of the MyDiet functionality.    

 

 

Fig. 9. DSS to MyDiet recommendation use case 
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7 Future Work 

In order to demonstrate the efficacy, extensibility, sustainability, and cost-effectiveness 

of SB@Cloud, it will operate for at least three years where its solution will be tested 

and validated through five large-scale pilots involving 5000 elderly individuals living 

at home in Greece, Italy, France, Spain-Portugal, and Romania. It is expected to gener-

ate useful evidence during this period, such as metrics and observational evidence base, 

from analysis of the collected data that is driven by high-level BDA and decision mod-

els for offering personalized healthcare and medicine solutions in clinical practice. 

Since the pseudonymization mechanism is in place, SMART BEAR intends to develop 

a data sharing and valorization model (DSVM) that will support further analysis using 

anonymous data even after the lifecycle of the project. Through the integration of new 

data providers and open sources, the DSVM will identify methods for extending the 

data collected by SMART BEAR on both a technical and organizational level. Using 

the outcomes of data analysis, we will be able to enhance the platform's performance, 

personalize its relationship with its end-users further, develop new services, and mon-

etize data-intensive services. 

8 Conclusion 

This paper provides an overview of the cloud-enabled, standards-based integrated sys-

tem developed by the SMART BEAR project. This system allows for recording assess-

ments and monitoring, as well as delivering clinician-vetted interventions to facilitate 

monitoring, empowering, and promoting healthy living at home for senior citizens. 

Based on widely accepted standards such as HL7 FHIR and advanced analytics, the 

system is supported by an underlying semantic interoperability solution. It is intended 

to leverage the platform during the SMART BEAR PoP, and further refine it to support 

the planned large-scale pilots in all participating countries. 

9 Acknowledgement  

This work was supported by the European Commission’s Horizon 2020 research and 

innovation program under the SMART-BEAR project, grant agreement No 857172. 

 

References 

Adhikary, T., Jana, A. D., Chakrabarty, A., & Jana, S. K. (2020). The Internet of Things 

(IoT) Augmentation in Healthcare: An Application Analytics. In ICICCT 2019 – 

System Reliability, Quality Control, Safety, Maintenance and Management (pp. 

576–583). Springer Singapore. https://doi.org/10.1007/978-981-13-8461-5_66 
Akyildiz, I., Pierobon, M., Balasubramaniam, S., & Koucheryavy, Y. (2015). The in-

ternet of Bio-Nano things. IEEE Communications Magazine, 53(3), 32–40. 

https://doi.org/10.1109/MCOM.2015.7060516 



19 

Anderson, C. (2018). Ready for Prime Time?: AI Influencing Precision Medicine but 

May Not Match the Hype. Clinical OMICs, 5(3), 44–46. 

https://doi.org/10.1089/clinomi.05.03.26 

Anisetti, M., Ardagna, C. A., Braghin, C., Damiani, E., Polimeno, A., & Balestrucci, 

A. (2021). Dynamic and Scalable Enforcement of Access Control Policies for 

Big Data. Proceedings of the 13th International Conference on Management of 

Digital EcoSystems, 71–78. https://doi.org/10.1145/3444757.3485107 

Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy, M., Torres, J., van Hovell, 

H., Ionescu, A., Łuszczak, A., Świtakowski, M., Szafrański, M., Li, X., Ueshin, 

T., Mokhtar, M., Boncz, P., Ghodsi, A., Paranjpye, S., Senster, P., … Zaharia, M. 

(2020). Delta lake. Proceedings of the VLDB Endowment, 13(12), 3411–3424. 

https://doi.org/10.14778/3415478.3415560 

Article 9, General Data Protection Regulation (GDPR). 2018. General Data Protection 

Regulation (GDPR) – Final text neatly arranged. [online] Available at: 

<https://gdpr-info.eu/> [Accessed 20 August 2022]. 

Basdekis, I., Pozdniakov, K., Prasinos, M., & Koloutsou, K. (2019). Evidence Based 

Public Health Policy Making: Tool Support. 2019 IEEE World Congress on Ser-

vices (SERVICES), 272–277. https://doi.org/10.1109/SERVICES.2019.00080 

Basdekis, I., Sakkalis, V., & Stephanidis, C. (2012). Towards an Accessible Personal 

Health Record. In Wireless Mobile Communication and Healthcare (pp. 61–68). 

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29734-2_9 

Bellandi, V., Basdekis, I., Ceravolo, P., Cesari, M., Damiani, E., Iliadou, E., Dan Mar-

zan, M., & Maghool, S. (2021). Engineering Continuous Monitoring of Intrinsic 

Capacity for Elderly People. 2021 IEEE International Conference on Digital 

Health (ICDH), 166–171. https://doi.org/10.1109/ICDH52753.2021.00030 

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: 

management, analysis and future prospects. Journal of Big Data, 6(1), 54. 

https://doi.org/10.1186/s40537-019-0217-0 

Huang, Z. Y., Wang, Y., & Wang, L. (2020). ISO/IEEE 11073 Treadmill Interopera-

bility Framework and its Test Method: Design and Implementation. JMIR Medi-

cal Informatics, 8(12), e22000. https://doi.org/10.2196/22000 

Iliadou, E., Su, Q., Kikidis, D., Bibas, T., & Kloukinas, C. (2022). Profiling Hearing 

Aid Users through Big Data Explainable Artificial Intelligence Techniques. 

Frontiers in Neurology. 

Kloukinas, C., Basdekis, I., Bucur, A., Cavero, C., Giotis, G., Kalatzis, F., Kouris, I., 

Maggesi, J., & Pozdniakov, K. (2020). Smart Big Data Platform to Offer Evi-

dence-based Personalised Support for Healthy and Independent Living at Home. 

Deliverable to the SMART BEAR (857172) Project funded by the European Un-

ion D6 – SMART BEAR Architecture (Public), City, University of London, UK. 

[online] <https://www.smart-bear.eu/wp-content/uploads/2021/06/D6-D2.2.pdf 

> [Accessed 21 August 2022]. 

Liao, Q. V., Gruen, D., & Miller, S. (2020). Questioning the AI: Informing Design 

Practices for Explainable AI User Experiences. Proceedings of the 2020 CHI 

Conference on Human Factors in Computing Systems, 1–15. 

https://doi.org/10.1145/3313831.3376590 

https://doi.org/10.14778/3415478.3415560
https://www.smart-bear.eu/wp-content/uploads/2021/06/D6-D2.2.pdf


20 

Mshali, H., Lemlouma, T., Moloney, M., & Magoni, D. (2018). A survey on health 

monitoring systems for health smart homes. International Journal of Industrial 

Ergonomics, 66, 26–56. https://doi.org/10.1016/j.ergon.2018.02.002 

Peretokin, V., Basdekis, I., Kouris, I., Maggesi, J., Sicuranza, M., Su, Q., Acebes, A., 

Bucur, A., Mukkala, V., Pozdniakov, K., Kloukinas, C., Koutsouris, D., Iliadou, 

E., Leontsinis, I., Gallo, L., de Pietro, G., & Spanoudakis, G. (2022). Overview 

of the SMART-BEAR Technical Infrastructure. Proceedings of the 8th Interna-

tional Conference on Information and Communication Technologies for Ageing 

Well and E-Health, 117–125. https://doi.org/10.5220/0011082700003188 

Sass, J., Bartschke, A., Lehne, M., Essenwanger, A., Rinaldi, E., Rudolph, S., Heit-

mann, K. U., Vehreschild, J. J., von Kalle, C., & Thun, S. (2020). The German 

Corona Consensus Dataset (GECCO): a standardized dataset for COVID-19 re-

search in university medicine and beyond. BMC Medical Informatics and Deci-

sion Making, 20(1), 341. https://doi.org/10.1186/s12911-020-01374-w 

  

 


