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Abstract

This paper thoroughly studies the impact of excess verdicts on the insurance industry and

further explores the optimal insurance strategy from the policyholder’s perspective, especially

when the court awards compensation beyond the insurance coverage, i.e., excess verdicts. This

is particularly prominent in wrongful death cases, where both financial and legal risks are

considerable. We introduce a mathematical model that simplifies these complex interactions into

manageable components, such as loss amount and legal stage, to understand better when insurers

need to cover excesses over policy limits. Our approach uses Value-at-Risk and Conditional

Value-at-Risk under the premium principle to transform this infinite dimensional challenge into

a tractable optimization problem. Our study shows that optimal insurance contracts employ

multiple layers of indemnity to accommodate different risk environments, resulting in optimal

risk allocation between insurers and policyholders, minimizing legal costs, and ensuring fair

coverage.

Keywords: Excess verdicts; Legal implications; Risk management; Optimal insurance; Multi-

ple indemnity environments; Value-at-Risk; Conditional Value-at-Risk.

1 Introduction

1.1 Excess Verdicts and Insurance Impact

In the insurance field, which is closely related to litigation, each verdict has the potential to recali-

brate risk assessments and premium decisions. A critical concern is the increase in excess verdicts,

often referred to as “nuclear verdicts.” These verdicts are becoming increasingly common, creating

uncertainty, protracted legal battles, and unforeseen liabilities for insurers and policyholders. In

particular, they may directly impact insurance policies and coverage standards. This trend might

imply a shift in societal perspectives on litigation, an evolution of legal strategies, and a change

in society’s view of compensation and justice. This paper provides a deeper exploration of the
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complexity of excess verdicts and their impact on stakeholders. Further, it proposes new models

and policies in insurance contracts to address these challenges effectively.

Within the framework of the law, excess verdicts occur when a court judgment requires the

defendant to compensate the plaintiff more than the defendant’s insurance limits. This trend is

particularly evident in personal injury and wrongful death cases, as it is increasingly recognized that

socio-emotional damages outweigh quantifiable economic losses. Therefore, liability for emotional,

social, and psychological damages also tends to exceed the measurable standards established by

traditional insurance policies. In such cases, the apportionment of liability between the insurer and

the policyholder is bound to be more complex, and it is accordingly often difficult to cover large

claims under the terms of a traditional policy.

The development of financial markets has led to a paradigm change in the insurance industry

towards layered coverage. Richmond (2000) articulated the fundamental role of primary insurance

in providing baseline coverage, with excess insurance gaining relevance only after primary policy

limits are exhausted. Their study emphasized the significant challenges posed to the excess insur-

ance industry by large-scale judgment cases, particularly nuclear verdicts. Richmond (2000) further

criticized that the delineation of liability coverage in excess insurance lacked the overall standard-

ization evident in primary liability insurance. This discrepancy, coupled with the outdated nature

of agreements such as the 1974 Guiding Principles for Primary and Excess Insurers, fails to meet

the requirements of the modern insurance industry, thus exacerbating problems for policyholders

and insurers.

In nuclear verdict cases, policyholders implicated in the litigation may find themselves respon-

sible for contributing to an eventual settlement. This involvement may cause them significant

personal financial stress and, at worst, even lead to bankruptcy. For insurers, a major nuclear

verdict case could not only emphasize their potentially catastrophic financial distress, which in

turn threatens their solvency, but it could also damage their reputation, especially if the court

interprets their actions as bad faith, which would result both in irreparable damages and a shaking

of the fundamental integrity of the industry. Despite these considerable risks, the insurance market

often ignores nuclear verdicts as financial anomalies without thoroughly investigating their causes,

effects, and possible prevention strategies. This negligence underestimates the far-reaching impact

these verdicts can have on policyholders and the insurance industry as a whole.

To fully understand the complex legal and insurance effects of nuclear verdicts, the evolution of

insurance contracts and the changing legal landscape must be explored. Historically, the settlement

of claims involving insurers and policyholders has been closely linked to risk events and resulting

losses. However, in today’s evolving risk environment, policyholders tend to seek compensation for

losses that exceed policy limits. This trend increasingly combines the utilization of excess insurance

with innovative litigation strategies.

O’Connor (2003) provided an illustration of this emerging phenomenon, emphasizing the chal-
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lenges of introducing excess insurer liability when negotiating settlements with primary insurers,

especially when those settlements are below policy limits. This situation might inadvertently trans-

fer financial liability from the policyholder and primary insurer to the excess insurer not involved

in the settlement. O’Connor (2003) further noted that the judicial system, instead, prioritizes hold-

ing policyholders liable for the coverage gap created by such settlements. This legal position not

only preserves the basic principle of excess insurance but also prevents excess insurance from being

transformed into primary or secondary insurance.

Epps and Chappell (1958) examined the excess liability of insurers, particularly where claims

exceeded policy limits, revealing the evolution of tort theories and their corresponding role in

expanding litigation. This exploration primarily involved the principles of “bad faith” and “negli-

gence.” “Bad faith” requires evidence of fraudulent or bad faith behavior from the insurer, while

“negligence” involves a lack of due diligence in settling a claim. Gallogly (2006) further expanded on

these concepts by articulating the standards that insurers should comply with in good faith when

dealing with third-party claims. They emphasized that bad faith is not just a lack of good faith, but

also necessitates that the insurer’s actions have an objectively unreasonable basis. This includes

cases where the insurer fails to notify the policyholder of the settlement. Nonetheless, the survey

clarified that a simple rejection of a settlement offer or an unfavorable outcome does not constitute

liability for bad faith, which rather stems from an unreasonably dismissive attitude toward the

settlement offer. Furthermore, Asmat and Tennyson (2014) used U.S. automobile insurance claims

data from 1972 to 1997 to empirically demonstrate that insurer liability for bad faith torts leads to

higher settlements and reduces the likelihood of inadequate claims. Their study stressed that the

legal threat of bad faith could significantly influence insurers’ settlement behavior.

The excess verdict case takes on additional dimensions in litigation due to the contrasting strate-

gies utilized by the defense and plaintiffs’ attorneys. Murray et al. (2020) observed that defense

attorneys representing insurers often use tactics that increase financial and procedural barriers to

deter plaintiffs. This approach is rooted in the dual objectives of minimizing costs and efficiently

preparing for litigation. Conversely, plaintiffs’ attorneys take a “high-risk, high-reward” attitude,

investing significant financial resources in the case while considering the significant financial risk

of an unsatisfactory outcome. The report further illuminated the differences in strategic messag-

ing and communication between these legal factions. Defense attorneys generally tend to support

business-centric entrepreneurship, prioritizing confidentiality and competitive advantage. In con-

trast, plaintiffs’ attorneys prefer to build collaborative networks and share strategies and opinions

more openly. This tendency is partially motivated by the likelihood that plaintiffs’ attorneys would

receive a considerable portion of their honorariums from large settlements, which incentivizes them

to seek higher levels of compensation, this may conversely exacerbate the litigation process and

potentially lengthen the duration of the litigation.

The impact of nuclear verdicts extends beyond litigation and sheds light on the broader phe-
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nomenon of “social inflation.” This concept encapsulates the forces that make insurance claims cost

more than the rate of general economic inflation, as measured by indices such as the Consumer

Price Index (CPI), Retail Price Index (RPI), and wage inflation. Nuclear verdicts do not just affect

legal proceedings and insurance claims, but also broader economic and social tendencies. The legal

impact of such variations in social sentiment is particularly evident in specific areas of insurance,

including private and commercial personal accident insurance, medical professional liability, prod-

uct liability insurance, and other general liability areas. Given the growing importance of nuclear

verdicts in claim settlement, insurers have become increasingly aware of the risks associated with

these societal evolutions. This awareness has led to major changes in claims practices and premium-

setting methods. While responding to the direct impact of nuclear verdicts, these adjustments have

also had a notable impact on social inflation indicators, shaping the insurance industry’s response

to these transformations∗.

Variations in jurisdictional legal frameworks significantly amplify the challenges inherent in in-

surance litigation, especially regarding nuclear verdicts. In the United States, the handling of excess

verdict liability diverges across states: some states place excess liability burdens on policyholders,

while others allow such damages to be collected directly from insurers. Despite these differences, a

unifying principle across jurisdictions is the insurer’s obligation to endeavor to settle within policy

limits. Pennsylvania exemplifies jurisdictions that have strict requirements for insurers. Gallogly

(2006) highlighted the evolution of the law in this state, which initially lacked a common law right

to sue insurers for bad faith in settlements. The introduction of the bad faith statute in 1990

changed the landscape of the insurance industry significantly, allowing insurers to take legal action

against bad faith behavior. Additionally, Deng and Zanjani (2018) identified litigation activity such

as insurance loss and tort cases as the primary motivation for states to adopt tort reforms between

1971 and 2005. This finding has emphasized that the diverse legal frameworks governing insurance

cross-jurisdictional litigation, especially in the case of nuclear indemnity verdicts, vary not only in

terms of excess verdict management but also in the propensity of states to engage in legal reforms

driven by litigation pressures.

Moreover, insurers facing an increasing number of bad-faith behavior suits may lead to a pro-

liferation of excess verdicts in the states. Examples of such conduct include delayed settlement of

claims, denial of claim defenses, exceeding policy limits during settlement, refusal to pay claims,

and conducting bad faith investigations. These practices, are elaborated upon in a spectrum of legal

cases (see examples in Appendix Table 6 for details), highlighting the multifaceted difficulties that

insurers face in different jurisdictions, with each state’s legal framework shaping its litigation and

settlement strategies.

∗For more details on social inflation, please see here
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1.2 A Case Analysis for Nuclear Verdicts

An extensive analysis by the American Trucking Transportation Institute reveals patterns of excess

verdicts and key factors in the evolution of the trucking industry landscape. A pivotal moment

occurred in 1994 when the jury awarded $2.7 million in the famous “hot coffee†” case (Murray

et al., 2020). This decision marked a watershed in the trend of excess verdicts, initiating an era

where lawsuit damages frequently surpassed the million-dollar mark. The upward trend in verdicts

was further highlighted by a 2011 case in which a victim of a fatal truck accident was awarded $40
million. These instances underscored an emerging pattern linking the magnitude of damages, the

elapsed duration from accident occurrence to verdict, and the consequent escalation in insurance

premiums (Murray et al., 2020).

Despite the decline in the incidence of serious trucking accidents, the surge in verdicts and set-

tlements has further exacerbated the financial pressures faced by the trucking industry (Sharma,

2023). The landmark 1977 case of Bates v. State Bar of Arizona‡ marked the beginning of an

era when law firms stepped up their marketing efforts, resulting in increased public awareness of

litigation rights and a more litigation-friendly environment. Sharma (2023) emphasized that the

contemporary legal environment in the trucking industry is affected not only by the proliferation

of large-scale settlements and verdicts, but also by challenges such as fabricated accidents, direct

contact between attorneys and accident victims, and the intentional conflation of quantifiable eco-

nomic damages with more subjective non-economic damages, such as mental anguish in wrongful

death cases.

These changing legal practices not only motivate plaintiffs’ attorneys but also influence the

trajectory of judicial decisions, leading to increased insurance costs in industries such as truck-

ing. Globally, the emphasis on non-economic damages, such as the assertion of wrongful death

claims in the 1999 report of the British Law Commission, reflects a change in the legal framework

toward consistency with current societal values. Chang et al. (2015) underlined the international

differences in this regard, noting in particular the cultural differences between European and East

Asian countries in valuing pain and suffering. Their empirical investigation revealed the impact

of family relationships on traffic accident damages. For example, spouses often receive greater

compensation for pain and suffering compared to their adult children due to deep emotional ties.

Such discrepancies highlight the limitations of traditional economic valuation methods in fully rec-

ognizing the value of individuals and underscore the need for a balanced approach to recognizing

grief and allocating damages. In this context, Heaton and Lucas (2000) argued that while certain

legal amendments may cut the cost of automobile insurance and affect coverage, the impact is

incomplete. Thus tort reforms and their broader impacts need to be carefully assessed, including

potential spillover effects in a variety of personal injury cases. The inclusion of non-economic dam-

†For more information on this case, please see here
‡For more information on this case, please see here
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ages (e.g., pain and suffering) in wrongful death cases is therefore critical and represents a major

transformation in legal attitudes towards the value of life and loss.

However, Sharma (2023) also revealed a paradox in the analysis of the trucking industry: despite

surging premiums, the insurers serving the trucking industry have experienced a large decline in

profitability. This phenomenon underscores the impact of claim severity and frequency in shaping

the industry’s financial landscape. As a result, excess coverage has become unpredictable and

expensive, forcing numerous insurers to either withdraw it altogether or drastically scale back the

comprehensive insurance coverage they offer to the trucking industry. This has forced trucking

companies to assume greater risk and, in many cases, struggle to obtain comprehensive coverage.

In addition, the prevalence of large verdicts significantly influences the settlement trends in this

industry. Sharma (2023) noted that the increase in nuclear verdicts may force insurers to agree

to higher settlement amounts, often exceeding typical jury awards for similar claims. This phe-

nomenon, known as “settlement creep,” arises from insurers’ concern about facing disproportionate

verdicts, leading insurers to settle for large amounts even when the trucking company’s liability is

uncertain or disputed. Silverman and Appel (2023) further emphasized that plaintiffs’ attorneys

are increasingly using the “reptile theory,” a strategy that inspires the innate human motivation

to be safe and complicate the litigation landscape by emphasizing that more serious injuries may

occur in the future if trucking companies are not severely penalized. This approach seeks to amplify

the fear and anger of juries and judicial officers by stressing the overall behavior of the industry

rather than specific incidents, which encourages more punitive verdicts. Correspondingly, an em-

pirical study conducted by Chang et al. (2015) on pain and suffering damages in wrongful death

cases showed that a plaintiff’s initial request for damages dramatically shapes a court’s decision.

This phenomenon illustrates an “anchoring effect” in which the size of the plaintiff’s claim largely

determines the court’s decision, independent of the objective specifics of the case.

The impact of large verdicts and settlements extends far beyond the trucking industry, ulti-

mately affecting the consumer economy. In the face of the rising impact of these excess verdicts and

settlements, the trucking industry inevitably faces a dramatic increase in operating expenses. Ris-

ing costs put intense pressure on the industry and have a broader economic impact by passing cost

increases on to consumers through higher prices for goods and services. Sharma (2023) highlighted

this critical issue by showing how inflated litigation settlements increase insurance expenditures for

trucking companies, providing examples of the broader impact of these legal developments on the

economic landscape.

1.3 Our Innovations and Contributions on Excess Verdicts

Based on the discussion of excess verdicts and their multifaceted impact on the insurance industry,

our study aims to fill a major gap in the current literature by exploring the relationship between

these verdicts and the multiple indemnity environment framework. This study aims to strengthen
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the existing academic foundation while providing new perspectives on the evolving nature of the

insurance industry. Our analysis explores how various potential risk factors play a role in excess

verdicts, particularly when the scope of damages now includes emotional and social aspects. The

broadening of the definition of damages, which effectively obscures the once-explicit economic

connection to a particular event, necessitates a closer review of these broader standards of damages.

In this paper, we aim to propose innovative insurance policy frameworks and models addressing

contract structures that are subject to external triggers or exogenous risk factors. These triggers are

evident in products such as multi-risk and index-linked insurance, although they may not always

reflect direct intrinsic losses. Building on the research of Asimit et al. (2021), our study explores

the mechanisms of insurance contracts, with a focus on the impact of exogenous triggers. These

external factors, mainly characterized by unforeseen risks, play a key role in determining indemnity

coverage, especially in multi-risk insurance models that underwrite unforeseen events and are not

related to any actions of the insured party. By analyzing these events, insurers can effectively

rebalance their risk portfolios and minimize the capital reserves required to cover potential losses,

thereby improving financial stability. Moreover, our model extends its application to optimal

insurance settings. While Asimit et al. (2021) focus on achieving Pareto optimality in multiple

indemnity environments, our research prioritizes the development of optimal risk-sharing models

in these settings from the policyholder’s perspective.

To explain it comprehensively, our optimal insurance model is based on Wang’s premium princi-

ple described in Wang (1996), which emphasizes mainly on the study of potential loss functions and

is complemented by analyzing the conditional probability distributions of these losses in different

risk environments. This allows us to construct a model in which the primary risk holder and the

insurance seller work together to develop a fair indemnity contract. In assessing the risk profile of

the buyer, we use Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) as indicators. Subse-

quently, we introduce the optimal insurance model and its corresponding optimal indemnity profile

derived on this basis. It is important to emphasize that exogenous risks, manifested through the

realization of different triggers, operate in an environment that is not influenced by any strategic

decision of the buyer or the seller and are mutually exclusive.

In our exploration of the multiple indemnity environment paradigm, we place emphasis on the

special case of excess verdicts. In such scenarios, the insurer’s behavior, whether in good faith or

not, becomes a key exogenous risk factor in the compensation process. Inspired by the concept of

“parametric insurance”, we propose an innovative model that strategically allocates pre-determined

liability within a multiple indemnity framework. The model utilizes a “court judgment index” as

an indicator to assess whether an insurer acts in good faith in the event of an excess verdict.

Unlike traditional approaches, our methods incorporate a “sequential trigger” mechanism into the

parametric insurance model. The process is divided into two distinct phases: first, the existence of

an excess verdict is evaluated. After the initial trigger is activated, the second stage begins with

7



the determination of total compensation and its distribution between the policyholder and the

insurer. This sequential approach is specialized in identifying excess verdicts, thereby facilitating

proceedings and improving their efficiency, reasonableness, and predictability.

The process of resolving legal disputes arising from excess verdicts is simplified when the policy-

holder and the insurer mutually agree to the terms outlined in the policy. Such agreements greatly

reduce the time and expense of protracted legal proceedings. At the heart of this efficiency is a

predetermined allocation of liability if the insurer is deemed to have acted in bad faith, rather than

leaving the outcome to unpredictable and lengthy court proceedings. This structured approach

improves clarity and minimizes the unforeseeability often associated with legal proceedings. One

must recognize that our proposed model may have potentially significant implications for litigation

law firms, as by reducing the incentive for prolonged legal battles, this approach may lead to a

reduction in related litigation activity. Furthermore, it may help to mitigate the effects of social

inflation, as the potential gains from extensive legal battles become less attractive.

Our study makes three major contributions to the field of insurance studies. First, it provides

an in-depth exploration of the legal and economic implications of excess verdicts, particularly

focusing on wrongful death cases. This includes an analysis of the broader implications for insurance

policymaking and the marketplace, supplemented by a case study focused on the trucking industry.

Second, we introduce a theoretical model designed to address the issue of excess verdicts, a relatively

unexplored but critical area for financial risk management in the insurance industry. To the best of

our current knowledge, this is the first theoretical model to provide insurers with a comprehensive

framework for effectively addressing the complex issues associated with the huge and unpredictable

legal judgment process.

Third, our findings suggest that optimal insurance policies maintain the same deductible across

different risk environments. This simplicity benefits insurers by making it easier for them to for-

mulate policies, assess risks, and set premiums, increasing customer satisfaction and trust in the

insurer. Additionally, the stability of deductibles across risk scenarios mitigates the problems as-

sociated with moral hazard and adverse selection, as policyholders are less likely to change their

behavior to benefit from different deductibles, resulting in a more robust and predictable risk pool.

For customers, this means that insurance terms are easier to understand, which benefits them in

comparing different insurance options. This clarity can lead to more competition among insurers to

provide better provisions or services, thereby increasing the fairness and efficiency of the insurance

market.

This paper is organized as follows: Section 1 lays the groundwork by exploring in detail the

concept of excess verdicts. Here, we emphasize the new contributions of our study and discuss

its implications in the insurance industry. Section 2 provides a comprehensive literature review

focusing on optimal risk-sharing mechanisms and the background risk environment relevant to our

study. Section 3 defines issues relevant in multiple indemnity environments. This section describes
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a customized insurance model designed specifically for these settings and analyzes it from the

buyer’s perspective. The model combines various risk preferences, in particular, Value-at-Risk

(VaR) and Conditional Value-at-Risk (CVaR), resulting in a layered solution within an optimal

indemnity insurance structure. Special emphasis is given to excess verdict modeling in Section 4

within a multiple indemnity framework. Section 5 presents numerical simulations of the multiple

indemnity model and analyzes the results. Finally, Section 6 summarizes our main findings and

outlines possible future research directions in this area. More detailed information is provided in

Appendix A, and full proof of the main result is provided in Appendix B.

2 Literature Review

This paper investigates the optimal design of insurance and reinsurance contracts in a multiple

indemnity environment. A common feature of insurance markets is the existence of indemnity con-

tracts that are activated based on specific, mutually exclusive events or “triggers.” These triggers

are external and not necessarily directly related to the potential loss. Such contract structures are

widely found in markets dealing with multiple risks and index-linked insurance, as well as in catas-

trophe bonds and other risk-related securities. For example, Miranda and Vedenov (2001) examined

risk securitization as a new approach to managing agricultural risk in developing countries, focusing

on weather-related risks. Their work emphasized the use of index-based insurance derivatives and

capital market integration to address the uncertainties inherent in weather-dependent agriculture.

Following Borch (1960)’s foundational principles on reinsurance calculations using the expected

value principle and Arrow (1963)’s validation of stop-loss contracts for optimizing wealth in risk-

averse insurers, significant developments have occurred in optimal insurance contract design. Raviv

(1979) explored the process involved in developing an optimal insurance policy with an emphasis on

deductibles, coinsurance, and the overall cost of insurance, addressing multiple loss scenarios and

optimal coverage limits. Young (1999) then constructed optimal insurance contracts by focusing on

maximizing the expected utility of risk-averse policyholders based on Wang’s premium principle,

highlighting its effectiveness against distortion in insurance pricing. Most recently, Boonen and

Ghossoub (2020) focused on contracts that navigate different utility preferences and risk limits

within a framework that deals with heterogeneous beliefs and constraints by analyzing optimal risk-

sharing contracts in more complex scenarios and providing a mathematical approach to formulate

these contracts.

As risk quantification gained focus, Cai and Tan (2007) introduced a reinsurance model us-

ing Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) for minimizing insurers’ risk ex-

posures. This led to further studies by Cai et al. (2008), Guerra and Centeno (2012), Asimit

et al. (2013a, 2013b), Cheung et al. (2015), exploring premium principles and optimal reinsurance

under various constraints. Chi and Tan (2011, 2013) provided a thorough study of the premium

principle that satisfied general assumptions and showed how layered-type contracts remain optimal
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under both VaR and CVaR. Boonen and Ghossoub (2019, 2021) developed a model of a repre-

sentative reinsurer integrating the risk preferences and premium principles of individual reinsurers

with simplified optimal reinsurance contract formation, addressing the complexity of heterogeneous

beliefs and distorting risk measures through layered insurance indemnities, simplifying negotiations

in a diversified market.

Multi-risk insurance contracts combine a variety of coverages arising from different, mutually

exclusive risks, focusing on losses triggered by multiple unrelated events. These triggers range from

physical threats like fire, theft, and storms to quantifiable indices like the catastrophic loss index.

Each of the risks described defines the specifics of the potential loss, prompting the design of policies

that comprehensively cover these different risks. In these contracts, coverage is activated upon pre-

determined events that require independent verification. The insured pays a premium based on the

probability of these triggering events, and the insurer covers the loss up to specified limits. Goodwin

(1993) explored this framework in the U.S. Federal Crop Insurance Program to identify the deter-

minants that influence farmers’ preferences for multiple-risk crop insurance (MPCI), where varying

degrees of farmers’ risk of loss affect their insurance needs. In more complex situations, indemnifi-

cation may involve the sequential occurrence of multiple specified events, thus increasing insurance

coverage in a multi-risk contract. This is an important factor in the excess verdicts discussed in

this paper and is usually associated with situations where multiple triggers lead successively to an

overall loss outcome.

The field of behavioral economics is increasingly concerned with how background risk affects

individuals’ risk-taking and insurance decisions. The key work of Gollier and Pratt (1996) intro-

duced the concept of risk vulnerability in economic decision-making, showing how background risk

enhances an individual’s aversion to independent risk. The analysis challenged the conventional

perspective of risk substitutability, exposing that risk aversion is exacerbated in the presence of

zero-mean background risk. Through mathematical modeling, Gollier and Pratt (1996) identified

sufficiently necessary conditions for this effect and revealed how background risk affects market be-

havior, including the pricing of risky assets and equity premiums. Eeckhoudt et al. (1996) further

investigated the impact of changes in background risk on individual risk-taking behavior. Their

study shows that changes in background wealth significantly affect individuals’ risk aversion. They

identified conditions under which various types of changes in background risk, categorized as first-

and second-order stochastic dominance, lead to increased risk aversion.

Heaton and Lucas (2000) explored the impact of background risks, including labor income and

proprietary business income, on portfolio allocation decisions. Their study combined theoretical

models with cross-sectional data to emphasize how these risks lead to heterogeneity in investors’

portfolio holdings across different segments. More recently, Strobl (2022) shifted their focus to

developing countries, in particular Kenya, to examine the impact of healthcare costs, a major

background risk, on investment decisions. Their findings suggested that in this context, risk-averse
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individuals tend to choose less risky investments when faced with healthcare-related risks. In

addition, the study also found that the provision of insurance does not consistently promote riskier

investments, suggesting that factors such as limited insurance comprehension and disincentives to

pay premiums play a crucial role in influencing investment behavior under background risk.

Looking more deeply into the insurance perspective, some attempts have been made to examine

the issue of optimal indemnity insurance given the presence of background risk. Lu et al. (2018)

explored optimal insurance contracts, emphasizing the importance of the relationship between

background risk and insurable risk, while preserving the stop-loss order. This study suggested that

deductible insurance is optimal, especially when the background risk grows stochastically relative

to the insurable risk. Chi and Wei (2018) established the optimality of stop-loss insurance under

various positive correlation structures between insurable and background risks, and comprehensively

analyzed how changes in initial wealth or transfers of background risks affect the optimal insurance

retention. Chi and Wei (2020) extended this to cover different correlation structures, including

positive, moderately negative, and significantly negative correlations. Their findings indicated that

the nature of dependence between background and insurable individuals mainly influences optimal

insurance strategies, emphasizing stochastic dependence’s important role in influencing the insured’s

risk transfer decisions.

Furthermore, Chi and Tan (2021) emphasized the impact of background risk on the enforce-

ment of incentive-compatible conditions in policy design, especially when negatively correlated with

insurable risk. Their study played a crucial role in reducing ex-post moral hazards, such as the

temptation of the insured to exaggerate losses. Hinck and Steinorth (2023) further stressed the

increased demand for insurance due to risk vulnerability and loss-dependent background risk, espe-

cially in cases where potentially large losses exceed premiums. This complements the explorations

of Hofmann et al. (2019), who explored how limited policyholder liability and background risk

can lead to deviations from traditional insurance models, particularly affecting the demand for ex-

cess insurance under negatively correlated risks. Altogether, these studies indicate that exogenous

events may be important for optimal insurance contract design.

Recognizing the challenges posed by various environments and insurable risks, recent studies

have proposed new approaches to designing insurance contracts. The framework proposed by Asimit

et al. (2021) highlighted the role of external events as potential catalysts for different indemnity

contracts. If these events are used effectively, insurers can manage their risk exposure and opti-

mize the capital reserved for potential losses. In this model, the primary risk taker (the buyer of

protection) and the insurer (the seller of protection) cooperate to develop a satisfactory indemnity

contract profile. When taking the buyer’s perspective, some studies hypothesize that the buyer’s

risk preferences can be summarized in terms of VaR and CVaR to reveal the optimal reinsurance

model and its corresponding indemnity profile. Crucially, these models emphasize exogenous risk,

characterized by the realization of triggers in the external environment that are independent and
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unaffected by buyer or seller decisions. Maintaining transparency and fairness for the insured

remains a central concern of these advances.

3 Optimal Insurance with Multiple Indemnity Environments

The concept of excess verdict insurance can be represented with four distinct and mutually exclusive

environments, each of which depends on the progress of the legal proceedings and the conduct of

the insurer. The first situation is where there is no loss. The second scenario corresponds to the

case in which the damages awarded remain within the prescribed insurance limit. In the third

scenario, the damages awarded exceed the limit specified in the insurance policy. However, the

subsequent litigation does not reveal any bad faith or misconduct on the part of the insurer. The

last scenario describes a situation where, after the compensation awarded exceeds the insurance

limit, a further lawsuit also reveals bad faith from the insurer. This categorization, pertinent to

excess verdict insurance, motivates the study of the broader conceptual framework of “multiple

indemnity environments,” a notion rigorously examined through the lens of Pareto-optimal risk-

sharing in the work by Asimit et al. (2021). In the following subsections, we state and solve an

optimal insurance problem where the indemnity function depends on the prevailing environments.

This discussion encompasses the problem’s definition, optimization using VaR and CVaR, and

further analysis through the Proportional Hazard Transform.

3.1 Problem Definition

Let (Ω,F ,P) be a probability space on which all random variables are defined. We consider a

one-period economy where a primary risk holder is endowed with a non-negative loss X which is

payable at a fixed future time T > 0. It is assumed that 0 < E [X] <∞, where E is the expectation

under P.
The primary risk holder, or (insurance) buyer, intends to share the loss at time T with another

party, or (insurance) seller and accepts to pay a premium at time 0. Both parties agree to achieve

optimality in terms of their risk positions by choosing appropriate amounts of indemnity and

premium. However, unlike classical risk-sharing problems, this paper considers a setting such that

the indemnity level depends upon an external factor, which cannot be influenced by either party,

yet can be precisely observed at time T .

To this end, let Y be the trigger characterizing the exogenous environment so that the sam-

ple space Ω is partitioned into m + 1 disjoint subsets given by events {ω ∈ Ω ∶ Y (ω) = k}, for

k = 0,1, . . . ,m. Moreover, if Y = 0 then X = 0, implying that under the environment Y = 0

there is no loss. For each remaining environment k = 1, . . . ,m, the loss is risky, in the sense

that P (X > 0∣Y = k) > 0. Thus, we explicitly assume that the random variables X and Y are not

independent.
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If the realized environment is non-risky, i.e. Y = 0, no indemnity transfer is required. Moreover,

if the prevailing environment is Y = k, for some k = 1, . . . ,m, the buyer will transfer the amount

Ik (X) to the seller at time T and retain the amount Rk(X) = X − Ik(X), where Ik ∶ [0,∞) → R
is called an indemnity function and Rk ∶ [0,∞) → R is called a retention function. Note that both

parties have to agree at time 0 on a profile of indemnity functions (I1, . . . , Im) since the exogenous

environment is not revealed until time T .

A profile of indemnity functions is admissible if it belongs to the set

I ={(I1, . . . , Im) ∶ 0 ≤ Ik ≤ Id, Rk = Id − Ik, Ik and Rk are non-decreasing for all k = 1, . . . ,m} ,

where Id denotes the identity function. Hence, under each environment, the indemnity is at most

the loss, and misrepresentation of the loss is disincentivized precluding ex-post moral hazard from

both parties, as suggested by Huberman et al. (1983). We refer to a tuple (I1, . . . , Im) ∈ I as a

contract.

For each contract (I1, . . . , Im) ∈ I, the realized risk position of the buyer is given by

B(I1, . . . , Im) =
m

∑
k=1

Rk(X)1{Y =k} + (1 + ρ)Pg (
m

∑
k=1

Ik (X)1{Y =k}) , (3.1)

where 1A is the indicator function of an event A ⊂ Ω. On the right-hand side of (3.1), the first

component of the loss is retained by the buyer, which depends on the prevailing environment. The

second term is the seller’s premium, calculated with Wang’s Premium Principle Pg and inflated by

the explicit safety load ρ ≥ 0. For any loss Z, Pg(Z) is defined as

Pg (Z) = ∫
∞

0
g (SZ(z))dx, (3.2)

where g ∶ [0,1]→ [0,1] is a non-decreasing concave function with g (0) = 0, g (1) = 1, and SZ is the

survival function of Z.

Let φ denote the buyer’s risk measure, designed to rank their risk preferences at time t = 0.

Formally, φ is a real function defined on a linear space of losses containing the constants. We assume

φ to be translation invariant, therefore ensuring consistency in the evaluation of risk positions with

respect to capital injections. With this in mind, the buyer’s risk position at t = 0 corresponding

to (3.1) can be expressed as

Fφ (I1, . . . , Im) = φ (B(I1,⋯, Im))

= φ (∑m
k=1Rk(X)1{Y =k}) + (1 + ρ)Pg (∑m

k=1 Ik (X)1{Y =k}) .
(3.3)
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3.2 Optimality with VaR and CVaR Preferences

In this section, we assume that the risk preferences φ of the buyer are represented by either Value-

at-Risk or Conditional Value-at-Risk. Then φ = VaR or φ = CVaR.
Recall that for a loss Z, the Value-at-Risk at level α ∈ (0,1) is

VaRα(Z) = inf{z ∈ R ∶ P(Z > z) ≤ 1 − α}.

The ruin probability α is associated with the buyer’s risk tolerance level.

The Conditional Value-at-Risk at level α ∈ (0,1) is

CVaRα(Z) =
1

1 − α ∫
1

α
VaRs(Z) ds.

The CVaR is alternatively called Expected Shortfall and has gained practitioners’ interest since the

introduction of Basel III regulations, see McNeil et al. (2015) for further discussion.

The buyer seeks to minimize his/her risk position at time t = 0, given by (3.3), over all admissible

indemnity profiles. The buyer’s minimization problem is given by

min
(I1,...,Im)∈I

Fφ (I1, . . . , Im) . (3.4)

Consider now the following subset of admissible indemnity profiles

I∗ ={(I1, . . . , Im) ∈ I ∶ for each k = 1, . . . ,m, there exist mk ∈ [0, ess sup(X)] ,

and nk ∈ [mk, ess sup (X)] , such that Ik(x) = (x −mk)+ − (x − nk)+}.

where ess sup (X) is the essential supremum of X and (x)+ = max{x,0}. Each indemnity profile

in I∗ features layer-type transfers where, in any exogenous environment, the indemnity is full

insurance up to a deductible mk and beyond an upper limit nk. The notation makes clear that the

deductible and upper limit may depend on the environment.

The buyer may want to find an optimal contract in the sub-class I∗, therefore restricting the

choice to layer-type transfers. From a mathematical point of view, the latter problem involves a

finite number of decision variables, unlike (3.4) which is infinite-dimensional. In general, this will

result in a sub-optimal contract. However, the next theorem shows that, when risk preferences are

VaR or CVaR, any solution of (3.4) is indeed a layer-type indemnity profile.

Theorem 3.2.1. Let φ = VaRα or φ = CVaRα. For any ρ ≥ 0 and (I1, . . . , Im) ∈ I, there exists

(Ĩ1, . . . , Ĩm) ∈ I∗ such that Fφ(Ĩ1, . . . , Ĩm) ≤ Fφ (I1, . . . , Im).

The proof of this theorem is in Appendix B.1 for φ = VaRα and in Appendix B.2 for φ = CVaRα.
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Remark 3.2.1. Theorem 3.2.1 states that any admissible indemnity profile (I1, . . . , Im) is dom-

inated by a layer-type risk transfer (Ĩ1, . . . , Ĩm) ∈ I∗. Inspection of the proof of Theorem 3.2.1

further shows that (Ĩ1, . . . , Ĩm) can be chosen so that the deductibles in each environment coincide,

m1 = ⋅ ⋅ ⋅ = mk. Therefore, the optimal indemnity profile requires covering the entire loss up to a

deductible that is not affected by the prevailing exogenous environments.

3.3 Optimality with the Proportional Hazard Transform

Consider a modification of the premium principle employed in (3.1), that allows us to weigh losses

differently in each environment. Specifically, we utilize the Proportional Hazard (PH) transform (see

Appendix A.3), which features a unique concave distortion function for different risk environments,

i.e., gk(z) = zβk , where 0 < βk ≤ 1, see Wang (1995). The proposed principle of risk-adjusted

premiums is advantageous as it factors in the buyer’s risk aversion and, more importantly, it allows

for a proper weighing of events from riskier environments. Thus, for any given indemnity profile

(I1, . . . , Im) ∈ I, the realized risk position of the buyer can be expressed as

B(I1,⋯, Im) =
m

∑
k=1

Rk(X)1{Y =k} +
m

∑
k=1

Pgk (Ik(X)1{Y =k}) , (3.5)

Analogously, with respect to equation (3.5), the buyer’s risk position at t = 0 is articulated as

φ (B(I1,⋯, Im)) = φ(
m

∑
k=1

Rk(X)1{Y =k}) +
m

∑
k=1

Pgk (Ik(X)1{Y =k}) (3.6)

The main theorem in Subsection 3.2 still works if the objective function in (3.4) is replaced

by (3.6). The proof is omitted as it is similar to that in the main theorem.

4 Excess Verdicts

Insurance contracts are essential to mitigate the financial impact of unforeseen events. However,

in some jurisdictions, there may be discrepancies between what these contracts cover and what

the courts decide in the case of litigation. Our research seeks to develop a model that simplifies

the understanding of these differences, focusing on the joint decision-making process of (insurance)

buyers and (insurance) sellers, in determining the allocation of liability in challenging scenarios.

Consider a situation where a loss, denoted as X, is caused by an external factor such as bodily

injury or property damage. Let L be the loss threshold resulting in the attainment of the policy

limit. Losses up to this limit of L are shared between the buyer and the seller according to the

provisions of the policy. However, when the loss surpasses L, the excess is usually the responsibility

of the buyer. It is important to recognize that deviations from this rule are at times observed in

some well-developed jurisdictions, such as some U.S. states, Canadian provinces, and the United
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Kingdom, reflecting the intricate interplay of socio-political and legal factors. When a plaintiff

brings a claim against the buyer (defendant), the latter may be more inclined to take legal action

against the seller, especially if they are facing a serious case such as a wrongful death. When this

happens, a court of law may force the seller to bear the cost of exceeding policy limits in certain

circumstances.

In the legal sphere, compensatory damages and non-economic damages, including punitive

damages, emotional distress, and other related liabilities, are subject to strict judicial scrutiny. The

actions and behavior of the seller play a critical role in these legal assessments. Apparent misconduct

or bad faith practices by the seller can significantly increase the financial damages awarded by the

court. As mentioned before, the seller may be liable for damages above the policy limits. The

exact allocation of the damages between the buyer and the seller, including the substantial legal

fees, is left to the discretion of the court. Thus, the primary purpose of this paper is to evaluate

the design of insurance contracts that pre-allocate the financial liability between buyers and sellers

based on prospective judicial decisions. The inclusion of such predictive clauses has the potential

to reduce legal costs, expedite protracted legal proceedings, and improve the seller’s position in

legal disputes, ultimately reducing financial burdens.

Consistently with Section 3, let Y be a variable that concisely classifies the stages and intricacies

of the legal process, especially the excess verdicts related to the seller’s behavior. As exemplified by

the flowchart in Figure 3, the case Y = 0 denotes a situation where there is no loss; Y = 1 indicates

that, even if legal action may be initiated because of the plaintiff’s claim, the damages awarded are

within the insurance limit, which corresponds to X ≤ L, and there is no excess verdict; Y = 2 occurs

when X > L, implying that the damages awarded exceed the insurance limit, but the subsequent

litigation does not reveal any misconduct or bad faith on the part of the seller; finally, the case Y = 3
takes place when, after the verdict has exceeded the insurance limit, a further lawsuit determines

that there is bad faith on the seller’s part. Clearly, in the latter case, X > L.
It is essential to note that our analysis deliberately excludes considerations of the buyer’s and

seller’s financial solvency, such as a potential bankruptcy. It is important to note the two-stage

nature of the judicial decision-making process. The initial stage involves determining whether there

is an excess verdict. The second stage distinguishes between Y = 2 and Y = 3, depending on the

good faith or bad faith of the seller. In the upcoming subsections, we explore scenarios with and

without environment-contingent policies in contracts and conduct a comparative analysis.

4.1 Contract Without Environment Contingent Provisions

In this section, let Î represent the indemnity function and R̂(X) = X − Î(X) be the retention

function in a contract in which specific provisions for pre-determining the liability allocation in

the event of an excess verdict are absent. The sharing rule established in the contract applies to

scenarios Y = 1 and Y = 2. In particular, when Y = 2, and so X > L, the payment obligation of
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the seller is Î(X) = Î(L), where Î(L) is the policy limit. In this case, the buyer’s liability for the

excess over L is R̂(X) = R̂(L) + (X −L).
In the third scenario, Y = 3, where the total loss X surpasses L, the apportionment of the

liability between the buyer and seller is subject to judicial determination following extensive and

prolonged legal proceedings, resulting in an allocation different than the one agreed in the contract.

Denote by Îc(X) the obligation of the seller, and by R̂c(X) = X − Îc(X) that of the buyer, as

decided by the adjudicating entity, whether a jury or judge. The duration of the legal proceedings

is directly correlated with the cumulative liability incurred, amplifying the plaintiff’s emotional

distress as the litigation extends. Therefore, conditional on Y = 3, the distribution of the loss X

will be greater than in the states Y = 1 or Y = 2. The seller’s obligation Îc(X) will sensibly exceed

the agreed indemnity Î(X) = Î(L).

4.2 Contract With Environment Contingent Provisions

Let us assume now that the insurance contract has a provision according to which the buyer and

seller share damages when the seller’s bad faith has been established through a post-excess verdict

determination. As argued before, the rationale for designing the contract including such provision is

to stabilize the excess risk loss, primarily by abbreviating the duration of intricate legal proceedings.

When Y = 1 or Y = 2, the structure of the contract will be similar to that described in Section 4.1,

with an allocation of liabilities based on the indemnity functions I1, I2 and the corresponding

retention functions R1, R2. In particular, when Y = 2, the loss X extends over the limit L, i.e.

X > L, and the excess is suffered by the buyer so that R2(X) = R2(L)+ (X −L). When there is an

excess verdict, Y = 3 and X > L, the splitting of the liability will be based on the predetermined

indemnity I3 and retention R3. It is clear that the distribution of the loss in the scenario Y = 3
will be modified by the presence of such environment contingent provisions. These clauses will also

impact the shape of the contract in scenarios Y = 1 and Y = 2. In particular, the limit L may be

different from the one considered in Section 4.1.

Following the theoretical results in Section 3.2, the shape of the optimal contract in each en-

vironment can therefore be inferred. It is suggested that the equilibrium rule includes a shared

deductible m and an environment-specific upper limit ni for i = 1,2,3. It is plausible that, under

normal circumstances, i.e. Y = 1 or Y = 2, the indemnity will be specified through a single expres-

sion as the range of the loss is different in each case. The threshold L can be identified with the

limit n1 = n2.

In the case of the excess verdict, Y = 3, the losses exceeding L are now split as follows. The

seller agrees to cover all the losses up to a limit n3 = L̃, which, because of the nature of the problem,

is such that L̃ > L. The indemnity paid by the seller is therefore I3(X) = X − R3 (L̃) if X ≤ L̃

and I3(X) = L̃ − R3 (L̃) if X > L̃. The corresponding retention is R3(X) = R3 (L̃) if X ≤ L̃ and

R3(X) = R3 (L̃) + (X − L̃) if X > L̃.
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Table 1 summarizes the payments of buyer and seller under the presence or not of environment

contingent provisions.

Environment Party Without Provisions With Provisions

Y = 1
Buyer R̂(X) R1(X)

Seller Î(X) I1(X)

Y = 2
Buyer R̂(X) = R̂(L) + (X −L) R2(X) = R2(L) + (X −L)

Seller Î(X) = Î(L) I2(X) = I2(L)

Y = 3
Buyer R̂c(X) R3(L̃) + (X − L̃)+
Seller Îc(X) I3(X) =X −R3(L̃) − (X − L̃)+

Table 1: Payments of the buyer and seller in the contract with/without environment contingent
provisions across different environments.

5 Numerical Optimization Analysis

In this section, we introduce the foundational model setup for numerical optimization and examine

the outcomes of the simulations.

5.1 Basic Model Setting

We consider three risk environments, in each of which the loss (in thousands of monetary units) is

modeled with a Type II Pareto distribution, as detailed in Table 2, together with the corresponding

scenario probabilities.

Risk Environment P (Y = k) λ α E[X ∣Y = k] SD[X ∣Y = k]

Y = 1 60% 40 5 10 12.91

Y = 2 30% 200 3 100 173.21

Y = 3 10% 1,500 2.5 1,000 2236.07

Table 2: Risk environment parameters and their statistical properties.

We use CVaR95% as risk measure and the proportional hazard transformation for adjusting

risk premiums in heavy-tailed scenarios introduced in Section 3.3. Figure 1 shows the inverse

relationship between environmental-specific premia (for full insurance coverage) and the parameter
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β defining the distortion function g. Smaller values of β result in more concave distortions and, in

turn, in higher premium loadings.
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Figure 1: Log-scale for the risk-adjusted premium vs. β values

5.2 Model Results Analysis

In this section, we show some results on the optimal contracts defined in Section 3 and, in par-

ticular, in Section 3.3. According to Theorem 3.2.1, these contracts feature a common deductible

m = m1 = m2 = m3 and environment-specific limits n1, n2, n3. We explore the finite-dimensional

nature of the problem to find the optimal contract by minimizing, using a routine numerical algo-

rithm, the objective function over the parameters m,n1, n2, n3. We analyze the interplay between

the distortion parameters β1, β2, β3 and the policyholder coverage preferences across different risk

scenarios.

We use as baseline values for the distortion coefficients β1 = 0.65, β2 = 0.55, β3 = 0.45, so that

the loading increases with the riskiness of the scenario. Tables 3, 4, and 5 show the quantiles,

conditional on each environment, corresponding to the deductible m and the limits n1, n2, n3, as

each of the distortion coefficients is separately stressed.

An increase in βk results in a decrease in risk aversion, leading to cheaper insurance, in relative

terms, and eventually to more extensive coverage, i.e., lower deductible and higher upper limit.

However, the upper limits in environments other than kth are affected to a very limited extent.
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Risk environment Y1 Risk environment Y2 Risk environment Y3

β1 FX(m1) SX(n1) FX(m2) SX(n2) FX(m3) SX(n3)

0.45 93.13% 0.72% 32.80% 0.43% 4.57% 4.31%

0.55 89.44% 0.21% 27.58% 0.43% 3.69% 4.31%

0.65 85.40% 0.03% 23.60% 0.43% 3.06% 4.31%

0.75 81.19% 0.00% 20.48% 0.43% 2.60% 4.31%

0.85 76.93% 0.00% 17.95% 0.43% 2.24% 4.31%

0.95 72.71% 0.00% 15.87% 0.43% 1.95% 4.31%

Table 3: CDF at the deductible and survival function at the upper limit, conditional on each
scenario, for different values of β1.

Risk environment Y1 Risk environment Y2 Risk environment Y3

β2 FX(m1) SX(n1) FX(m2) SX(n2) FX(m3) SX(n3)

0.45 90.69% 0.032% 29.12% 1.44% 3.94% 4.31%

0.55 85.40% 0.032% 23.60% 0.43% 3.06% 4.31%

0.65 79.93% 0.032% 19.67% 0.06% 2.48% 4.31%

0.75 74.51% 0.032% 16.72% 0.00% 2.07% 4.31%

0.85 69.28% 0.00% 14.41% 0.00% 1.75% 4.31%

0.95 64.32% 0.00% 12.57% 0.00% 1.51% 4.31%

Table 4: CDF at the deductible and survival function at the upper limit, conditional on each
scenario, for different values of β2.

On the other hand, in the kth scenario, the upper limit increases with βk quickly attaining full

insurance above the deductible, a result reminiscing of classical optimal insurance paradigms. This

is true also for the high-risk environment Y = 3, although the pricing rule must embody a much

limited distortion before full insurance is attained.

6 Conclusions and Future Research

In this paper, we have studied the optimal insurance problem from the buyer’s perspective across

multiple indemnity environments, with a particular focus on excess verdicts and their legal and

20



Risk environment Y1 Risk environment Y2 Risk environment Y3

β3 FX(m1) SX(n1) FX(m2) SX(n2) FX(m3) SX(n3)

0.45 85.40% 0.032% 23.60% 0.43% 3.06% 4.31%

0.55 78.72% 0.032% 18.95% 0.43% 2.38% 1.28%

0.65 72.53% 0.00% 15.80% 0.43% 1.94% 0.19%

0.75 67.09% 0.00% 13.56% 0.43% 1.64% 0.006%

0.85 62.45% 0.00% 11.94% 0.43% 1.43% 0.00002%

0.95 58.57% 0.00% 10.73% 0.43% 1.27% 0.00%

Table 5: CDF at the deductible and survival function at the upper limit, conditional on each
scenario, for different values of β3.

financial impacts. Our model analyzes the risk-sharing between policyholders and insurers, espe-

cially when legal rulings may impose damages beyond the policy limits. The phenomenon of excess

verdicts — court-mandated payments exceeding insured amounts — demonstrates the practical

relevance of our framework. Our research shows that optimal insurance contracts feature layered

indemnities in each risk environment. We employ risk measures like VaR and CVaR to simplify

complex optimization problems into tractable forms, facilitating numerical optimization and the

decision-making process.

While VaR and CVaR are established risk measures in the insurance industry, considering al-

ternative risk measures may enhance our grasp of risk sharing across various indemnity contexts.

Further, assessing the enforceability of anticipatory clauses across jurisdictions can improve the

excess verdict model’s legal soundness. Additionally, empirical studies utilizing actual insurance

data, particularly in cases involving excess verdicts, are crucial for validating our theoretical con-

structs. Such investigations promise to enrich the practical relevance of our framework, and we

reserve these areas for future exploration.

A Ancillary Results

A.1 Left and right continuous inverses

Given the role of left and right continuous inverse functions in the proof of the main result of

this paper, Theorem 3.2.1. We provide in this section their definitions and state some of their

properties.
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Definition A.1. Let f ∶ R→ R be a real function. The right-continuous inverse of f is given by

f−1+(y) = inf {x ∈ R ∶ f(x) > y} , y ∈ R.

The left-continuous inverse of f ∶ R→ R is given by

f−1(y) = inf {x ∈ R ∶ f(x) ≥ y} , y ∈ R.

In this definition, we use the convention that inf ∅ = +∞.

Note that the VaRu(Z) of a random variable Z with cumulative distribution function F , defined

in Section 3.2, is the left-continuous inverse of F .

The next result states some properties of the right-continuous inverse.

Proposition A.1. Let f ∶ R→ R be a real function. Then, for a given y ∈ R we have that

a) f−1+ (y) = −∞ if and only if f (x) > y for all x ∈ R; further, f−1+ (y) = +∞ if and only if

f (x) ≤ y for all x ∈ R;

b) Assume f is right-continuous and f−1+ (y) <∞, then f (f−1+ (y)) ≥ y; further, if f is contin-

uous, then f (f−1+ (y)) = y;

c) x > f−1+ (y) implies that f (x) > y, and the reverse implication holds if f is left-continuous;

further, f (x) ≤ y implies that x ≤ f−1+ (y), and the reverse implication holds if f is letf-

continuous.

Proof. For any y ∈ R, define Ay = {z ∈ R ∶ f(z) > y}.
For Part a), the result is immediate from Definition A.1.

For the first claim in Part b). If f−1+(y) <∞, then Ay ≠ ∅. By definition, f−1+(y) = inf Ay. For

any sequence (xn)n∈N with xn ∈ Ay and xn ≥ f−1+(y) for all n, it is observed that xn ↓ f−1+(y) as
n→∞ (xn ↓ f−1+(y) indicates xn is monotonically decreasing and converges to f−1+(y).). From the

right-continuity of f at f−1+(y), limn→∞ f(xn) = f(f−1+(y)) follows. Furthermore, since f(xn) > y
for all n, we obtain f(f−1+(y)) ≥ y.

For the second claim in Part b), given the right-continuity of f , f(f−1+(y)) ≥ y has been

established. To derive the equality f(f−1+(y)) = y, it is necessary to show f(f−1+(y)) ≤ y. Consider
a sequence (yn)n∈N for all n such that yn < f−1+(y) and yn ↑ f−1+(y) as n → ∞ (yn ↑ f−1+(y)
means the sequence yn monotonically increases and converges to f−1+(y).). With the left-continuity

property of f at f−1+(y), limn→∞ f(yn) = f(f−1+(y)) is inferred. Given that f(yn) ≤ y for all n,

limn→∞ f(yn) ≤ y follows. Therefore, f(f−1+(y)) = y is established, which completes the proof.

For the first statement of Part c), assume x > f−1+(y). Given f−1+(y) = inf Ay, it follows that

x ∈ Ay and f(x) > y. If f(x) > y, then x ≥ f−1+(y). For the case x = f−1+(y), consider a sequence
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(yn)n for all n where yn < f−1+(y) and yn ↑ f−1+(y) as n →∞. Using the result from the proof of

Part b) because of the left-continuity of f , f(f−1+(y)) ≤ y is derived, implying f(x) ≤ y. This is a
contradiction, so x > f−1+(y).

For the second statement of Part c). Suppose f(x) ≤ y, it follows that x ∉ Ay, establishing

x as a lower bound for Ay. As f−1+(y) = inf Ay, we have x ≤ f−1+(y). Conversely, suppose

x ≤ f−1+(y) = inf Ay, if x < inf Ay, which implies x ∉ Ay, so f(x) ≤ y; if x = f−1+(y), we can utilize

the result from the proof of Part b), which applies due to the left-continuity of f . From this, we

infer f(f−1+(y)) ≤ y, and consequently, f(x) ≤ y follows. Thus, in either case, f(x) ≤ y holds,

which completes the proof.

The next result states a property of left-continuous inverse. A more in-depth discussion of the

left-continuous inverse functions can be found in Embrechts and Hofert (2013).

Proposition A.2. Let f be a non-decreasing and right-continuous function. Then f−1(y) ≤ x and

f(x) ≥ y are equivalent for any (x, y) ∈ R2.

Proof. For any y ∈ R, define By = {z ∈ R ∶ f(z) ≥ y}.
First, assume f−1(y) ≤ x. By definition, f−1(y) = infBy. Given x ≥ infBy, a sequence (xn)n∈N

exists such that for all n, xn ∈ By and xn ↓ f−1(y) as n → ∞. With the right-continuity of f and

f(xn) ≥ y for all n, it follows that limn→∞ f(xn) = f(f−1(y)) ≥ y. The non-decreasing nature of f

then implies that if x ≥ f−1(y), f(x) ≥ f(f−1(y)). Hence, f(x) ≥ y.
Second, if f(x) ≥ y, then by the definition of the left-continuous inverse, x ∈ By and x ≥ infBy.

Thus, f−1(y) = infBy yields f−1(y) ≤ x.

A.2 Stochastic Ordering

We recall the formal definition of stop-loss order and collect some related results, see Rolski et al.

(1999) and Shaked and Shanthikumar (2007).

Definition A.2. Let X and Y be two real-valued random variables.

We say that X is smaller than Y in stop-loss order, and write X ≤sl Y , if for all non-decreasing

convex function g ∶ R→ R:
E [g (X)] ≤ E [g (Y )] ,

provided the expectations E [g (X)] and E [g (Y )] are finite.

Proposition A.3. Let X and Y be two real-valued random variables.

a) If X ≤ Y almost surely, then X ≤sl Y .

b) Assume X and Y have finite expectations and E [X] ≤ E [Y ]. If, for some t0 ∈ R, FX (t) ≤
FY (t) for t < t0 and FX (t) ≥ FY (t) for t ≥ t0, then X ≤sl Y .
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c) The following statements are equivalent:

i) X ≤sl Y .

ii) For all d ∈ R, E[(X − d)+] ≤ E[(Y − d)+].

d) The premium principle in (3.2) preserves the stop-loss order:

X ≤sl Y ⇒ Pg (X) ≤ Pg (Y ) .

The proof of part d) can be found in Wang (1996).

A.3 Proportional Hazards Transform

Here, we introduce the proportional hazard transformation and the associated risk-adjusted pre-

miums used in Section 3.3. Full details can be found in Wang (1995).

Definition A.3. Given any random variable X with survival function SX and 0 < β ≤ 1, the

equation

SY (t) = SX(t)β, t ∈ R,

defines another random variable Y with survival function SY . The mapping: Πβ ∶ X ↦ Y is called

the proportional hazards (PH) transform.

Definition A.4. For a risk X with survival function SX and 0 < β ≤ 1, the risk-adjusted premium

is defined as

πβ(X) = E [Πβ(X)] = ∫
∞

0
SX(t)βdt

where 1
β is called the (risk-averse) index. When β = 1, π1(X) = ∫ ∞0 SX(t)dt = E[X], which is the

net expected loss.

B Proofs of the Main Results

We now present the proof of our main results. For clarification, we will focus on using the

Wang’s premium principle. Although our provided numerical optimization is based on the risk-

adjusted premium of the PH transform, the proof approaches are similar. Therefore, we do not

provide a separate proof for the PH transform method.
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B.1 Proof of Theorem 3.2.1 with VaR Preferences

Fix (I1, . . . , Im) ∈ I and let Rk = Id − Ik. Define

b ∶= VaRα (
m

∑
k=1

Rk (X)1{Y =k}) . (B.1)

Fix now k = 1, . . . ,m and let R−1+k denote the right-continuous inverse of Rk and note that

Rk(R−1+k (b)) = b provided R−1+k (b) < +∞, see Proposition A.1b). In this case, it holds b ≤ R−1+k (b)
since Rk + Ik = Id. The same inequality holds if R−1+k (b) = +∞. Consequently, define mk = b,

nk = R−1+k (b) and Ĩk by

Ĩk(x) = (x − b)+ − (x −R−1+k (b))
+
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x < b,
x − b if b ≤ x ≤ R−1+k (b),
R−1+k (b) − b if R−1+k (b) < x.

(B.2)

It follows that

R̃k(x) = Id(x) − Ĩk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x if 0 ≤ x < b,
b if b ≤ x ≤ R−1+k (b),
x −R−1+k (b) + b if R−1+k (b) < x.

(B.3)

It is understood that, in (B.2) and (B.3), only the first two cases apply when R−1+k (b) = +∞. So

the first step is to demonstrate

{Rk (X) > b} = {R̃k (X) > b} for any k = 1, . . . ,m. (B.4)

According to Proposition A.1a), if R−1+k (b) = +∞ then Rk(x) ≤ b for all x. But it is seen from (B.3)

that the latter is equivalent to R̃k(x) ≤ b for all x. Therefore, we only need to consider the case when

R−1+k (b) < +∞. Suppose Rk(x) > b. According to Proposition A.1c), we deduce that x > R−1+k (b)
and from (B.3), we obtain R̃k(x) > b. Conversely, suppose R̃k(x) > b. From (B.3) it follows that

x > R−1+k (b) and Proposition A.1c) implies that Rk(x) > b. Therefore, (B.4) holds and the first part

of the proof is complete.

In the second step, we aim to prove that Ĩk(x) ≤ Ik(x) for all x, from which

Ĩk (X) ≤ Ik (X) for any k = 1, . . . ,m. (B.5)

We proceed by cases on the value of x.

For 0 ≤ x < b, based on (B.2), we have Ĩk(x) = 0 ≤ Ik(x). For b ≤ x ≤ R−1+k (b), utilizing (B.2),

we find Ĩk(x) = x − b. Therefore, Ĩk(x) ≤ Ik(x) if and only if Rk(x) ≤ b. If R−1+k (b) = +∞,
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this follows from Proposition A.1a). If instead R−1+k (b) < +∞, then Rk(x) ≤ Rk (R−1+k (b)) = b by

Proposition A.1b). Finally, assume R−1+k (b) < x, so that R−1+k (b) < +∞. From (B.2), we have

Ĩk(x) = R−1+k (b) − b. Therefore, Ĩk(x) ≤ Ik(x) if and only if Rk(x) ≤ x − R−1+k (b) + b. By the

1-Lipschitz-continuity of Rk, we have 0 ≤ Rk(x) − Rk (R−1+k (b)) ≤ x − R−1+k (b), from which the

conclusion follows since Rk (R−1+k (b)) = b by Proposition A.1b). Thus, (B.5) is obtained and the

second part of the proof is complete.

The third step is to demonstrate

VaRα (
m

∑
k=1

R̃k (X)1{Y =k}) ≤ VaRα (
m

∑
k=1

Rk (X)1{Y =k}) . (B.6)

Let RY (X) = ∑m
k=1Rk (X)1{Y =k} and R̃Y (X) = ∑m

k=1 R̃k (X)1{Y =k}. From (B.4) we get that

P (Rk (X) > b) = P (R̃k (X) > b) for k = 1, . . . ,m. Consequently, we deduce that P (RY (X) > b) =
P (R̃Y (X) > b). Recall that, by Proposition A.2, for any random variable Z we have VaRα (Z) ≤ x
if and only if P (Z > x) ≤ 1 − α, for any x ∈ R. Since, by definition, b = VaRα (RY (X)), it follows

that P (R̃Y (X) > b) = P (RY (X) > b) ≤ 1 − α, from which VaRα (R̃Y (X)) ≤ b = VaRα (RY (X)).
Therefore, (B.6) holds and the third part is done.

The last step establishes the inequality

Pg (
m

∑
k=1

Ĩk (X)1{Y =k}) ≤ Pg (
m

∑
k=1

Ik (X)1{Y =k}) . (B.7)

Let IY (X) = ∑m
k=1 Ik (X)1{Y =k} and ĨY (X) = ∑m

k=1 Ĩk (X)1{Y =k}. Recall that Ĩk (X) ≤ Ik (X) for
all k = 1, . . . ,m, which implies that ĨY (X) ≤ IY (X). Furthermore, recall from (3.2) that

Pg (IY (X)) = ∫
∞

0
g (P (IY (X) > z))dz,

and analogously,

Pg (ĨY (X)) = ∫
∞

0
g (P (ĨY (X) > z))dz.

since P (ĨY (X) > x) ≤ P (IY (X) > x) for all x ∈ R and g is a non-decreasing concave function, we

can conclude that

g (P (ĨY (X) > x)) ≤ g (P (IY (X) > x)) .

From which Pg (ĨY (X)) ≤ Pg (IY (X)) follows and (B.7) holds, which completes the last step.
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Finally, (B.6), together with (B.7) show that, for (Ĩ1, . . . , Ĩm) ∈ I1 and any ρ > 0,

F (Ĩ1, . . . , Ĩm) = VaRα (
m

∑
k=1

R̃k (X)1{Y =k}) + (1 + ρ)Pg (
m

∑
k=1

Ĩk (X)1{Y =k})

≤ VaRα (
m

∑
k=1

Rk (X)1{Y =k}) + (1 + ρ)Pg (
m

∑
k=1

Ik (X)1{Y =k})

= F (I1, . . . , Im) .

B.2 Proof of Theorem 3.2.1 with CVaR Preferences

Fix (I1, . . . , Im) ∈ I and define b as in the Appendix B.1. For k = 1, . . . ,m, define mk = b and nk

should be a value which satisfies nk ≥ R−1+k (b). Further, define Ĩk by

Ĩk(x) = (x − b)+ − (x − nk)+ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x < b,
x − b if b ≤ x ≤ nk,

nk − b if nk < x,

(B.8)

and

R̃k(x) = Id(x) − Ĩk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x if 0 ≤ x < b,
b if b ≤ x ≤ nk,

x − nk + b if nk < x.

(B.9)

In the initial step, we confirm that there exists an nk ≥ R−1+k (b) for which

E [(R̃k (X) − b)+] = E [(Rk (X) − b)+] holds for every k = 1, . . . ,m. (B.10)

According to Proposition A.1a), if nk = R−1+k (b) = +∞, then Rk(x) ≤ b for all x, and also R̃k(x) ≤ b
for all x from (B.9). Consequently, both sides of (B.10) equate to zero. Given this, we restrict our

attention only to the case R−1+k (b) < +∞.

For x ≤ R−1+k (b), it follows from Proposition A.1c) that Rk(x) ≤ b and from (B.9), it leads to

R̃k(x) ≤ b, which further means that

E [(R̃k (X) − b)+ 1{X≤R−1+k
(b)}] = E [(Rk (X) − b)+ 1{X≤R−1+k

(b)}] = 0. (B.11)

For x > R−1+k (b), using the 1-Lipschitz-continuity ofRk, it follows that 0 ≤ Rk(x)−Rk (R−1+k (b)) ≤
x −R−1+k (b), and then by Proposition A.1b), we have Rk(x) ≤ x −R−1+k (b) + b for all x > R−1+k (b).
If we consider the case Rk(x) = x −R−1+k (b) + b for all x > R−1+k (b), which can be visualized in the

left-hand plot of Figure 2. Then we can choose nk = R−1+k (b) exactly, so R̃k(x) = x −R−1+k (b) + b
holds for x > nk = R−1+k (b) from (B.9), which implies that Rk(X)1{X>R−1+

k
(b)} = R̃k(X)1{X>R−1+

k
(b)}.
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This can further lead to E [(R̃k (X) − b)+ 1{X>R−1+k
(b)}] = E [(Rk (X) − b)+ 1{X>R−1+k

(b)}], which can

be combined with (B.11) to obtain (B.10) holds. If we consider the case Rk(ck) < ck −R−1+k (b) + b
for some ck > R−1+k (b), which can be visualized in the right-hand plot of Figure 2. Then we can

have R−1+k (b) < ck −Rk(ck)+ b. Furthermore, we can suppose there exists a nk > R−1+k (b) such that

Rk(ck) = ck − nk + b holds, which implies that nk = ck −Rk(ck) + b < ck since ck > R−1+k (b) implies

Rk(ck) > b from Proposition A.1c). Besides, we also have R̃k(ck) = ck − nk + b from (B.9) since

ck > nk, so Rk(ck) = R̃k(ck) means that for x > R−1+k (b), Rk(x) and R̃k(x) can always intersect at

a point with x = ck > R−1+k (b), then there exist a nk > R−1+k (b) satisfying nk = ck −Rk(ck) + b such

that, for x ∈ (R−1+k (b), ck], R̃k(x) ≤ Rk(x) < x−R−1+k (b)+ b is established, which further yields that

E [Rk(X)1{R−1+
k
(b)<X≤ck}

] ≥ E [R̃k(X)1{R−1+
k
(b)<X≤ck}

] . (B.12)

And for x > ck, the inequalities Rk(x) ≤ R̃k(x) < x −R−1+k (b) + b is held, which further yields that

E [Rk(X)1{X>ck}] ≤ E [R̃k(X)1{X>ck}] . (B.13)

Then we can define a function as f(ck) = E [R̃k(X)1{X>R−1+
k
(b)}] − E [Rk(X)1{X>R−1+

k
(b)}] for ck >

R−1+k (b). If ck ↑ +∞, then nkmax ↑ ck−Rk(ck)+b, we can further obtain that 0 ≤ E [R̃k(X)1{X>ck}]−
E [Rk(X)1{X>ck}]→ 0, then combined with the inequality from (B.12), it further means that

f(ck) = E [R̃k(X)1{R−1+
k
(b)<X≤ck}

] −E [Rk(X)1{R−1+
k
(b)<X≤ck}

] ≤ 0 (B.14)

If ck ↓ R−1+k (b) then nk ↓ R−1+k (b), we can further deduce that 0 ≤ E [Rk(X)1{R−1+
k
(b)<X≤ck}

] −
E [R̃k(X)1{R−1+

k
(b)<X≤ck}

] → 0, then combined with the inequality from (B.13), which further im-

plies that

f(ck) = E [R̃k(X)1{X>ck}] −E [Rk(X)1{X>ck}] ≥ 0. (B.15)

Furthermore, we know that f(ck) is non-decreasing and continuous for ck > R−1+k (b), so from (B.14)

and (B.15), it is evident to find a suitable ck0 > R−1+k (b) to satisfy that Rk(ck0) < ck0 −R−1+k (b) + b,
then for nk > R−1+k (b), we can have that

f(ck0) = E [R̃k(X)1{X>R−1+
k
(b)}] −E [Rk(X)1{X>R−1+

k
(b)}] = 0. (B.16)

This further indicate that E [(R̃k (X) − b)+ 1{X>R−1+k
(b)}] = E [(Rk (X) − b)+ 1{X>R−1+k

(b)}] since for

x > R−1+k (b), Rk(x) > b from Proposition A.1c) and R̃k(x) ≥ b from (B.9), which can be combined

with (B.11) to obtain (B.10) holds.

In our second step, we aim to demonstrate that

Ĩk (X) ≤sl Ik (X) for any k = 1, . . . ,m. (B.17)
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Figure 2: Constructions of R̃k and Rk under the conditions for CVaR risk preference: (Left)
Rk(x) = x − R−1+k (b) + b for x > R−1+k (b); (Right) Rk(x) < x − R−1+k (b) + b for x > R−1+k (b), it is
obvious that as ck increasing, the orange area is also increasing but the yellow is rather decreasing,
which is exactly as what we described in our proof. Besides, linear Rk is chosen for graphical
convenience.

which means that Ĩk (X) is smaller than Ik (X) in stop-loss order based on (B.10). We proceed by

cases on the value of x.

For 0 ≤ x ≤ R−1+k (b) ≤ nk, by cross-referencing with our earlier derivations in Appendix B.1,

we can confirm that Ĩk(x) ≤ Ik(x) for all x ≤ R−1+k (b). Taking this a step further, define P (X) =
Ĩk(X)1{X≤R−1+

k
(b)} and Q(X) = Ik(X)1{X≤R−1+

k
(b)}. So for any realization of X, we have P (X) ≤

Q(X), which further leads to P (X) ≤sl Q(X) from Proposition A.3a).

For x > R−1+k (b), define M(X) = Ĩk(X)1{X>R−1+
k
(b)} and N(X) = Ik(X)1{X>R−1+

k
(b)}. If for the

case Rk(x) = x − R−1+k (b) + b, we have R̃k(x) = Rk(x) for x > R−1+k (b) from the first step, which

mean that Ĩk(x) = Ik(x) for x > R−1+k (b) by using the identity Ik = Id − Rk, this further lead to

M(X) = N(X), then we can get that

Ĩk(X) = Ĩk(X)1{X≤R−1+
k
(b)} + Ĩk(X)1{X>R−1+

k
(b)}

= P (X) +M(X)
= P (X) +N(X)
≤ Q(X) +N(X)
= Ik(X)1{X≤R−1+

k
(b)} + Ik(X)1{X>R−1+

k
(b)}

= Ik(X)
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This implies (B.17) holds by applying Proposition A.3a). If for the case Rk(x) < x −R−1+k (b) + b,
then focusing on x ∈ (R−1+k (b), ck], we have R̃k(x) ≤ Rk(x) from the first step, which guarantees

that Ĩk(x) ≥ Ik(x). This further implies that Ĩk(X)1{R−1+
k
(b)<X≤ck}

≥ Ik(X)1{R−1+
k
(b)<X≤ck}

, which

can be written as Ĩk(X)1{X>R−1+
k
(b)}1{X≤ck} ≥ Ik(X)1{X>R−1+k

(b)}1{X≤ck}. So for any realization of

X, we have M(X) ⋅ 1{X≤ck} ≥ N(X) ⋅ 1{X≤ck}. Then it means that

P (M(X) ≤ t,X ≤ ck) ≤ P (N(X) ≤ t,X ≤ ck) (B.18)

Then for x > ck, Rk(x) ≤ R̃k(x) in the initial step can lead to Ik(x) ≥ Ĩk(x). This further

implies that Ik(X)1{X>ck} ≥ Ĩk(X)1{X>ck}, which can be written as Ik(X)1{X>R−1+
k
(b)}1{X>ck} ≥

Ĩk(X)1{X>R−1+
k
(b)}1{X>ck}. So for any realization of X, N(X) ⋅ 1{X>ck} ≥ M(X) ⋅ 1{X>ck} holds.

Then it leads to

P (N(X) ≤ t,X > ck) ≤ P (M(X) ≤ t,X > ck) . (B.19)

Besides, from the definition of M and N , it is clear that M(x) = N(x) = 0 for x ≤ R−1+k (b). For

x ∈ (R−1+k (b), ck], we know that Ĩk(x) ∈ (R−1+k (b) − b, nk − b] from (B.8), which implies that M(x) ∈
(R−1+k (b) − b, nk − b]. Furthermore, we have Ik (R−1+k (b)) = R−1+k (b) −Rk (R−1+k (b) = R−1+k (b) − b by

using the Proposition A.1b), and Ik(ck) = Ĩk(ck) = nk − b since Rk(ck) = R̃k(ck) from the first step

and the identity Ik = Id −Rk, which implies that Ik(x) ∈ (R−1+k (b) − b, nk − b] for x ∈ (R−1+k (b), ck].
So we obtain thatN(x) ∈ (R−1+k (b) − b, nk − b] for x ∈ (R−1+k (b), ck]. For x > ck, we have Ĩk(x) = nk−b
from (B.8), which means that M(x) = nk − b. Besides, we also have that Ik(x) ≥ Ĩk(x) for x > ck,
which means that N(x) ≥ nk − b for x > ck. Therefore, we can summarize M as

M(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ R−1+k (b),
∈ (R−1+k (b) − b, nk − b] if x ∈ (R−1+k (b), ck] ,
nk − b if x > ck,

(B.20)

and N as

N(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ R−1+k (b),
∈ (R−1+k (b) − b, nk − b] if x ∈ (R−1+k (b), ck] ,
≥ nk − b if x > ck.

(B.21)

Now, for t < 0, we have FM(X)(t) = FN(X)(t) = 0 from (B.20) and (B.21). For t ∈ [0, nk − b),
from (B.20) and (B.21), we know that for x > ck, N(x) ≥ nk − b = M(x), it further leads to
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P (M(X) ≤ t,X > ck) = P (N(X) ≤ t,X > ck) = 0. Therefore, we have

FM(X)(t) = P (M(X) ≤ t,X ≤ ck) + P (M(X) ≤ t,X > ck)
= P (M(X) ≤ t,X ≤ ck)
≤ P (N(X) ≤ t,X ≤ ck)
= P (N(X) ≤ t,X ≤ ck) + P (N(X) ≤ t,X > ck)
= FN(X)(t).

The third inequality comes from (B.18). For t ≥ nk − b, we have FM(X)(t) = 1 since M(x) ≤ nk − b
from (B.20), and FN(X)(t) ≤ 1 because from (B.21), we have N ≥ nk −b when x > ck. Consequently,
FN(t) ≤ FM(t) for t ≥ nk − b. So denote t0 = nk − b, when t < t0, we have the condition FM(X)(t) ≤
FN(X)(t), when t ≥ t0, FN(X)(t) ≤ FM(X)(t). Besides, (B.16) and the identity Ik = Id − Rk give

that E [Ik(X)1{X>R−1+
k
(b)}] = E [Ĩk(X)1{X>R−1+

k
(b)}], which means that E[M(X)] = E[N(X)] and

applying Proposition A.3b), we can assert that M(X) ≤sl N(X). Now, for any d ≥ 0, we have

E [(Ĩk (X) − d)+] = E [(Ĩk (X) − d)+ 1{X≤R−1+k
(b)}] +E [(Ĩk (X) − d)+ 1{X>R−1+k

(b)}]

= E [(Ĩk (X)1{X≤R−1+
k
(b)} − d)

+
] +E [(Ĩk (X)1{X>R−1+

k
(b)} − d)

+
]

= E [(P (X) − d)+] +E [(M(X) − d)+]
≤ E [(Q(X) − d)+] +E [(N(X) − d)+]

= E [(Ik (X)1{X≤R−1+
k
(b)} − d)

+
] +E [(Ik (X)1{X>R−1+

k
(b)} − d)

+
]

= E [(Ik (X) − d)+ 1{X≤R−1+k
(b)}] +E [(Ik (X) − d)+ 1{X>R−1+k

(b)}]

= E [(Ik (X) − d)+] .

The justification for the fourth inequality is grounded in the established stop-loss orders P (X) ≤sl
Q(X) and M(X) ≤sl N(X), coupled with the application of Proposition A.3c). Besides, Ĩk(x) ≤
Ik(x) for all x ≤ R−1+k (b) means that E [Ĩk(X)1{X≤R−1+

k
(b)}] ≤ E [Ik(X)1{X≤R−1+

k
(b)}], combined
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with the fact that E [Ĩk(X)1{X>R−1+
k
(b)}] = E [Ik(X)1{X>R−1+

k
(b)}], then we have for any d < 0 that

E [(Ĩk (X) − d)+] = E [Ĩk (X) − d]
= E [Ĩk (X)] − d

= (E [Ĩk(X)1{X≤R−1+
k
(b)}] +E [Ĩk(X)1{X>R−1+

k
(b)}]) − d

≤ (E [Ik(X)1{X≤R−1+
k
(b)}] +E [Ik(X)1{X>R−1+

k
(b)}]) − d

= E [Ik (X)] − d
= E [Ik (X) − d]
= E [(Ik (X) − d)+]

Therefore, all d ∈ R, we have E [(Ĩk (X) − d)+] ≤ E [(Ik (X) − d)+], then by applying Proposi-

tion A.3c), we can get that (B.17) holds and this completes the second part of the proof.

The third step demonstrates that

CVaRα (
m

∑
k=1

R̃k (X)1{Y =k}) ≤ CVaRα (
m

∑
k=1

Rk (X)1{Y =k}) . (B.22)

Let RY (X) = ∑m
k=1Rk (X)1{Y =k} and R̃Y (X) = ∑m

k=1 R̃k (X)1{Y =k}. Recall from (B.10), we can

deduce E [(R̃Y (X) − b)+] = E [(RY (X) − b)+]. Utilizing the dual representation of CVaR, we have

CVaRα (RY (X)) = inf
t∈R
{t + 1

1 − αE [(RY (X) − t)+]} .

where the infimum is achieved at t∗ = b, yielding CVaRα (RY (X)) = b + 1
1−αE [(RY (X) − b)+].

Therefore, we have

CVaRα (R̃Y (X)) = inf
t∈R
{t + 1

1 − αE [(R̃Y (X) − t)+]}

≤ b + 1

1 − αE [(R̃Y (X) − b)+]

= b + 1

1 − αE [(RY (X) − b)+]

= CVaRα (RY (X)) .

Thus, we establish (B.22) and the third part of the proof is done.

In the final step, we aim to show that

Pg (
m

∑
k=1

Ĩk (X)1{Y =k}) ≤ Pg (
m

∑
k=1

Ik (X)1{Y =k}) , (B.23)
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Let IY (X) = ∑m
k=1 Ik (X)1{Y =k} and ĨY (X) = ∑m

k=1 Ĩk (X)1{Y =k}. Recall from (B.17), which

further implies ĨY (X) ≤sl IY (X) for any k = 1, . . . ,m. Applying Proposition A.3d), we obtain

Pg (ĨY (X)) ≤ Pg (IY (X)). Therefore, (B.23) holds.
Thus, combining (B.22) and (B.23) demonstrates that, for (Ĩ1, . . . , Ĩm) ∈ I2 and ρ > 0,

F (Ĩ1, . . . , Ĩm) = CVaRα (
m

∑
k=1

R̃k (X)1{Y =k}) + (1 + ρ)Pg (
m

∑
k=1

Ĩk (X)1{Y =k})

≤ CVaRα (
m

∑
k=1

Rk (X)1{Y =k}) + (1 + ρ)Pg (
m

∑
k=1

Ik (X)1{Y =k})

= F (I1, . . . , Im) .
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C Flow charts: Court Process

Figure 3: Flowchart illustrating the stages of legal proceedings concerning insurance claims and
the subsequent apportionment of liabilities based on the loss threshold and seller conduct.
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D Excess Verdict in Auto & Liability Insurance

Case Event Time Court Start Time Verdict Time Compensatory Damage Cost Punitive Damage Cost Total Cost Excess Verdict Trigger Type of Policy

Dock vs McLendon et al. Jan. 26, 2019 July 27, 2021 July 30, 2021 $66.5 million N/A $66.5 million Motor Vehicle Auto Insurance

Cargal vs Forehand & FedEx Sep. 8, 2018 Oct. 15, 2021 Oct. 24, 2021 $30,000,000 N/A $30,000,000 Motor Vehicle Auto Insurance

Godwin vs Carroll & Eaton Asphalt Paving Co., Inc. Jan. 9, 2019 July 12, 2021 N/A $24,000,000 $50,000,000 $74,000,000 Motor Vehicle Auto Insurance

Leslie vs Rodriguez May 1, 2017 March 6, 2020 N/A 1.82 million & $2.8 million N/A $4.62 million Motor Vehicle Auto Insurance

Pedro Pasillas-Sanchez vs Consolidated Materials, Inc. & Lee March 26, 2018 Nov. 13, 2020 N/A $9,000,000 N/A $9,000,000 Motor Vehicle Auto Insurance

Ware vs Home Opportunity, LLC, Ewing & Marchman Oct. 2, 2016 Jan. 22, 2020 N/A $9,689,948.18 N/A $9,689,948.18 Premises Liability Liability Insurance

Church & Austin vs Case New Holland Industrial of America, LLC March 2, 2016 Nov. 12, 2020 N/A $3,000,000 $10,000,000 $13,000,000 Products Liability Liability Insurance

Madere & Thomas vs Greenwich Insurance Company et al. July 18, 2016 Aug. 23, 2019 Aug. 28, 2019 $180,065,000 $100,000,000 $280,065,000 Negligence Auto Insurance

Mayfield & Phillips vs Kennison April 10, 2006 Feb. 26, 2019 March 2, 2019 $33,413,000 N/A $32,412,610 (After Comparative Negligence Adjustment) Motor Vehicle Auto Insurance

Garmon vs Jenkins and Atlas Excavating/Atlas Trucking Sept. 7, 2012 Oct. 3, 2019 Oct. 10, 2019 $22,144,971.88 $10,000,000 $32,144,971.88 Negligent Hiring Auto Insurance

Plascencia & Trujillo vs Newcomb etc. April 19, 2014 March 25, 2019 N/A $30,000,000 N/A $12,000,000 (After Apportionment) U-Turn Auto Insurance

Willoughby vs Ellison & 21st Century Centennial Insurance Company Nov. 2, 2012 March 15, 2019 March 22, 2019 $30,101,599 N/A $34,668,619 Passenger Auto Insurance

Thornton vs Ralston GA LLC d/b/a The Ralston etc. July 6, 2017 July 1, 2019 July 7, 2019 $35,000,000 $50,000,000 $125,000,000 Negligent Repair Liability Insurance

Enriquez, Jr., Martinez & Irene Gonzalez vs Lasko Products, Inc. Jan. 3, 2016 Nov. 21, 2019 Nov. 28, 2019 $36,240,000 N/A $36,240,000 Manufacturing Defect Liability Insurance

Johnson vs Lee & Corrugated Replacements, Inc. July 1, 2011 Sep. 14, 2018 Sep. 21, 2018 $128,813,522 N/A $128,813,522 Motor Vehicle Auto Insurance

Herrera & Sweeting vs Extended Stay America, Inc., etc. Nov. 12, 2014 Nov. 12, 2018 Nov. 20, 2018 $46,000,000 N/A $41,400,000 (After Apportionment) Negligence Liability Insurance

Barron vs B & G Crane Service etc. May 11, 2016 Sep. 13, 2018 N/A $44,370,000 N/A $20,791,235.34 Negligence Liability Insurance

The Estate of Kari Dunn vs OM Lodging LLC etc. Dec. 1, 2013 June 22, 2018 June 26, 2018 $41,550,000 N/A $2,400,000 Negligence Liability Insurance

Anaya vs Superior Industries Inc. et al. Oct. 7, 2013 March 19, 2018 March 26, 2018 $30,000,000 N/A $30,000,000 Negligence Auto Insurance

Sitton et al. v. Ceeda Enterprises, Inc. March 28, 2016 July 17, 2018 July 19, 2018 $27,091,054 N/A $27,091,054 Negligence Auto Insurance

Dougherty & Forester vs WCA of Florida, LLC Oct. 28, 2016 Oct. 5, 2018 Oct. 10, 2018 $25,000,000 N/A $20,000,000 (After 20% Comparative Negligence Reduction) Right Turn Motor Vehicle Auto Insurance

Braswell vs The Brickman Group Ltd, LLC. et al. May 16, 2014 May 3, 2017 May 9, 2017 $39,960,000 N/A $27,172,800 (After the Reduction for Comparative Fault) Motor Vehicle Liability Insurance

Jester vs Utilimap Corporation & Duke Energy Ohio, Inc. Feb. 27, 2014 Jun. 7, 2017 Jun. 28, 2017 $27,871,944 N/A $27,871,944 Negligent Training Liability Insurance

Cruz et al. vs Methenge et al. Aug. 29, 2012 Jul. 21, 2017 Aug. 10, 2017 $24,931,109 N/A $24,931,109 Design Defect Auto Insurance

Angulo & Lopez vs J. Calero et al. May 28, 2015 Oct. 26, 2017 N/A $20,000,000 $25,005,000 $45,005,000 Negligence Liability Insurance

Debra Morris et al. vs AirCon Corporation, et al. April 26, 2014 Nov. 1, 2017 Nov. 10, 2017 $18,460,279 N/A $923,014 Negligence Liability Insurance

Stolowski et al. vs 234 East 178th Street LLC & City N.Y Jan. 23, 2005 Feb. 22, 2016 June, 2016 $140,100,000 N/A $183,261,737 Negligence Liability Insurance

Garcia vs Manhattan Vaughn JVP et al. Dec. 4, 2013 Feb. 10, 2016 April 29, 2016 $53,852,558 N/A $55,834,971.47 (Final Judgment) Worker/Workplace Negligence Liability Insurance

Garcia, et al. vs O’Reilly Auto Enterprises, LLC & Shoots Feb. 28, 2015 Jul. 19, 2016 Jul. 25, 2016 $37,945,000 N/A $9,000,000 (Reduced due to High/Low Agreement) Motor Vehicle Auto Insurance

Swenson et a. vs Troy et al. May 22, 2012 April 18, 2016 May 1, 2016 $35,029,371 $100,000 $35,129,371 Motor Vehicle Auto Insurance

Dubuque vs Cumberland Farms, Inc. & V.S.H. Realty, Inc. Nov. 28, 2008 Feb. 23, 2016 March 8, 2016 $32,369,024.30 $10 $32,369,034.30 Negligence Auto insurance

Gonzalez et al. vs Atlas Construction Supply Inc. et al. Aug. 2, 2011 July 27, 2016 Aug. 8, 2016 $26,920,170 N/A $16,345,170 ( No jointly liability) Negligence Liability Insurance

Jacobs Engineering Group Inc. vS ConAgra Foods Inc 2013 March 25, 2016 April 22, 2016 $108,913,520.89 N/A $108,913,520.89 Exposition Liability Insurance

Hinson et al. vs Dorel Juvenile Group, Inc et al. May 15, 2013 June 17, 2016 June 21, 2016 $24,438,000 $10,000,000 $34,438,000 Failure to Warn Liability Insurance

Table 6: Wrongful Deaths Cases: Auto & Liability Insurance

∗Source: Case details from Report 1, Report 2, Report 3, Report 4, Report 5, and Report 6
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