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Abstract

It is well-known that Excess-of-Loss reinsurance has more marketability than Stop-

Loss reinsurance, though Stop-Loss reinsurance is the most prominent setting dis-

cussed in the optimal (re)insurance design literature. We point out that optimal

reinsurance policy under Stop-Loss leads to a zero insolvency probability, which mo-

tivates our paper. We remedy this peculiar property of the optimal Stop-Loss rein-

surance contract by investigating the optimal Excess-of-Loss reinsurance contract

instead. We also provide estimators for the optimal Excess-of-Loss and Stop-Loss

contracts and investigate their statistical properties under many premium principle

assumptions and various risk preferences, which, according to our knowledge, have

never been investigated in the literature. Simulated data and real-life data are used

to illustrate our main theoretical findings.

Keywords and phrases: Risk analysis, Optimal Insurance, Nonparametric Estima-

tion.

1 Introduction

1.1 Literature Review

Risk transfer is an effective risk management exercise and consists of transferring liabilities

from one or multiple risk holders (known as insurance buyer(s)) to another or multiple insurance
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carriers (known as insurance seller(s)). Finding the optimal contact between (amongst) two (or

more than two) parties has received a huge amount of attention in the literature of actuarial

science and operations research. A simple Google Scholar search on September 18, 2024 with

the keywords “optimal insurance” and “risk transfer” resulted in 2,910,000 and 5,950,000, re-

spectively, research outputs. This is not surprising since the optimality of such risk management

exercise goes beyond understanding insurance liabilities. This paper aims to contribute to the

problem of optimal insurance contract of insurance liabilities, which has a very specific trait that

is not shared with other sector-specific liabilities (e.g., financial liabilities) in the sense that the

insurance liabilities do not have a liquid market so that their value is market-based valuation.

Cost-of-Capital (CoC) approach is a practical methodology for evaluating insurance liabilities,

which are based on the cost of meeting the local capital requirements to hold such liabilities in

that territory. In other words, CoC is a regulatory-based methodology that is used within the

insurance sector.

The optimal risk transfer problem is often understood in the optimal insurance literature

as how an insurer and reinsurer would share the aggregate liability between the two insurance

players so that the risk position of the insurer is optimized; the optimization from the reinsurer’s

point of view is also possible. One may view the problem from both the insurer’s and reinsurer’s

point of view, a case in which the analysis becomes a Pareto optimal insurance contract prob-

lem that is a long-standing strand of research established in economic theory with ramifications

in insurance and risk literature, but also in the wider operations research field; an insurance

perspective could be found in Ruschendorf (2013) and references therein. Other equilibrium

concepts are possible; for example, Boonen and Ghossoub (2023) investigate the Bowley equi-

librium with risk sharing and optimal reinsurance formulations and focus on the common traits

of Bowley optimality and Pareto efficiency under fairly general preferences. Bespoke conditions

could be imposed on the optimal (re)insurance contract besides the usual absence of moral haz-

ard; one interesting setting is the so-called Vajda condition that is discussed in Boonen and

Jiang (2022).

Depending on the risk preferences, the optimal reinsurance literature is quite rich; e.g.,

Cai et al. (2008) and Cai and Tan (2007) consider Value-at-Risk (VaR) and Expected Shortfall

(ES) buyer’s preferences, while quantile risk and expectile preferences are investigated in Asimit,

Badescu and Verdonck (2013), and Cai and Weng (2016), respectively; Balbás, Balbás and Heras

(2009) investigates some general risk preferences. In particular, optimal reinsurance problems
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under distortion risk measures are well-studied in actuarial science and operations research,

where the optimal indemnities are generally piecewise linear; see e.g., Assa (2015), Asimit and

Boonen (2018), Assa, Sharifi and Lyons (2021), etc. In light of this, we focus our study on

deductible reinsurance contracts, which are natural and common in the literature; see e.g., the

early work of Arrow (1963) and Raviv (1979) for insurance and the recent work of Klages-Mundt

and Minca (2020) and Cai, Liu and Yin (2024) for operations research.

Optimal reinsurance problems have also been studied under other aspects. The optimal

contract from the buyer’s point of view in the presence of the seller’s counterparty default risk is

discussed in Chen (2024), Chi and Tan (2021), Cai, Lemieux, and Liu (2014), Asimit, Badescu

and Cheung (2013), and Bernard and Ludkovski (2012). Regulatory considerations are discussed,

for example, in Asimit, Chi, and Hu (2015) and Bernard and Tian (2009). Robust formulations

are investigated, for example, in Asimit, Hu and Xie (2019), Asimit et al. (2017), Balbás,

Balbás and Heras (2011), Boonen and Jiang (2024) and Gollier (2014), while Cai, Li and Mao

(2023) and Pesenti, Wang and Wang (2024) provide a theoretical perspective to robust decision-

making when preferences are ordered by distortion risk measures which are considered in our

paper and many other papers in the optimal (re)insurance literature. Non-standard settings are

considered in the literature; e.g., Bäuerle and Glauner (2018) investigate the optimal transfer

in an insurance network from an economic point of view, while Asimit et al. (2016) studies

Solvency II capital efficiency through risk transfers within an insurance group.

The optimal insurance problem under expected utility settings is often defined without mak-

ing any assumption regarding the seller’s premium principle. When risk preferences are ordered

by risk measures, then premium principle assumptions are required. Kaluszka (2001) studies

the mean-variance premium principle, Asimit, Badescu and Verdonck (2013) investigate quan-

tile risk premium principles, Tan et al. (2020) discuss mean-CVaR premium principle, and Chi

and Tan (2013) consider general premium principles, though many other papers rely on certain

premium principle assumptions that are specific to the buyer’s risk preferences.

1.2 Background and Problem Definition

Throughout this paper, the insurance field is represented by (Ω,F ,P), an atomless prob-

ability space endowed with L0 := L0(Ω,F ,P), the set of all non-negative real-valued random

variables on this probability space. Let Lq, q ∈ [0,∞), be the set of random variables with finite

qth moment, and L∞ be the set of bounded random variables. A risk measure φ is a function
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that maps an element of L0 to a (extended) real number, i.e. φ : L0 → ℜ. We recall below

some properties for a generic risk measure and generic random variable Y – with cumulative dis-

tribution function (cdf) FY , survival distribution function F̄Y , and generalized left-continuous

inverse F−
Y (s) := infx∈ℜ

{
FY (x) ≥ s

}
– representing the future loss of a financial asset or

insurance liability.

Convexity: φ(aY1 + (1− a)Y2) ≤ aφ(Y1) + (1−a)φ(Y2) for any Y1, Y2 ∈ L0 and a ∈ [0, 1];

Homogeneous of order τ > 0: φ (cY ) = cτφ(Y ) for any Y ∈ L0 and c ≥ 0;

Shift invariance: φ(Y + c) = φ(Y ) for any Y ∈ L0 and c ∈ ℜ;

Translation invariance: φ (Y + c) = φ(Y ) + c for any Y ∈ L0 and c ∈ ℜ.

These properties are well-known in the literature, and an extensive introduction to risk measures

can be found in Föllmer and Schied (2011). Two well-known risk measures are Value-at-Risk

(VaR) and Expected Shortfall (ES), defined as

VaRp(Y ) = F−
Y (p) and ESp(Y ) = min

t∈ℜ

{
t+

1

1− p
E(Y − t)+

}
,

where (·)+ = max(·, 0) and p ∈ (0, 1) is the risk level. It is evident that the two risk measures

are homogeneous of order 1 and translation invariant, and ES is convex.

We are now ready to provide the mathematical formulation of the problem of interest. Sup-

pose that an insurer has insured a large number of policies with independent and identically

distributed non-negative losses Xi for 1 ≤ i ≤ N with cdf FX1(x).

We consider now that the reinsurance premium is calculated by the expected value principle.

Thus, the total cost for this portfolio of policies after buying Excess-of-Loss (EoL) reinsurance

becomes

T (d,N, ρ) =

N∑
i=1

(Xi ∧ d) + (1 + ρ)E

(
N∑
i=1

(Xi − d)+

)
, (1)

where ρ > 0 is the loading factor and Xi ∧ d = min(Xi, d). A practical question is to find the

optimal retention d for T (d,N, ρ) by minimizing the buyer’s risk when its perception of risk is

modeled by some given risk measures such as VaR and ES.

To better appreciate our study, we first point out an issue with the Stop-loss (SL) optimal

reinsurance (SL is EoL with N = 1) in Cai and Tan (2007), where the total cost T (d, 1, ρ) is stud-
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ied; that is, the optimal retention is found via minimizing VaRp

(
T (d, 1, ρ)

)
or ESp

(
T (d, 1, ρ)

)
,

which leads to the following optimal retention

d∗ = F−
X1

(
1− 1

1 + ρ

)
when 1− p < (1 + ρ)−1. (2)

Hence, the optimal retention d∗ can be estimated nonparametrically using empirical quantile

estimation. Unfortunately, for 1− p < (1 + ρ)−1, we have

P
(
T (d∗, 1, ρ) > VaRp

(
T (d∗, 1, ρ)

))
= P(X1 ∧ d∗ > d∗) = 0,

implying no high risk to the buyer, which is mathematically explained by the truncated buyer’s

liability X1∧d. The same issue remains if one replaces X1∧d by (
∑N

i=1Xi)∧d, i.e., considering

the SL for the total loss instead of one loss in Cai and Tan (2007). Furthermore, the SL optimal

retention d∗ in (2) is not an explicit function of the risk level p. This is also counter-intuitive as

the SL optimal retention may remain constant while p, which implies the insurance company’s

level of risk aversion, increases.

However, when the number of policies is large enough,
∑N

i=1(Xi ∧ d) will not have such

a truncation issue to cause a severely distorted risk level for optimal retention, and thus, the

optimal EoL (with N > 1) retention would not share the same counter-intuitive property as SL

(whenN = 1). But, the difficulty in studying the case ofN > 1 is how to minimize a risk measure

of T (d,N, ρ) because the exact distribution of T (d,N, ρ) for a given loss distribution of Xi is

extremely complicated. Also, it is impossible to estimate the risk measure nonparametrically

as we do not have copies of T (d,N, ρ). This motivates us to consider approximately optimal

retention by using a normal distribution to approximate the distribution of
∑N

i=1(Xi ∧ d) for a

large N .

Before outlining our main contributions, we would like to further differentiate the EoL and

SL contracts, which are compared in this paper. Note that EoL has more marketability than SL,

as the latter is prohibitively expensive to buyers since the deductible is applied to the annual

aggregate loss and not to the individual claims (as for EoL). Other negative traits of SL are not

shared with EoL. For example, the loss development of an insurance claim is the process of a

claim from reporting until the claim is fully settled, which takes a significant amount of time

for many lines of business such as personal accident insurance, medical malpractice insurance,

workers compensation, liability claims, etc.; the lag is even larger for long-tail lines of coverage
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where arbitrage or court proceedings are more likely to occur. Long lags are big impediments

to activating SL contracts since the deductible is applied to the aggregate loss, which is known

when all claims from that year are fully settled and that may require many years; this is not the

case to EoL where each claim is shared between the buyer and seller.

The main contributions of this paper are two-fold. First, we point out that optimal reinsur-

ance policy under SL – one of the most prominent settings discussed in the literature – leads

to zero insolvency probability for VaR-based regulatory environments as is the case for EU and

UK insurance companies where capital requirements are designed on the 1/200 event basis over

a one-year time horizon. This peculiar property of the optimal SL reinsurance contract is the

main motivation of our paper, and we show that a remedy is possible if one investigates the

optimal EoL reinsurance contract instead. Second, we propose an approximately optimal reten-

tion, provide a nonparametric estimator for it, and derive its statistical properties under many

premium principle assumptions and various risk preferences, which, according to our knowledge,

have never been investigated in the literature.

The paper is organized as follows: EoL risk model is considered under the VaRp risk measure

in Section 2 for various premium principles, which are further generalized in Section 3 when the

risk preferences are ordered by distortion risk measures. Some simulation studies are provided

in Section 4, while real data analysis is employed in Section 5. Additional simulation results and

discussions on using a higher-order approximation are provided in the online supplementary file.

2 Approximately optimal retention for VaR

In this section, we consider the total cost of T (d,N, ρ) under the VaRp risk measure. Later,

we will generalize the result to distortion risk measures in Section 3. Throughout, we use

AN = O(BN ), o(BN ), Op(BN ), and op(BN ) to denote AN/BN is bounded, goes to zero, bounded

in probability, and goes to zero in probability, respectively, as N → ∞. We also use Φ(x) and

Φ−(x) to denote a standard normal distribution and its quantile function, respectively.

Because VaR is translation invariant, we have

VaRp

(
T (d,N, ρ)

)
= VaRp

(
N∑
i=1

(Xi ∧ d)

)
+ (1 + ρ)NE{(X1 − d)+}. (3)
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Define 
µ1(d) = E(X1 ∧ d) =

∫ d
0 F̄X1(x) dx,

µ2(d) = E(X2
1 ∧ d2) = 2

∫ d
0 F̄X1(x)x dx,

ν1(d) = E{(X1 − d)+} =
∫∞
d F̄X1(x) dx.

For large N , it follows from the Central Limit Theorem that

VaRp

(
N∑
i=1

(Xi ∧ d)

)
= Nµ1(d) +

√
N
√
µ2(d)− µ2

1(d)Φ
−(p) + o(

√
N), (4)

Therefore, instead of minimizing VaRp

(
T (d,N, ρ)

)
to obtain the optimal retention d, an intuitive

idea is to ignore the o(
√
N) term in (4) to approximate the right hand side of (3), i.e., we propose

to minimize

GN,ρ(d) := NE(X1) +Nρν1(d) +
√
N
√
µ2(d)− µ2

1(d)Φ
−(p), (5)

whose solution is called an approximately optimal retention. The above approximation method

needs to be carefully justified because the o(
√
N) term in (4) may depend on d. Hence, we have

the following result for a bound on the o(
√
N) term that is independent of d.

Proposition 1. For any 0 < d1 < d2 ≤ ∞ such that µ2(d1)−µ2
1(d1) > 0 and E(|Xi∧d2|3) < ∞,

we have

sup
d1≤d≤d2

∣∣VaRp

(
T (d,N, ρ)

)
−GN,ρ(d)

∣∣ ≤ C (6)

for some constant C > 0 depending on µ2(d1)−µ2
1(d1) and E(X3

i ∧d32) but independent of d and

FX1(x).

Proof. Define

SN (d) =

∑N
i=1(Xi ∧ d)−Nµ1(d)√
N
√

µ2(d)− µ2
1(d)

.

It follows from the Berry-Esseen Theorem that

sup
x

|P(SN (d) ≤ x)− Φ(x)| ≤ C1E(X3
i ∧ d3)

(
√

µ2(d)− µ2
1(d))

3
√
N

for some constant C1 > 0 independent of d and FX1 . Because

max
d1≤d≤d2

E(X3
i ∧ d3) ≤ E(X3

i ∧ d32) and min
d1≤d≤d2

{µ2(d)− µ2
1(d)} ≥ µ2(d1)− µ2

1(d1),
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we have

sup
x

|P(SN (d) ≤ x)− Φ(x)| ≤ C2N
−1/2 uniformly in d ∈ [d1, d2] (7)

for some constant C2 > 0 depending on µ2(d1) − µ2
1(d1) and E(X3

i ∧ d32) but independent of d

and FX1(x). Hence,

P(SN (d) ≤ Φ−(p+ C2N
−1/2)) ≥ p and P(SN (d) ≤ Φ−(p− C2N

−1/2)) ≤ p

uniformly in d ∈ [d1, d2], implying that

Φ−(p− C2N
−1/2) ≤ VaRp(SN (d)) ≤ Φ−(p+ C2N

−1/2) uniformly in d ∈ [d1, d2],

i.e.,

sup
d1≤d≤d2

|VaRp(SN (d))− Φ−(p)| ≤ C3N
−1/2

for some constant C3 > 0 depending on µ2(d1) − µ2
1(d1) and E(X3

i ∧ d32) but independent of d

and FX1(x). Hence, the proposition follows by noting that

VaRp(

N∑
i=1

(Xi ∧ d)) = Nµ1(d) +
√
N
√

µ2(d)− µ2
1(d)VaRp(SN (d)).

Hence, the o(
√
N) term indeed has an order of O(1) uniformly. The above proposition yields

the following results, which ensure that both the actual and approximate optimal retention,

along with the actual and approximate minimum VaR of the total costs, are asymptotically

equivalent. These findings validate the application of the approximation method in (5).

Proposition 2. Suppose that for sufficiently large N , there exists an approximately optimal

retention d∗N solving G′
N,ρ(d) = 0, such that d∗N → d∗ ∈ (0,∞), where d∗ solves G′(d) = 0 and

the function G(d) satisfies supd1≤d≤d2 |GN,ρ(d) − G(d)| = o(
√
N) with d1 < d∗ < d2. Here, ρ

may depend on d and N . Then, under conditions of Proposition 1, there exists an N0 and a

local minimizer d◦N of VaRp(T (d,N, ρ)) for each N > N0 such that: (i) d◦N → d∗ as N → ∞;

and (ii) limN→∞ |VaRp(T (d
◦
N , N, ρ))−NE(X1)|/

√
N = limN→∞ |GN,ρ(d

∗
N )−NE(X1)|/

√
N .

Proof. From Proposition 1 and the conditions above, we have supd1≤d≤d2 |VaRp

(
T (d,N, ρ)

)
−

G(d)| = o(
√
N). The results follow from an application of Theorem 5.7 of Van der Vaart
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(2000).

Remark 1. To enhance accuracy in (5), particularly when N is small, one might consider

using Edgeworth expansion, which incorporates higher moments to approximate the distribution

of
∑N

i=1(Xi ∧ d). Mathematical details and numerical results for this approach are provided in

Section 2 of the supplementary materials for those interested. However, due to the complexity

of the mathematical expressions involved, deriving the theoretical properties of this advanced

approximation method is excessively complicated, and we leave it as a topic for future research.

In the following subsections, we examine the optimal retention under different specifications

of the loading factor ρ: constant loading factor (Section 2.1), decreasing loading factor (Sec-

tion 2.2), standard deviation principle (Section 2.3), and Sharpe ratio principle (Section 2.4).

2.1 Constant Loading Factor

We now solve (5) with a constant loading factor ρ > 0. In this case, the optimal retention

turns out to be a solution to

HN,ρ(d) := {d− µ1(d)}2 −

( √
Nρ

Φ−(p)

)2

{µ2(d)− µ2
1(d)} = 0. (8)

The next result stated as Theorem 1 shows that (8) admits a unique solution under some very

mild regularity conditions. Recall that we allow FX1(0) > 0 in Theorem 1, which means that

the event of having no claim is not a null set.

Theorem 1. Assume E(X1) < ∞, FX1(·) has the support [0,∞) (i.e., FX1(0) > 0) or (0,∞),

and is continuous on (0,∞). When the support is [0,∞), we further assume FX1(0) <
Nρ2

Nρ2+(Φ−(p))2
,

which is always true when N is large enough. Then, there exists a unique approximately optimal

retention d∗N,ρ ∈ (0,∞) such that

d∗N,ρ = argmin
d>0

GN,ρ(d) and HN,ρ(d
∗
N,ρ) = 0.

Proof. Note that µ′
1(d) = F̄X1(d), µ

′
2(d) = 2dF̄X1(d), and ν ′1(d) = −F̄X1(d), and in turn,

G′
N,ρ(d) = −NρF̄X1(d) +

√
NF̄X1(d)

d− µ1(d)√
µ2(d)− µ2

1(d)
Φ−(p) (9)
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=

√
NF̄X1(d)Φ

−(p)(
d−µ1(d)√
µ2(d)−µ2

1(d)
+

√
Nρ

Φ−(p)

)
{µ2(d)− µ2

1(d)}
HN,ρ(d).

Hence, solving G′
N,ρ(d) = 0 for d ∈ (0,∞) is equivalent to solving HN,ρ(d) = 0 for d ∈ (0,∞).

That is, we only need to show that there is a unique solution for HN,ρ(d) = 0.

Since d− µ1(d) > 0 and µ2(d)− µ2
1(d) > 0 for all d > 0, and

H ′
N,ρ(d) = 2{d− µ1(d)}

FX1(d)

1 +

( √
Nρ

Φ−(p)

)2
−

( √
Nρ

Φ−(p)

)2
 ,

we conclude that H ′
N,ρ(d) is negative, zero, and positive for 0 < d < d1, d1 ≤ d ≤ d2, and d > d2,

respectively, where FX1(d) =
Nρ2

Nρ2+(Φ−(p))2
happens and only happens on d ∈ [d1, d2], which is

ensured by the conditions that the right endpoint of FX1(x) is infinity, FX1(x) is continuous on

(0,∞), and FX1(0) <
Nρ2

Nρ2+(Φ−(p))2
. That is,

HN,ρ(d) is strictly decreasing on (0, d1), constant on [d1, d2], and strictly increasing on (d2,∞),

(10)

Note that

lim
d→∞

d2

µ2(d)
=

 limd→∞
2d

2dF̄X1
(d)

= ∞ if µ2(∞) = ∞,

∞ if µ2(∞) < ∞.

Thus, limd→∞HN,ρ(d)/d
2 = 1 and limd→∞HN,ρ(d) = ∞. The latter, (9) and (10), and the fact

that limd→0HN,ρ(d) = 0 conclude that HN,ρ(d) = 0 has a unique solution on (d2,∞). The proof

is now complete.

Note that d∗N,ρ diverges to infinity as N → ∞, which is not surprising since a constant

ρ for any N implies that the seller does not include the diversification effect in its premium

calculation, case in which the seller would not be incentivized to participate in such reinsurance

contract. The divergence of d∗N,ρ also violates the conditions of Proposition 2, indicating that the

approximately optimal retention can still differ significantly from the actual optimal retention,

even when N is large under the constant loading factor rule. This issue will be demonstrated

in the numerical example in Section 4.1. To mitigate this, a more practical approach would

be to adjust or reduce the loading factor as N increases, ensuring a more realistic reinsurance

premium. This will be further explored in the following subsections.
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2.2 Decreasing Loading Factor

To estimate d∗N,ρ and study its asymptotic properties, we consider instead a bounded ap-

proximated optimal retention by assuming ρ = ρN such that

lim
N→∞

ρN
√
N = δ ∈ (0,∞). (11)

It follows from Theorem 1 that d∗N,ρN
is the unique solution to HN,ρN (d) = 0. Using (11), we

know that limN→∞ d∗N,ρN
exists and is the unique solution to

{d− µ1(d)}2 − (
δ

Φ−(p)
)2{µ2(d)− µ2

1(d)} = 0.

Hence, write G(d) = NE(X1) +
√
Nδν1(d) +

√
N
√

µ2(d)− µ2
1(d)Φ

−(p), and the conditions of

Proposition 2 holds because supd1≤d≤d2 |GN,ρN (d)−G(d)| = |ρN
√
N − δ| supd1≤d≤d2

√
Nν1(d) ≤

|ρN
√
N−δ|

√
NE(X1) = o(

√
N). This justifies the minimization ofGN,ρN (d) instead of VaRp(T (d,N, ρN )).

To estimate d∗N,ρN
nonparametrically, we solve the following equation

ĤN,ρN (d) := {d− µ̂1(d)}2 −

(√
NρN

Φ−(p)

)2

{µ̂2(d)− µ̂2
1(d)} = 0, (12)

where

µ̂1(d) =
1

N

N∑
i=1

(Xi ∧ d) and µ̂2(d) =
1

N

N∑
i=1

(X2
i ∧ d2). (13)

Let d̂∗N,ρN
denote this solution, which is an estimator for d∗N,ρN

. Let Σ(d) denote the covariance

matrix of Zi(d), where Zi(d) = (Xi ∧ d,X2
i ∧ d2)τ , and define

µ̂∗
1(d) =

1

N

N∑
i=1

I(Xi > d) and µ̂∗
2(d) =

2d

N

N∑
i=1

I(Xi > d), (14)

which estimate the first-order derivatives, µ′
1(d) and µ′

2(d), respectively. The asymptotic prop-

erties of d̂∗N,ρN
are given in Theorem 2.

Theorem 2. Under conditions of Theorem 1 and (11), we have

√
N{d̂∗N,ρN

− d∗N,ρN
}

ĉ−1
0

√
(ĉ1, ĉ2)Σ̂0(ĉ1, ĉ2)τ

d→ N(0, 1),
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where

ĉ0 = 2{d̂∗N,ρN
− µ̂1(d̂

∗
N,ρN

)}{1− µ̂∗
1(d̂

∗
N,ρN

)}

−

(
ρN

√
N

Φ−(p)

)2

{µ̂∗
2(d̂

∗
N,ρN

)− 2µ̂1(d̂
∗
N,ρN

)µ̂∗
1(d̂

∗
N,ρN

)},

ĉ1 = 2{d̂∗N,ρN
− µ̂1(d̂

∗
N,ρN

)} −

(
ρN

√
N

Φ−(p)

)2

2µ̂1(d̂
∗
N,ρN

), ĉ2 =

(
ρN

√
N

Φ−(p)

)2

,

Σ̂0 =
1

N

N∑
i=1

[
Zi(d̂

∗
N,ρN

)− 1

N

N∑
i′=1

Zi′(d̂
∗
N,ρN

)

][
Zi(d̂

∗
N,ρN

)− 1

N

N∑
i′=1

Zi′(d̂
∗
N,ρN

)

]τ
.

Proof. For simplicity, the proof uses d∗ and d̂∗ for d∗N,ρN
and d̂∗N,ρN

, respectively. Then, the

central limit theorem implies

√
N

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

 d→ N(0,Σ0) (15)

when

Σ(d∗) → Σ0 as N → ∞. (16)

It follows from (15) that

µ̂1(d̂
∗)− µ1(d

∗) = µ̂1(d̂
∗)− µ1(d̂

∗) + µ1(d̂
∗)− µ1(d

∗)

= {µ̂1(d
∗)− µ1(d

∗)}+ µ′
1(d

∗){d̂∗ − d∗}+ op(|d̂∗ − d∗|),

µ̂2(d̂
∗)− µ2(d

∗) = {µ̂2(d
∗)− µ2(d

∗)}+ µ′
2(d

∗){d̂∗ − d∗}+ op(|d̂∗ − d∗|),

{d̂∗ − µ̂1(d̂
∗)}2 − {d∗ − µ1(d

∗)}2

= 2{d∗ − µ1(d
∗)}{1− µ′

1(d
∗)}(d̂∗ − d∗)

−2{d∗ − µ1(d
∗)}{µ̂1(d

∗)− µ1(d
∗))}+ op(|d̂∗ − d∗|),

{µ̂2(d̂
∗)− µ̂2

1(d̂
∗)} − {µ2(d

∗)− µ2
1(d

∗)}

= {µ̂2(d
∗)− µ2(d

∗)} − 2µ1(d
∗){µ̂1(d

∗)− µ1(d
∗)}

+{µ′
2(d

∗)− 2µ1(d
∗)µ′

1(d
∗)}{d̂∗ − d∗}+ op(|d̂∗ − d∗|),

12



implying that

0 = ĤN,ρN (d̂
∗)−HN,ρN (d

∗)

= 2{d∗ − µ1(d
∗)}{1− µ′

1(d
∗)}{d̂∗ − d∗} − 2{d∗ − µ1(d

∗)}{µ̂1(d
∗)− µ1(d

∗)}

−
(

δ
Φ−(p)

)2 {
{µ̂2(d

∗)− µ2(d
∗)} − 2µ1(d

∗){µ̂1(d
∗)− µ1(d

∗)}

+{µ′
2(d

∗)− 2µ1(d
∗)µ′

1(d
∗)}{d̂∗ − d∗}

}
+ op(1/

√
N)+op(|d̂∗ − d∗|),

i.e.,

c0{d̂∗ − d∗} = c1{µ̂1(d
∗)− µ1(d

∗)}+ c2{µ̂2(d
∗)− µ2(d

∗)}+ op(1/
√
N)+op(|d̂∗ − d∗|), (17)

where

c0 = 2{d∗ − µ1(d
∗)}{1− µ′

1(d
∗)} −

(
δ

Φ−(p)

)2

{µ′
2(d

∗)− 2µ1(d
∗)µ′

1(d
∗)},

c1 = 2{d∗ − µ1(d
∗)} −

(
δ

Φ−(p)

)2

2µ1(d
∗), and c2 =

(
δ

Φ−(p)

)2

.

Note that the terms op(1/
√
N) and op(|d̂∗ − d∗|) in (17) can be neglected. This is because, as

seen from (15), both c1{µ̂1(d
∗)− µ1(d

∗)} and c2{µ̂2(d
∗)− µ2(d

∗)} are of order Op(1/
√
N), and

op(|d̂∗ − d∗|) is clearly dominated by d̂∗ − d∗ = Op(|d̂∗ − d∗|). Hence,

√
N{d̂∗ − d∗} d→ N

(
0,

1

c20
(c1, c2)Σ0(c1, c2)

τ

)
,

which implies our main result since ĉ0, ĉ1, ĉ2, Σ̂0 are consistent estimators of c0, c1, c2,Σ0, respec-

tively. The proof is now complete.

2.3 Standard Deviation Premium Principle

We extend the analysis in Section 2.2 by assuming a decreasing loading factor and the

standard deviation principle. Specifically, a particular choice of ρ is assumed in (5) as

ρ = ρ0SD

(
1

N

N∑
i=1

(Xi − d)+

)
= ρ0N

−1/2
√

ν2(d)− ν21(d), (18)

which depends on both N and d and satisfies (11), where

ν2(d) = E{(Xi − d)2+} = 2

∫ ∞

d
F̄X1(x)(x− d) dx satisfying ν ′2(d) = −2ν1(d).

13



Hence, the total cost for the insurer becomes

T̃ (d) =
N∑
i=1

(Xi ∧ d) +Nν1(d) + ρ0
√
Nν1(d)

√
ν2(d)− ν21(d),

and the optimal retention should minimize

VaRp(T̃ (d)) = Nµ1(d) +
√
N
√
µ2(d)− µ2

1(d)Φ
−(p) + o(

√
N)

+Nν1(d) + ρ0
√
Nν1(d)

√
ν2(d)− ν21(d).

Once again, we seek for d that minimizes (19) below as we ignore the o(
√
N) terms:

G̃(d) = NE(X1) +
√
N{Φ−(p)

√
µ2(d)− µ2

1(d) + ρ0ν1(d)
√
ν2(d)− ν21(d)}. (19)

The existence of the approximately optimal retention is shown in Theorem 3 below.

Theorem 3. Assume FX1(x) has the support [0,∞) (i.e., FX1(0) > 0) or (0,∞), is continuous

on (0,∞), and

lim
t→∞

F̄X1(tx)

F̄X1(t)
= x−α for all x > 0 and some α > 2. (20)

If FX1(0) > 0, we further assume that

Φ−(p)
√

F̄X1(0)FX1(0) < ρ0F̄X1(0)
√
E(X2

1 )− {E(X1)}2 + ρ0
FX1(0){E(X1)}2√
E(X2

1 )− {E(X1)}2
. (21)

Then, there exists at least one solution of G̃′(d) = 0, and an approximately optimal retention

d∗ ∈ (0,∞) is its smallest solution, which is a local minimum of G̃(d).

Proof. Because

G̃′(d)√
N

= Φ−(p)
F̄X1(d){d− µ1(d)}√

µ2(d)− µ2
1(d)

− ρ0F̄X1(d)
√

ν2(d)− ν21(d)− ρ0
FX1(d)ν

2
1(d)√

ν2(d)− ν21(d)

and

lim
d→0

{d− µ1(d)}2

µ2(d)− µ2
1(d)

= lim
d→0

2{d− µ1(d)}FX1(d)

2F̄X1(d){d− µ1(d)}
=

FX1(0)

F̄X1(0)
, (22)

14



it follows from (21) in Theorem 3 that

limd→0
G̃′(d)√

N
= Φ−(p)

√
F̄X1(0)FX1(0)− ρ0F̄X1(0)

√
E(X2

1 )− {E(X1)}2

−ρ0
FX1

(0){E(X1)}2√
E(X2

1 )−{E(X1)}2

< 0.

(23)

By (20), we have

lim
d→∞

ν1(d)

dF̄X1(d)
=

1

α− 1
and lim

d→∞

ν2(d)

d2F̄X1(d)
=

2

(α− 1)(α− 2)
, (24)

implying that

lim
d→∞

G̃′(d)√
NF̄X1(d)d

=
Φ−(p)√

E(X2
1 )− {E(X1)}2

> 0. (25)

Hence, it follows from (23) and (25) that there exists at least one solution of G̃′(d) = 0 for

d ∈ (0,∞), and let d∗ be the smallest solution. Then, there exists d1 > d∗ such that G̃′(d) < 0

for d ∈ (0, d∗), G̃′(d) ≥ 0 for d ∈ (d∗, d1), and G̃′(d1) > 0, implying that d∗ is a local minimum

of G̃(d) for d ∈ (0,∞). The proof is now complete.

Since the solution d∗ in Theorem 3 is independent of N , it is clear that the conditions of

Proposition 2 hold, justifying our approximation strategy. To estimate the optimal retention

nonparametrically, we minimize the following function for d:

ˆ̃G(d) = Φ−(p)
√

µ̂2(d)− µ̂2
1(d) + ρ0ν̂1(d)

√
ν̂2(d)− ν̂21(d), (26)

where µ̂1(d) and µ̂2(d) are given by (13),

ν̂1(d) =
1

N

N∑
i=1

(Xi − d)+, and ν̂2(d) =
1

N

N∑
i=1

(Xi − d)2+. (27)

Denote d̃∗N,ρ0
and

ˆ̃
d∗N,ρ0

as the smallest solution of G̃′(d) = 0 and ˆ̃G′(d) = 0 with G̃(d) and ˆ̃G(d)

given in (19) and (26), respectively. Put Z̃i(d) = (I(Xi > d), Xi∧d,X2
i ∧d2, (Xi−d)+, (Xi−d)2+)

τ

with Aτ denoting the transpose of vector or matrix A, and let Σ̃(d) be the covariance matrix of

Z̃i(d). Define

ν̂∗1(d) = − 1

N

N∑
i=1

I(Xi > d) and ν̂∗2(d) = −2ν̂1(d) (28)
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to estimate ν ′1(d) and ν ′2(d) on top of µ̂∗
1(d) and µ̂∗

2(d) which are defined in (14). We further

denote ˆ̄FX1(d) =
∑N

i=1 I(Xi > d)/N as the empirical survival function of X1 and f̂X1(d) as

any consistent estimator of the density function for X1, e.g., a kernel density estimation. The

asymptotic properties of the approximately optimal retention are provided in Theorem 4.

Theorem 4. Under conditions of Theorem 3 and (18), and that X1 has a density function fX1,

we have √
N{ ˆ̃d∗N,ρ0

− d̃∗N,ρ0
}

b̂−1
0

√
b̂ ˆ̃Σ0b̂τ

d→ N(0, 1),

with b̂ := (b̂1, b̂2, b̂3, b̂4, b̂5), where

b̂0 =
Φ−(p) ˆ̄FX1(

ˆ̃
d∗N,ρ0

)√
µ̂2(

ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

)
− b̂1f̂X1(

ˆ̃
d∗N,ρ0) + b̂2µ̂

∗
1(
ˆ̃
d∗N,ρ0) + b̂3µ̂

∗
2(
ˆ̃
d∗N,ρ0)

+b̂4ν̂
∗
1(

ˆ̃
d∗N,ρ0) + b̂5ν̂

∗
2(

ˆ̃
d∗N,ρ0),

b̂1 = Φ−(p)

ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̃
d∗N,ρ0

)√
µ̂2(

ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

)
− ρ0

ν̂2(
ˆ̃
d∗N,ρ0

)− 2ν̂21(
ˆ̃
d∗N,ρ0

)√
ν̂2(

ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

)
,

b̂2 = Φ−(p)

− ˆ̄FX1(
ˆ̃
d∗N,ρ0

)√
µ̂2(

ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

)
+

µ̂1(
ˆ̃
d∗N,ρ0

) ˆ̄FX1(
ˆ̃
d∗N,ρ0

)[
ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̃
d∗N,ρ0

)]

(µ̂2(
ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

))3/2

 ,

b̂3 = −Φ−(p)
ˆ̄FX1(

ˆ̃
d∗N,ρ0

)[
ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̃
d∗N,ρ0

)]

2(µ̂2(
ˆ̃
d∗N,ρ0

)− µ̂2
1(
ˆ̃
d∗N,ρ0

))3/2
,

b̂4 = −2ρ0ν̂1(
ˆ̃
d∗N,ρ0)

 1− 2 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)√
ν̂2(

ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

)

+
ν̂2(

ˆ̃
d∗N,ρ0

) ˆ̄FX1(
ˆ̃
d∗N,ρ0

) + ν̂21(
ˆ̃
d∗N,ρ0

)[1− 2 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)]

2(ν̂2(
ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

))3/2

 ,

b̂5 = ρ0

 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)√
ν̂2(

ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

)
−

ν̂2(
ˆ̃
d∗N,ρ0

) ˆ̄FX1(
ˆ̃
d∗N,ρ0

)+ ν̂21(
ˆ̃
d∗N,ρ0

)[1−2 ˆ̄FX1(
ˆ̃
d∗N,ρ0

)]

2(ν̂2(
ˆ̃
d∗N,ρ0

)− ν̂21(
ˆ̃
d∗N,ρ0

))3/2

,
ˆ̃Σ0 =

1

N

N∑
i=1

[
Z̃i(

ˆ̃
d∗N,ρ0)−

1

N

N∑
i′=1

Z̃i′(
ˆ̃
d∗N,ρ0)

][
Z̃i(

ˆ̃
d∗N,ρ0)−

1

N

N∑
i′=1

Z̃i′(
ˆ̃
d∗N,ρ0)

]τ
.

Proof. For notational convenience, we write d∗ and d̂∗ for d̃∗N,ρ0
and

ˆ̃
d∗N,ρ0

, respectively. Then,

16



the central limit theorem implies

√
N



ˆ̄FX1(d
∗)− F̄X1(d

∗)

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

ν̂1(d
∗)− ν1(d

∗)

ν̂2(d
∗)− ν2(d

∗)


d→ N(0, Σ̃0) (29)

when Σ̃(d∗) → Σ̃0 as N → ∞. Expansion of ˆ̃G′(d̂∗)− G̃′(d∗) yields

0 = ˆ̃G′(d̂∗)− G̃′(d∗) (30)

=
Φ−(p)F̄X1(d

∗)√
µ2(d∗)− µ2

1(d
∗)

[
d̂∗ − d∗

]
+ b1

[
ˆ̄FX1(d̂

∗)− F̄X1(d
∗)
]

+ b2

[
µ̂1(d̂

∗)− µ1(d
∗)
]
+ b3

[
µ̂2(d̂

∗)− µ2(d
∗)
]

+ b4

[
ν̂1(d̂

∗)− ν1(d
∗)
]
+ b5

[
ν̂2(d̂

∗)− ν2(d
∗)
]
+ op(1/

√
N)+op(|d̂∗ − d∗|),

where

b1 = Φ−(p)
d̃∗N,ρ0

− µ1(d
∗)√

µ2(d∗)− µ2
1(d

∗)
− ρ0

ν2(d
∗)− 2ν21(d

∗)√
ν2(d∗)− ν21(d

∗)
,

b2 = Φ−(p)

[
− F̄X1(d

∗)√
µ2(d∗)− µ2

1(d
∗)

+
µ1(d

∗)F̄X1(d
∗)[d̃∗N,ρ0

− µ1(d
∗)]

(µ2(d∗)− µ2
1(d

∗))3/2

]
,

b3 = −Φ−(p)
F̄X1(d

∗)[d̃∗N,ρ0
− µ1(d

∗)]

2(µ2(d∗)− µ2
1(d

∗))3/2
,

b4 = −2ρ0ν1(d
∗)

[
1− 2F̄X1(d

∗)√
ν2(d∗)− ν21(d

∗)
+

ν2(d
∗)F̄X1(d

∗) + ν21(d
∗)[1− 2F̄X1(d

∗)]

2(ν2(d∗)− ν21(d
∗))3/2

]
,

b5 = ρ0

[
F̄X1(d

∗)√
ν2(d∗)− ν21(d

∗)
− ν2(d

∗)F̄X1(d
∗) + ν21(d

∗)[1− 2F̄X1(d
∗)]

2(ν2(d∗)− ν21(d
∗))3/2

]
.

We also have

ˆ̄FX1(d̂
∗)− F̄X1(d

∗)

µ̂1(d̂
∗)− µ1(d

∗)

µ̂2(d̂
∗)− µ2(d

∗)

ν̂1(d̂
∗)− ν1(d

∗)

ν̂2(d̂
∗)− ν2(d

∗)


=



ˆ̄FX1(d
∗)− F̄X1(d

∗)

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

ν̂1(d
∗)− ν1(d

∗)

ν̂2(d
∗)− ν2(d

∗)


+



−fX1(d
∗)

µ′
1(d

∗)

µ′
2(d

∗)

ν ′1(d
∗)

ν ′2(d
∗)


(
d̂∗ − d∗

)
+ op(|d̂∗ − d∗|).
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Multiply b to both sides of the above equation and use (30), we have

− Φ−(p)F̄X1
(d∗)√

µ2(d∗)−µ2
1(d

∗)
(d̂∗ − d∗) = b



ˆ̄FX1(d
∗)− F̄X1(d

∗)

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

ν̂1(d
∗)− ν1(d

∗)

ν̂2(d
∗)− ν2(d

∗)


+ b



−fX1(d
∗)

µ′
1(d

∗)

µ′
2(d

∗)

ν ′1(d
∗)

ν ′2(d
∗)


(
d̂∗ − d∗

)

+op(1/
√
N) + op(|d̂∗ − d∗|).

(31)

Similar to the proof of Theorem 2, the terms op(1/
√
N) and op(|d̂∗−d∗|) in (31) can be neglected

because the first term on the right-hand side of (31) has an order of Op(1/
√
N) given by (29).

Hence, it follows from (29) that

√
N(d̂∗ − d∗) = −

√
Nb−1

0 b



ˆ̄FX1(d
∗)− F̄X1(d

∗)

µ̂1(d
∗)− µ1(d

∗)

µ̂2(d
∗)− µ2(d

∗)

ν̂1(d
∗)− ν1(d

∗)

ν̂2(d
∗)− ν2(d

∗)


+ op(1)

d→ N(0, b−2
0 bΣ̃0b

τ ), (32)

where b = (b1, b2, b3, b4, b5) and

b0 = Φ−(p)F̄X1(d
∗)/
√

µ2(d∗)− µ2
1(d

∗)− b1fX1(d
∗) + b2µ

′
1(d

∗) + b3µ
′
2(d

∗)

+b4ν
′
1(d

∗) + b5ν
′
2(d

∗).

Hence, the theorem follows as b̂0, b̂ and ˆ̃Σ0 are consistent estimators of b0, b and Σ̃0, respectively.

The proof is now complete.

Remark 2. While Theorem 4 above only applies specifically to the smallest solution, as it is

guaranteed to lead to a local minimum (Theorem 3), it can be extended to accommodate other

possible solutions in case of non-uniqueness. For instance, if we define both d̃∗N,ρ0
and

ˆ̃
d∗N,ρ0

as

the largest solutions, Theorem 4 would still hold. The key requirement is that both d̃∗N,ρ0
and

ˆ̃
d∗N,ρ0

must be selected using the same criterion. If, for example, d̃∗N,ρ0
is chosen as the smallest

solution while
ˆ̃
d∗N,ρ0

is the largest, the resulting asymptotic normality may no longer apply.
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2.4 Sharpe Ratio Premium Principle

We now recast the results in Section 2.3 by assuming the Sharpe Ratio premium principle

E

(
N∑
i=1

(Xi − d)+

)
+ ρ0

E(
∑N

i=1(Xi − d)+)

SD(
∑N

i=1(Xi − d)+)
= Nν1(d) + ρ0

√
N

ν1(d)√
ν2(d)− ν21(d)

, (33)

leading to the total cost for the insurer as

T̃ (d) =
N∑
i=1

(Xi ∧ d) +Nν1(d) + ρ0
√
N

ν1(d)√
ν2(d)− ν21(d)

.

In this case, the loading factor becomes

ρ =
ρ0

SD(
∑N

i=1(Xi − d)+)
=

ρ0√
N
√

ν2(d)− ν21(d)
,

which is decreasing in N and satisfies (11). As before, the optimal retention minimizes

VaRp(T̃ (d)) = Nµ1(d) +
√
N
√
µ2(d)− µ2

1(d)Φ
−(p) + o(

√
N)

+Nν1(d) + ρ0
√
N ν1(d)√

ν2(d)−ν21 (d)
,

and we seek for d that minimizes (34) below by ignoring the o(
√
N) terms:

Ḡ(d) = NE(X1) +
√
N

{
Φ−(p)

√
µ2(d)− µ2

1(d) + ρ0
ν1(d)√

ν2(d)− ν21(d)

}
. (34)

The existence of the approximately optimal retention is shown in Theorem 5 below.

Theorem 5. Assume FX1(x) has the support [0,∞) (i.e., FX1(0) > 0) or (0,∞), is continuous

on (0,∞), and

lim
t→∞

F̄X1(tx)

F̄X1(t)
= x−α for all x > 0 and some α ∈ (2, 4). (35)

If FX1(0) > 0, we further assume that

Φ−(p)
√

F̄X1(0)FX1(0) < ρ0
F̄X1(0)√

E(X2
1 )− {E(X1)}2

− ρ0
FX1(0){E(X1)}2

{E(X2
1 )− {E(X1)}2}3/2

. (36)

Then, there exists at least one solution of Ḡ′(d) = 0, and an approximately optimal retention

d∗ ∈ (0,∞) is its smallest solution, which is a local minimum of Ḡ(d).
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Proof. Because

Ḡ′(d)√
N

= Φ−(p)
F̄X1(d){d− µ1(d)}√

µ2(d)− µ2
1(d)

− ρ0
F̄X1(d)√

ν2(d)− ν21(d)
+ ρ0

FX1(d)ν
2
1(d)

{ν2(d)− ν21(d)}3/2
,

it follows from (20) and (36) that

limd→0
G̃′(d)√

N
= Φ−(p)

√
F̄X1(0)FX1(0)− ρ0

F̄X1
(0)√

E(X2
1 )−{E(X1)}2

+ρ0
FX1

(0){E(X1)}2

{E(X2
1 )−{E(X1)}2}3/2

< 0.

(37)

By (35) with α < 4 and (24),

lim
d→∞

Ḡ′(d)√
NF̄X1(d)d

=
Φ−(p)√

E(X2
1 )− {E(X1)}2

> 0. (38)

Hence, it follows from (37) and (38) that there exists at least one solution of Ḡ′(d) = 0 for

d ∈ (0,∞), and let d∗ be the smallest solution. Then, there exists d1 > d∗ such that Ḡ′(d) < 0

for d ∈ (0, d∗), Ḡ′(d) ≥ 0 for d ∈ (d∗, d1), and Ḡ′(d1) > 0, implying that d∗ is a local minimum

of Ḡ(d) for d ∈ (0,∞). The proof is now complete.

Again, d∗ in Theorem 3 is independent of N , verifying the conditions of Proposition 2. To

estimate the optimal retention nonparametrically, we minimize the following function for d:

ˆ̄G(d) = Φ−(p)
√
µ̂2(d)− µ̂2

1(d) + ρ0
ν̂1(d)√

ν̂2(d)− ν̂21(d)
. (39)

Denote d̄∗N,ρ0
and ˆ̄d∗N,ρ0

as the smallest solution of Ḡ′(d) = 0 and ˆ̄G′(d) = 0 with Ḡ(d) and ˆ̄G(d)

given in (34) and (39), respectively. The asymptotic properties of the approximately optimal

retention are provided in Theorem 6.

Theorem 6. Under conditions of Theorem 5 and (33), and that X1 has a density function fX1,

we have √
N{ ˆ̄d∗N,ρ0

− d̄∗N,ρ0
}

â−1
0

√
â ˆ̄Σ0âτ

d→ N(0, 1),

with â := (â1, â2, â3, â4, â5), where â2, â3 and ˆ̄Σ0 are identical to b̂2, b̂3 and ˆ̃Σ0, respectively, in
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Theorem 4 though
ˆ̃
d∗N,ρ0

is replaced by ˆ̄d∗N,ρ0
, and

â0 =
Φ−(p) ˆ̄FX1(

ˆ̄d∗N,ρ0
)√

µ̂2(
ˆ̄d∗N,ρ0

)− µ̂2
1(
ˆ̄d∗N,ρ0

)
− â1f̂X1(

ˆ̄d∗N,ρ0) + â2µ̂
∗
1(
ˆ̄d∗N,ρ0) + â3µ̂

∗
2(
ˆ̄d∗N,ρ0)

+â4ν̂
∗
1(

ˆ̄d∗N,ρ0) + â5ν̂
∗
2(

ˆ̄d∗N,ρ0),

â1 = Φ−(p)

ˆ̃
d∗N,ρ0

− µ̂1(
ˆ̄d∗N,ρ0

)√
µ̂2(

ˆ̄d∗N,ρ0
)− µ̂2

1(
ˆ̄d∗N,ρ0

)
− ρ0

ν̂2(
ˆ̄d∗N,ρ0

)

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))3/2
,

â4 = ρ0ν̂1(
ˆ̄d∗N,ρ0)

 2

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))3/2
+

3[ν̂21(
ˆ̄d∗N,ρ0

)− ν̂2(
ˆ̄d∗N,ρ0

) ˆ̄FX1(
ˆ̄d∗N,ρ0

)]

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))5/2

 ,

â5 = −ρ0

 ˆ̄FX1(
ˆ̄d∗N,ρ0

)

(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))3/2
+

3[ν̂21(
ˆ̄d∗N,ρ0

)− ν̂2(
ˆ̄d∗N,ρ0

) ˆ̄FX1(
ˆ̄d∗N,ρ0

)]

2(ν̂2(
ˆ̄d∗N,ρ0

)− ν̂21(
ˆ̄d∗N,ρ0

))5/2

 .

Proof. Since the proof is similar to that for Theorem 4, we omit the details.

Remark 3. Another choice of the reinsurance premium beyond the Sharpe Ratio may also seem

natural. That is, we could use the Standard Deviation to determine the reinsurance premium as

follows:

E

(
N∑
i=1

(Xi − d)+

)
+ ρ0SD

(
N∑
i=1

(Xi − d)+

)
= Nν1(d) + ρ0

√
N
√
ν2(d)− ν21(d).

However, the resulting objective function has a positive derivative at d = 0, which often leads

to a trivial approximately optimal retention being either zero or infinity. Therefore, we do not

discuss this setting in the paper as the optimal retention is trivial.

3 Generalization to distortion risk measures

We show now that our results in Section 2 can be naturally extended to optimal reinsurance

problems under general distortion risk measures. A large class of quantile-based risk measures

is the distorted class, for which Definition 1 is needed.

Definition 1. A distortion function is a non-decreasing function h : [0, 1] → [0, 1] such that

h(0) = h(0+) = 0 and h(1) = h(1−) = 1.

Yarri’s dual theory of choice under risk – e.g., see Yaari (1987) – postulates that the risk

preferences of a nonrisk neutral decision maker could be modeled by an expectation concerning
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a reweighed or distorted probability measure, where the distortion function is as in Definition 1.

We are ready to define a distortion risk measure, which is given as Definition 2.

Definition 2. Let Y be a non-negative random variable and h be a distortion function. The

Choquet integral

φh(Y ) :=

∫ ∞

0
h ◦ F̄Y (x) dx =

∫ ∞

0

(
1− h̃ ◦ FY (x)

)
dx (40)

is called a distortion risk measure, where h̃(·) = 1− h(1− ·) on [0, 1].

Note that h̃ is a distortion function since h is a distortion function. Further, ρh(Y ) is an

expectation with respect to a reweighed probability measure, namely h̃ ◦ FY ; that is, ρh(Y ) =∫∞
0 x dh̃ ◦ FY (x) is a Lebesgue-Stieljes integral. It is not difficult to see that VaR and ES

are distortion risk measures with distortion functions hVaRp(s) := I{p≤s≤1} and hESp(s) :=

min
(

s
1−p , 1

)
, respectively for all s ∈ [0, 1]. Other examples are i) Dual-power with hDP (s) :=

1 − (1 − s)β, β ≥ 1, ii) Gini with hG(s) := (1 + β)s − βs2, 0 ≤ β ≤ 1, iii) Proportional

hazard transform (PHT) with hPHT (s) := s1−β, 0 ≤ β < 1, and iv) Wang transform with

hWT (s) := Φ
(
Φ−(s) + β

)
, β ≥ 0.

The results in Section 2 could be generalized to the class of distortion risk measures through

Lemma 1 after verifying some robustness conditions. Note that the case in which the risk

preferences are ordered by ES is a special case of our main results in this section.

Lemma 1. Let Z follow the standard normal distribution N(0, 1). We have

φh

(
T (d,N, ρ)

)
= N(E(X1) + ρν1(d)) +

√
N
√

µ2(d)− µ2
1(d)φh(Z) + o(

√
N).

Proof. It follows from the Central Limit Theorem that

F−
T (d,N,ρ)(p) = N(E(X1) + ρν1(d)) +

√
N
√
µ2(d)− µ2

1(d)Φ
−(α) + o(

√
N), p ∈ (0, 1).

As 0 ≤
∑n

i=1(Xi ∧ d) ≤ Nd and Z is integrable, we have {Z} ∪ {T (d,N, ρ) : N = 1, 2 . . . }

is h-uniformly integrable.∗ By Theorem 4 of Wang et al. (2020), translation invariance and

∗For a distortion function h, a set of random variables X is called h-uniformly integrable if

lim
k↓0

sup
S∈X

∫ k

0

|F−
S (1− t)| dh(t) = 0 and lim

k↑1
sup
S∈X

∫ 1

k

|F−
S (1− t)| dh(t) = 0.
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homogeneity of φh of order 1,

φh

(
T (d,N, ρ)

)
= N

(
E(X1) + ρν1(d)

)
+
√
N
√
µ2(d)− µ2

1(d)φh(Z) + o(
√
N).

Therefore, instead of minimizing φh

(
T (d,N, ρ)

)
to define the optimal retention d, we seek

an approximately optimal retention d by minimizing

Gφ(d) := NE(X1) +Nρν1(d) +
√
N
√
µ2(d)− µ2

1(d)φh(Z). (41)

Similar to Theorem 1, we can show the unique solution after replacing Φ−(p) in Theorem 1

with φh(Z). Further, we can estimate this unique approximately optimal retention and derive

its asymptotic normal limit. Specifically, we have a generalized result below following a proof

similar to that of Theorem 1, which is given as Theorem 7 that needs the following notation.

Hφ(d) := {d− µ1(d)}2 −

( √
Nρ

φh(Z)

)2

{µ2(d)− µ2
1(d)} = 0.

Theorem 7. Assume E(X1) < ∞, FX1(x) has the support [0,∞) (i.e., FX1(0) > 0) or

(0,∞), and is continuous on (0,∞). When the support is [0,∞), we further assume FX1(0) <

Nρ2

Nρ2+(φh(Z))2
, which is always true when N is large enough. Then, there exists a unique approx-

imately optimal retention d∗φ,N ∈ (0,∞) such that

d∗φ,N = argmin
d>0

Gφ(d) and Hφ(d
∗
φ,N ) = 0.

In light of Lemma 1, we can also extend Theorems 2-4 in a similar sense to Theorem 1 by

changing Φ−(p) to φh(Z) for which no other adjustments are needed.

4 Simulation studies

We conduct two simulation studies in this section. Section 4.1 assesses the validity of sub-

stituting the actual VaR of total cost VaRp

(
T (d,N, ρ)

)
as specified in (3) with the normal-

approximated VaR GN,ρ(d) outlined in (5); this assessment is conducted under the four loading

factor rules delineated in Sections 2.1–2.4. Section 4.3 empirically examines the statistical prop-

erties of the optimal retention estimators introduced in Theorems 2, 4, and 6.
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4.1 Examining validity of approximately optimal retention

We generate samples of Xi from a Pareto (type-II) distribution with a probability density

function given by fX(x) = (α/λ)(1+x/λ)−(α+1), where the shape parameter α = 9 and the scale

parameter λ = 8, such that E[Xi] = α/(λ−1) = 1. We set the risk level at p = 0.75 and consider

sample sizes of N = 10, 25, and 100. In this analysis, we examine all four loading factor rules

by setting ρ = 0.3 for the constant loading factor, choosing δ = 0.5 for the decreasing loading

factor, and ρ0 = 0.5 for the remaining two rules.

We compute the true VaR of the total cost VaRp

(
T (d,N, ρ)

)
using (3), where E{(X1− d)+}

and VaRp(
∑N

i=1(Xi∧d)) are approximated through B = 50000 simulated samples. For example,

we have E{
∑N

i=1(Xi ∧ d)} ≈ (1/B)
∑B

j=1

∑N
i=1(Xij ∧ d) with Xij iid sampled from a Pareto

distribution for i = 1, . . . , N and j = 1, . . . , B. We also compute the normal-approximated VaR

of total cost GN,ρ(d) in (5) by numerical integration.

Figure 1 plot GN,ρ(d) (red curves) and VaRp

(
T (d,N, ρ)

)
(black curves) as functions of d

for N = 10 and 100 under the four loading factor rules. We note that GN,ρ(d) approximates

closely to VaRp

(
T (d,N, ρ)

)
under all loading factor rules especially for N = 100. For all loading

factor rules except for the constant loading factor, we observe an optimal retention d∗ ∈ [0, 1]

that minimizes the VaR of the total cost. Conversely, for the constant loading factor, both

VaRp

(
T (d,N, ρ)

)
and GN,ρ(d) become flat as d increases, especially when N is large. Hence, it

is difficult to identify d∗ by solely observing the plots.

To further compare the actual and approximately optimal retention levels d∗, we plot

∂VaRp

(
T (d,N, ρ)

)
/∂d and G′

N,ρ(d) (computed using numerical method) as functions of d in

Figure 2, representing the first derivative of the VaR of the total cost with respect to d, for

N = 10, 100 under the four loading factor rules. The actual and approximately optimal reten-

tions are determined by solving ∂VaRp

(
T (d,N, ρ)

)
/∂d = 0 and G′

N,ρ(d) = 0, respectively. In

general, G′
N,ρ(d) closely approximates ∂VaRp

(
T (d,N, ρ)

)
/∂d when the sample size is sufficiently

large. However, for small sample size, ∂VaRp

(
T (d,N, ρ)

)
/∂d tends to be more volatile and de-

viates significantly from G′
N,ρ(d) when d < 0.5. For example, in the case where N = 10 under

the Sharpe ratio principle, the black curves frequently cross the horizontal grey line, indicating

multiple local minima for VaRp

(
T (d,N, ρ)

)
. On the other hand, G′

N,ρ(d) remains a smooth

function of d in all scenarios, with each red curve crossing the horizontal gray line only once,

indicating a unique solution in this Pareto simulation setting. This highlights the computational

advantage of approximating the optimal retention rather than computing an exact one. For the

24



12.00

12.25

12.50

12.75

13.00

0.0 2.5 5.0 7.5 10.0

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 10 ; Pareto ; Constant loading factor
VaR of total cost versus retention level d

110

115

120

125

130

0.0 2.5 5.0 7.5 10.0

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 100 ; Pareto ; Constant loading factor
VaR of total cost versus retention level d

11.4

11.5

0.00 0.25 0.50 0.75 1.00

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 10 ; Pareto ; Decreasing loading factor
VaR of total cost versus retention level d

104.2

104.4

104.6

104.8

105.0

0.00 0.25 0.50 0.75 1.00

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 100 ; Pareto ; Decreasing loading factor
VaR of total cost versus retention level d

11.4

11.5

11.6

11.7

11.8

0.0 0.5 1.0 1.5

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 10 ; Pareto ; Standard deviation principle
VaR of total cost versus retention level d

104.5

105.0

105.5

0.0 0.5 1.0 1.5

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 100 ; Pareto ; Standard deviation principle
VaR of total cost versus retention level d

11.25

11.30

11.35

11.40

11.45

0.00 0.25 0.50 0.75 1.00

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 10 ; Pareto ; Sharpe ratio principle
VaR of total cost versus retention level d

104.0

104.2

104.4

0.00 0.25 0.50 0.75 1.00

retention level d

V
aR

 o
f t

ot
al

 c
os

t

Method

Actual

Approx

N = 100 ; Pareto ; Sharpe ratio principle
VaR of total cost versus retention level d

Figure 1: VaRp

(
T (d,N, ρ)

)
(black curves) and GN,ρ(d) (red curves) versus d for N = 10, 100

under various loading factor rules when Xi follows Pareto distribution.
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Figure 2: ∂VaRp

(
T (d,N, ρ)

)
/∂d (black curves) andG′

N,ρ(d) (red curves) versus d forN = 10, 100
under various loading factor rules when Xi follows Pareto distribution.
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constant loading factor rule, we observe that both ∂VaRp

(
T (d,N, ρ)

)
/∂d and G′

N,ρ(d) approach

zero as d increases, especially when N = 100, consistent with the observations in Figure 1 where

the optimal retention is visually difficult to distinguish.

We then numerically calculate the actual and approximately optimal retentions d∗ and d∗N,ρ,

and the results are displayed in Table 1. For all loading factor rules other than the constant

loading factor, the actual optimal retention d∗, which minimizes the true VaR of total cost

VaRp

(
T (d,N, ρ)

)
, yields similar values as the approximately optimal retention d∗N,ρ, which min-

imizes the approximated VaR of total cost GN,ρ(d). Also, the relative difference |(d∗N,ρ−d∗)/d∗N,ρ|

generally reduces as N increases. Furthermore, d∗ does not change substantially as N changes.

As a result, the approximate optimal retention approach for VaR works well under these three

loading factor rules.

Table 1: Actual optimal retention d∗, approximately optimal retention d∗N,ρ, and the relative
difference between d∗ and d∗N,ρ (in %) across various loading factor rules and N .

Loading factor rule N Actual Approx. Diff. (%)
Constant loading factor 10 1.8549 1.4856 -19.91
Constant loading factor 25 3.4442 2.6838 -22.08
Constant loading factor 100 7.1241 5.6581 -20.58
Decreasing loading factor 10 0.5034 0.5472 8.70
Decreasing loading factor 25 0.5835 0.5472 -6.21
Decreasing loading factor 100 0.5472 0.5472 0.02

Standard deviation principle 10 0.7847 0.8189 4.36
Standard deviation principle 25 0.8187 0.8189 0.03
Standard deviation principle 100 0.8499 0.8189 -3.64

Sharpe ratio principle 10 0.2797 0.3218 15.06
Sharpe ratio principle 25 0.3149 0.3218 2.18
Sharpe ratio principle 100 0.3203 0.3218 0.45

For the constant loading factor, the optimal retention numerically exists even if the curves in

the top panels of Figure 1 are flat and the curves in the top panels of Figure 2 approach to zero.

However, there are noticeable discrepancies between d∗ and d∗N,ρ for a given N , especially when

N is large. Under this loading factor rule, the proposed approximation method with an order of

o(
√
N), as given in (4), lacks sufficient accuracy in determining the optimal retention. To address

this, one can employ the Edgeworth expansion to enhance the precision of the approximation.

Section 2 in the supplementary materials provides detailed mathematical formulations based

on the Edgeworth approximation method, along with the corresponding numerical results for

optimal retentions. Overall, by using higher-order approximation methods, the discrepancies

between the actual and approximated optimal retentions can be significantly reduced. This
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suggests that when using a constant loading factor, a higher-order Edgeworth expansion is

necessary to achieve an accurate approximation for optimal retention, especially as N increases.

4.2 Unraveling non-uniqueness of optimal retentions

In the previous numerical study (Section 4.1), we observed a unique approximately optimal

retention d∗N,ρ under all loading factor rules when the Xi samples were generated from a Pareto

distribution. This uniqueness of the approximately optimal retention is commonly observed

across most generating distributions forXi. However, Theorems 1, 3, and 5 guarantee uniqueness

only under the constant or decreasing loading factor rules, but not under the standard deviation

or Sharpe ratio premium principles. In this study, we demonstrate the potential for non-unique

solutions under the standard deviation and Sharpe ratio premium principles by carefully selecting

the generating distribution for Xi.

The Xi samples are now generated from a three-component finite mixture of log-normal

Pareto distributions, with the probability density function fX(x) = 0.4 · ϕ̃(x;µ = −1.6, σ =

0.1) + 0.4 · ϕ̃(x;µ = 0, σ = 0.01) + 0.2 · fX(x;α = 51, λ = 150), where ϕ̃(x;µ, σ) represents the

log-normal density with mean and standard deviation parameters µ and σ, while fX(x;α, λ) is

a Pareto density with shape and scale parameters α and λ. We set p = 0.75, N = 100, and

ρ0 = 0.34 (for the standard deviation principle) or ρ0 = 1.07 (for the Sharpe ratio principle).

Figure 3 presents the actual (black) and approximated (red) VaRs plotted against d under both

loading factor rules. The plots are zoomed in for clarity. It is evident that two local minima exist

for both the actual and approximated VaRs, demonstrating the non-uniqueness of solutions in

this specific setting.
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Figure 3: VaRp

(
T (d,N, ρ)

)
(black curves) and GN,ρ(d) (red curves) versus d under various

loading factor rules when Xi follows finite mixture distribution.

28



4.3 Verifying statistical properties of nonparametric approach

We adopt the same simulation setup as in Section 4.1 except assessing larger sample sizes

of N = 500, 2000, and 10000. The computational complexity associated with such large sample

sizes is given by the fact the direct estimation of the true VaR of the total cost VaRp

(
T (d,N, ρ)

)
is unfeasible without resorting to the normal approximation technique. In each simulation run,

we compute the nonparametric estimation of the approximately optimal retention, which is

d̂∗N,ρN
under the decreasing loading factor,

ˆ̃
dN,ρN under the standard deviation principle, or

ˆ̄dN,ρN under the Sharpe ratio principle. To obtain an M -vector of estimated optimal retentions,

which is {d̂∗(m)
N,ρN

}m=1,...,M for each of the three loading factor rules, we repeat the simulation runs

M = 5000 times. Additionally, through numerical integration, we compute the “true” approx-

imately optimal retention, denoted as d∗N,ρN
under the decreasing loading factor, d̃N,ρN under

the standard deviation principle, or d̄N,ρN under the Sharpe ratio principle. We calculate the

sample mean of {d̂∗(m)
N,ρN

}m=1,...,M and compare it with the true approximately optimal retention

to evaluate the bias of the proposed nonparametric estimation approach.

Table 2: Columns 2–4 : True approximately optimal retention, the sample mean of the nonpara-
metrically estimated approximately optimal retentions, and their relative difference; Columns
5–7 : Theoretical and empirical standard error of the estimated optimal retention, and their
relative difference.

Mean optimal retention Std. Error optimal retention

True Estimated Bias (%) Theoretical Empirical Diff. (%)
Decreasing loading factor
N = 500 0.5472 0.5478 0.10 0.0392 0.0392 -0.05
N = 2000 0.5472 0.5478 0.11 0.0196 0.0201 2.57
N = 10000 0.5472 0.5474 0.04 0.0088 0.0087 -0.24
Standard deviation principle
N = 500 0.8189 0.8185 -0.05 0.1115 0.1199 7.54
N = 2000 0.8189 0.8187 -0.03 0.0577 0.0594 2.98
N = 10000 0.8189 0.8191 0.02 0.0263 0.0262 -0.22
Sharpe ratio principle
N = 500 0.3218 0.3259 1.29 0.0442 0.0468 5.85
N = 2000 0.3218 0.3233 0.46 0.0229 0.0235 2.64
N = 10000 0.3218 0.3220 0.07 0.0104 0.0105 1.73

Utilizing the results from Theorems 2, 4 and 6, we compute the theoretical standard error

of the optimal retention estimators, represented as, for example, N−1/2ĉ−1
0

√
(ĉ1, ĉ2)Σ̂0(ĉ1, ĉ2)τ

under the decreasing loading factor, and compare it with the sample standard deviation of

{d̂∗(m)
N,ρN

}m=1,...,M to assess the validity of the theoretical results. Note that for the computation

of standard errors under Theorems 4 and 6, we utilize the kernel density estimator f̂X1(d) with
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a Gaussian kernel function and a bandwidth of 0.1. While alternative kernel functions and

bandwidths are possible, we have observed that they exert negligible influence on the computed

standard errors. Hence, we do not delve into further details regarding these alternatives. Table 2

summarizes the findings across various N and loading factor rules. Our observations indicate

minimal estimation biases of the nonparametrically estimated optimal retention in all scenarios,

and in turn, we empirically confirm the consistency of the proposed nonparametric estimators.

Moreover, the empirical standard deviations of our estimators closely align with the theoretical

standard errors across all cases, which provides empirical validation to the asymptotic properties

outlined in Theorems 2, 4 and 6. Additionally, as N becomes large, we note a decline in the

relative bias of the estimated optimal retention, as well as the relative difference between the

theoretical and empirical standard errors, consistent with the asymptotic theories.

5 Real Data analysis

We analyze the frecomfire dataset, which consists of 9,613 commercial fire losses located

in France, spanning from 1982 to 1996. This dataset is publicly accessible via the R package

CASdatasets. The left panel of Figure 4 displays the empirical density of claim severities, with

each claim expressed in million euros (at the 2007 value). The distribution of claim sizes exhibits

significant right-skewness, as evidenced by several extreme losses indicated by arrows. In the

right panel of Figure 4, the Lorenz curve illustrates the cumulative share of claim amounts

against the cumulative normalized rank of claims. A substantial deviation of the Lorenz curve

from the equality line indicates considerable disparities between large and small claims. The

pronounced gap between the Lorenz curve and the equality line reflects the wide dispersion of

claim amounts. Notably, the median, mean, and maximum loss amounts are 0.7633, 1.9811, and

315.54, respectively, with the 20 largest loss comprising more than 10% of the total loss. The

heavy-tailed nature of the claim distribution, coupled with several exceptionally large losses,

highlights the importance for insurance companies to transfer individual losses, rather than

aggregate liabilities, to reinsurers. This motivates the analysis of EoL reinsurance, rather than

SL reinsurance, as explored, for instance, by Cai and Tan (2007).

Our primary objective is to investigate the variations in nonparametric estimates of the

approximately optimal retention across various effective loading factors ρ and risk levels p under

three loading factor rules: decreasing loading factor, standard deviation principle, and Sharpe
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Figure 4: Left panel : Empirical density plot of claim severity; Right panel : Lorenz curve (thick
solid curve) of claim severity with the equality line (dotted 45-degree line).

ratio principle. It is important to highlight that we assess the effective loading factors ρ by

using expressions such as (18) under the standard deviation principle, rather than relying on

the nominal loading factors like ρ0 in (18) so that we ensure equitable comparisons among the

three loading factor rules.
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Figure 5: Optimal retention versus effective loading factor (solid curves) with fixed p = 0.9 (left
panel) or p = 0.95 (right panel). The 95% confidence intervals are displayed as shaded areas.

Figure 5 displays the optimal retention as a function of the effective loading factor ρ, with

fixed values of p = 0.9 (left panel) or p = 0.95 (right panel) under each of the three loading factor

rules, accompanied by corresponding 95% confidence intervals determined based on Theorems 2,

4 and 6. Across all loading factor rules, it is evident that the optimal retention level increases

with ρ for any fixed p. This observation is intuitive, as a higher ρ implies a greater cost for

risk transfer, thereby incentivizing insurers to retain losses up to a higher level. Furthermore,

it is observed that the standard deviation loading factor principle yields the highest optimal

retention for any fixed p and ρ, followed by the decreasing loading factor and, finally, the Sharpe
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ratio principle. This trend can be rationalized by considering that the standard deviation of

the excess loss (X1 − d)+ decreases as d increases. Consequently, the effective loading factor

under the standard deviation principle diminishes with increasing d, encouraging insurers to

select a higher retention level to mitigate reinsurance costs. Additionally, the confidence bands

under the standard deviation and Sharpe ratio principles are notably wider than those under

the decreasing loading factor. This discrepancy arises because the loading factor ρ under either

principle, which is contingent on the second moment of the excess loss, may be heavily influenced

by extreme losses, leading to increased standard errors. Conversely, the normal-approximated

VaR of the total cost relies solely on the excess loss up to its first moment under the decreasing

loading factor, resulting in decreased sensitivity of the estimated optimal retention to extreme

losses.
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Figure 6: Optimal retention versus risk level p (solid curves) with fixed ρ = 0.005 (left panel)
or ρ = 0.02 (right panel). The 95% confidence intervals are displayed as shaded areas.

Figure 6 illustrates the optimal retention versus the risk level p, with fixed values of ρ = 0.005

(left panel) or ρ = 0.02 (right panel) under the three loading factor rules, accompanied by 95%

confidence intervals. Across all loading factor rules, it is observed that the optimal retention

decreases as p increases. This outcome is logical, as a higher risk level p signifies insurers’

greater aversion to risk, thereby reducing their inclination to retain extreme losses by opting for

a smaller retention level. Notably, our proposed method addresses the counterintuitive finding

of Cai and Tan (2007) that the optimal retention remains unchanged as p varies.
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1 Numerical study: Comparing EoL and SL approaches

In this section, we substantiate the assertions presented in Section 1.2 of the manuscript

regarding the comparison between the EoL and SL approaches. This is accomplished

through a numerical investigation with a small N supported by theoretical reasoning. We

simulate Xi from a Pareto (type-II) distribution with pdf fX(x) = (α/λ)(1 + x/λ)−(α+1)

with shape parameter α = 9 and scale parameter λ = 8, such that the mean is E[Xi] =

α/(λ− 1) = 1. We choose p = 0.75 for the risk level, ρ = 0.2 for the loading factor, and

consider N = 2, 3, 5, 10. We first compute the true VaR of the total cost VaRp

(
T (d,N, ρ)

)
using (3), where VaRp(

∑N
i=1(Xi∧d)) and E{(X1−d)+} are approximated, respectively, by

the empirical p-VaR and expectation of
∑N

i=1(Xi∧d) and (X1−d)+ from B = 50, 000 sim-

ulated samples. For example, we compute E{
∑N

i=1(Xi ∧ d)} ≈ (1/B)
∑B

j=1

∑N
i=1(Xij ∧ d)

with Xij iid sampled from the Pareto distribution for i = 1, . . . , N and j = 1, . . . , B.

Figure 1 plots VaRp

(
T (d,N, ρ)

)
as a function of d for various N . We note that

VaRp

(
T (d,N, ρ)

)
is piecewise differentiable except for N turning points, which are illus-

trated by the gray dotted vertical lines added in Figure 1. In addition, if we denote the i-th

turning point as d̃N(i) for i = 1, . . . , N−1, we observe that d̃N(i) = {d : P (
∑N

i=1(Xi∧d) ≥

(N − i+1)d) = 1− p}; indeed, the density function of
∑N

i=1(Xi ∧ d) exhibits jump points

at integer multiples of d, causing the turning points.
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Figure 1: VaRp

(
T (d,N, ρ)

)
versus d ∈ [0, 5] for various N . Gray vertical lines represent

the turning points of the curves.

We then numerically calculate d∗, i.e., minimize VaRp

(
T (d,N, ρ)

)
over d, and compute

the probability P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) for various N . An interesting series

of observations is further noted.

First, the calculated value of d∗ is 0.1633, 0.1643, 0.5025, 0.8779, respectively, for

N = 2, 3, 5, 10. This coincides with the analysis in Theorem 1 that the optimal retention

increases with N if ρ is fixed.

Second, the calculated probability P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) is 0, 0, 0.25

and 0.25, respectively, for N = 2, 3, 5, 10. As N is large enough, the probability will be

exactly 0.25, and otherwise, the probability will be exactly zero.

Third, we observe from the figure that P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 0 if

d∗ ≤ d̃N(1) and P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 0.25 if d∗ > d̃N(1). Indeed, one

2



can justify it theoretically as follows. From the definition of d̃N(i), if d
∗ ≤ d̃N(1), we have

1− p = P (
N∑
i=1

Xi ∧ d̃N(i) ≥ Nd̃N(i)) = P (Xi ≥ d̃N(i))
N

≤ P (Xi ≥ d∗)N = P (
N∑
i=1

Xi ∧ d∗ ≥ Nd∗).

Since P (
∑N

i=1Xi ∧ d∗ ≥ Nd∗) ≥ 1 − p,
∑N

i=1Xi ∧ d∗ is upper bounded by Nd∗ and

hence P (
∑N

i=1Xi ∧ d∗ > Nd∗) = 0, we have VaRp(
∑N

i=1 Xi ∧ d∗) = Nd∗ and hence

P (
∑N

i=1Xi∧d∗ > VaRp(
∑N

i=1Xi∧d∗)) = 0. If d∗ > d̃N(1), we have VaRp(
∑N

i=1Xi∧d∗) <

Nd∗, and the distribution function of
∑N

i=1Xi ∧ d∗ is continuous on (0, Nd∗). Hence,

P (
∑N

i=1Xi ∧ d∗ > VaRp(
∑N

i=1Xi ∧ d∗)) = 1 − p by the basic definition of quantile.

Therefore, we conclude that the VaR of the total cost with the optimal retention is

appropriate if and only if the optimal retention is above the first turning point.

Fourth, one can also show that P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 1−p if and only

if P (Xi ≥ d∗) ≤ (1− p)1/N . With a larger N , this condition is more likely to hold. With

N = 1, i.e., the SL approach following Cai and Tan (2007), we have d∗ = F−
X1
(1−1/(1+ρ))

given 1− p < (1 + ρ)−1, and hence P (Xi ≥ d∗) = (1 + ρ)−1 > (1− p), meaning that the

condition never holds.

Overall, while P (T (d∗, 1, ρ) > VaRp(T (d
∗, 1, ρ))) = 0 under the SL approach, we em-

pirically and theoretically show that P (T (d∗, N, ρ) > VaRp(T (d
∗, N, ρ))) = 1 − p, the

correct level, for sufficiently large N under the EoL approach. Hence, the EoL opti-

mal retention would not inherit the same counter-intuitive property as the SL optimal

retention.

2 Approximating VaR of total cost by Edgeworth ex-

pansion

To address the issue of insufficient accuracy outlined by Section 4.1 under the con-

stant loading factor rule, we employ Edgeworth expansion to improve the approximation

precision from (4) in the manuscript. Suppose that Z1, . . . , ZN are iid random variables
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with zero mean, unit variance, and E[Z4
1 ] < ∞. Then, standard Edgeworth expansion

yields

P

(
1√
N

N∑
i=1

Zi ≤ x

)
= Φ(x)− 1√

N
p1(x)ϕ(x) +

1

N
p2(x)ϕ(x) + o(N−1), (1)

where p1(x) = −κ3H2(x)/6, p2(x) = −(κ4H3(x)/24 + κ2
3H5(x)/72). Here, κ3 = E[(Z1 −

E[Z1])
3] and κ4 = E[(Z1 −E[Z1])

4]− 3E[(Z1 −E[Z1])
2]2 are the moment quantities, and

H2(x) = x2−1, H3(x) = x3−3x andH5(x) = x5−10x3+15x are the Hermite polynomials.

From (1) above and (3) in the manuscript, one can apply the Cornish-Fisher expansion

and write

VaRp (T (d,N, ρ)) =
√
N
√

µ2(d)− µ2
1(d)

[
Φ−(p) +

1√
N
p̃1(p; d) +

1

N
p̃2(p; d)

]
(2)

+NE[X1] +Nρν1(d) + o

(
1√
N

)
,

where p̃1(p; d) = − κ̃3(d)
6

H2(p) and

p̃2(p; d) =
κ̃4(d)

24
H3(p) +

κ̃3(d)
2

72

(
H5(p) + 2H ′

2(p)H2(p)− pH2(p)
2
)

with

κ̃3(d) =
E[(X1 ∧ d− E[X1 ∧ d])3]

E[(X1 ∧ d− E[X1 ∧ d])2]3/2
, κ̃4(d) =

E[(X1 ∧ d− E[X1 ∧ d])4]

E[(X1 ∧ d− E[X1 ∧ d])2]2
− 3.

We alternatively propose to compute the approximate optimal retention by minimizing

G
(2)
N,ρ(d) = NE[X1] +Nρν1(d) +

√
N
√
µ2(d)− µ2

1(d)

[
Φ−(p) +

1√
N
p̃1(p; d),

]
(3)

or

G
(3)
N,ρ(d) = NE[X1] +Nρν1(d) (4)

+
√
N
√

µ2(d)− µ2
1(d)

[
Φ−(p) +

1√
N
p̃1(p; d) +

1

N
p̃2(p; d)

]
,
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where the error terms underlying G
(2)
N,ρ and G

(3)
N,ρ are, respectively, o(1) and o(1/

√
N).

Recall that the approximation order of GN,ρ(d) in (5) of the manuscript is o(
√
N).

We now numerically evaluate how the Edgeworth approximation technique improves

the accuracy of the VaR approximation under the constant loading factor rule, as dis-

cussed in the simulation study in Section 4.1 of the manuscript. The left panels of Figure

2 plot VaRp

(
T (d,N, ρ)

)
(black curves), GN,ρ(d) (red curves), G

(2)
N,ρ(d) (green curves),

and G
(3)
N,ρ(d) (blue curves) as functions of d for N = 10 and N = 100 under the con-

stant loading factor rule. The right panels of Figure 2 illustrate the differences between

the approximated and actual VaRs for various approximation methods. It is evident

that the approximation errors of VaR, particularly for the higher-order Edgeworth expan-

sions (blue curves), are significantly reduced in comparison to the normal approximations.

Additionally, we compute the optimal retention that minimizes the approximated VaRs

G
(2)
N,ρ(d) (with an approximation order of o(1)) and G

(3)
N,ρ(d) (with an approximation order

of o(1/
√
N)), and the results are summarized in Table 1. This table expands upon Table

1 in the manuscript to include the results of higher-order approximation methods. The

table demonstrates that the discrepancies between d∗ and d∗N,ρ are significantly reduced

when using higher-order approximation techniques. In summary, employing a constant

loading factor requires higher-order Edgeworth expansions for accurately approximating

the optimal retention, especially for larger N .
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Figure 2: Left panels : VaRp

(
T (d,N, ρ)

)
(black curves), GN,ρ(d) (red curves), G

(2)
N,ρ(d)

(green curves) andG
(3)
N,ρ(d) (blue curves) forN = 10, 100 under the constant loading factor.

Right panels : [GN,ρ(d) − VaRp

(
T (d,N, ρ)

)
] (red curves), [G

(2)
N,ρ(d) − VaRp

(
T (d,N, ρ)

)
]

(green curves) and [G
(3)
N,ρ(d)− VaRp

(
T (d,N, ρ)

)
] (blue curves) versus d.

6



Table 1: Actual optimal retention d∗, approximately optimal retention d∗N,ρ, and the
relative difference between d∗ and d∗N,ρ (in %) across various loading factor rules, N , and
approximation orders.

Loading factor rule N Approx. order Actual Approx. Diff. (%)

Constant loading factor 10 o(
√
N) 1.8549 1.4856 -19.91

Constant loading factor 10 o(1) 1.8549 1.6276 -12.25

Constant loading factor 10 o(1/
√
N) 1.8549 1.5921 -14.17

Constant loading factor 25 o(
√
N) 3.4442 2.6838 -22.08

Constant loading factor 25 o(1) 3.4442 2.9634 -13.96

Constant loading factor 25 o(1/
√
N) 3.4442 2.9969 -12.99

Constant loading factor 100 o(
√
N) 7.1241 5.6581 -20.58

Constant loading factor 100 o(1) 7.1241 6.3361 -11.06

Constant loading factor 100 o(1/
√
N) 7.1241 6.6660 -6.43

Decreasing loading factor 10 o(
√
N) 0.5034 0.5472 8.70

Decreasing loading factor 25 o(
√
N) 0.5835 0.5472 -6.21

Decreasing loading factor 100 o(
√
N) 0.5472 0.5472 0.02

Standard deviation principle 10 o(
√
N) 0.7847 0.8189 4.36

Standard deviation principle 25 o(
√
N) 0.8187 0.8189 0.03

Standard deviation principle 100 o(
√
N) 0.8499 0.8189 -3.64

Sharpe ratio principle 10 o(
√
N) 0.2797 0.3218 15.06

Sharpe ratio principle 25 o(
√
N) 0.3149 0.3218 2.18

Sharpe ratio principle 100 o(
√
N) 0.3203 0.3218 0.45
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