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Abstract

We devise two algorithms for approximating solutions of PSDisation, a problem in actuarial

science and finance, to find the nearest valid correlation matrix that is positive semidefinite.

The first method converts the PSDisation problem with a positive semidefinite constraint and

other linear constraints into iterative linear programmings (LP) or quadratic programmings

(QP). The LPs or QPs in our formulation give an upper bound of the optimal solution of the

original problem which can be improved during each iteration. The biggest advantage of this

iterative method is its great flexibility when working with different choices of norms or with user-

defined constraints. Secondly, a gradient descent method is designed specifically for PSDisation

under the Frobenius norm to measure how close the two metrices are. Experiments on randomly

generated data show that this method enjoys better resilience to noise while maintaining good

accuracy. Examples of applications in finance as well as machine learning field are given.

Computational results are presented followed by discussion on future improvements.

Keywords: Nearest correlation matrix; Positive semidefinite; Semidefinite programming.

1. Introduction

A correlation matrix is a square matrix summarising correlation coefficients between each pair

of variables. This is used by many financial or insurance companies to determine how a group

of risks are dependent from each other (Pearson, 1895). A major usage of correlation matrix

is to measure an insurer’s exposure to risks and calculate the Solvency Capital Requirement

(SCR) under the Solvency II Standard Formula (Milhaud et al., 2018). Another application for

the correlation matrix is to work with copulas for aggregation of risks in more complex capital
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model (Milhaud et al., 2018).

Both applications require the correlation matrix to be symmetric and positive semidefinite with

diagonal entries all equal to one. In practice, however, the correlation matrix estimated from

the empirical data is rarely positive semidefinite due to a variety of reasons, including data

incompleteness, noise, rounding, manual adjustment or inconsistent computing approaches, etc

(Cutajar et al., 2017). Therefore, a valid correlation matrix that is positive semidefinite should

be obtained based on the empirical matrix in order to perform risk analysis. The problem of

finding such correlation matrix nearest to an empirical matrix is called PSDisation (Milhaud

et al., 2018).

Denote the set of n × n real matrices by Rn×n. We write Z ⪰ 0 if Z is a symmetric positive

semidefinite matrix (Z ≻ 0 for positive definite). We use diag(Z) to denote vector of all

diagonal entries of Z and 1 stands for the all-ones vector. The operator || · || stands for some

matrix norm, for which the choice will be explained later.

The PSDisation problem we consider in this paper is defined as follows. Let A ∈ Rn×n be a

symmetric matrix that is not positive semidefinite with diagonal entries all equal to 1. It repre-

sents an empirical correlation matrix of n random variables Y1, . . . , Yn with standard deviations

σY1 , . . . , σYn whose (i, j) entry is given by

aij = corr(Yi, Yj) =
cov(Yi, Yj)

σYiσYj

, if σYiσYj > 0.

We aim to find the nearest positive semidefinite matrix X of the same form. The problem can

be written as follows.

Problem 1.

min
X

||A−X||2

s.t. X ⪰ 0,

diag(X) = 1,

(1.1)

As we wish to find the nearest correlation matrix X to the empirical matrix A, the choice

of the matrix norm || · || determines how “nearest” is defined. In this paper, we suggest four

different norms to choose from.

A trivial choice is the Frobenius norm, or the F-norm (Van Loan and Golub, 1983),

||M||F =

√√√√ n∑
i=1

n∑
j=1

|mij |2 =
√

Tr(MTM).

Another well-known norm is the W-norm (Higham, 2002),

||M||W = ||W
1
2MW

1
2 ||F,
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where W ∈ Rn×n is a square matrix with positive entries. This weighted norm is commonly

used in numerical mathematics (Higham, 2002) and allows us to force some elements of X to

be closer to the corresponding entries in A. Setting W to the identity matrix will retrieve the

F-norm.

However, when applied to actuarial science, an insurance company may be more interested in

the H-norm (Milhaud et al., 2018) defined by

||M||H =

√√√√ n∑
i=1

n∑
j=1

hij |mij |2.

This is similar to the F-norm but allows one to assign weights to A on an element-by-element

basis. Therefore the H-norm is preferred when one has prior knowledge on the correlation

matrix A, e.g. how confident one is in each correlation coefficient. It is equivalent to the

F-norm when H is an all-ones matrix.

Finally, we have the Chebyshev norm, or the max norm, as an alternative, which calculates the

maximum difference between each entry in A and its corresponding element in X (Cantrell,

2000):

||M||max = max
i,j

(|mij |).

The Chebyshev norm specifies an element-wise ceiling for the largest difference between entries

of X and A. This can be particularly useful and more robust to outliers when mij is large.

Currently most state-of-the-art methods focus on finding the nearest correlation matrix with

respect to the F-norm, of which some apply to H-norm as well. Over those algorithms, the

Newton method (NM) (Qi and Sun, 2006) and the augmented Lagrangian method (ALD) (Qi

and Sun, 2011) are the most efficient in producing optimal solutions. The Newton method is

able to work with W-norm and ALD is designed for H-norm, where upper bound and lower

bound for each entry of the matrix can also be set. The alternating projections method (APM)

aims to find the nearest PSD matrix by iteratively projecting A onto two convex sets (Higham,

2002). It converges linearly at best (Deutsch and Hundal, 1997) and can be applied under

the F-norm as well as the W-norm. The spectral decomposition method (SDM) is one of the

easiest way to tackle the PSDisation problem. By setting all negative eigenvalues to zero after

performing a spectral decomposition of the initial matrix followed by a rescaling, it can give an

acceptable approximation of the solution to the PSDisation problem even faster. The shirking

method proposed by Higham et al. (2016) has been designed to handle correlation matrix with

fixed diagonal blocks. However, the outcome of this method heavily depends on the choice of

a target matrix which is positive semidefinite and near to A. Therefore it is not considered

suitable for finding the global optimal of the PSDisation problem. Cutajar et al. (2017)

explored the shrinking method as a way to improve the results of the alternating projections

method. There are other PSDisation methods such as semidefinite programming (Higham,
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2002) and hypersphere decomposition method (Rebonato and Jäckel, 2011). For complete

survey and a full list of PSDisation algorithms please see Cutajar et al. (2017); Milhaud et al.

(2018).

However, depending on the industrial situations, insurance companies may wish to measure

the similarity using an alternative norm other than the F-norm, which makes some algorithms

more time-consuming or invalid. In this paper, we propose two new methods to approximate

the solution of the PSDisation problem. The first algorithm works by solving a series of optimi-

sations such as linear programmings (LP) or quadratic programmings (QP). Instead of solving

the original problem which requires the correlation matrix X to be positive semidefinite, our

formulation requires X = UTQU where Q belongs to the convex cone of diagonally dominant

symmetric matrices with non-negative diagonal entries and thus all constraints are linear. This

is a rich subset of the PSD matrices set, but the optimisations can be solved more efficiently due

to the linearity of the constraints. The main advantage of this method is its flexibility as our

formulation is adapted directly from the original problem and is thus effective on any choice of

norms, including the F-norm, the Chebyshev norm and the H-norm. The advantages of using

these norms will be illustrated in our experiment results. The second algorithm is to find the

nearest correlation matrix to the initial matrix using an iterative gradient projection method

under the F-norm. This can be done simply by repeatedly taking a step along the gradient of

the objective function and then projecting the matrix back to the positive semidefinite cone.

This algorithm is easy to implement and enjoys good efficiency while maintaining good accuracy.

Extensive experiments demonstrate that our first iterative algorithm could achieve comparable

results to state-of-art methods, while showing more flexibility to handle with complex con-

straints or different choices of norms. Our second gradient descent method provides slightly

less accurate results, but runs faster than the first algorithm and is more resilient to noise than

some state-of-art methods and therefore can be more reliable in practical situations.

This paper is organised as follows. In Section 2 we introduce our two approaches to the

PSDisation problem. Experiment results for both algorithms are reported in Section 3. Finally,

in Section 4 we conclude this paper and propose some future work.

2. Proposed PSDisation Methods

In this section, two methods are proposed to find the nearest correlation matrix. Currently most

PSDisation methods are designed specifically for the F-norm. Some of them can be adapted

to work with the H-norm with a cost of more complex formulation or higher computational

time. Our first proposed method is done by iteratively solving a series of linearly constrained

quadratic optimisations or linear optimisations. Therefore, we get an approximation of the

optimal value of the PSDisation problem by directly minimising the objective function at each

iteration, where we have the flexibility to easily choose different norms to work with. The

other approach is based on iteratively taking a step along the gradient to reduce the objective
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function and projecting onto the positive semidefinite set with diagonal one according to

spectral decomposition method (Rebonato and Jäckel, 2011), which is designed for solving the

PSDisation problem with respect to the F-norm.

2.1. Iterative Quadratic/Linear Programming

Consider the PSDisation problem in (1.1), which requires X to be positive semidefinite in its

constraints. The positive semidefinite constraint can be reduced and therefore the optimisa-

tion problem is transfered into quadratic or linear optimisation problems with linear constraints.

A square matrix X is called diagonally dominant if

|xii| ≥
∑
j ̸=i

|xij | ∀ 1 ≤ i ≤ n.

It is well-known that a symmetric diagonally dominant matrix with non-negative diagonal en-

tries is positive semidefinite, which makes up a rich subset of PSD matrices. Therefore, we

could approximate the optimisation problem (1.1) stated above by solving convex optimisation

problems of the following form in an iterative manner,

min
X,Q

||A−X||2

s.t. diag(X) = 1,

X = UT
hQUh,

Q = QT ,

Q is diagonally dominant with non-negative diagonal.

(2.1)

Note that U1 = Id and Uh = Chol(X∗
h−1) for h ≥ 2 where X∗

h−1 is the optimal solution from

the previous optimisation. U = Chol(X) represents the Cholesky decomposition of X such

that U is an upper triangular matrix satisfying X = UTU.

Lemma 2. Problem (2.1) gives an upper bound of Problem (1.1).

Proof. The matrix Q is guaranteed to be positive semidefinite in (2.1), since it is symmetric

and diagonally dominant with non-negative diagonal entries and therefore X = UT
hQUh is also

positive semidefinite. Problem (2.1) minimises the objective function over a subset of positive

semidefinite matrices and therefore Lemma 2 holds.

Lemma 3. Problem (2.1) is feasible for iteration h (h ≥ 2) if it is feasible for iteration h− 1.

Proof. This proof is trivial as X∗
h−1 = UT

h IUh and the identity matrix I is symmetric and

diagonally dominant. Therefore, solution of problem in iteration h − 1 is feasible for iteration

h.
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Let us denote the objective function by f(·),

f(X) = ||A−X||2.

Lemma 2 and Lemma 3 indicate that an optimal solution always exists for (2.1) as long as the

problem in the first problem is feasible and the optimal solution in each iteration is at least as

good as that from the previous iteration, i.e.,

f(X∗
h) ≤ f(X∗

h−1) ∀h ≥ 2.

Given that the problems are feasible and the optimal solution is positive definite (which is true

when numerical computation is concerned), it can be further shown that the optimal value of

Problem (2.1) decrease strictly after each iteration unless it reaches the optimal value of Problem

(1.1) (Ahmadi and Hall, 2017). In this case, the optimal objective value in each iteration in

Problem (2.1) will finally converge as it is monotonic decreasing and bounded below by the

true optimal value of Problem (1.1). In our numerical experiments, the optimal after each

iteration always finally converges to the true optimal and strong empirical evidence shows a

fast convergence.

Algorithm 1: An iterative quadratic/linear programming algorithm to solve PSDisa-

tion under some matrix norm

X0 = I;

while not converged do

Uh = Chol(Xh−1);

find Xh by solving

min
Xh,Qh

||A−Xh||2

s.t. diag(Xh) = 1,

Xh = UT
hQhUh,

Qh = QT
h ,

Qh is diagonally dominant with non-negative diagonal;

h = h+ 1;

end

Let us take the F-norm as an example. Note that ||A − X||2F = xTx − 2aTx + aTa where

x = vec(X) and a = vec(A) and vec is the vectorisation function that transforms a matrix into a

column vector. We further rewrite the objective function and the constraint that Q is diagonally

dominant with non-negative diagonal by adding slack variables R into the optimisation,

min
X,Q,R

1

2
xTx− aTx

s.t. diag(X) = 1,

qii ≥
∑
j ̸=i

rij , 1 ≤ i ≤ n
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− rij ≤ qij ≤ rij , 1 ≤ i ̸= j ≤ n

X = UT
hQUh,

Q = QT .

Now all constraints become linear and we obtained a series of iterative QPs. Each QP has 3n2

variables and 4n2 − n constraints, which can be solved efficiently.

Similarly, if the H-norm is applied in the objective function, the iterative QPs can be written

as

min
X,Q,R

1

2
xT Diag(h)x− aT Diag(h)x

s.t. diag(X) = 1,

qii ≥
∑
j ̸=i

rij , 1 ≤ i ≤ n

− rij ≤ qij ≤ rij , 1 ≤ i ̸= j ≤ n

X = UT
hQUh,

Q = QT .

where h = vec(H) and Diag(h) is an n2 × n2 diagonal matrix with the elements of h on the

main diagonal. This general formulation makes our method more flexible when an insurance

company wants to assign weight on each entry of the correlation matrix, exploiting prior

knowledge on the data.

Next, we consider the situation where we optimise with respect to the Chebyshev norm. Ac-

cording to (Cutajar et al., 2017), PSDisation over the F-norm is likely to result in a correlation

matrix X in which some entries differ significantly from the initial matrix A, while other en-

tries have relatively smaller deviations, giving the minimum F-norm optimal. However, this is

not preferred by some insurance companies as they aim to minimise the maximum discrepancy

between corresponding entries from the valid correlation matrix X and initial matrix A. In this

case, minimising over the Chebyshev norm becomes an alternative choice. With our iterative

approximating method, this can be obtained by solving a series of LPs of the following form,

min
X,Q,R,t

t

s.t. − t ≤ aij − xij ≤ t, 1 ≤ i ̸= j ≤ n

diag(X) = 1,

qii ≥
∑
j ̸=i

rij , 1 ≤ i ≤ n

− rij ≤ qij ≤ rij , 1 ≤ i ̸= j ≤ n

X = UT
hQUh,

Q = QT .
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Experiments show that our iterative algorithm proposed for approximating optimal solutions

for PSDisation problems offers great flexibility under different norms while maintaining a good

accuracy. Details are explained in Section 3.

2.2. Gradient Descent

Next we propose our second algorithm, where we will focus on working under the F-norm only

as there is currently no known method that could project X onto the positive semidefinite set

under the H-norm. This method is therefore less flexible in the choice of norms. However, it

works more efficiently and provides more steady results on real data with noise.

Consider the objective of the PSDisation problem in (1.1),

min
X

||A−X||2,

the gradient under the F-norm is calculated as

∂

∂X
||A−X||F =

X−A

||A−X||F
.

To project a matrix X onto the positive semidefinite cone Sn
+, first perform the eigendecom-

position such that X = QΛQ−1 and Λ = Diag(λi) where λi are eigenvalues of X. Define

Λ+ = Diag(λi+) where λi+ = max(λi, 0). Next, in order to ensure that the resulting matrix

has diagonal 1, we calculate the scaling matrix T = Diag(ti) where the weighting parameter ti

is given by

ti =

√√√√(
n∑

m=1

q2imλm+)−1.

Then X+ = TQΛ+Q
−1T is the projection of X onto the cone of positive semidefinite matrices.

Our proposed method is shown in Algorithm 2 below. X is updated iteratively by taking a

gradient step and projection until converged. According to our experiments, the gradient step

γ can be initialised as a large value to speedup the convergence and it will fast decrease during

iterations.
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Algorithm 2: The Gradient descent algorithm for PSDisation under the F-norm

X0 = I;

while not converged do

Xi+1 = Xi − γGi;

Xi+1 = PS+(Xi+1);

Ci+1 = ||A−Xi+1||F;
if Ci+1 < Ci then

γ = γ ∗ (1 + δ);

else

γ = γ/2;

end

i = i+ 1;

end

3. Experimental Results

To illustrate the robustness and flexibility of our algorithms, we designed a series of tests based

on simulated and real datasets. In this section, we show the experimental results and compare

our methods with the state-of-the-arts.

3.1. Experiments on Iterative Quadratic/Linear Programming Algorithm

To test our iterative quadratic/linear programming algorithm, we randomly generate the

initial matrix A of different dimensions (i.e. with dimensions of 5, 10, 25, 50 and 75) that

is not positive semidefinite. For A generated from each dimension settings, we solve for the

nearest valid correlation matrix X using our method for the F-norm and the Chebyshev norm,

which lead to iterative quadratic programming (IQP) and iterative linear programming (ILP),

respectively. The stopping criteria is set to achieve a solution with error less than 0.1% in

each iteration. We calculate the Frobenius distance and the Chebyshev distance between X

and A from IQP and ILP and compare with those given by the APM, the Newton method

and the SDM, which are all designed for minimising the F-norm. The APM and the Newton

method work very fast and can both achieve solutions with accuracy tolerance far lower than

0.0001, therefore the experiment settings have no big impact on testing results. We just use the

default settings by the authors here (Higham, 2002; Qi and Sun, 2006). The results are shown

in Tables 1 and 2 for the F-norm and the Chebyshev norm, respectively. Best performance in

each group are in bold faces.

9



Dimension of A 5 10 25 50 75

Newton 0.3420 0.8341 5.0057 13.0331 20.6889

APM 0.3420 0.8341 5.0057 13.0331 20.6889

SDM 0.3537 0.8602 5.1716 13.5887 21.5025

IQP 0.3420 0.8352 5.0245 13.2406 21.2224

ILP 0.3819 1.0815 7.6554 15.9193 24.9860

Table 1: The F-norm ||A−X||F obtained from different algorithms on different dimensions of the initial matrix
A.

Dimension of A 5 10 25 50 75

Newton 0.1313 0.2128 0.6473 0.7605 0.8313

APM 0.1313 0.2128 0.6473 0.7605 0.8313

SDM 0.1416 0.2265 0.6225 0.7278 0.7512

IQP 0.1304 0.2131 0.6245 0.7314 0.8397

ILP 0.0854 0.1375 0.4293 0.4310 0.4805

Table 2: The Chebyshev norm ||A−X||C obtained from different algorithms on different dimensions of the initial
matrix A.

To give a more clear view on how these algorithms compare with each other, we use the

Frobenius distance and the Chebyshev distance obtained from the Newton method as a bench-

mark and calculate the relative change of the two distances obtained from other algorithms in

percentage. For example, the relative change of the Frobenius distance obtained from the IQP

algorithm compared with the Newton method is given by
||A−XIQP||F−||A−XNewton||F

||A−XNewton||F × 100%.

In Tables 3 and 4, a negative percentage means that the optimal solution obtained from this

method is better than from the Newton method in the corresponding norm while a positive

percentage represents a worse result.

Dimension of A 5 10 25 50 75

Newton 0 0 0 0 0

APM 0 0 0 0 0

SDM 3.43 3.13 3.31 4.26 3.93

IQP 0.02 0.14 0.3763 1.59 2.58

ILP 11.67 29.66 52.93 22.15 20.77

Table 3: Relative change in the F-norm ||A−X||F compared with the Newton method in percentage.

Dimension of A 5 10 25 50 75

Newton 0 0 0 0 0

APM 0 0 0 0 0

SDM 7.79 6.45 -3.84 -4.30 -9.64

IQP -0.70 0.16 -3.52 -3.82 1.01

ILP -34.98 -35.37 -33.68 -43.33 -42.21

Table 4: Relative change in the Chebyshev norm ||A−X||C compared with the Newton method in percentage.

Furthermore, we report the computing time of each run in Table 5. Lowest running times are

in bold faces.
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Dimension of A 5 10 25 50 75

Newton 0.0024 0.0038 0.0058 0.0062 0.0350

APM 0.0005 0.0010 0.0068 0.0281 0.0615

SDM 0.0001 0.0001 0.0003 0.0008 0.0025

IQP 0.0315 0.1260 3.84 546 8180

ILP 0.0206 0.0937 2.35 719 5661

Table 5: Running time of different algorithms on different dimensions of the initial matrix A (in seconds).

It can be easily concluded from Table 3 (and also see Table 5 for efficiency) that both APM

and the Newton method give solutions with the minimum Frobenius distance, which they

aim to minimise, while the Newton method works slightly faster in high dimensions. (Further

experiments show that the ALD approach also gives the same optimal solutions, which we

omit in the above tables.) The SDM on the other hand is not as accurate as the Newton

method and APM but is the fastest algorithm overall as it does not require iterations. The

IQP method gives solutions slightly worse than the Newton method in terms of the F-norm

but the difference is not significant, especially in low dimensions. These results from IQP can

be improved by setting a lower tolerance and hence increasing the number of iterations but

will cost more time to converge. The ILP method is designed to minimise with respect to the

Chebyshev norm and therefore, does not give solid results in the F-norm as other algorithms

mentioned above. However, the nearest correlation matrix generated by the ILP method has

a much lower Chebyshev distance than by the Newton method which intends to minimise the

F-norm (see Table 4). This result indicates that minimising over the Chebyshev norm can

indeed be a good alternative for PSDisation since considering the F-norm will potentially result

in huge deviations in some entries of X, which are not favoured by some insurance companies

(Cutajar et al., 2017). It is worth to mention that both IQP and ILP methods take a long time

to run when the dimension of A is high, this could potentially be improved by optimising the

QP and LP solvers in the future work.

To illustrate the flexibility of our IQP algorithm and its potential to achieve a good accuracy,

our next step is to test when weights are assigned to each coefficients, i.e. to work under the

H-norm. Similar as before, we generate initial matrix A of different dimensions. This time,

we apply the ALD method and our IQP algorithm to find the nearest correlation matrix to

A under the F-norm and the H-norm, respectively, where each entry of the weight matrix H

is randomly generated from uniform distribution. We also test these methods on PSDisation

problems with constraints, that is, we let xij = 0 if |aij | < 0.1, we also request xij > 0 if

aij > 0.5 and xij < 0 if aij < −0.5. Table 6 shows the optimal values under different settings.

11



Dimension n 10 20 40 70

# of equality constraints (=0) 4 19 74 263

# of inequality constraints (<0/>0) 25 92 367 1208

Optimal solution

Unconstrained
F-norm

ALD 2.5032 6.2625 14.8958 30.2514
IQP 2.5060 6.2789 15.1565 30.7230

H-norm
ALD 1.6149 3.9136 10.0493 20.3044
IQP 1.6188 3.9360 10.2596 20.8868

Constrained
F-norm

ALD 2.5401 6.4399 15.2334 30.8318
IQP 2.5411 6.4562 15.3771 31.2218

H-norm
ALD 1.6631 4.0789 10.4666 20.9562
IQP 1.6501 4.0707 10.4355 21.1677

Table 6: Optimal solution by ALD and IQP for constrained and unconstrained PSDisation problems under F-
norm and H-norm on different dimensions of the initial matrix A.

It can be concluded that both ALD and IQP work effectively on constrained/unconstrained

PSDisation problems based on F-norm or H-norm. Our IQP algorithm runs slowly when

dimension is high and produces slightly worse results than ALD, but the optimal values are

still competitive. Our iterative algorithm shows more flexibility when the problem settings are

combined with H-norm (IQP) and Chebyshev (ILQ) norm, where the ALD method becomes

infeasible.

3.2. Experiments on Gradient Descent Method

In order to test the performance of the gradient descent method on PSDisation problems, we

compare ALD, IQP, GD and SDM on unconstrained problems of different dimensions under

F-norm. SDM is a trivial method that project the matrix onto the positive semidefinite cone

directly, and therefore can be considered as a baseline for this experiment. Table 7 compares

the converge times and optimal solutions of all four algorithms.

Dimension n 10 20 40 70 100 200

Converge time
(unconstrained, F-norm)

ALD 0.0029s 0.0027s 0.0120s 0.0076s 0.0163s 0.0364s
IQP 0.17s 1.52s 2min 19s 2h 29min - -
GD 0.03s 0.06s 0.16s 0.07s 0.08s 0.26s
SDM 0.0003s 0.0004s 0.0007s 0.0011s 0.0017s 0.0047s

Optimal solution
(unconstrained, F-norm)

ALD 2.5032 6.2625 14.8958 30.2514 44.9199 96.3681
IQP 2.5060 6.2789 15.1565 30.7230 - -
GD 2.5316 6.2754 15.0992 30.8536 46.0570 98.7712
SDM 2.5667 6.5599 15.5756 31.3282 46.5758 99.3325

Table 7: Converge time and optimal solution by ALD, IQP, GD and SDM for unconstrained PSDisation problems
under F-norm on different dimensions of the initial matrix A.

As shown in Table 7, GD provides comparable results with ALD. Though slightly slower than

ALD, GD works much more efficient than general SDP solvers. Furthermore, we want to

illustrate the advantages of gradient descent (GD) method over the ALD algorithm. Consider

the situation where in practice, the correlation matrices obtained by some insurance companies

are usually inaccurate. Therefore, we expect our PSDisation algorithm to work better when

12



error exists in the input matrix.

In the following experiment, we randomly generate a correlation matrix A that is not positive

semidefinite. Noise from normal distribution is then added to each non-diagonal entry of A so

that A′ represents the measured correlation matrix. We use GD, ALD and IQP to calculate

the nearest positive semidefinite correlation matrix X to A′ under the F-norm and compare

||A−X||F, the distance between X and the actual initial matrix A.

||A′ −X||F ||A−X||F
ALD 4.43 5.70

IQP 4.45 5.72

GD 4.60 5.49

Table 8: Average Frobenius distance from X to A and A′ by different algorithms over 100 tests in experiment
settings.

Table 8 shows the average results of the three algorithms tested on 100 different initial

matrices of dimension 40 with noise of standard deviation 0.2. It can be concluded that

while GD provides slightly inaccurate solution to the PSDisation optimisation problem, it is

less influenced by noise, and thus lead to better results than ALD overall. In all 100 testing

examples, GD gives matrix X that is closer to the initial matrix A. In practice, GD can be

more resilient to noise with large standard deviation than ALD. Details of the experiments are

given in Figure 1.

Figure 1: Percentage of best performance by ALD, GD and IQP versus standard deviation of the noise in
PSDisation tests with different dimensions of the initial matrix A.
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Best performance is decided for giving the shortest distance between X and A, where X is

calculated by applying different PSDisation algorithms on noised matrix A′. Tests are done

for matrices of different dimensions and noise of different levels.

Despite the fact that ALD performs best on accurate initial matrices, IQP and GD can be good

alternatives when the input comes with noise, especially for matrices with large dimension.

IQP works well when the noise is small, e.g. in 67% of our tests IQP gives the smallest

||A − X||F for matrices with dimension 30 and noise with standard deviation 0.02. When

the noise becomes slightly larger (for standard deviation between 0.1 and 0.2), GD performs

significantly better.

3.3. Experiments on Simulated Data for a More Realistic Scenario

We present results of comparisons between ALD, IQP, GD and SDM on PSDisation problems

in more realistic settings under F-norm. Without knowing the actual correlations, the

way European Commission create PSD matrix for Solvency Capital Requirement insurance

models is by picking the best possible choices for the correlation matrix entries from the set

{−75%, −50%, −25%, 0%, 25%, 50%, 75%}. The correlation matrix A estimated this way

is usually not PSD, but certain entries of A can be expected to be positive or negative as

actuaries expect some risks to be positive or negative correlated based on domain knowledge.

Inspired by the above ideas, our experiment is designed as follows. Firstly a PSD matrix At is

generated which we assume is the true correlation matrix. Then 250 observations are generated

from t-distribution with 3 degrees of freedom and are used to calculate sample correlation

matrix As. We obtain our estimated correlation matrix A′
s by rounding each entry of the

sample correlation matrix As to 25%. We also round the true correlation matrix At to 25%

to get A′
t. Now A′

s and A′
t are not PSD. We perform unconstrained PSDisation on A′

s under

F-norm and the solution is denoted as X. We also test constrained PSDisation by ALD and

IQP. The constrains are set so that entries of X have same signs as As, which we assume are

available to actuaries as domain knowledge.

The tests are done repeatedly on matrices of dimension 10, 20, 30 and 40. The constrained

PSDisation are done using ALD, IQP, GD and SDM. In our experiment settings, around 85%

to 89% of the non-diagonal entries of X have different signs from As. In the constrined settings,

both ALD(con) and QP(con) can 100% satisfy the same sign constrains, either strictly or to

some small tolerance. The results are shown in Tables 9 and 10.
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n 10 20 30 40

||A′
s −X||F ALD 0.1387 0.3940 0.6991 1.0320

IQP 0.1388 0.3945 0.7003 1.0347

GD 0.1453 0.4198 0.7512 1.1252

SDM 0.1462 0.4247 0.7633 1.1479

ALD(con) 0.1421 0.4081 0.7262 1.0735

IQP(con) 0.1421 0.4086 0.7276 1.0760

||As −X||F ALD 0.6429 1.2817 1.8862 2.4612

IQP 0.6429 1.2820 1.8870 2.4633

GD 0.6433 1.2837 1.8910 2.4796

SDM 0.6440 1.2887 1.9019 2.5017

ALD(con) 0.6351 1.2499 1.8217 2.3611

IQP(con) 0.6350 1.2501 1.8223 2.3624

Table 9: Average Frobenius distance from X to A′
s and A′

s by different algorithms over 500 tests in experiment
settings.

n 10 20 30 40

||A′
t −X||F ALD 1.6960 3.5396 5.2255 7.0881

IQP 1.6960 3.5398 5.2261 7.0896

GD 1.6851 3.4839 5.1133 6.8849

SDM 1.6814 3.4640 5.0635 6.7970

ALD(con) 1.6923 3.5240 5.1953 7.0412

IQP(con) 1.6923 3.5240 5.1959 7.0425

||At −X||F ALD 1.5294 3.2316 4.7367 6.4601

IQP 1.5294 3.2318 4.7373 6.4617

GD 1.5169 3.1710 4.6136 6.2364

SDM 1.5128 3.1499 4.5599 6.1427

ALD(con) 1.5252 3.2135 4.7015 6.4052

IQP(con) 1.5252 3.2138 4.7022 6.4067

Table 10: Average Frobenius distance from X to A′
t and A′

t by different algorithms over 500 tests in experiment
settings.

It can be easily conclude from Table 9 that ALD is the best in minimising the objective,

||A′
s−X||F, while IQP could produce very similar results. On the other hand, GD gives slightly

worse solutions than ALD and IQP, but still better than baseline method SDM. Comparing

||As − X||F, unsurprisingly, we see that constrained PSDisation show its advantages if prior

information is available. While ALD allows restrictions on upper or lower bounds of entries of

X, IQP could potentially allow any linear constrains and thus can be more flexible. Non-linear

constrains can also be set if efficiency is not the main focus. For example, we could restrict

entries of X to be multiples of 25%. This leads to iterative mixed integer programmings, which

is beyond the scope of this paper.

On the other hand, comparing ||A′
t−X||F and ||At−X||F in Table 10, SDM and GD constantly

give PSD matrix X that are closer to the true correlation matrix At. Therefore, we draw the

conclusion that though relatively inaccurate in minimising the objective function, ||A′
s −X||F,

in practice, SDM and GD are more resilient to noise generated in real data, which coincides

15



with the our observations in the previous part.

3.4. Experiments for Real Financial Data

We now present an example of PSDisation applications with real financial data. We randomly

select 50 new public companies from NASDAQ stock market and calculate the pairwised cor-

relation of the daily asset return over the last thirteen years. The result correlation matrix A

is non-PSD with negative eigenvalues due to missing values for each stock at certain periods

of time. We perform PSDisation on calculated correlation matrix A to get X and find the

Frobenius distance and the Chebyshev distance between A and X. The same experiment is

done on mixed choices of 25 NASDAQ stocks and 25 SP500 companies, where we tested two

sets of mixtures (random selections). The results are shown in Tables 11, 12 and 13.

||A−X||F ||A−X||C
IQP 0.3765 0.0872

ALD 0.3764 0.0886

GD 0.3958 0.0836

SDM 0.4085 0.0931

Table 11: Frobenius distance and Chebyshev distance between A and X by different algorithms on NASDAQ
stocks return correlation matrix.

||A−X||F ||A−X||C
IQP 0.2269 0.0542

ALD 0.2268 0.0547

GD 0.3958 0.0602

SDM 0.4085 0.0620

Table 12: Frobenius distance and Chebyshev distance between A and X by different algorithms on a mixture of
NASDAQ and SP500 stocks return correlation matrix (set 1).

||A−X||F ||A−X||C
IQP 0.3427 0.0647

ALD 0.2542 0.0651

GD 0.3872 0.0821

SDM 0.4018 0.0848

Table 13: Frobenius distance and Chebyshev distance between A and X by different algorithms on a mixture of
NASDAQ and SP500 stocks return correlation matrix (set 2).

It can be concluded from Tables 11 and 12 that the optimal minimum Frobenius distance

solution by our IQP method is close to the state-of-art ALD method, while maintaining a

lower Chebyshev distance. This ensures that the maximum deviation of correlation for each

pair of stocks by IQP is smaller than by ALD. We also noticed that in this real financial data

experiment, the speed of convergence of IQP is faster and the optimal solution is closer to ALD

comparing with those in previous simulated data. However, according to Table 13, it is worth

to mention that the performance of our IQP can sometimes be not as expected for some data, of

which the reason remains to be determined. In addition, GD performs slightly better than the
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baseline method SDM in this stocks data experiment but is still incomparable with ALD or IQP.

3.5. Examples on Applications in PCA

Principal component analysis (PCA) (Pearson, 1901) is a popular statistical tool to reduce the

dimension of the dataset while maintaining as much information as possible from the data,

which helps visualising the data or performing further actions in different fields of studies.

The covariance matrix of the features is calculated before it turns into an eigenvalue problem

(Jolliffe, 2002). A standardisation of the data is usually needed when the features are in

different scales or, alternatively, the correlation matrix can be used instead of covariance

matrix. If missing values present in the dataset, a standard way is to delete all instances

containing missing values and then calculate the correlation matrix. However, ignoring such

instances means that less information can be used from the whole dataset, which may lead

to a decrease of the quality of PCA. We seek to use as much information as possible from

the dataset by calculating the correlation between attributes pairwisely. This may cause the

resulting correlation matrix to be non-PSD and therefore a PSDisation process is needed.

We use the wine data available from the UCI Machine Learning Repository (Dua and Graff,

2017) as an example. It consists of 13 attributes of chemical analysis of wines from different

cultivars in Italy. The features are in different scales so it makes sense to use the correlation

matrix in PCA. We first drop 20% of the values from the dataset randomly so that it has missing

values. We calculate the pairwised correlation matrix which is non-PSD and thus invalid.

Then PSDisation is performed on the invalid correlation matrix, after which eigenvectors are

calculated to transfer the standardised data with missing values. The variance of each principal

component of the transformed data is reported in Table 14. For this dataset all PSDisation

methods give the same results, so we just choose our IQP algorithm for PSDisation in this

example. We also perform PCA according to the correlation matrix calculated by omitting all

instances that have missing values. Figure 2 shows the cumulative sum of the variance for each

principal component of the transformed data by different methods, where all PCA stands for

PCA done with all instances with missing values omitted and pairwise PCA stands for PCA

using pairwised correlation matrix with PSDisation.
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Principal Component all PCA pairwise PCA

1 3.1258 3.2692

2 1.5018 1.6485

3 0.7359 1.0723

4 0.6901 0.7908

5 0.7454 0.7164

6 0.5511 0.5894

7 0.7294 0.5543

8 0.4103 0.3897

9 0.4756 0.3526

10 0.3532 0.2875

11 0.3712 0.2895

12 0.3508 0.2604

13 0.3436 0.1637

Table 14: Variance of each principal component in the transformed wine data.

Figure 2: Cumulative sum of the variance of each principal component in the transformed wine data.
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Table 14 indicates that with the use of pairwised correlation, the transformed data has higher

variance in the first several principle components than all PCA. Therefore, more important

information can be captured by the first few principal components via pairwise PCA.

Features PCA pairwise PCA all PCA

Flavanoids 0.4229 0.4212 0.3793

Total phenols 0.3947 0.3753 0.3494

OD280/OD315 of diluted wines 0.3762 0.3633 0.3334

Proanthocyanins 0.3134 0.3046 0.1521

Nonflavanoid phenols 0.2985 0.2872 0.2453

Hue 0.2967 0.3090 0.2823

Proline 0.2868 0.3022 0.3558

Malic acid 0.2452 0.2237 0.2489

Alcalinity of ash 0.2393 0.2685 0.3481

Alcohol 0.1443 0.1886 0.3408

Magnesium 0.1420 0.1640 0.1399

Color intensity 0.0886 0.0550 0.0809

Ash 0.0021 0.0010 0.0893

Features PCA pairwise PCA all PCA

Color intensity 0.5300 0.5522 0.5696

Alcohol 0.4837 0.4429 0.2506

Proline 0.3649 0.3603 0.2577

Ash 0.3161 0.3533 0.3538

Magnesium 0.2996 0.2679 0.3946

Hue 0.2792 0.2824 0.3146

Malic acid 0.2249 0.2240 0.0492

OD280/OD315 of diluted wines 0.1645 0.1697 0.2766

Total phenols 0.0650 0.0788 0.0717

Proanthocyanins 0.0393 0.0280 0.2065

Nonflavanoid phenols 0.0288 0.0769 0.0902

Alcalinity of ash 0.0106 0.0287 0.1363

Flavanoids 0.0034 0.0049 0.1147

Table 15: Weight of each feature assigned by the 1st and 2nd principal components in the wine data by PCA,
pairwise PCA and all PCA. Top: Weights of features in first principal component. Bottom: Weights of features
in second principal component.

Furthermore, Table 15 summaries the weight of each feature that the first and second principle

components contain by PCA on full data and pairwise PCA and all PCA on data with missing

values. The weights of the first three features with highest weights are marked in bold. It can

be seen that PCA and pairwise PCA assign similar weights to each feature in their first and

second priciple components. In contrast, while all PCA selects the same feature with highest

weights as original PCA, the weights of other features it gives are generally much further away

than pairwise PCA. We may conclude that pairwise PCA preserves as much information as

possible from data with missing values and thus produces more similar results as PCA from

the full dataset than all PCA.
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4. Conclusion

In this paper, we discussed the PSDisation problem for actuarial analysis in order to find the

nearest correlation matrix. We first stated the general formulation of the PSDisation problem

before several state-of-the-art methods were briefly summarised. We then proposed two new

approaches to tackle the problem, that is, the iterative quadratic/linear programming method

and the gradient descent method. IQP/ILP is a flexible algorithm that approximate the nearest

correlation matrix by solving a series of optimisations with linear constraints. The accuracy and

flexibility of the algorithm were shown by experiments on randomly generated initial matrices,

stocks daily return correlation matrix and data for PCA purpose. We concluded that despite

more time-consuming than traditional methods, the IQP method could achieve an optimal

solution similar to the APM, Newton or ALD method when working with the F-norm. What’s

more, it is crucial to understand that our formulation of the problem is very flexible and thus

can handle norms of any choice. In our experiments, the ILP and IQP method produce good

results under the Chebyshev norm and the H-norm, respectively. It is also possible to combine

different norms in our formulation (e.g. to minimise α||A−X||2F + (1− α)||A−X||2max where

α is a weighting parameter). Future works can be done to increase the speed of solving the

quadratic or linear optimisation problem in each iteration to increase the efficiency in order to

cope with larger problems. The GD method repeats the followings, taking a step in the opposite

direction of the gradient, projecting the matrix onto the positive semidefinite cone via spectral

decomposition and scaling the matrix so that the diagonal is 1. This method is effective in

unconstrained PSDisation problems with respect to F-norm. Experiments in Section 3 shows

the efficiency and robustness of the algorithm. Future attempts to modify the GD algorithm can

be considered so that it may work with different norms or solve problems with more constraints.
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Cutajar, S., Smigoc, H., and OâHagan, A. (2017). Actuarial risk matrices: the nearest positive

semidefinite matrix problem. North American Actuarial Journal, 21(4):552–564.

Deutsch, F. and Hundal, H. (1997). The rate of convergence for the method of alternating

projections, ii. Journal of Mathematical Analysis and Applications, 205(2):381–405.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Higham, N. J. (2002). Computing the nearest correlation matrixâa problem from finance. IMA
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