
              

City, University of London Institutional Repository

Citation: Ngan, K. H., Mansouri-Benssassi, E., Phelan, J., Townsend, J. & Garcez, A. D. 

(2024). From explanation to intervention: Interactive knowledge extraction from 
Convolutional Neural Networks used in radiology. PLoS ONE, 19(4), e0293967. doi: 
10.1371/journal.pone.0293967 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/32787/

Link to published version: https://doi.org/10.1371/journal.pone.0293967

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


RESEARCH ARTICLE

From explanation to intervention: Interactive

knowledge extraction from Convolutional

Neural Networks used in radiology

Kwun Ho NganID
1,2*, Esma Mansouri-Benssassi2, James PhelanID

1, Joseph Townsend2,

Artur d’Avila Garcez1*

1 Data Science Institute, City, University of London, London, United Kingdom, 2 Fujitsu Research of Europe

Ltd, Slough, United Kingdom

* kwun.hongan@fujitsu.com (KHN); a.garcez@city.ac.uk (AG)

Abstract

Deep Learning models such as Convolutional Neural Networks (CNNs) are very effective at

extracting complex image features from medical X-rays. However, the limited interpretability

of CNNs has hampered their deployment in medical settings as they failed to gain trust

among clinicians. In this work, we propose an interactive framework to allow clinicians to

ask what-if questions and intervene in the decisions of a CNN, with the aim of increasing

trust in the system. The framework translates a layer of a trained CNN into a measurable

and compact set of symbolic rules. Expert interactions with visualizations of the rules pro-

mote the use of clinically-relevant CNN kernels and attach meaning to the rules. The defini-

tion and relevance of the kernels are supported by radiomics analyses and permutation

evaluations, respectively. CNN kernels that do not have a clinically-meaningful interpreta-

tion are removed without affecting model performance. By allowing clinicians to evaluate the

impact of adding or removing kernels from the rule set, our approach produces an interpret-

able refinement of the data-driven CNN in alignment with medical best practice.

1 Introduction

Convolutional Neural Networks (CNNs) excel at image recognition tasks. In recent years,

these models prevailed in medical imaging research and applications. According to [1, 2], the

performance of a CNN is now comparable to that of human radiologists. Historically, medical

professionals discovered anomalies by analyzing visual patterns manually. As this is a time-

consuming process, domain experts and researchers began investigating ways to automate the

pattern identification process.

While CNNs continue to improve their state-of-the-art performance, the difficulty in inter-

preting the features extracted for prediction has limited their use in specialized applications

such as medical diagnosis. Typically, model predictions are interpreted on an image-by-image

basis by visualizing activated regions within a trained CNN, e.g. [3–5]. This type of interpreta-

tion can be highly subjective, and it is often insufficient to produce semantically rich reasoning

from the visualization of activated regions. Additionally, semantically rich reasoning is
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required to understand the working processes of a trained CNN. This reasoning is typically

symbolic, requiring the relationships between the extracted features (e.g. clinically-meaningful

convolutional kernels) to be explicitly defined by symbolic rules representing the abstract con-

cepts embedded in the features in compliance with domain best practices. Earlier work defined

these concepts using pre-engineered features (such as radiomics [6, 7]) reflecting user-speci-

fied regions of interest. One of the aims of the present work is to automate the process of con-

cept assignment using a CNN trained for object detection.

Prior research [8, 9] has investigated the abstract concepts extracted from kernels within

the feature extraction layers of a CNN. Although it suggested that a number of kernels were

related to objects, parts, materials and colors, the remaining kernels were uninterpretable. We

argue that reliance on these uninterpretable kernels is contrary to medical best practice. If criti-

cal decisions are based on uninterpretable kernels, trust in the CNN predictions erodes.

The extraction of relevant knowledge from a trained CNN in the form of rules for reasoning

also poses additional challenges. Deriving very large rule sets from CNNs limits model com-

prehensibility [10]. Similarly, methods for explaining individual images relying solely on heat

maps fail to produce conceptual relationships of the CNN model [11]. In this work, we build

on the previous research to extract rules from trained CNNs and investigate the semantically-

meaningful relationships among the concepts referred to by these rules. The ERIC framework

(Extracting Relations Inferred from Convolutions) [12] is used as the rule extraction method,

as described below.

ERIC constructs a compact set of rules from a CNN by extracting logic programming rules

from the CNN’s feature extraction layers. The rules offer a post-hoc decompositional explana-

tion for image classification models. ERIC has been shown empirically to generate rules that

can approximate the original CNN, as measured by high fidelity scores, i.e. the accuracy of the

rules relative to the CNN rather than the data labels [12]. Each rule takes the form L1 ^ L2 ^

. . . ^ Ln! A, denoting a conjunction of literals Li, 1� i� n (each of which is either a proposi-

tional atom or its negation) that imply an atom A (if Li hold true then A holds true). Each lit-

eral is associated with a CNN kernel, which in turn can be related to a concept by up-sampling

kernels to input images. However, in the original ERIC approach [12] which relied on the

visual inspection of relevant images, the manual concept assignment was regarded as a difficult

process. A clustering technique was proposed in [13] to automate the concept assignment of

kernels (these are heat maps known as kernel fingerprints obtained by up-sampling from the

kernels back to the images). While this method made progress in defining concepts based on

the most frequently activated regions of the entire image data set, it did not guarantee that

these kernel fingerprints would reveal domain-relevant regions unless a deliberate attempt was

made by human experts to define the regions. In this paper, we automate the localization of

relevant regions based on an improved understanding of the regions. This is intended to

improve domain relevance of the kernel concept descriptions used by the explanatory rules.

Consequently, the kernel norm plot introduced in [13] can be used to quantitatively describe

the concept (e.g. by associating concepts with radiomics features as discussed in the represen-

tative examples of this work). This should increase trust in the system by bringing it in line

with best practices in specialized domains, as will be investigated in the sections that follow.

A user interface was also developed to display the reasoning of the extracted concepts from

a trained CNN generated by ERIC so that clinicians can review the results and, if necessary,

intervene in the set of rules to construct an alternative model that only uses meaningful and

relevant concepts. This process will also be shown to be capable of removing irrelevant kernels

without compromising model performance.

In addition, this work extends the experiments that evaluated the effect of the newly-

defined kernel concept groups on model accuracy [13]. We shall demonstrate that these kernel
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groups within a CNN are not randomly learned, but they provide conceptual information

essential to the performance of the model. This should help machine learning (ML) practition-

ers in streamlining CNN models in order to reduce the amount of computational resources

required for CNN training and updates.

In summary, the contributions of this paper are as follows:

1. an application of knowledge extraction to enhance the explainability of features learned by

CNN models used in radiology;

2. a method to evaluate the relationships between extracted features and radiomics features to

produce meaningful concept descriptions of symbols extracted from the CNN;

3. a neuro-symbolic framework to enable domain expert validation and intervention when a

trained CNN achieves high accuracy but for reasons that are not clinically justified.

The remainder of the paper is organized as follows: Section 2 summarizes related work that

have led to the development of the proposed neural-symbolic approach. Section 3 discusses

the clinical expectations for the deployment of AI systems in medical applications. Required

background about symbolic rule extraction from CNNs and the ERIC framework is provided

in Section 4. An overview of the proposed interactive explanation framework is provided in

Section 5. Section 6 presents several representative examples and experimental results from

the use of the proposed framework in medical imaging. Section 7 confirms our hypothesis by

analyzing the effect of kernel concept groups on CNN performance. The paper concludes with

a discussion and recommendations for future work in Section 8.

2 Related work

Traditionally, quantitative analysis and predictive models on images relied on manually extracted

image features (such as texture, shape, and pixel intensity). This was also applied to medical

images as a field of research known as radiomics [14]. Radiomics was defined by [6] as a high-

throughput feature extraction process on user-specified regions of radiographic images. This

extraction process however has been laborious and susceptible to human error in identifying tar-

geted areas and the choice of features to apply. In addition, there was no standardized algorithm

definition for image processing, resulting in challenges to the reproducibility and comparability

of results [15]. Open-source algorithms, e.g. PyRadiomics in Python [15] and Radiomics in

Matlab [16], were developed with the aim to mitigate such challenges. These algorithms are capa-

ble of extracting a large panel of engineered features from medical images. Second-order features,

such as Gray Level Co-occurrence Matrix (GLCM) features, can also be derived from pixel inten-

sity to account for the probabilistic correlation between neighboring pixels.

With the development of Convolutional Neural Networks (CNN), visual features could be

automatically extracted from the convolutional and pooling layers using a data-driven gradi-

ent-based parameter search [17]. This automated feature extraction enabled trained CNNs to

perform effectively across a range of predictive tasks, even in the specialized medical domain

[1, 2]. However, the relationships between these learned features were encoded within the

model’s large number of parameters. Numerous techniques for interpreting the internal fea-

ture representations of CNNs have been proposed, either by visualizing the highest activation

of the hidden units at a network layer [18, 19] or by upsampling these representations to the

resolution of the input images to identify these salient features [3, 5, 20]. These feature visuali-

zations enabled the interpretation of relevant pixels in CNN classification. However, the con-

ceptual interpretations from such visualizations tend to be subjective and may vary between

different but related images.
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The research in [8, 9, 21] examined the interpretation of CNN’s hidden units at a global

level. Highly activated regions in a network layer were associated with interpretable concepts

through a data set compiled for relating images with different concepts at various levels of

abstraction (the Broden dataset). This approach demonstrated that a level of feature disen-

tanglement could be achieved w.r.t. objects, object parts, texture, and color, despite some

remaining uninterpretable. The evaluation was however confined to the lexicon of the Bro-

den dataset, rendering concepts beyond the lexicon uninterpretable. While this strengthened

the case for semantic meaning in CNNs, manually compiling a dataset of concepts remained

laborious. In a specialized field, such as radiology, it may not be possible to specify the rele-

vant concepts a-priori. In addition, understanding concepts in isolation may not be sufficient

to explain how they relate to one another and the target output. In [22], it is also suggested

that the compositional nature of logical concepts could closely approximate the network

neuron behavior. Additionally, the study discovered that human-interpretable abstractions

from the kernels in CNN image classification were positively correlated with model perfor-

mance. Through the composition of concepts, they were also able to identify sources of

adversarial examples for wrong predictions. Our purpose in this work of having logical rules

L1 ^ L2 ^ . . . ^ Lk! ti is to specify that the combination of concepts L1, L2,. . ., and Lk imply

a specific outcome, ti, and to use this knowledge to assist users in deriving the appropriate

explanations.

Representation learning is a sub-field of machine learning that focuses on techniques for

transforming raw data (e.g. image pixels) into the appropriate representation required by a

learning model [23]. This data transformation automates the process of encapsulating the

input data and other contextual information into a tabular form [24]. This tabular form can

be regarded as a knowledge base that retains the semantic information about the given data.

In [25], three levels of cognitive representations were introduced to bridge the gap between

stored numerical representations for deep learning and symbolic representations for logic.

At the neural network level, representations were embedded within the activation patterns of

a densely connected network. The symbolic level encoded knowledge from logical rules

through symbols and their relationships. A third (spatial) level, referred to as a conceptual

space, represented data in geometrical, topological, or ordinal dimensions. Concepts were

learned at this level by comparing data similarities to other data points within the conceptual

space [25]. This general idea will be applied here in the context of our proposed approach for

assigning radiomics concepts from activated regions of a trained CNN and mapping them

onto symbolic rules.

Efforts have also been made over the years to convert knowledge encoded in a neural net-

work into interpretable rules, which can be summarized in three broad classes of knowledge
extraction methods [26]: (1) pedagogical methods explain the output in terms of the input

without evaluating the network’s internal mechanisms; (2) decompositional methods divide

the network to extract knowledge from its internal mechanisms (e.g. groups of neurons and

weights); and (3) eclectic methods are those that combine elements of (1) and (2). Given the

natural decomposition of functions within CNNs into g(�) and h(�) as mentioned in our prob-

lem setting, this work applies a decompositional method that is suitable for CNNs to achieve

efficiency in the rule extraction process.

As an example of a closely-related pedagogical approach, [27] sought to mimic the input-

output function of a neural network by building a soft decision tree based on the hierarchical

probability distribution of a class. The decision tree did not rely on the hierarchical features

within the network. While [27] reported high accuracy, their evaluation used soft targets from

network predictions as training patterns. As a result, obtaining meaningful fidelity measure-

ments was not possible in the case of [27].
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ERIC yields global explanations for one or more convolutional layers as a decompositional

rule extraction method. A quantization process was used to binarize kernels into logical liter-

als. These literals were then used to generate symbolic rules by means of a logic program that

approximates the behavior of the convolutional layer(s) with respect to the CNN’s output. The

approximation M* of the original CNN was reported to achieve high classification accuracy

and fidelity in [12]. The results were also evaluated in terms of the sizes of the extracted rule

sets, with smaller sets considered to be more human-comprehensible.

A global layer-wise extraction of rules from CNNs was investigated in [28]. Outputs from

kernels were translated into literals for the extraction of M-of-N rules, where a rule was inter-

preted as being true if and only if any combination of M literals out of a set of N literals is true.
Kernels were represented by the outputs of neurons with the highest information gain. Rule

extraction was accomplished using a heuristic search that prioritized literals based on the

weights associated with the respective neurons leading to the target output. Although theoreti-

cally sound, large networks could render this approach inefficient.

[29] described a post-hoc approach in which representations were partly disentangled from

the trained CNN and rearranged into a hierarchical AND-OR graph. Interpretability was illus-

trated qualitatively and quantitatively, but the explanations were not converted into a separate,

simpler classifier. As a result, no fidelity evaluation could be conducted. This work was

expanded in [30] to include the extraction of decision trees, with kernels specifically trained

using a loss function proposed in [31].

We regard the ability to measure fidelity and to apply the extraction to any CNN, irrespec-

tive of the training protocol, as key requirements of any knowledge extraction. For this reason,

this work is built upon the ERIC framework, taking also into consideration ERIC’s efficiency

at extracting global rules from CNNs.

3 Clinician’s expectation on AI system adoption

In general, a conventional CNN model is regarded as a ‘black-box’ model in which the under-

lying mechanism for model prediction is too complex to interpret. This makes it difficult for

clinical users to evaluate and justify the option of implementing an AI system into their profes-

sional workflow. [32], for instance, published the findings of a survey study of 690 radiologists

(including 276 radiologists with practical clinical experience using AI-based algorithms)

regarding their views on adopting AI systems to enhance their workflow. For the radiologists

who had prior experience adopting AI systems, their primary use case scenarios for AI systems

included (1) diagnostic interpretation, (2) image post-processing and quantitative evaluation,

and (3) workflow prioritization. Moreover, 72% of them did not perceive integrating the AI

system into their IT system/workflow as technically difficult, despite the fact that they may not

be directly involved in the integration process.

82% of radiologists (out of a total of 171 respondents) who used an AI system to assist diag-

nostic interpretation deemed the prediction results to be reliable. However, only 25% reported

a reduction in their workload due to the system’s assistive nature. Additionally, 86% of radiolo-

gists with practical AI experience (out of 111 respondents) would consider AI systems to be

valuable in reducing workload for clinical workflow prioritization.

According to the survey, the biggest barriers to adopting a certified AI system include skep-

ticism regarding the AI system’s added value and advertised performance, as well as concerns

about increased workload resulting from the A.I. system adoption. The motivation for the pro-

posed interactive model explanation framework will aim to address the use cases of assisted

diagnostic interpretation and post-hoc analysis, as described in Section 5. It will convert a

complex CNN model into a simpler, explainable model to improve effective communication,
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allowing radiologists to take on a more active role in the development and implementation of

AI in their workflow, as recommended in [33]. The ultimate goal will be to produce a trusted

AI solution that can be used for triage in a medical setting to enable first-pass clinical workflow

prioritization.

4 Preliminaries on ERIC symbolic rule extraction

Let x denote a set of input images and t denote a set of target outputs, each indexed by the sub-

script i, where 1� i� n. A convolutional neural network, M, is trained on examples {xi, ti}
and consists of two parts: g(�) mapping xi to the output of a feature extraction layer, call it g(xi),
and h(�) mapping g(xi) to the CNN’s output, h(g(xi)). Let Al

i;k denote a matrix of activation val-

ues g(xi) at the feature extraction layer l, where 1� k� kl denotes a kernel of the CNN, repre-

sented by a square matrix of vectorized real numbers. Let bli;k denote a set of truth-values (true
or false) assigned to each kernel (see Eq 1) by a function Q (see Eq 2) mapping the activation

matrix to {−1, 1}, where −1 denotes false and 1 denotes true. bli;k can be expressed symbolically

as either a positive literal Lli;k when bli;k ¼ 1, or a negative literal :Lli;k when bli;k ¼ � 1. In Eq 2,

ali;k is the result of calculating the L1-norm of the kernels (kernel norms) from Al
i;k (see Eq 3),

and y
l
k is an user-defined threshold value calculated for each kernel. In this work, the mean

L1-norm value for the entire training set was used (see Eq 4).

bli;k ¼ QðAl
i;k; y

l
kÞ ð1Þ

QðAl
i;k; y

l
kÞ ¼

(
1; if ali;k > y

l
k

� 1; otherwise
ð2Þ

ali;k ¼ kA
l
i;kk ð3Þ

y
l
k ¼

Xn

i¼1

ðali;kÞ=n ð4Þ

In ERIC, a set of symbolic rules R is generated as an approximation M* of M using a deci-

sion tree-based rule extraction algorithm similar to the C4.5 algorithm [34] trained on

instances fbli;k; hðgðxiÞÞg. Each rule Rr takes the form of a conjunction of literals

L1 ^ L2 ^ . . . ^ Lkl , obtained from the feature extraction layer, which implies a CNN classifica-

tion target output ti, that is, L1 ^ L2 ^ . . . ^ Lkl ! ti. A rule defines a path from the root node

to a leaf node in the extracted decision tree. Tree pruning is applied to prevent overfitting. The

Gini index is used to determine the branching of tree nodes. If a leaf node has multiple out-

comes following pruning, the majority class is selected as the prediction. The accuracy of the

CNN is measured in the usual way as the percentage of input images that are classified cor-

rectly w.r.t. ti. The accuracy of the extracted rules is determined by the percentage of input

images classified correctly by the rules also w.r.t. ti, i.e. the number of times that R(M*, xi) = ti
divided by the number of examples, where R denotes the extracted set of rules. The fidelity of

the rules to the network is defined as the percentage of rule-based classifications that match

the CNN’s classification as measured by R(M*, xi) = h(g(xi)). As illustrated in subsequent sec-

tions, qualitative evaluations of the rules are also performed by up-sampling and inspecting of

literals in the rules against the input images.
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5 Interactive model explanation and intervention

The proposed framework for interactive model explanation consists of (1) ERIC rule extrac-

tion, (2) automatic anatomical region localization for concept assignment, and (3) an inter-

active user interface. Fig 1 outlines the overview of the proposed interactive explanation

framework. The data set used in this work is described in Section 5.1. The training of the

CNN model for image classification is detailed in Section 5.2. Section 5.3 describes the mech-

anism of the ERIC framework for symbolic rule extraction from the trained CNN. Section

5.4 describes the parallel automated process for locating anatomical regions in frontal chest

X-rays. This will be used to facilitate concept assignment by conducting a comprehensive

analysis of the kernels used in the extracted rules. In Section 5.5, the features of the graphical

user interface that promote human interaction and intervention will be discussed. Finally,

Section 5.6 includes an evaluation of the relevance of these newly defined concepts to model

performance.

5.1 Datasets

This work employed two data sets for (1) training a X-ray image classification model to detect

pleural effusion from those that are healthy, and (2) training a model for anatomical region

localization. All the X-ray images used in the training and subsequent analysis were in frontal

view.

The CheXpert dataset [35] was used in task (1). Only frontal X-rays with labels as pleural
effusion or no finding were selected. Images with the class no finding were deemed healthy.

Images with artifacts or severely obstructed by supporting devices were removed. In addition,

images should have a nearly square aspect ratio as input for the CNNs to minimize scaling dis-

tortion during training. 400 images were used for training, and 80 images were used for valida-

tion, with both classes being equally represented.

The NIH dataset [36] was used with reference to the study metadata in [37] for task (2).

This dataset was used to train a CNN model (see Section 5.4) to locate nine anatomical regions

within the frontal chest X-rays used in this work. These regions include (a) Trachea (T), (b)

Upper Mediastinum (UM), (c) Cardiac Silhouette (CS), (d) Left Clavicle (LC), (e) Right Clavi-

cle (RC), (f) Left Hilar (LH), (g) Right Hilar (RH), (h) Left Costophrenic Angle (LCA), and (i)

Right Costophrenic Angle (RCA). The located anatomical regions were applied to the images

of the CheXpert dataset used in the CNN classification model (see Section 5.2) to assign the

associated anatomical regions as concepts (see Section 5.4).

5.2 CNN classification model training

A CNN classification model (M) based on the VGG-16 architecture was trained using the

Adam optimizer and a learning rate of 10−6. The model was trained in batches of 32 images

with the CheXpert dataset. Elite backpropagation (EBP) was also implemented to improve

class-wise activation sparsity [38]. This was achieved by associating each class with a small

number of kernels that were activated rarely but strongly for related images and assigning

them as top kernels using a ranking and penalty function based on the activation probabilities

of these kernels during training. EBP was previously demonstrated to result in a more distinct

separation of kernel concepts and, arguably, more interpretable representations. When seeking

to relate semantic meaning to kernels, the above separation of concepts through EBP can be

very useful. The CNN model was trained using a random sample of input images for training

(80%) and validation (20%), with each class equally represented.
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Fig 1. An overview of the interactive explanation framework, which includes (1) symbolic rule extraction, (2) anatomical region localization, and (3)

graphical visualization of symbolic rule set for user interaction (see Fig 2 for higher quality diagram).

https://doi.org/10.1371/journal.pone.0293967.g001
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5.3 Symbolic rule extraction

This work used the ERIC method [12, 39] for extracting rules from CNN kernels. Based on the

ERIC framework, the last convolutional layer, l, of the trained VGG16, M, was quantized and

binarized to produce literals. These literals were then used to derive rules as a measurable

approximation M* of M. General details on the symbolic rule extraction is described in Section

4. It was empirically found that rules with a maximum of three literals in the body were suffi-

cient to produce a good approximation, i.e. a high-fidelity score of the rules relative to the orig-

inal CNN model. CNN kernels were assigned with semantic meanings through anatomical

region localization and concept association as described in the next section (see Section 5.4).

Fig 3a shows an example extracted rule, ¬ET ^ ¬PA! Effusion, from CNN kernels ET and

PA as a branch within a decision tree of rules.

5.4 Anatomical region localization and concept association

A segmentation model based on the YOLOv5x architecture [40] was trained independently

using X-ray images from the NIH dataset [36] to locate 9 anatomical regions from individual

frontal chest X-rays applied in the original trained CNN classification model. Anatomical

regions were annotated with reference to [37]. The identified anatomical regions were super-

imposed on the activated image regions for each CNN kernel (i.e. 512 kernels at the last convo-

lutional layer of a VGG16 model) to evaluate the region of interception. A hit was empirically

considered if the interception over union (IOU) score was above 0.5 for each image. The

region with the highest aggregated hit rate across the entire training dataset (and hits in at least

more than 70% of the dataset) was regarded as the most frequently activated and representative

anatomical region for the respective kernel. Additional criteria were implemented, including

the restriction of anatomical regions highly hit by kernel activation to no more than two

regions, to ensure the kernels were targeted to specific anatomical regions. This anatomical

association offered a more comprehensible representation of clinical concepts than the kernel

fingerprints used in previous work [13].

With the new representative anatomical regions serving as guiding points in the kernel

norm plots, the concept expressed by the kernels could be interpreted with greater clarity. This

process also allowed the filtering of uninterpretable kernels (i.e. those not associated with a

specific anatomical region) for future research when more knowledge from medical image

analysis is made known. To ensure the explainability of the extracted rules, only interpretable

kernels were applied to generate the final clinically relevant rule set.

As only frontal X-ray images were used in this work, the relative positioning of the ana-

tomical regions was consistent. This helped with the inspection and manual correction of

any missing/incorrectly localized regions needed in this work. S1 Fig in S1 Appendix sum-

marized the performance of the trained segmentation model in which the F1-score for all

identified regions was high across a broad range of confident thresholds. The hilar regions

and the costophrenic angles were among the more challenging regions, as the left and right

regions were very similar. It should also be highlighted that the segmentation model was also

capable of labeling the identified regions, albeit with weaker performance on the hilar and

costophrenic regions as discussed earlier. S2 Fig in S1 Appendix displays sample X-ray

images with annotated bounding boxes of the anatomical regions in healthy and pleural effu-

sion cases of varying severity. Inferred outcomes for the CheXpert dataset were reviewed and

manually corrected prior to further evaluation analysis such as the correlation with radio-

mics features.
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5.5 Interactive user interface

A graphical user interface was built to visualize the extracted symbolic rules as a decision tree

(see Fig 2 top right). It also displays the represented anatomical region for each kernel in the

decision tree. As illustrated in [13], the kernel norm plot (Fig 2 bottom right) was used to aid

in assigning concept descriptions to kernels. A clinical user can hover over data points to

obtain additional patient information and the corresponding X-ray image with the kernel rep-

resenting the anatomical region overlaid (Fig 2 left). The interface allows the user to evaluate

and modify the decision tree by selecting different kernels, enabling the user to interact with

the system by asking questions such as “what happens if a kernel is replaced by another repre-

senting the same or another anatomical region?”.

5.6 Significance of anatomical kernel groups

This work extended the experiments in [13] where an analysis of concept clusters in the mod-

el’s performance was conducted. In previous work, an increasing group of kernels was ran-

domly muted at 10% intervals (i.e. replacing the kernel outputs in the CNN with zero values).

It was found that CNN model accuracy could be maintained even when up to 60–70% of the

kernels were muted. In addition, activating/muting clusters of relevant kernels (i.e. kernels of

specific kernel fingerprints) had a significant impact on the model’s accuracy against that of

the original CNN despite the total number of relevant kernels used being less than the 40% of

the randomly selected kernels needed to maintain model accuracy.

Three sets of investigations were conducted by activating or muting a combination of ker-

nels relating to specific anatomical regions against other uninterpretable kernels according to

Fig 2. An interactive interface that facilitates clinical users to analyze and intervene with the model for improved clinical relevance. The grey sidebar

(left) provides the user-defined kernel selection with the corresponding model output. The derived decision tree (see Fig 3a) displayed on the top right, and

the kernel norm plot (see Fig 5a) for the selected kernel is at the bottom right for deeper analysis.

https://doi.org/10.1371/journal.pone.0293967.g002
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the identified anatomical regions in Section 5.4 to determine the effect of anatomically relevant

kernels on CNN model performance.

1. First, a comparison of the incremental activation of a combination of kernels from different

anatomical regions was made in comparison with sets of randomly-selected uninterpretable

kernels with equivalent set sizes over 100 sampling repetitions. This is to establish the sig-

nificance of anatomically relevant kernels on model performance in comparison to random

kernels.

2. Then, kernels corresponding to a specific anatomical region were muted, along with all

uninterpretable kernels. This evaluated the dependence of other relevant kernels on those

of the selected anatomical region in order to maintain the accuracy of the trained CNN.

3. Lastly, an evaluation of a combination of kernels from four anatomical regions was under-

taken, as it was found that a decision tree with four anatomical regions was sufficiently

accurate to represent the classification examples.

The next sections discuss the results of the above investigations.

6 Representative examples of interactive model explanation

As described in Section 5.1, a CNN classification model was trained to detect pleural effusion

from frontal chest X-rays using the CheXpert dataset. Pleural effusion is defined as the abnor-

mal accumulation of fluid in the pleural space, typically observed in the lower lung zones of an

X-ray. It can be caused by various underlying diseases, such as pneumonia, congestive heart

failure, and malignancy [41]. The chosen trained CNN model has a sensitivity of 95.0% and a

specificity of 97.5%.

An initial set of symbolic rules was extracted from the trained CNN using the ERIC frame-

work (see Fig 3a). Five kernels were required (labeled here with associated anatomical regions):

ET (Upper Mediastinum), QN (Cardiac Silhouette), PA (Uninterpretable), EV and OT (both

on the Right Clavicle). This set of rules has a sensitivity of 93.0% and a specificity of 96.0%. It

also has a fidelity of 98.2%. Nevertheless, this set of rules included an uninterpretable kernel

(PA), and two irrelevant kernels (EV and OT—Right Clavicle—which is located at the upper

lung zone in an X-ray). A further visual inspection of kernels via the kernel norm plot (see Figs

4a & 5a) revealed that kernel QN distinguishes pleural effusion cases from healthy cases based

on features within the anatomical regions of the cardiac silhouette and the lung space borders.

The presence of pleural effusion will obscure the lung space and the border of the left ventricle

of the heart commonly understood as the “silhouette sign”. In contrast, no visible imaging pat-

tern targeting pleural effusion was identified in kernels PA, EV and OT at the most frequently

activated regions of each kernel. However, the region of the right clavicle bone from kernel EV

or OT may be useful for determining the patient’s image-capturing position [42, 43].

Upon review by an experienced medical professional, kernels PA, EV and OT could not be

assigned any meaningful connection to a diagnosis of pleural effusion and so were also

regarded as irrelevant. However, new kernels (such as QT and AE relating to the left and right

hilar) could be plausibly linked to a diagnosis of pleural effusion and therefore these were

included.

The modified rule set had a sensitivity of 93.0% and a specificity of 96.5%. The fidelity of

this rule set remained high at 97.0%. This modified rule set can be said to produce a more clin-

ically relevant explanation, as it is supported by evidence from other independent medical

research findings [41, 44, 45] and it maintains classification performance. Fig 3 presents the

modification and the corresponding kernels used in the rule set.
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An alternative rule set (see Fig 6) demonstrated that altering the kernel associated with the

cardiac silhouette region from QN to OD did not compromise performance (sensitivity of

92.0% and specificity of 97.0%). Fidelity to the original CNN model remained consistent at

96.8%. Additional examples of the impact kernel changes for the hilar regions are provided in

S2 Appendix, all of which consistently exhibit high accuracy.

On the selected kernels, an additional radiomics texture analysis was performed using the

pyradiomics package [15] to provide a quantitative justification for the visual changes observed

in the kernel norm plots. For instance, the L1-norm values for kernel QN and OD were highly

correlated with the Joint Entropy in the Gray Level Cluster Matrix (GLCM) as shown in Fig 5a

and 5b. Joint entropy could be viewed as a quantifiable measure of the randomness/variability

of pixel intensity in relation to its spatial neighborhood. Low entropy values indicated a more

homogeneous texture and vice-versa (see Fig 5c in comparison with S6(c) Fig showing the rep-

resentative examples of the full spectrum). This validated the visual changes that a user will

observe when hovering over the images in the kernel norm plot across the healthy and pleural

effusion cases. Detailed analysis, including additional results for the Upper Mediastinum, both

Left and Right Hilars, are presented in S2 Appendix with similar conclusions that the change

in kernel norm values could be reflected by the change in image texture (radiomics features) at

the specified anatomical regions.

Lastly, a set of rules constructed by uninterpretable kernels (see Fig 7) with no more than five

images activated for any anatomical region (i.e.<1.25% of image data) was used to illustrate the

opposite extreme of applying uninterpretable/irrelevant kernels to form an explainable rule set.

Such a rule set yielded a sensitivity of 48.5% and a specificity of 64.0%. It could be hypothesized

Fig 3. (a) Initially generated rule set from trained CNN in the form of a decision tree. (b) Human intervened clinically relevant rule set in the form of a

decision tree. This example illustrates the effect of human intervention to improve the clinical relevance of constituent kernels for pleural effusion while

maintaining model performance. The resulting kernels consist of anatomical regions—Upper Mediastinum (ET), Left Hilar (QT), Right Hilar (AE) and

Cardiac Silhouette (QN). Kernels that were uninterpretable or irrelevant (such as PA, EV and OT) were discarded.

https://doi.org/10.1371/journal.pone.0293967.g003

PLOS ONE Interactive knowledge extraction from Convolutional Neural Networks used in radiology

PLOS ONE | https://doi.org/10.1371/journal.pone.0293967 April 10, 2024 12 / 29

https://doi.org/10.1371/journal.pone.0293967.g003
https://doi.org/10.1371/journal.pone.0293967


that these kernels did not acquire any task-relevant knowledge during CNN model training.

These kernels might be disregarded. Similar conclusions were observed in [13], where a CNN

model using only redundant kernels was found to produce inaccurate predictions.

Local explanation can also be applied to gain insights into the decision-making process of

the clinically relevant rule set (see Fig 3b) used for the classification of the individual X-ray

images as either healthy or with pleural effusion. Representative examples of this rule set on the

training set are illustrated in Figs 8 and 9. These examples are presented with comparative

visualizations generated through established interpretation methods such as Integrated Gradi-

ent [4] and Grad-CAM [5].

Fig 4. The kernel norm plot (L1-norm values) for (a) kernel QN and (b) Kernel OD, both of which represent the Cardiac

Silhouette. The first 200 data points from the training dataset are labelled as healthy and the next 200 as pleural effusion according to

the ground truth. A threshold value (red line) separates positive literals (e.g. QN) (above the line) and negative literals (¬QN).

https://doi.org/10.1371/journal.pone.0293967.g004
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Fig 5. A negative correlation between Joint Entropy (GLCM) with L1-Norms for (a) Kernel QN and (b) Kernel OD. Sub-

figure (c) shows images of the Cardiac Silhouette region sorted row-wise from highest joint entropy (left) to lowest joint

entropy (right). Those images with healthy as ground truth label are outlined in green while those with pleural effusion are

outlined in red.

https://doi.org/10.1371/journal.pone.0293967.g005
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As part of the symbolic rule extraction (refer to Section 4 for details), L1-norm value for

each individual image is calculated and compared to a user-defined threshold. This compari-

son determines whether a kernel yields a positive literal (if L1-norm value is above the thresh-

old) or a negative literal otherwise. As an illustrative example using kernel norm plot for

kernel QN (see Fig 4a), images with L1-norm values above the threshold (in red) yield positive

literals (QN), while those below the threshold result in negative literals (¬QN). Notably, posi-

tive literals (QN) tend to affiliate with images labeled as having pleural effusion, exhibiting

Fig 6. An example of rules generated by changing a single kernel for the Cardiac Silhouette region (i.e. from

kernel QN to kernel OD).

https://doi.org/10.1371/journal.pone.0293967.g006

Fig 7. An example of rules generated by kernels that are not targeting any anatomical region (i.e. less than 5

images are activated that match any anatomical regions).

https://doi.org/10.1371/journal.pone.0293967.g007
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Fig 8. Three representative examples of applying neural-symbolic rules on healthy images in the training images. (a) The

prediction is attributed to a clear Upper Mediastinum (in purple box with literal ET) and the absence of obscurity at the Cardiac

Silhouette (in red box with literal ¬QN). (b) The prediction in Example #2 also relies on similar observations at the Upper

Mediastinum (literal ET and Cardiac Silhouette (literal ¬QN). (c) Example #3 illustrates a healthy case where the Upper Mediastinum

has a more homogeneous texture (¬ET) and the prediction utilized the clear visibility of structure at the Left and Right Hilar (in

green box with literal QT and in brown box with literal AE). Integrated gradient and Grad-CAM highlight the significance of the

mediastinum (in green and red respectively) without further details and reasoning on the predictions as being healthy.

https://doi.org/10.1371/journal.pone.0293967.g008
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Fig 9. Three representative examples of applying neural-symbolic rules on images with pleural effusion in the

training images. (a) The prediction is attributed to an obscured Upper Mediastinum (in purple box with literal ¬ET)

and the Left Hilar appears to be obscured (in green box with literal ¬QT). (b) The prediction in Example #2 can be

reasoned on the homogeneous texture at the Upper Mediastinum (literal ¬ET) and hazy Left Hilar (literal ¬QT). (c)

Example #3 illustrates a case where the Upper Mediastinum has an homogeneous texture (¬ET) and the prediction

utilized the clear visibility of structure at the Left Hilar (literal QT) but hazy Right Hilar (literal ¬AE). Integrated

gradient and Grad-CAM highlight the significance of the mediastinum (in green and red respectively) without further

details and reasoning on the predictions of pleural effusion.

https://doi.org/10.1371/journal.pone.0293967.g009
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obscurity (or ‘silhouette sign’) at the Cardiac Silhouette region. Similarly when referring to the

kernel norm plots for ET (S9 Fig), QT (S4(a) Fig) and AE (S5(a) Fig), images labeled as pleural

effusion are generally associated with negative literals, ¬ET, ¬QT and ¬AE respectively. These

negative literals can be characterized by their corresponding radiomics features which tend to

indicate a more homogeneous texture reflecting obscurity/reduced visibility of the underlying

structures in the regions.

In Fig 8, two examples (a & b) are correctly classified as ‘healthy’ based on the use of kernel

ET (Upper Mediastinum) and QN (Cardiac Silhouette) in the rule. Examination of the input

image and close-ups of the relevant kernels (ET, QN, AE, QT) reveals a clear Upper Mediasti-

num region (highlighted in the purple box) displaying the visual presence of the carina branch-

ing into the left and right bronchi, leading to a positive ET literal. Simultaneously, the absence

of silhouette sign in the Cardiac Silhouette region (highlighted in the red box), characterized

by clear lung air space and the left ventricle border, results in a negative QN literal (i.e. ¬QN).

For the hilar regions represented by kernel AE (Right Hilar—highlighted in brown) and kernel

QT (Left Hilar—highlighted in green) where the L1-Norm values of these kernels are highly

correlated with Gray Level Non-Uniformity (GLNU) at these regions, Example #1 shows clear

visibility of the bronchus and pulmonary arteries alongside visible rib bones resulting in AE

and QT being positive literals. In contrast, Example #2 exhibits reduced visibility of the bron-

chus and pulmonary arteries, as well as haziness in the Left Hilar (QT) resulting both AE and

QT being negative literals. These kernels were however not used in the rules for classifying the

specific example images.

Example #3 (Fig 8c) provides another illustration of a healthy prediction where the Upper

Mediastinum region has a more homogeneous texture yielding a negative ET literal. In this

example, the rule incorporates information from kernels representing the hilar regions (i.e. AE

and QT) which exhibit clear hilar regions with visible arteries and rib bones resulting in both

kernels to form positive literals. It is worth noting that kernel QN is not needed as a literal in

the rule despite the negativity of the literal corresponds typically to a healthy Cardiac Silhouette

region.

In comparison with the other interpretation methods that only highlight the most impor-

tant pixels and activation maps through the gradient retracing to the input images, our

approach is capable of providing descriptive explanation on how the features at different ana-

tomical regions constitute to the prediction outcome. The other methods primarily emphasize

the significance of the cardiac silhouette region, extending to the upper mediastinum and the

hilar regions, without providing further details and reasoning behind the predictions from

these anatomical regions.

To extend this neural-symbolic approach to cases with pleural effusion, local explanations

are presented in Fig 9 on examples that are classified as having pleural effusion. Fig 9a illus-

trates a case where the Upper Mediastinum and the Cardiac Silhouette region are notably

obscured yielding literals ¬ET and QN respectively. The obscurity also extended to the Left

and Right Hilar regions leading to both kernels resulting as negative literals, ¬QT and ¬AE.

The rule relies only on the literals from kernel ET and QT even though the literals from kernel

QN and AE also relate typically to cases with pleural effusion.

Fig 9b shows the case where the Upper Mediastinum (kernel ET) has a homogeneous tex-

ture with no visibility at the carina, resulting in a negative literal ¬ET. Additionally, the Left

and Right Hilar appear hazy yielding them negative literals, ¬QT and ¬AE. The Cardiac Sil-

houette region is significantly obscured leading to a positive literal QN. However, this predic-

tion again only requires literals from kernel ET and QT.

In Fig 9c, the Upper Mediastinum also has a homogeneous texture leading to a negative lit-

eral (¬ET). The Left Hilar (kernel QT) exhibits clear visibility of the structure while the Right
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Hilar (kernel AE) appears hazy as observed in the close-up views resulting in a positive literal

QT and a negative literal ¬AE. These literals have led to the prediction of ‘pleural effusion’ in

this case. The Cardiac Silhouette region is not included in the rule but appears obscured lead-

ing to a positive literal QN, normally related to Cardiac Silhouette regions with pleural

effusion.

In all cases of pleural effusion, integrated gradient and Grad-CAM only highlight the

importance of the mediastinum and neighboring regions without providing details on how

these highlighted regions (shown in green and in red respectively) contribute to the classifica-

tion outcome as previously discussed.

As illustrated with the training images, our neural symbolic approach for model explana-

tion has demonstrated clear advantage in providing relevant details on the reasoning of the

predictions. We also extend the evaluation to other representative validation images. Fig 10

presents two cases: (a) a true classification of a healthy image and (b) a false positive case

where an image labeled as ‘healthy’ is wrongly classified as having pleural effusion. For the case

in Fig 10a, the correct prediction can be attributed to a clear Upper Mediastinum displaying

the visible branching at the carina (with a positive literal ET) and the absence of obscurity,

commonly referred as ‘silhouette sign’, at the Cardiac Silhouette region (with a negative literal

¬QN). Additionally, the hilar regions show clear visibility of arteries and rib bones resulting in

positive literals AE and QT. In contrast, whiteness around the carina may have reduced its

Fig 10. Two representative examples applying neural-symbolic rules on healthy images in the validation images.

(a) A correct prediction is attributed to a clear Upper Mediastinum (in purple box with literal ET) and the absence of

obscurity at the Cardiac Silhouette (in red box with literal ¬QN). (b) A false positive prediction can be reasoned due to

reduced contrast of the carina due to whiteness at the Upper Mediastinum (literal ¬ET) and lower visibility of the

structure (e.g. arteries and rib bones) at the Left Hilar (literal ¬QT). Integrated gradient and Grad-CAM highlight the

significance of the mediastinum (in green and red respectively) without details and reasoning on both predictions.

https://doi.org/10.1371/journal.pone.0293967.g010
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contrast in Fig 10b at the Upper Mediastinum region leading to a negative literal ¬ET. Obscu-

rity at the right ventricle has also led to the Cardiac Silhouette region yielding a positive literal

QN. Reduced visibility of structure such as arteries and rib bones at the hilar region are also

observed when compared to Fig 10a leading to negative literals ¬AE and ¬QT). While it might

not be reflected based on radiomics features (e.g. Gray Level Non-Uniformity), it can also be

visually identified that white anomalies can be found at the hilar regions in the close-up views.

Based on these information, the false prediction relies on a rule derived from the reduced visi-

bility at the Upper Mediastinum and the Left Hilar regions can be expected from the

reasoning.

Similarly, representative examples of validation images for pleural effusion are illustrated in

Fig 11. Fig 11a shows a true classification for having pleural effusion. Noticeable obscurity can

be observed at the Upper Mediastinum and Cardiac Silhouette yielding literals of ¬ET and QN
respectively. The Right Hilar is also obscured with haziness and reduced visibility in structure

at the Left Hilar leading to negative literals ¬AE and ¬QT. The prediction in this case relies

Fig 11. Two representative examples applying neural-symbolic rules on images labeled as pleural effusion in the validation

images. (a) A correct prediction is attributed to obscurity at the Upper Mediastinum (in purple box with literal ¬ET) and the Left

Hilar (in green box with literal ¬QT). (b) A false negative prediction can be reasoned due to clear visibility of the carina at the Upper

Mediastinum (literal ET) and absence of obscurity at the Cardiac Silhouette (literal ¬QN). Integrated gradient and Grad-CAM

highlight the significance of the mediastinum (in green and red respectively) without details and reasoning on both predictions.

https://doi.org/10.1371/journal.pone.0293967.g011
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solely on the information from the Upper Mediastinum and the Left Hilar, despite relevant

information at the Cardiac Silhouette and the Right Hilar also reflecting on the presence of

pleural effusion. In contrast, the false classification in Fig 11b aligns more closely with literals

typically associated with a healthy image. For example, the Upper Mediastinum is considered

to be distinctly visible at the carina (with literal ET), the ventricle can also be clearly identified

at the Cardiac Silhouette region (with literal ¬QN), and both Left and Right Hilar regions are

notably clear with visible arteries and rib bones. The false prediction can be reasoned through

the literals, ET and ¬QN, relating to the Upper Mediastinum and the Cardiac Silhouette in the

rule.

The integrated gradient and Grad-CAM only highlight the mediastinum which no doubt

plays a crucial role in this classification task. These methods however do not provide details

and reasoning on the prediction outcome. We regard our approach to be more valuable in

understanding the generation of the predictions during model training and allowing better

identification on the cause of false predictions based on the underlying reasoning when

applied to other images. The reasoning of false predictions can subsequently be passed on to

the domain experts for more thorough human evaluation to ensure an accurate diagnosis.

7 Significance of anatomically relevant kernels on model

performance

In a recent work [13], it was found that a CNN model required significantly fewer kernels to

maintain the accuracy of a binary classification. Fig 12 shows that up to 70% of the kernels in a

trained VGG-16 model for pleural effusion classification could be randomly muted (demon-

strated over 20 repeated runs) without affecting model performance.

In addition, it was found that the presence of kernels deemed to be meaningful to the task

at hand was important to maintain the performance of the model compared to kernels that

were conceptually unclear (see Fig 13). For example, muting only kernels of the Diaphragm

Fig 12. Evaluation of model accuracy degradation by muting a random selection of an increasing number of kernels at 10% intervals when applied to

trained CNN models on pleural effusion classification (Originated from [13]).

https://doi.org/10.1371/journal.pone.0293967.g012
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(D), or kernels from both the Cardiophrenic Angle and the Peripheral (AP) would not result

in a significant drop in model accuracy, by contrast with muting kernels from the Mediasti-

num and Cardiophrenic Angle together (MA).

The work in this paper extends these preliminary findings to establish the significance of

domain-relevant kernels on model performance. As explained in Section 5.4, kernel finger-

prints were replaced with more appropriately defined anatomical regions, as a better represen-

tation for the attention regions of a CNN trained on frontal chest X-rays.

Fig 14 shows an expected gain in model accuracy as more kernels are activated (i.e. from ker-

nels of a single group of an anatomical region to kernels from all 9 anatomical regions as

described in Section 5.4). When kernels from all anatomical regions were activated even at only

19% of all kernels, the model was capable of achieving an accuracy of 94.3% compared to the

original CNN model with 96.2%. Activating only all the remaining kernels (i.e. 81% of all kernels)

that were deemed to be uninterpretable achieved an accuracy of 93.0%. It should also be noted

that the model improvement by using relevant kernels was higher once sufficient information

Fig 13. Evaluation of average model accuracy by muting kernels in anatomically relevant clusters (e.g. Mediastinum (M), Cardiophrenic Angle (A))

and its combinations (e.g. Mediastinum and Caradiophrenic Angle (MA), Mediastinum and Lung Peripheral (MP)) over five trained CNN models

for pleural effusion (Originated from [13]).

https://doi.org/10.1371/journal.pone.0293967.g013

PLOS ONE Interactive knowledge extraction from Convolutional Neural Networks used in radiology

PLOS ONE | https://doi.org/10.1371/journal.pone.0293967 April 10, 2024 22 / 29

https://doi.org/10.1371/journal.pone.0293967.g013
https://doi.org/10.1371/journal.pone.0293967


was extracted from the kernels (i.e. activating kernels in more than 6 anatomical regions). The

model accuracy of activating a random mix of uninterpretable kernels was also notably higher

than 50% (random guess in a binary classification) and it plateaued at approximately 78%. All

these findings imply that relevant information for model prediction remained embedded within

the uninterpretable kernels. This should lead to a direction for further investigation with better

medical understanding to define the specific conceptual meaning of these kernels.

Given that it was observed that kernels representing specific anatomical regions may impact

model accuracy, Fig 15 evaluates the effect on model accuracy by muting all uninterpretable

kernels as well as kernels from one anatomical region. It was observed that muting kernels

from Cardiac Silhouette (CS), Upper Mediastinum (UM), Right Hilar (RH) and Left Hilar

(LH) led to a decrease in accuracy of at least 4.5%. This coincided with the kernels used in the

clinically relevant decision tree in Section 6. In addition, it was also found that these 4 regions

are present in the majority of the top 20 highest performing combinations of activated kernels,

especially with Cardiac Silhouette (CS) and Upper Mediastinum (UM) together. Specifically,

the combination (CS,LH,RH,UM) used in the decision tree yields an accuracy of 92.0%. Tra-

chea (T) also appeared frequently among the highest performing combinations beyond those

anatomical regions used in the decision tree. On the other hand, a combination using solely

clavicle bones (LC,RC) and the costophrenic angles (LCA,RCA) would yield an accuracy of

only 54.8%. It should be noted that the top performing combinations maintained accuracy

close to that of the original CNN despite using no more than 11% of the kernels in the original

CNN model(see Fig 16).

8 Conclusion and future work

This work has presented an interactive framework for model explanation that maps a com-

plex CNN model onto interpretable symbolic rules represented as a decision tree. Automatic

Fig 14. Evaluation of average model accuracy with the comparison between incremental activation of anatomical relevant kernel groups (blue

square) and an equivalent random mix of uninterpretable kernels over 100 sample runs (green cross). An additional run of activating all

uninterpretable kernels alone (red square) is also displayed. The percentage in each data point reflects the maximum percentage of kernels being activated.

The evaluation shows that increasing anatomical relevant kernels improves model accuracy more than a random selection. In comparison, the accuracy of

the original CNN (i.e. all kernels activated in brown triangle) is 96.2%.

https://doi.org/10.1371/journal.pone.0293967.g014
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Fig 15. Evaluation of the effect of muting kernels that are uninterpretable and a single anatomical region on the model accuracy. The result (in red)

shows that muting kernels from Cardiac Silhouette (CS), Upper Mediastinum (UM), Right Hilar (RH) and Left Hilar (LH) has shown a significant drop in

accuracy (i.e. a decline of at least 4.5% from the original CNN accuracy of 96.2%).

https://doi.org/10.1371/journal.pone.0293967.g015

Fig 16. Top 20 Combinations of kernels from 4 anatomical regions with the highest model accuracy. Cardiac Silhouette (CS), Upper Mediastinum

(UM), Right Hilar (RH) and Left Hilar (LH) are found in majority of these combinations (in green dots) especially with Cardiac Silhouette (CS) and Upper

Mediastinum (UM) together. The combination of (CS,LH,RH,UM) in red represents the anatomical regions used in the clinically relevant decision tree in

Fig 3b an accuracy of 92.0%. Trachea (T) is also frequently observed among the highest performing combinations beyond those 4 regions used in the

decision tree. On the other hand, the accuracy from a combination that activates solely on the clavicle bones (LC, RC) and the costophrenic angles (LCA,

RCA) is only 54.8%. These results can also be compared with the accuracy of the original CNN (i.e. all kernels activated in brown triangle) of 96.2%.

https://doi.org/10.1371/journal.pone.0293967.g016
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anatomical region localisation was applied to attach meaning to the kernel activations. Ker-

nel norm plots assisted a medical expert in interpreting the constituent kernels in order to

derive a concept represented by each kernel. A graphical user interface enabled interaction

and intervention by an expert to generate more clinically relevant explanations by modifying

the extracted decision tree. This work was demonstrated to provide meaningful kernel

descriptions using radiomics features and evaluating their relevance to the prediction

outcome.

Based on the empirical evidence presented in this work, an initial set of rules consisting of

irrelevant and uninterpretable kernels was replaced with alternatives consisting of clinically

explainable kernels. Medical relevance could therefore be established from the anatomical

regions that these kernels represent [41, 44, 45]. Supporting radiomics feature analysis also dis-

covered that these kernels were a quantifiable estimation of the changes in pixel intensity rela-

tive to its spatial neighbourhood (e.g. visibility of the ventricle in the cardiac silhouette region).

This exemplified a similar approach to how a radiologist may view an X-ray image by identify-

ing visual characteristics on relevant anatomical regions. The modification was also found to

have a negligible deterioration in the predictive performance of the model.

Forming a rule set using irrelevant kernels had been demonstrated to produce poor perfor-

mance. This finding was consistent with previous research [13]. This also implied that these

kernels could be disregarded for the task until appropriate conceptual descriptions could be

defined. It also indicated that the model could be pruned, with the binary classification task to

distinguish pleural effusion from healthy cases only requiring a small number of kernels for

good prediction. On the same note, this also demonstrated the limitations of such model as a

comprehensive diagnostic system for all respiratory diseases (e.g. pleural effusion vs tuberculo-

sis where regions in the upper lung zones may become important [46]). Where data availability

permits, this opens the opportunity to extend this work to multi-class classification tasks for

various respiratory diseases.

The association between supporting radiomics features and kernel norms indicated that the

kernels were indeed extracting texture information from pixels across convolutional layers.

While it was possible to observe changes through the range of the best-suited radiomics fea-

ture, distinguishing the effect between similarly represented radiomics features (e.g. Gray

Level Non-Uniformity vs Pixel Intensity Root Mean Squared Values) remained challenging. It

will be valuable to conduct additional research to uncover the finer details that may enhance

the current progress in kernel concept definition.

In the future when new medical knowledge is discovered, current uninterpretable kernels

should be reviewed so that concepts can be assigned appropriately. This may also apply for ker-

nels that are currently considered to be irrelevant (i.e. right clavicle) as in the case of the illus-

trative example where a patient’s positioning at the time that the X-ray is taken may become

important. Additionally, future research can be conducted on transferring knowledge from

pleural effusion kernels to other respiratory diseases.

Supporting information

S1 Appendix. This appendix provides a quantitative assessment of the segmentation

model performance, which uses the YOLOv5x architecture as referenced in [40], for ana-

tomical region localisation. Specifically, it presents the superiority of the model in the desig-

nated task but also highlights the limitation for regions of the Hilar and Costophrenic Angle

given the similarity of these regions at the left and right lungs. Since all the images used in this

study are frontal, the consistent positioning of the anatomical regions simplifies the process of
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identifying any missing or incorrectly detected regions to enable manual corrections.

(PDF)

S2 Appendix. This appendix presents the findings from our investigation into the impact

of alternative kernels for the same anatomical region when they are applied in symbolic

rules, along with the corresponding radiomics association as concept description. It also

provides further details, which complements the discussion in the main text, regarding how

radiomics features can be used to translate kernels into clinically relevant concepts. This radio-

mics association is particularly focused on the regions of Cardiac Silhouette, Upper Mediasti-

num and the Hilars where they are found to be essential for clinically relevant rule formation.

(PDF)

S1 Fig. Evaluation of performance on YOLOv5x model for anatomical region localization

using NIH dataset. (a) F1-Score plot for different anatomical regions across confidence

thresholds. It shows that the hilar and the costophrenic angle regions are the most challenging.

(b) Confusion Matrix shows that the labeling of the anatomical regions are highly accurate.

(tif)

S2 Fig. Samples of anatomical region localization using YOLOv5x model for plain chest X-

rays of patients with different severity in pleural effusion. Any missing regions (e.g. Costo-

phrenic Angles) have been manually added prior to the radiomics analysis.

(tif)

S3 Fig. Alternative rule set constructed by changing the kernel relating to (a) Left Hilar (from

QT to DM) and (b) Right Hilar (from AE to MH).

(tif)

S4 Fig. The kernel norm plot (L1-norm values) for (a) kernel QT and (b) Kernel DM. The

first 200 data points are labelled as healthy and the next 200 as pleural effusion in the ground

truth. A threshold value (red line) separates positive literals (above the line) and negative literals.

(tif)

S5 Fig. The kernel norm plot (L1-norm values) for (a) kernel AE and (b) Kernel MH. The

first 200 data points are labelled as healthy and the next 200 as pleural effusion in the ground

truth. A threshold value (red line) separates positive literals (above the line) and negative literals.

(tif)

S6 Fig. The kernel norm plot (L1-norm values) for (a) kernel AE and (b) Kernel MH. The

first 200 data points are labelled as healthy and the next 200 as pleural effusion in the ground

truth. A threshold value (red line) separates positive literals (above the line) and negative liter-

als.

(tif)

S7 Fig. Correlation between Run Length Gray Level Non-Uniformity (GLRLM) with

L1-Norms for (a) Kernel QT and (b) Kernel DM. Sub-figure (c) shows images of the Left Hilar

region sorted row-wise from highest Run Length Gray Level Non-Uniformity (GLRLM) (top

left) to lowest Run Length Gray Level Non-Uniformity (GLRLM) (bottom right). Those

images with healthy as ground truth are outlined green while those with pleural effusion are

outlined red.

(tif)

S8 Fig. Correlation between (a) between Run Length Gray Level Non-Uniformity (GLRLM)

and L1-Norms for Kernel AE, and (b) between First Order Pixel Intensity Root Mean Squared
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and L1-Norms for Kernel MH. Sub-figure (c & d) shows images of the Right Hilar region

sorted by Run Length Gray Level Non-Uniformity (GLRLM) and Pixel Intensity Root Mean

Squared row-wise respectively from highest value (top left) to lowest value (bottom right).

Those images with healthy as ground truth are outlined green while those with pleural effusion
are outlined red.

(tif)

S9 Fig. The kernel norm plot (L1-norm values) for kernel ET. The first 200 data points are

labeled as healthy and the next 200 as pleural effusion in the ground truth. A threshold value

(red line) separates positive literals (above the line) and negative literals.

(tif)

S10 Fig. (a) A postive correlation between between First Order Mean Absolute Deviation

(FOMAD) and L1-Norms for Kernel ET. Sub-figure (b) shows images of the Upper Mediasti-

num region sorted by First Order Mean Absolute Deviation (FOMAD) from highest value

(top left) to lowest value (bottom right). Those images with healthy as ground truth are out-

lined green while those with pleural effusion are outlined red.

(tif)
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