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Benchmark problems in optimum structural design of 3D 

reinforced concrete frames 
 

Panagiotis E. Mergos a,* 
a Department of Civil Engineering, City, University of London, London EC1V 0HB, UK 

Abstract.  
Benchmarking goes hand in hand with the development and establishment of efficient and robust optimization 
methodologies in various scientific fields. Nevertheless, benchmark problems, with known global optima, are 
currently missing in the optimum structural design of reinforced concrete (RC) frames. In the present study, for 
first time, benchmark case studies in the optimum design of RC frames are presented. The aim is that these 
benchmarks are used for the calibration, tuning, improvement and development of optimization algorithms to 
address the efficient design of concrete frames. More particularly, six three-dimensional concrete building frames 
are optimally designed to Eurocodes. First, exhaustive search is conducted to identify the global optimum 
solutions and Pareto fronts. Useful conclusions are also made with respect to the properties of the optimal 
solutions. Moreover, all candidate designs results are provided in an accompanying file so that they can be used 
in future optimization studies. Next, the performance of several well-known, single- and multi-objective 
optimization algorithms is assessed against the global optima to examine their efficiency and applicability in this 
class of optimization problems. Closing, the need for further and larger in scale benchmark case studies in the 
optimum design of concrete frames is emphasized.  

Keywords: Reinforced concrete; Benchmarks; Structural; Optimization; Metaheuristics; Eurocodes 

 

1 Introduction 

 
Reinforced concrete (RC) structures are ubiquitous in the built environment. At the same time, 

they are related to high financial costs and environmental impacts [1-5]. Therefore, efficient 

design of concrete structures plays a vital role in sustainable development worldwide [1-5]. 

RC frames are widely met in concrete structures. They represent rather complex structural 

systems with multiple and nonlinear interdependencies that prohibit their optimum design my 

manual trial and error procedures [6-7]. Hence, the application of automated optimization 

algorithms is generally recommended in the sustainable design of RC frames [6-8].  

Scientific research focussing on automated optimum design of RC frames initiated several 

decades ago [6]. Today, there exists a large number of studies in this area. However, the vast 

majority of these studies deal with either single structural members (i.e. slabs, beams, columns) 
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(e.g. [4, 9-11]), or planar RC frames (e.g. [12-17]). The author has identified solely the 

following studies addressing the optimum design of three-dimensional concrete frames: [7, 18-

28]. The rather limited number of these studies can be attributed to the additional complexity 

and computational cost involved when designing 3D concrete frames.  

All previous research efforts, investigate the application of newly developed, improved or even 

existing optimization methods to the structural design of RC frames. The performance of the 

adopted optimization methods is compared with other methods in literature and the superiority 

of the former with respect to the latter is, typically, concluded. However, the global optimum 

solution of the examined RC frames is not known. Therefore, the efficiency of the optimization 

algorithms cannot be concluded in absolute terms but only with respect to other methodologies. 

Furthermore, the computational frameworks developed or applied for the optimum design of 

the RC frames are, typically, not shared with readers or fully described in papers. 

Consequently, the results of these optimization studies cannot be reproduced by other 

researchers for verification purposes and future comparisons with new algorithms.  

The previous discussion hints at the lack of established benchmarks in the optimum structural 

design of real-world 3D concrete frames. This is despite the fact that benchmarking goes hand 

in hand with the development of optimization techniques in the various scientific fields. As a 

matter of fact, from its very beginning in the 1960s, evolutionary computation was 

accompanied by benchmarking studies [29]. Some of the very first benchmarks, such as the 

Rosenbrock’s [30] and Rastrigin’s functions [31] (Fig. 1), are still widely used to calibrate 

optimization algorithms. Nowadays, apart from benchmark suites consisting of purely 

mathematical functions (e.g. [32-35]), there exists a significant number of benchmark case 

studies related to real-world optimization tasks (e.g. [36-39]). At the same time, it is well-

known that the performance of optimization algorithms cannot be generalized to other problem 

classes or fields [29]. Explaining the no free lunch theorem, Haftka [40] states that improving 

an algorithm for a class of problems is likely to make it perform more poorly for other 
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problems. The previous observations highlight the need for optimization benchmarks for each 

scientific field or class of problems. 

 

  

Fig. 1: Benchmark optimization functions: a) Rosebrock’s function; b) Rastriging’s function 

 

In the following of this study, a suite of six small-scale benchmark case studies in the optimum 

structural design of RC building frames is presented. This is the first time that benchmark 

problems are developed for this optimization task. All building frames are designed in 

accordance with the prescriptions and design constraints of Eurocode 2 [41] and Eurocode 8 

[42] for ductility class low. The benchmark problems are developed for both single- and multi-

objective optimization frameworks. The main aim here is that the benchmarks are used in the 

future calibration, tuning, improvement and development of direct search methods and 

evolutionary optimization algorithms to address this class of optimization problems. In all 

benchmark case studies, exhaustive search is first applied and thereby global optima are 

established with certainty. Furthermore, the results of all candidate design solutions are 

provided in an accompanying file of this manuscript so that they can be employed in future 

optimization studies. In addition to exhaustive search, several existing single- and multi-

objective optimization algorithms are applied to optimize the examined RC frames. The 

performances of these algorithms are analysed and compared in terms of actual errors with 

respect to the global optimum solutions and thereby objective conclusions are made with 

respect to the efficiency of existing optimization algorithms in structural design of RC frames.  

a) b) 
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2 Optimization framework 

 
The present optimization framework aims at minimizing the upfront economic cost or 

embodied carbon of 3D RC frames so that they, at least, satisfy the minimum structural 

performance requirements set by modern structural design guidelines, such as the Eurocodes. 

This approach aligns well with standard engineering practice and therefore is expected to have 

a direct and significant impact on sustainable construction. Alternatively, RC frames can be 

optimally designed to maximize structural performance or minimize structural damage, 

measured by appropriate indicators such as interstorey drifts and damage indices, for given 

available resources. Furthermore, a multi-objective optimization approach can be adopted 

where the best trade-off solutions between structural damage and upfront costs for the RC 

frames will be identified for these conflicting objectives. Last but not least, RC frames may be 

designed for minimum life-cycle cost that includes both initial costs and costs related to 

structural damages and deterioration during the life cycle of the structures. 

More particularly, the optimization framework of the current study examines the optimal 

sizing of cross-sections in RC frames to minimize material quantities, environmental impacts 

or economic costs. In this endeavor, frame geometry, external loads, material properties and 

boundary conditions are assumed pre-specified and fixed. Therefore, the vector of design 

variables consists solely of the concrete cross-sections allocated to various groups of RC 

members in the frames. Furthermore, to conform with standard construction practice, cross-

sections are obtained from user-specified, discrete lists of available cross sections. The afore-

described optimization problem is formulated as: 

 

Minimize: 𝐹!(𝒙), 𝐹"(𝒙), … . , 𝐹#(𝒙) 
Subject to: 𝑔$(𝒙) ≤ 0, 𝑗 = 1	𝑡𝑜	𝑚  (1) 
Where:  𝒙 = (𝑥!, 𝑥", … , 𝑥%) 

𝑥& ∈ 𝑫& = (1, 2, … , 𝑘&)	, 𝑖 = 1	𝑡𝑜	𝑑 
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In this formulation, 𝐹'(𝒙) (l = 1 to n) are the n objective functions to be minimized, and x is 

the design variables vector that comprises of d independent variables xi (i = 1 to d), 

representing concrete cross-sections, where d is the total number of member groups in the RC 

frames with potentially different cross-sections. The design variables xi take values from 

integer values sets Di = (1, 2, …, ki) reflecting the positions of cross-sections in the 

corresponding lists of available sections and ki is the total number of available cross-sections 

in the list for group i (i = 1 to d). In addition to the above, the solution must be subject to m 

number of constraints gj(x) ≤ 0 (j = 1 to m). The penalty function approach is used in the 

present study to account for constraints violation. 

The objective functions 𝐹'(𝒙) (l = 1 to n) are calculated by the generic Eq. (2), where Vc (m3) 

represents the total frame concrete volume and ms (kg) stands for the total mass of the steel 

reinforcement accounting for both the longitudinal (flexural) bars and transversal (shear) links. 

In Eq. (2), 𝑓() and 𝑓*) are the prices of concrete per unit volume and reinforcing steel per unit 

mass, respectively. By applying appropriate material unit prices, Eq. (2) may focus on material 

quantities, economic costs or even environmental impacts [4-5]. 

 

 𝐹'(𝒙) = 𝑉((𝒙) · 𝑓() +𝑚*(𝒙) · 𝑓*)      (2) 

 

In Eq. (2), the concrete volume 𝑉!(𝒙) is directly calculated by the member cross-sections of the 

design vector x and frame geometry. Furthermore, for a given set of frame cross-sections (i.e. 

x vector), the mass of steel reinforcement 𝑚"(𝒙) is obtained by following standard structural 

analysis and design procedures. More particularly, in the present framework, the design 

guidelines of Eurocode 0 [43], Eurocode 2 [41] and Eurocode 8 [42] for low ductility class 

(DCL) are applied. To serve this goal, structural analysis and design are conducted with the 

aid of the well-established integrated structural analysis and design software SAP2000 [44] 

version 18. Interaction with SAP2000 is achieved via its Application Programming Interface 
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(API) and the use of a special-purpose application, namely STROLAB (STRuctural 

Optimization LABoratory), developed by the author [27] in MATLAB [45].  

In more detail, structural analysis is first conducted, with the aid of SAP2000, for the various 

load cases (e.g. dead, live, wind, seismic) specified by the designer. Next, design action effects 

(i.e. bending moments, shear and axial forces) are calculated for the ultimate limit state (ULS) 

design load combinations prescribed by Eurocode 0 [43] for persistent, transient, accidental or 

seismic design situations. For the obtained design action effects, concrete beams and columns 

are designed for bending, shear and torsion at a number of cross-sections equally spaced along 

member lengths again with the aid of SAP2000 [44]. Eleven design sections are assumed for 

concrete beams and three for column members. Furthermore, it is assumed that the provided 

steel reinforcement areas match the required ones of the design sections and that these are 

extended till the neighbouring design sections of the same member with lower reinforcement 

demands.  For simplicity, rectangular beam and square column sections are assumed herein 

with steel reinforcement arrangement as shown in Fig. 2. However, it is clarified that the 

optimization framework can address any geometry of cross-sections as long as they are 

introduced in the discrete lists of available cross-sections Di (i = 1 to d) of Eq. (1) and the 

calculation of required steel reinforcement is feasible for given design action effects. 

Specifically, concrete beam sections are first designed for major bending to establish the 

required longitudinal reinforcement (i.e. As,top and As,bot in Fig. 2) assuming the simplified stress 

block of EC2 §3.1.7(3) [27, 41, 46]. Next, beams are designed for major shear employing the 

variable strut inclination method of EC2 [27, 41, 46] to establish the required shear 

reinforcement area (i.e. Asw / s in Fig. 2). In addition, beams are designed for torsion to establish 

whether additional longitudinal and shear reinforcement is required [41, 46]. For column 

members, the longitudinal reinforcement area As,tot (Fig. 2) of cross-sections is designed for 

combined axial load and biaxial bending moments effects (i.e. N + Mx + My) by ensuring that 

all action effects points are within the corresponding 3D axial force-biaxial bending moment 
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interaction surfaces and that utilization factors are close to unity [27, 46]. In addition, the 

required shear reinforcement is calculated in both horizontal directions (i.e. Aswx / sx and Aswy 

/ sy in Fig. 2) employing similar procedures to beams [27, 46]. 

 

 

  

Fig. 2: Assumed concrete cross-sections and steel reinforcement configurations: a) columns; b) beams 

  

The design constraints gj(x) ≤ 0 (j = 1 to m) of the present optimization framework reflect the 

design checks required by Eurocode 2 [41] and Eurocode 8 (DCL) [42] to fulfil the ULS and 

SLS limit states. More specifically, a ULS design constraint is considered not to be met when 

the corresponding limit state check (i.e. bending, shear, torsion, deflections) cannot be satisfied 

by any allowable amount of steel reinforcement in the concrete sections. This approach is 

adopted herein since only concrete cross sections are treated as independent design variables. 

Following this approach, a constraint for the flexural and/or shear design at the ULS of a beam 

or column section is assumed not to be satisfied when the required flexural and/or shear 

reinforcement areas exceed the maximum permissible values. These constraints are written as 

below, where ρl and ρw are the required cross-section longitudinal and transverse steel 

reinforcement volumetric ratios respectively and (ρl,max = 4%) and ρw,max their corresponding 

maximum permissible values according to Eurocodes and construction practice. 

 

  𝜌' − 𝜌'.,-.	 ≤ 0    (3) 

  𝜌/ − 𝜌/.,-.	 ≤ 0    (4) 
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Moreover, a constraint for the design against shear and torsion at the ULS is considered 

violated when the combined shear and torsion effects at a concrete section exceed the 

maximum capacity of the concrete member diagonal compressive struts. These constraints are 

written in the following form, where VEd and TEd are the shear force and torsional moment 

demands, respectively, and VRd,max and TRd,max are the corresponding diagonal compression 

capacities for an angle of compression struts θ = 45ο. 

 

  0#$
0%$,'()

+ 1#$
1%$,'()

−1 ≤ 0    (5) 

 

Regarding SLS, SAP2000 v18 does not explicitly check for deflections of concrete beams [46]. 

To check this limit state, the limiting span-to-depth ratio (L/d) approach is adopted in the 

present study [47]. The method guarantees that beam deflections do not exceed the span length 

divided by 250. Hence, a design constraint for beam deflections is assumed not to be fulfilled 

when the member span-to-depth ratio exceeds the corresponding permissible value (L/d)max. 

This design constraint is expressed as: 

 

  ?2
%
@ − ?2

%
@
,-.

≤ 0    (6) 

 

Furthermore, for the purposes of seismic design, the SLS is verified by comparing inter-storey 

drift ratios demands IDR for the frequent earthquake against limit values IDRmax depending on 

the type of non-structural elements following the prescriptions of EC8 [42]. The latter 

constraints are written as: 

  𝐼𝐷𝑅 − 𝐼𝐷𝑅,-.	 ≤ 0    (7) 
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3 Benchmark case studies 

 
Six benchmark case studies in the optimum structural design of RC frames are considered. 

Each benchmark is designated by the letter B followed by the benchmark number. The 

corresponding RC frames are shown in Fig. 3. Furthermore, Tables 1-6 present the design 

parameters of the optimization problems. For the RC frames, the number of spans ranges 

between 1 and 3 and the number of storeys between 2 and 6. Equal spans are considered with 

lengths ranging between 5m and 6m. Storey height is always 3m. Concrete class varies 

between C20/25 and C30/37 and steel reinforcement class is always B500 following the 

specifications of EC2. Concrete cover to the centroid of steel reinforcement is always assumed 

50mm. 

The concrete buildings are designed to withstand dead, live and either wind or earthquake 

loads. The dead g (kN/m) and live q (kN/m) loads are applied to the beam members in the form 

of uniformly distributed loads with values specified in Tables 1-6, which are exclusive of 

beams’ self-weight. The wind pressure is applied, for simplicity, in the form of a uniform 

lateral pressure along the building vertical surfaces and in all possible directions. The seismic 

action is applied in the form of Eurocode 8 – Type I response spectrum with prescribed design 

PGA values and soil types (see Tables 3, 5 & 6). Importance class II and behaviour factor q = 

1.5 are always assumed, herein, following Eurocode 8 recommendations for low ductility class. 

Furthermore, it is specified that inter-storey drifts for the frequent earthquake should remain 

below 1%, assuming non-structural elements not interfering with structural deformations. It is 

noted that DCL is examined herein not because it is the most efficient seismic design approach, 

but due to the similarities with EC2 design methodologies. A different suite of benchmarks 

can be developed for the ductile seismic design of RC frames. 
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Fig. 3: Benchmark RC frames 

 

  

B1) B2) 

B3) B4) 

B5) B6) 
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Table 1: Design parameters of Benchmark 1 
Benchmark 1 

Materials: C20/25 and B500 

Geometry: Two-storey, portal frame. Span length of 6m in both directions. Storey height of 3m.  

Loads: g = 10.5 kN/m; q = 7.5 kN/m applied to all beams. Lateral wind pressure of 2kPa. 

Problem: d = 2; Ω = 102; Fmin = 1350.8 € 

Group number / Design variable Description List of available sections Optimal Section 

1 All beams 0.30X0.30, 0.35X0.30, …,0.75X0.30 0.40X0.30 

2 All columns 0.30X0.30, 0.40X0.40, …,0.75X0.75 0.30X0.30 

 
Table 2: Design parameters of Benchmark 2 

Benchmark 2 
Materials: C20/25 and B500 

Geometry: Two-storey, portal frame. Span length of 6m in both directions. Storey height of 3m.  

Loads: g = 10.5 kN/m; q = 7.5 kN/m applied to 1st storey beams.  

g = 25.5 kN/m; q = 3.0 kN/m applied to 2nd storey beams.  

Lateral wind pressure of 2 kPa. 

Problem: d = 3; Ω = 103; Fmin = 1476.5 € 

Group number / Design variable Description List of available sections Optimal Section 

1 1st storey beams 0.30X0.30, 0.35X0.30, …,0.75X0.30 0.35X0.30 

2 2nd storey beams 0.30X0.30, 0.35X0.30, …,0.75X0.30 0.55X0.30 

3 All columns 0.30X0.30, 0.40X0.40, …,0.75X0.75 0.30X0.30 

 
Table 3: Design parameters of Benchmark 3 

Benchmark 3 
Materials: C25/30 and B500 

Geometry: Two-storey, three-bay frame. Three spans of 5m in both directions. Storey height of 3m.  

Loads: g = 7.5 kN/m; q = 2.5 kN/m applied to all exterior beams.  

g = 15.0 kN/m; q = 5.0 kN/m applied to all interior beams.  

Seismic action from Eurocode 8 – Type I response spectrum for PGA = 0.36g; Soil type B; Importance Class II; 

Ductility Class Low; q = 1.5 

Problem: d = 4; Ω = 104; Fmin = 10918 € 

Group number / Design variable Description List of available sections Optimal Section 

1 Exterior beams 0.30X0.30, 0.35X0.30, …,0.75X0.30 0.30X0.30 

2 Interior beams 0.30X0.30, 0.35X0.30, …,0.75X0.30 0.35X0.30 

3 Exterior (corner and 

perimeter) columns 

0.30X0.30, 0.40X0.40, …,0.75X0.75 0.35X0.35 

4 Interior columns 0.30X0.30, 0.40X0.40, …,0.75X0.75 0.75X0.75 

 

Table 4: Design parameters of Benchmark 4 
Benchmark 4 

Materials: C25/30 and B500 

Geometry: Four-storey, three-bay frame. Three spans of 5m in both directions. Storey height of 3m.  

Loads: g = 7.5 kN/m; q = 6.25 kN/m applied to all exterior beams of first 3 storeys.  

g = 15.0 kN/m; q = 12.5 kN/m applied to all interior beams of first 3 storeys.  

g = 20.0 kN/m; q = 2.5 kN/m applied to all exterior beams of the 4th storey.  

g = 40.0 kN/m; q = 5.0 kN/m applied to all interior beams of the 4th storey. 
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Lateral wind pressure of 1.5 kPa. 

Problem: d = 6; Ω = 76; Fmin = 13553 € 

Group number / Design variable Description List of available sections Optimal Section 

1 First three storeys 

exterior beams 

0.30X0.30, 0.35X0.30, …,0.60X0.30 0.30X0.30 

2 First three storeys 

interior beams 

0.30X0.30, 0.35X0.30, …,0.60X0.30 0.40X0.30 

3 4th storey exterior beams 0.30X0.30, 0.35X0.30, …,0.60X0.30 0.35X0.30 

4 4th storey interior beams 0.30X0.30, 0.35X0.30, …,0.60X0.30 0.50X0.30 

5 Exterior (corner and 

perimeter) columns 

0.30X0.30, 0.40X0.40, …,0.60X0.60 0.35X0.35 

6 Interior columns 0.30X0.30, 0.40X0.40, …,0.60X0.60 0.45X0.45 

 
Table 5: Design parameters of Benchmark 5 

Benchmark 5 
Materials: C25/30 and B500 

Geometry: Two-storey, three-bay frame with setback at the 2nd storey. All span lengths are 5m. Storey height of 3m.  

Loads: g = 7.5 kN/m; q = 6.25 kN/m applied to all exterior beams of first storey.  

g = 15.0 kN/m; q = 12.5 kN/m applied to all interior beams of first storey.  

g = 7.5 kN/m; q = 2.5 kN/m applied to all 2nd storey beams.  

Seismic action from Eurocode 8 – Type I response spectrum for PGA = 0.24g; Soil type A; Importance Class 

II; Ductility Class Low; q = 1.5 

Problem: d = 5; Ω = 95; Fmin = 4964.3 € 

Group number / 

Design variable 

Description List of available sections Optimal Section 

1 First storey exterior beams 0.30X0.30, 0.35X0.30, …,0.70X0.30 0.40X0.30 

2 First storey interior beams 0.30X0.30, 0.35X0.30, …,0.70X0.30 0.50X0.30 

3 Second storey beams 0.30X0.30, 0.35X0.30, …,0.70X0.30 0.35X0.30 

4 All exterior columns 0.30X0.30, 0.35X0.35, …,0.70X0.70 0.40X0.40 

5 All interior columns 0.30X0.30, 0.35X0.35, …,0.70X0.70 0.40X0.40 

 
Table 6: Design parameters of Benchmark 6 

Benchmark 6 
Materials: C30/37 and B500 

Geometry: Six-storey, three-bay frame with setbacks at the 5th and 6th storeys. All span lengths are 6m. Storey height of 3m.  

Loads: g = 9.0 kN/m; q = 7.5 kN/m applied to all exterior beams.  

g = 18.0 kN/m; q = 15.0 kN/m applied to all interior beams.  

Seismic action from Eurocode 8 – Type I response spectrum for PGA = 0.16g; Soil type C; Importance Class II; 

Ductility Class Low; q = 1.5 

Problem: d = 7; Ω = 67; Fmin = 30060 € 

Group number / Design variable Description List of available sections Optimal Section 

1 1st and 2nd storey exterior beams 0.30X0.30, 0.40X0.30, …,0.80X0.30 0.40X0.30 

2 1st and 2nd storey interior beams 0.30X0.30, 0.40X0.30, …,0.80X0.30 0.50X0.30 

3 3rd and 4th storey exterior beams 0.30X0.30, 0.40X0.30, …,0.80X0.30 0.40X0.30 

4 3rd and 4th storey interior beams 0.30X0.30, 0.40X0.30, …,0.80X0.30 0.50X0.30 

5 5th and 6th storey beams 0.30X0.30, 0.40X0.30, …,0.80X0.30 0.30X0.30 

6 Exterior (perimeter & corner) 

columns 

0.30X0.30, 0.40X0.40, …,0.80X0.80 0.40X0.40 

7 Interior columns 0.30X0.30, 0.40X0.40, …,0.80X0.80 0.50X0.50 
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For non-seismic actions, design action effects are calculated by 3D linear elastic static analysis 

with the aid of SAP2000. Beam and column members are modelled by 3D elastic frame 

elements with uncracked (i.e. geometric) structural properties. No moment redistribution is 

considered. For column members, the design bending moments are increased to account for 

geometric imperfections and 2nd order effects. For seismic actions, actions effects are 

determined by linear elastic response-spectrum analysis. Cracked stiffness for the concrete 

members is used in that is assumed to be 50% of the uncracked, following the 

recommendations of EC8 [42]. Floor masses are assumed to be lumped at the floor centres. 

Furthermore, diaphragmatic action is considered in the plane of each floor. In all cases, fixed 

supports are assumed at the column bases. 

The RC frames are divided into beam and column member groups with the same cross-section. 

The numbering, description and list of available cross-sections for each group of structural 

members are presented in Tables 1-6. It is recalled that all available cross-sections follow the 

general configurations of Fig. 2 for beam and column members. Different configurations may 

drive to different optimal solutions. It is also reminded that the numbering and total number of 

groups of the RC frames coincides with the numbering and total number of independent design 

variables d (i.e. dimensions), respectively, in the optimization problem. The dimensions of the 

benchmark case studies range between d = 2 and d = 7. Moreover, the search spaces Ω range 

between Ω = 102 and Ω = 67 (= 279,936) discrete candidate design solutions. 

 

4 Exhaustive search 

 

In this section, the results of exhaustive search analysis of the six benchmark RC frames are 

presented. It is noted that all results are included in the accompanying file of this manuscript, 

Benchmarks.xlsx, so that they can be used by readers in future optimization studies. Exhaustive 

search examines all candidate design solutions (i.e. all combinations of groups’ cross-sections) 
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whether they satisfy constraints and then calculates their objective function values. The main 

advantage of exhaustive search is that it guarantees tracking of global optimum solutions in a 

prescribed discrete search space of available cross-sections. The latter is the case independently 

of the geometry of cross-sections and types of constraints. Furthermore, it can offer valuable 

insights into the landscape of objective functions. On the negative side, it is accompanied by 

high computational costs that make it prohibitive for large-scale optimization problems. 

The exhaustive search results are presented in Figs 4 to 8 in terms of concrete volume Vc, mass 

of steel reinforcement ms, inclusive of both longitudinal bars and shear links, and economic 

cost of the RC frames as a whole. The economic cost is calculated herein by Eq. (2) assuming 

a typical unit price of concrete fco = 100 €/m3 and a typical unit price of steel reinforcement fso 

= 1 €/kg. Only feasible solutions are presented in the figures that satisfy all design constraints. 

Furthermore, the obtained global optimum solutions of the benchmark case studies are shown 

in Tables 1-6 together with their corresponding economic costs Fmin. 

Figure 4 presents the variation of total cost with the concrete volume of the RC frames. It is 

shown that, for all benchmark case studies, as the concrete volume increases the total cost first 

decreases and then increases. Therefore, the optimal solutions are always between the solutions 

for minimum and maximum concrete volumes. This contradicts a common misconception in 

structural design of RC frames that minimum concrete volume designs are also the most cost-

efficient structural solutions. This is not the case, however, since too small concrete sections 

can increase sharply the requirement for steel reinforcement increasing thereby the total 

economic cost.  

Moreover, Fig. 5 illustrates the variation of RC frames total cost versus the mass of steel 

reinforcement. Similarly to Vc, the cost of RC frames first decreases and then increases as the 

mass of steel increases. It is, therefore, concluded that the optimum cost solution does not 

coincide with the solutions for minimum and maximum steel reinforcement mass. Instead, it 
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represents the best compromise between the requirements for concrete and steel reinforcement 

quantities.  

 

   

   
Fig. 4: Total cost versus concrete volume 

 

   

 
 

 

Fig. 5: Total cost versus steel reinforcement mass 
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Figure 6 shows the variation of total cost with the ratio of steel reinforcement mass to concrete 

volume (ms/Vc). The latter ratio quantifies the relative amount of steel reinforcement in 

concrete. It is often believed that efficient design solutions of RC frames have ms/Vc ratios 

within a small range of values. Consequently, this ratio is widely used as an indicator of 

optimum design solutions. Nevertheless, Fig. 6 illustrates that optimal ms/Vc ratios vary 

significantly across the various benchmark case studies and therefore are rather problem 

specific. Figure 6 reveals also that, for the same case study, a wide range of ms/Vc ratios may 

yield costs very similar to the optimal solution. Therefore, the optimal costs are not particularly 

sensitive to ms/Vc ratios. Finally, it is worth mentioning that, for the same case study, design 

solutions with similar ms/Vc ratios may have completely different total costs. 

 

   

   
Fig. 6: Total cost versus steel reinforcement mass to concrete volume ratio 
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Fig. 7: Steel reinforcement mass versus concrete volume 
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0.30X0.30m for exterior beams and 0.75X0.75m for interior columns as shown in Table 3). It 

is seen now that two local optimum solutions are revealed. Both solutions have exterior column 

section heights of 0.35m. However, the first solution has interior beam section height of 0.35m 

and the second solution a respective height of 0.55m. The former beam section height 

corresponds to the global optimum solution (see Table 3). This observation is important as it 

shows that objective functions of these optimization problems may be multimodal and 

therefore global optimization algorithms and procedures are required to track global optima. 

 

   

   
Fig. 8: Steel reinforcement mass to concrete volume ratio (ms/Vc) versus concrete volume 

 

   
Fig. 9: Contour plots of total costs versus cross-sectional dimensions  
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Fig. 10: Optimal design solution of benchmark B3; a) 3D geometry; b) 𝜌'(%) ratios; c) 
deflections under the frequent earthquake of an interior plane frame 

 

At this stage, it is worthy to shed more light into the optimal design solution of B3 as an 

indicative example of the ability of the proposed approach to track valid global optimum 

solutions. Figure 10a presents the 3D geometry of the optimal B3 design solution with cross-

sections shown in Table 3. It is interesting to see that the algorithm has selected the largest 

cross-sections for the four interior columns and small cross-sections for all other members. 

This concentrates seismic actions in a small number of structural members and relieves other 

members. Furthermore, Fig. 10b shows the 𝜌' ratios of all members of an interior plane frame 

of the 3D structure. It is noted that the 𝜌' ratios of the ground-storey interior columns are 

3.97%, which is slightly below the limit of 4% set by EC2 [41]. Furthermore, Fig. 10b presents 

the deformed configuration of the same frame under the frequent earthquake design action. It 

is shown that the top displacement remains below 0.02m meaning that inter-storey drifts 

remain well below 1% that is set as design constraint. 

  

a) 

b) c) 
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5 Single-objective optimization algorithms 

 

In this section, the performance of various well-established single objective optimization 

algorithms against the benchmark case studies is examined. The objective function examined 

in this section is the total economic cost of the RC frames as specified in §4.  The goal, herein, 

is to make conclusions regarding the ability of common single objective algorithms to track 

global optimum solutions of small-scale problems in structural design of RC frames and the 

required computational cost to achieve so.  

More particularly, six optimization algorithms are investigated, namely, the Pattern Search 

(PS) [48], Genetic Algorithm (GA) [49], Flower Pollination Algorithm (FPA) [50], Particle 

Swarm Optimization (PSO) [51], Simulated Annealing [52] and Surrogate Based Optimization 

(SBO) [48] framework. PS investigates a set of points around the current design solution and 

updates the latter iteratively when a better solution is identified. GA is a population-based 

metaheuristic optimization algorithm inspired by Darwin’s theory of evolution. FPA is another 

nature-inspired, population-based optimization algorithm reproducing the pollination process 

of flower species. PSO is again a metaheuristic, population-based algorithm imitating the 

motion of bird flocks and fish schools. SA evolves a candidate design solution based on the 

annealing process in metallurgy. SBO frameworks employ surrogates to predict the values of 

computationally expensive objective functions, such as the objective function of the present 

study due to the numerous and computationally costly finite element analyses and structural 

design calculations required [28]. It is clarified that all algorithms applied in this section, apart 

from FPA, are formulated as described in MathWorks [48] and used as implemented in 

MathWorks [45]. 

For each algorithm and benchmark case study, 10 independent runs are conducted to account 

for the stochastic nature of the optimization algorithms. All runs are terminated when either 
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the global optimum solution is tracked or when a maximum number of function evaluations is 

reached. The latter is assumed to be equal to the number of exhaustive search design solutions, 

as shown in Tables 1-6. For all population-based algorithms, a population size of 10 is assumed 

for benchmarks B1 and B2 and of 20 individuals for problems B3 to B6. All remaining 

parameter options of the optimization algorithms are set according to the recommendations in 

MathWorks [48]. For the FPA algorithm, the parameter settings suggested in Mergos and Yang 

[35] are assumed.  

It is worth noting herein that the performance of the various optimization algorithms strongly 

depends on their parameter settings. Therefore, the conclusions made in the following are 

specific to the applied algorithmic instances (i.e. algorithms + parameter settings) rather than 

the algorithms themselves. A parameter tuning study (e.g. [35]) aiming at maximising the 

performance of these algorithms for the benchmark case studies under investigation is out of 

the scope of the present study. The aim here is simply to demonstrate and investigate the 

performance of common optimization algorithms with typical parameter settings.  

Figure 11 presents the average optimization histories, of the 10 independent runs, for the 

different optimization algorithms and benchmark case studies. These histories are shown in the 

form of relative cost errors (%) with respect to the global optimum cost, as established by 

exhaustive search, versus the number of function evaluations. It is shown that all algorithms 

perform satisfactorily and manage to reduce average errors to less than 2% of global optimum 

cost within rather limited computational budgets. As expected, the required number of function 

evaluations to reach a target relative error increases as the number of problem dimensions d 

(i.e. number of design variables) increases. However, for almost all benchmark case studies 

and optimization algorithms, 50·d function evaluations seem sufficient to reduce average 

errors to 2% of the global optimum cost. 

It is also observed that the optimization algorithms converge differently, for each benchmark 

case study, when compared to the other algorithms. For example, the PS demonstrates the 
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highest convergence speed for benchmarks B4 to B6, but it is slower than other algorithms for 

B1 to B3. On the other hand, SBO is the speediest algorithm for benchmarks B1-B3, but it is 

outperformed by other algorithms for B4 to B6. Nevertheless, some general conclusions can 

be made with respect to the relative convergence performance of the various algorithms. It is 

concluded that the PS and SBO algorithms converge rather quickly for all benchmark case 

studies. The GA and PSO algorithms demonstrate, typically, an average convergence 

performance with respect to the other algorithms. The FPA algorithm seems to be slightly 

slower that the former algorithms. The SA algorithm is the slowest, on average, of all examined 

optimization algorithms as it demonstrates the smallest or second smallest convergence rate 

across the six benchmark case studies. 

Figure 12 presents, in the form of box plots, the numbers of function evaluations at which 

convergence to the global optimum solution (i.e. success) was achieved by the independent 

runs of the different algorithms. The box plots show the minimum, maximum and median (red 

line) function evaluations. Inside the boxes, the 25th to 75th percentiles are contained. Only 

successful algorithm runs are presented in this figure. A run is considered as successful when 

the global optimal solution is tracked within equal or less function evaluations than exhaustive 

search. In the opposite case, the use of optimization algorithms seems pointless.  
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Fig. 11: Single-objective algorithms average optimization histories 

 

The number of successful runs of all optimization algorithms and for all benchmark case 

studies is also shown in Fig. 13. The fact that all algorithms, apart from SBO, fail several times 

to get the global optimum solutions within the computational budget of exhaustive search is 

by itself a matter of concern. 

Generally, the PS algorithm seems to be tracking relatively quickly the global optimum 

solutions for most of benchmark case studies. This is expected as it is a local optimization 

algorithm with high exploitation capability. However, it also demonstrates the smallest number 

of successful runs across all benchmark case studies. This is the case because it is susceptible 

to getting trapped in local optima. The SBO algorithm performs well for all benchmark case 

studies demonstrating 100% success rate and requiring, typically, small numbers of function 

evaluations to identify the global optima. It is noted, however, that this algorithm has been 

found to getting stuck in local optima in larger-scale design problems of concrete frames [28]. 

The GA and PSO seem to yield average performances, among the various algorithms, in terms 

of both speed at reaching the global optimal and success rates. The SA is, typically, the slowest 

algorithm at tracking the global optimum solutions, but its success rates are similar to the PSO 

and GA algorithms. Finally, the FPA algorithm is generally the second slowest in terms of 

reaching global optima, but it demonstrates the second-best success rates due to its high 

exploration abilities [27,50]. 
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Fig. 12: Number of function evaluations till success 

 

   

   
Fig. 13: Number of successful runs 

 

6 Multi-objective optimization algorithms 
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reinforcement ms and the volume of concrete Vc. As discussed in §4, ms and Vc are highly 

competitive objectives leading to well-formed Pareto fronts. The goal of this section is to 

investigate the capability of multi-objective optimization algorithms to predict these Pareto 

fronts for a given computational budget. Two multi-objective optimization algorithms are 

examined as implemented in MathWorks [48]. The first algorithm, namely gamultobj in 

MathWorks [48], is an elitist genetic algorithm (GA) that can be considered as a variant of 

NSGA-II [53]. The second algorithm, namely paretosearch in MathWorks [48], employs 

pattern search (PS) to explore iteratively for non-dominated design solutions. 

For each algorithm and benchmark case study, independent runs are conducted with fixed 

numbers of maximum function evaluations ranging between 50·d and 400·d, but smaller than 

the corresponding exhaustive search design combinations. The calculated Pareto fronts are 

then compared with the “real” Pareto fronts obtained by exhaustive search. For the GA 

algorithm, a population size of 10 is assumed for benchmarks B1 and B2 and of 20 individuals 

for problems B3 to B6 based on the results of a preliminary analysis. All remaining parameter 

options of the optimization algorithms are set according to the recommendations in 

MathWorks [48]. 

The comparisons of the calculated versus the “real” Pareto fronts of all benchmark case studies 

and algorithm runs are presented in Figs. 14-19. In these figures, each algorithm run is denoted 

by the abbreviation of the algorithm (i.e. GA or PS) and the applied maximum number of 

function evaluations (e.g. 50·d) that was used as a stopping criterion. It is observed that the PS 

algorithm performs significantly better than the GA algorithm in all benchmark case studies. 

Despite the fact that the latter algorithm predicts several non-dominated solutions, it is not able 

to capture well the full extent of Pareto fronts, even after 400·d trial solutions. Since the NSGA-

II is a well-established algorithm, the problem in these analyses is believed to be related to the 

algorithm parameter options applied rather than the algorithm itself. Tuning of these 
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parameters to maximize the performance of the algorithm in such optimization problems is a 

topic worth investigating in future studies. 

On the other hand, the PS algorithm seems to yield satisfactory representations of the Pareto 

fronts that systematically improve as the number of examined design solutions increases. In all 

cases, very good predictions of the Pareto fronts are obtained between 200·d and 400·d trial 

solutions. It is noted, however, that not all non-dominated design solutions are identified even 

after 400·d trial solutions. It is also worth mentioning that, as expected, the multi-objective PS 

algorithm requires many more trials to converge than the single-objective PS algorithm 

presented in §5. 

  
Fig. 14: Steel reinforcement mass versus concrete volume Pareto fronts – Benchmark 1 

 

   

   

Fig. 15: Steel reinforcement mass versus concrete volume Pareto fronts – Benchmark 2 
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Fig. 16: Steel reinforcement mass versus concrete volume Pareto fronts – Benchmark 3 

 

   

   
Fig. 17: Steel reinforcement mass versus concrete volume Pareto fronts – Benchmark 4 
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Fig. 18: Steel reinforcement mass versus concrete volume Pareto fronts – Benchmark 5 

 

   

   
Fig. 19: Steel reinforcement mass versus concrete volume Pareto fronts – Benchmark 6 

 

7 Conclusions 
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computational performance. Benchmark case studies must be representative of the class of 

problems being investigated since the performance of optimization techniques cannot be 

generalised to all problem classes. In the past, several studies have applied optimization 

methodologies/algorithms to the structural design of concrete frames. Nevertheless, 

benchmark optimization problems in this area seem to be missing in literature hindering the 

efficient and reliable optimization of concrete frames. 

The present study aims at filling part of this gap in literature by providing small-scale 

benchmark case studies in the optimum design of 3D concrete frames. The main goal here is 

that these benchmarks are employed in the future calibration, tuning, improvement and 

development of direct search methods and evolutionary optimization algorithms to address this 

class of optimization problems. More particularly, six 3D building RC frames are designed in 

accordance with Eurocode 2 [41] and Eurocode 8 [42]. The independent design variables of 

these frames, representing discrete concrete cross-sections of member groups, range between 

2 and 7 and the candidate design solutions between 100 and 279,936.  

First, exhaustive search analysis of the benchmark case studies is conducted revealing their 

global optimum solutions and Pareto fronts. In addition, by visualising the results of exhaustive 

search, useful conclusions are made regarding the relationships between total material cost, 

concrete volume, and steel reinforcement mass. Useful insights into the landscapes of the 

objective functions are also provided. All exhaustive search results are provided in an 

accompanying file of this manuscript so that they can be used in future optimization studies. 

Next, six well-established single objective optimization algorithms are applied to minimize the 

material cost of the benchmark frames, including evolutionary, direct search and surrogate-

based algorithms. The performance of these algorithms is quantified in terms of actual errors 

with respect to the global optimum solutions from exhaustive search. Useful conclusions are 

made with respect to the overall performance, in terms of speed of convergence and robustness, 
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of the single objective algorithms in the optimum design of concrete frames as well as the 

computational cost required to achieve satisfactory results.  

Moreover, two multi-objective optimization algorithms are employed to track the steel 

reinforcement mass versus concrete volume Pareto fronts of the benchmark RC frames. The 

predicted Pareto fronts for various computational budgets are compared with the actual ones 

from exhaustive search. It is generally concluded that multi-objective problems are more 

challenging than single-objective ones and further research is required to establish efficient 

optimization methodologies tracking satisfactorily actual Pareto fronts with limited 

computational costs. 

Closing this work, the need for further benchmark studies in the optimum design of reinforced 

concrete structures is emphasized. These studies can focus on larger-scale problems in the 

optimum design of 2D and 3D concrete frames as well as different types of concrete structures, 

design methodologies and objective functions such as structural performance and life-cycle 

cost. This step is considered essential to support and promote the reliable optimization of 

concrete structures to facilitate sustainable and resilient construction. 
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