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Numerical simulation of wave-floater interactions using ISPH_GNN trained 
on data for wave-only cases 
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A B S T R A C T   

As a mesh-free approach, the incompressible Smoothed Particle Hydrodynamics (ISPH) method has been often 
used for simulating wave-structure interaction problems. In the conventional ISPH method, the pressure- 
projection phase of solving the pressure Poisson’s equation (PPE) is the most time-consuming. In recent years, 
the machine learning (ML) techniques has gradually shown their potential in accelerating the computational 
fluid dynamics. In this paper, the graph neural network (GNN) supported ISPH method (ISPH_GNN), in which the 
GNN replaces solving the PPE for the fluid pressure in the conventional ISPH, is adopted for numerical simu-
lations of wave-floater interactions. To the best of the authors’ knowledge, this is the first work to study the 
wave-floater interactions by using GNN supported ISPH method. More importantly, this paper demonstrates that 
the GNN trained only on data for simpler wave-only cases (i.e. no structure in the wave fields) can be satis-
factorily applied to the cases for wave-floater interactions. More specifically, the paper will show this by using 
the ISPH_GNN with such trained GNN model to simulate various different cases, including the decay tests of a 
box, a floating box subjected to a wave, the interaction between wave and a moored floating breakwater and the 
violent green water impact on a floating structure. In most of the cases, the numerical results are validated by 
comparing with experimental data. Agreement between them is surprisingly satisfactory, being as good as those 
obtained by the conventional ISPH. The paper will also show that the ISPH_GNN requires much less computa-
tional time (97 times less for the cases concerned) than the conventional ISPH for estimating pressure involved in 
wave-floater interactions. This reveals a great potential that one can train the GNN using the datasets for simpler 
cases and then use the ISPH_GNN to simulate wave-floater interaction problems.   

1. Introduction 

The study of waves interactions with floating bodies has been 
receiving extensive attentions in the design and operation of the offshore 
and marine structures for the safety and survivability of the structures. 
In recent years, as a Lagrangian meshless method that discretizes the 
computational domain by particles, the Smoothed Particle Hydrody-
namics (SPH) method has been proved to be a promising modelling tool 
for simulating the fluid-structure interactions (Sun et al., 2015; Ren 
et al., 2015; Khayyer et al., 2018; He et al., 2020, 2023; Zhang et al., 
2021; Luo et al., 2021; Zhang et al., 2023a). As an important stream of 
the SPH, the incompressible SPH (ISPH) has also been applied to 
modelling the wave-structure interactions with producing stable and 
accurate pressure fields (Shao and Gotoh, 2004; Shao, 2010; Zheng 
et al., 2018; Zhang et al., 2021; Khayyer et al., 2021) and securing good 
volume conservation properties (Gotoh et al., 2014). In ISPH method, 

the incompressible Navier-Stokes (NS) equation and continuity equation 
are solved using the projection method and the pressure is evaluated by 
solving a PPE. The accuracy and convergence of the ISPH are largely 
affected by the numerical schemes to solve the PPE (Ma et al., 2016). 
Despite some works have been made to improve the ISPH (Fourtakas 
et al., 2021; Tsuruta et al., 2023), solving the PPE remains to be of the 
most time-consuming part in the ISPH. 

Recently, the machine learning (ML) approaches have been widely 
applied to fluid dynamics. Some researchers have used the ML tech-
niques to accelerate the numerical process through replacing the time- 
consuming or challenging execution part in the conventional proced-
ure by appropriate ML models. For example, Zhang and Duraisamy 
(2015) adopted the trained ML model to replace the conventional tur-
bulence models for predicting the turbulent production term. Ling et, al. 
(2016) developed a novel neural network architecture for the prediction 
of Reynolds stress anisotropy tensor. Some works have also been made 
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to use the convolutional neural networks (CNNs) to replace solving the 
PPE for predicting the fluid pressure in the Navier-Stokes or Euler 
equations using the projection method. Tompson et al. (2017) proposed 
a data-driven method based on the CNN architecture to solve the pres-
sure projection for accelerating Eulerian fluid simulation; A 

smartfluidnet framework based on CNN was developed by Dong et al. 
(2019) to automatically use multiple neural network models to accel-
erate Eulerian fluid simulation. Xiao et al. (2019) proposed a CNN-based 
model, in which the discretization structure and the intermediate ve-
locities were used as the inputs to predict the solutions of the large linear 
equations resulted from the discretization of the PPE; Zhang et al. 

Fig. 1. Flowchart of ISPH incorporating the GNN (solid arrows denotes the 
flowchart of the conventional ISPH and dashed arrows indicates the flowchart 
of the ISPH_GNN). 

Fig. 2. Diagram of the GNN network architecture.  

Fig. 3. Schematic setup of the numerical wave tank.  

Fig. 4. The comparisons of wave profiles between different ISPH results and 
analytical solution at the measuring point G1 located at x/D = 15. 

Fig. 5. Comparisons of wave profiles at x/D = 15 between analytical solution 
and ISPH_GNN results with different particle spacings. 
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(2023b) combined the CNN with ISPH for the free-surface flow simu-
lation and used CNN model to replace solving the PPE for the fluid 
pressure. 

Because CNNs perform the convolutions on a uniform Cartesian grid, 
therefore, the inputs (such as the field data, domain geometry) for CNNs 
need to be expressed based on the regular grids. This restriction makes 
CNNs have inherent limitations and pose challenges for their application 
to particle-based physical problems, in which particles are irregularly 
distributed. As the geometric deep learning framework, graph neural 
networks (GNNs) (Gori et al., 2005) are based on graphs which are 
formed by information at nodes which can be distributed in any way, 
regularly or irregularly. Therefore, GNNs have the ability to address the 
limitation of CNN discussed above and offer key advantages for 
particle-based simulation, e.g., Lagrangian ISPH simulation, in which 

the data are usually represented at irregularly-distributed particles. 
In recent years, the application of GNNs has grown very rapidly to 

the fluid simulation. Belbute-Peres et al. (2020) incorporated an 
embedded differentiable fluid simulator with the graph convolutional 
network to develop a hybrid graph neural network for fluid flow pre-
diction. Pfaff et al. (2020) proposed a GNN model based on the un-
structured mesh to simulate the incompressible flow around cylinders as 
well as the compressible flow around airfoils. A similar GNN model was 
employed by Chen et al. (2021) as a surrogate model to study the 
pressure and velocity fields in simulation of the incompressible flow 
around a bluff body. Gao and Jaiman (2022) presented a 
quasi-monolithic GNN-based framework for data-driven reduced-order 
modeling flow around an elastically mounted cylinder, where a 
multi-layer perceptron was used to evolve mesh displacements. Lino 
et al. (2022) proposed a data-driven framework including the multi scale 

Fig. 6. Errors of numerical results in the regular wave case with different 
particle resolutions. 

Fig. 7. The comparisons of solitary wave profiles between numerical results 
and analytical solution at ̃t = 20 in the case with H = 0.32D. 

Fig. 8. Averaged errors Erra of numerical results corresponding to different 
particle spacing in the solitary wave propagation. 

Fig. 9. Floating box with an angle of inclination in water.  

Fig. 10. The comparison of the roll motion in the case of the damped roll-
ing decay. 

Fig. 11. Time history of roll angles corresponding to different particle spacings 
from ISPH_GNN. 

N. Zhang et al.                                                                                                                                                                                                                                  
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rotation-equivariant graph neural networks for learning the unsteady 
Eulerian fluid dynamics, where the domain was discretized into an un-
structured set of fixed nodes. Some efforts have also been made to apply 
GNNs for modeling fluid dynamics simulations in Lagrangian particle 
(meshfree) system. In this regard, Sanchez-Gonzalez et al. (2020) pre-
sented a machine learning framework with graph neural network to 
simulate fluids and fluid interacting with static obstacles. Kumar and 
Vantassel (2022) developed a Graph Network Simulator (GNS) by 

discretizing the domain with nodes and the links connecting the nodes 
for fluid modeling. Li and Farimani (2022) developed a data-driven 
approach based on GNN to simulate fluid within the Lagrangian parti-
cle representation. Zhang et al. (2024b) combined the GNN with ISPH 
for simulating the free-surface flows. They mainly focused on the 
development of the GNN to speed up fluid simulation without consid-
ering structures. In their approach, the cases generating data for training 
GNN is largely in the similar scope of cases they studied using the trained 

Fig. 12. Sketch of wave interaction with a freely floating box.  

Fig. 13. The comparisons of the motions of the floating box between experimental photos (Ren et al., 2015) (left) and ISPH_GNN simulations (right) at 
different instants. 

N. Zhang et al.                                                                                                                                                                                                                                  
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GNN. 
While these existing GNN-based works have demonstrated the po-

tential of GNNs for various fluid flow applications, these works mainly 
focus on fluid simulation and flow around fixed body and/or domain 
boundaries. To the best of our knowledge, there are no relevant works 
that combines the GNN with the ISPH for the application to wave-floater 
interactions simulations. More interestingly, no publication has 

demonstrated that the GNN trained using data for simple cases without 
structures can be applied to more complex cases involving wave-floater 
interaction. 

In this paper, we adopt the GNN supported ISPH method (ISPH_GNN) 
to simulate wave-floater interactions. In this method, the GNN model 
developed by Li and Farimani (2022) is combined with our in-house 
ISPH solver (Zhang et al., 2018) to replace solving the PPE for pres-
sure in the ISPH. More significant contribution of this paper is to show 
that ISPH_GNN with GNN trained by using datasets generated only from 
simple wave propagation cases without any structure can be applied to 
simulate relatively complex cases for wave-floater interactions. 

2. Mathematical and numerical formulation 

2.1. Lagrangian ISPH 

In the ISPH, the fluid is governed by the incompressible NS equation 
and the continuity equation that are respectively given as, 

Du
Dt

= −
1
ρ∇p + g + ν∇2u (1)  

∇ ⋅ u = 0 (2)  

where u, p and ρ are, respectively, the velocity, pressure and density of 
the fluid, g is the gravitational acceleration and ν is the kinematic vis-
cosity of the fluid. Eq. (1) is written in a Lagrangian frame and D/Dt is 
the material derivative following the motion of fluid particles. On the 
solid boundaries, the following Neumann boundary conditions for ve-
locity and pressure, respectively, are imposed, 

u • n=U • n (3)  

n • ∇p= ρ(n • g − n • U̇) (4)  

where U and U̇ are the velocity and acceleration of the solid boundary, 
respectively; n is the corresponding unit normal vector. In addition, the 
following free-surface condition is imposed, 

p= 0 (5) 

Fig. 14. The comparisons of time histories of motions of the floating box: (a) 
sway; (b) heave and (c) roll. 

Fig. 15. The particles distribution with pressure field from the ISPH_GNN in 
the case of solitary wave interactions with a floater at different time instants. 

Fig. 16. Time histories of the motions of the floating box under solitary wave 
with H = 0.24D: (a) heave and (b) roll. 

N. Zhang et al.                                                                                                                                                                                                                                  
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A projection method is used to solve the governing equations and 
boundary conditions, which is composed of three main stages.  

(1) Prediction stage: calculating the intermediate fluid velocity u∗

and the intermediate position vector r∗ at the particle using 

u∗ =ut + Δu∗ (6)  

Δu∗ =
(
g+ ν∇2u

)
Δt (7)  

r∗ = rt + u∗Δt (8)  

where ut and rt are the velocities and positions of particles at the time t, 
respectively; Δt is the time step size; u∗ and r∗ are the intermediate 
velocities and positions of particles.  

(2) Pressure projection stage: By substituting Eqs. (6) and (7) to Eqs. 
(1) and (2), it is not difficult to derive the PPE, 

∇2pt+Δt =
ρ∇⋅u∗

Δt
(9a) 

This equation is derived to satisfy a divergence free condition. Xu 
et al. (2009) revealed that the divergence-free approach based on Eq. 
(9a) may suffer from a numerical instability caused by ill-distributed 
particles following the Lagrangian movement of particles. According 
to numerical tests presented in Ma and Zhou (2009) and also suggested 
by Zheng et al. (2014), the better results for violent water waves can be 
obtained by using a mixed term on the right-hand side of Eq. (9a). 

Following this, the following alternative form of PPE is applied to all 
internal fluid particles, 

∇2pt+Δt =
Ψ
Δt

(9b)  

where Ψ = α ρ− ρ∗
Δt + (1 − α)ρ∇⋅u∗ with ρ∗ being the intermediate density 

of particle estimated by considering the movement of particles, and α is 
the blending coefficient. According to the numerical investigation in 
Zhang et al. (2018, 2021, 2024a), the value of α is taken as 0.01 in this 
work.  

(3) Correction stage: After the PPE with the boundary conditions are 
solved, the velocities change during the correction step are esti-
mated by 

u∗∗ = −
Δt
ρ ∇pt+Δt (10) 

The velocities of particles at time t + Δt are corrected using 

ut+Δt =u∗ + u∗∗ (11) 

The positions of particles are updated by 

rt+Δt = rt +
ut + ut+Δt

2
Δt (12) 

Further details of the numerical implementations including the nu-
merical discretization of the PPE, the numerical approaches for 
imposing the boundary conditions, the gradient and the divergence 

Fig. 17. Sketch of regular wave interaction with a moored floating body.  

Fig. 18. The particles distribution with pressure field from the ISPH_GNN at (a) T0; (b) T0+T/4; (c) T0+2T/4 and (d) T0+3T/4.  

N. Zhang et al.                                                                                                                                                                                                                                  
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operator in the conventional ISPH can be found in Zhang et al. (2021). 

2.2. Motion of floating body 

The floating body is considered as rigid body in this work. In 2D 
cases, the motion of the floating body can be described by the Newton’s 

second law as 

M
dV
dt

= F + Mg (13)  

I
dΩ
dt

= T (14)  

and the movements of the floating body are estimated using 

drG

dt
= V (15)  

dθ
dt

= Ω (16)  

where F and T are the force and torque action on the floating body; M 
and I are the mass and inertia matrices of the floating body, respectively; 
V is the translational velocity at the gravity centre; Ω is the angular 
velocity of floating body around the gravity centre; θ denotes the Euler 
angle (Yan and Ma, 2007). 

The moving solid boundaries of the floating body are represented by 
boundary particles. These boundary particles can be treated to move 
with the floating body, the corresponding velocity of the boundary 
particle can be obtained by 

ub = V + Ω × (rb − rG) (17)  

where rb is the position vector for the boundary particle and rG is the 
position vector of the centroid of the floating body. The velocity ub 
calculated by Eq. (17) is used in the continuity equation. The accelera-
tion can be obtained by 

u̇b =
dV
dt

+
dΩ
dt

× (rb − rG) + Ω × (ub − V) (18) 

In the ISPH implementation, the force and torque on the floating 
body can be calculated by the following discretized equations 

F =
∑N

b=1
nbpbdx (19)  

T =
∑N

b=1
(rb − rG) × nbpbdx (20)  

where pb is the pressure of floater boundary particle b; dx is the initial 
particle spacing; nb is the inner normal vector of boundary particle b; N 
is the number of floater boundary particle. 

2.3. Incorporating GNN with ISPH 

In the ISPH_GNN, the GNN is adopted to replace solving the PPE for 
pressure in the conventional ISPH. The flowchart of ISPH_GNN is illus-
trated in Fig. 1. The brief discussions on some issues related to the GNN 
model, the combing ISPH with the GNN as well as training and imple-
menting the GNN are given here. More details can be found in Zhang 
et al. (2024b). 

2.3.1. GNN model 
The GNN (Li and Farimani, 2022) used in this paper can be regarded 

to perform convolutions on graphs defined by nodes and their spatial 
relations (Wu et al., 2020). This GNN model (Fig. 2) includes three steps: 
encoding, message-passing, and decoding (Gao and Jaiman, 2022; Lino 
et al., 2022). 

The encoding step aims to convert the input data into network em-
beddings which can be used for graph convolutions. Considering a 
particle i in Fig. 2, the input f0

i is encoded into node embedding h0
i via a 

learnable encoder en() based on the multi-layer perceptron (MLP) with 
N layers: 

Fig. 19. Comparison of experimental and simulated time histories of the 
breakwater motions: (a) sway; (b) heave; (c) roll. 

Fig. 20. The comparisons of time histories of the mooring forces: (a) on the 
seaward side and (b) on the leeside. 

N. Zhang et al.                                                                                                                                                                                                                                  
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en
(

fl
i

)
= σ

(
wlfl− 1

i + bl

)
with l=1, 2,3....,N (21)  

h0
i = en

(
fn

i
)

(22)  

where σ() is an activation function, wl and bl are the learnable weight 
vector and bias term of the l-th layer in MLP; fl

i is the node feature at the 
l-th layer in MLP. The h0

i will be used as the input of graph convolution 
described below. 

In the massage passing block, the influence of a neighbouring node j 
on the node i in the l-th layer convolution is represented by ml

j→i which is 
given as 

ml
j→i =hl− 1

j W
(
rij, r0

)
(23)  

where hl− 1
j denotes the node embedding from the neighbouring node j in 

the (l-1)-th layer of message passing, and the weight is given by W
(
rij,

r0
)
=

{
r0/rij − 1 0 < rij ≤ r0
0 rij > r0

. The influence from all the neigh-

bouring nodes is aggregated and given by 

Ml
i =

∑N

j=1
ml

j→i

∑N

j=1
W
(
rij, r0

)
(24) 

In the l-th layer of message passing, the node embedding of the node i 
is calculated by 

hl
i = σ

(
wʹ

lM
l
i + bʹ

lh
l− 1
i

)
with l=1, 2, ...., L (25)  

where σ() is an activation function, w’
l and b’

l are the learnable weight 
vector and bias term of the l-th layer. 

After the message passing with L layers, the output qi (the pressure in 
this work) can be obtained by decoding the final embedding hL

i using a 
learnable decoder em() based on the multi-layer perceptron (MLP) with 
N layers, which is similar to Eq. (21) but with different learnable weights 
wʹ́

l and bias bʹ́
l : 

em
(

hl
i

)
= σ

(
wʹ́

l hl− 1
i + bʹ́

l

)
with l= L+1, L+ 2, ...., L + N (26a)  

qi = em
(
hL+N

i
)

(26b)  

2.3.2. Input parameters 
As indicated above, GNN is used to replace PPE of pressure, i.e, Eq. 

(9b). To train the GNN, the inputs of the GNN model need to include the 
variables, which reflect the characteristics of Eq. (9b). In this paper, a 
blended form (Eq. (9b)) including the right hand side Ψ

Δt is used in the 
PPE of the ISPH model. Therefore, the Ψ is adopted as one of the input 
parameters. In addition, the intermediate velocity, u∗ can reflect the 
gravity and the viscous effects on the water wave. According to the study 
of combining ISPH with CNN model (ISPH_CNN) for free-surface flows 

modelling in Zhang et al. (2023b), the better prediction performance can 
be obtained by including u∗ as one of input parameters than without 
considering it. Therefore, we also use u∗ as an input parameter for the 
GNN model here. In addition, the study of Zhang et al. (2023b) has 
demonstrated that adoption of the pressure at the previous time step in 
the inputs can improve the prediction accuracy for the pressure at cur-
rent step. Therefore, we also consider the pressure at the previous time 
step in the input parameters. 

However, it should be noted that in both the training and predictions 
of GNN, the total pressure p is split into two parts: the reference pressure 
ps, and the rest part of pressure pd, i.e., p = pd + ps. The reference 
pressure ps can be directly calculated by ρgz̃, where z̃ is the vertical 
distance from the fluid particle to its nearest free-surface particle. Based 
on the splitting, the GNN is trained using the data for pd and also predicts 
the corresponding part of pressure p̂d after training. Based on our nu-
merical tests, the overall results with the pressure predicted by the GNN 
trained in this way are significantly better than those obtained by using 
GNN to directly handle total pressure. 

According to the above discussions, the term Ψ , the intermediate 
velocity u∗ and the pressure pd,t = pt − ps are adopted as the input pa-
rameters to train the GNN model for predicting the pressure p̂d,t+Δt. The 
function fGNN from input to output by the GNN model can be expressed 
as: 

p̂d,t+Δt = fGNN
(
Ψ ,u∗, pd,t, cp

)
(27a)  

where cp are the network coefficients, i.e., the weights and bias involved 
in Eqs. (21), (25) and (26), which are optimized during training process 
as discussed in Section 2.3.1. 

In general, after the GNN model is trained, the pressure ̂pd,t+Δt can be 
predicted based on the input data of Ψ , u∗ and pd,t by the GNN model 
fGNN with the network coefficients cp. After the prediction by the GNN 
model fGNN, the total pressure of fluid particles used in Eq. (1) for 
updating the velocity field can be obtained by 

pt+Δt = p̂d,t+Δt + ps (27b)  

2.3.3. Training data 
In this paper, the GNN model is trained on data only generated from 

wave propagation cases without any structure. These cases are simu-
lated by using the consistent second order ISPH (ISPH_CQ) (Zhang et al., 
2024a). In the ISPH_CQ, the governing equations and boundary condi-
tions are the same as the conventional ISPH, but the derivatives for 
Laplacian operator, velocity divergence and corresponding Neumann 
boundary condition and the pressure gradient are numerically approx-
imated by the quadric SFDI (Yan et al., 2020). More details about the 
ISPH_CQ can be found in (Yan et al., 2020; Zhang et al., 2024a). 

The datasets are generated for two kinds of waves: the regular waves 
and solitary waves without any object and structure appearing in the 
wave fields. The waves are simulated in a numerical wave tank as 
sketched in Fig. 3, where D and L are the mean water depth and the 
length of the tank, respectively. A wavemaker is placed at the left end of 
the tank to generate the incident waves. The parameters for the cases 

Fig. 21. Sketch of green water impact on the floating structure.  

N. Zhang et al.                                                                                                                                                                                                                                  
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Fig. 22. Comparisons of the floater movement progress during green water impact between laboratory photos (Zheng et al., 2018) (left) and ISPH_GNN simulations 
(right) at different instants. 

N. Zhang et al.                                                                                                                                                                                                                                  
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used for generating the training database are randomly selected. For 
example, for each of the regular wave cases, the wave height H is 
randomly selected in a range from 0.05D to 0.25D whereas the wave 
period is from 1.0 s to 1.2 s, respectively. The water depth D = 0.4 m and 
the length of the tank L = 25D are used in these cases. The initial particle 
size of 0.01m and the time step size of 0.001s are used in ISPH_CQ to run 
these cases. Totally, 40 cases are simulated with each case including 400 
frames recorded with the time interval of 0.05 s. For each of the solitary 
wave cases, the wave height H is selected in a range from 0.2D to 0.4D, 
whereas water depth D is from 0.25 m, 0.275 m–0.3 m. The length of the 
tank L = 40D is used. The initial particle size of 0.0125 m and the time 
step size of 0.00125 s are used to produce the corresponding database. 
Totally, 60 cases are simulated with each case including 400 frames 
recorded with the time interval of 0.0125 s. 

For training purpose, the datasets need to be split into training sets 
and test sets. The training sets include 30 regular wave cases and 40 
solitary wave cases. They are selected randomly from the total cases 
simulated. The simulated cases except for the training sets are used as 
test sets. 

2.3.4. Training and implementing the GNN 
With the training and testing data sets available, the GNN is trained 

on the datasets described in above section to minimize the loss function, 
which is the sum of the squared error between the prediction and actual 
values of pressure in this work: 

fobj =
∑n

i
si
(
p̂d,i − pd,i

)2 (28)  

where p̂d,i and pd,i are the predicted and actual pressure obtained from 
the training data at particle i, respectively. si is a weight for considering 
the effects of boundaries. The weight term considering this and the free 
surface is proposed as 

si =

⎧
⎪⎪⎨

⎪⎪⎩

3 db ≤ 3.0⋅dx
2 3.0⋅dx < db ≤ 6.0⋅dx
1 db > 6.0⋅dx
0 free surface

(29)  

which db is the distance from a particle to a boundary and dx is initial 
particle spacing. 

During the training process, the difference between the predicted 
and actual pressure on the free surface is not taken into account. The 
free-surface condition Eq. (5) can be satisfied by enforcing the pressure 
of all free-surface particle to be zero when predicting the pressure by 
GNN model. In addition, to avoid the error introduced by imposing solid 
boundary condition, only inner fluid particles are considered, ignoring 
the particles representing solid boundaries during the training and 
testing stages of the GNN. Although the boundary conditions treatment 
for the wall and floating body may not be perfect, it is effective as the 
results demonstrate below in Sections 4 and 5. Other methods for 
dealing with the boundary conditions will be explored in our future 
work. 

After the model is trained, it will be implemented in the numerical 
practice of the ISPH_GNN as illustrated in Fig. 1. After predicting the 
fluid pressure at inner particles by using the trained GNN model, the 
pressure pb at the boundary particles on the wall boundary and floating 
body boundary are both obtained directly from the neighbouring fluid 
particles, 

pb =

∑M

f∈fluid
pf Wbf + (g − U̇)⋅

∑M

f∈fluid
ρf
(
rf − rb

)
Wbf

∑M

f∈fluid
Wbf

(30)  

where pf is the pressure of the fluid particle, ρf is the density of fluid, Wbf 
is a kernel weight function, M is total number of the neighbouring fluid 
particles of the boundary particles, rf and rb are the position vector of 
fluid and boundary particles. 

3. Simulation of wave propagation using the trained model 

In this part, before the ISPH_GNN is used for the wave-floater 
interaction simulation, the ISPH_GNN is applied to the regular wave 
and solitary wave propagation simulations to evaluate the correspond-
ing performance of the ISPH_GNN in terms of the prediction accuracy 
and convergence. 

Firstly, the ISPH_GNN is applied to simulate the regular wave 
propagation, where the wave tank with D = 0.4 m and L = 50D is used. 
The regular waves are generated by a piston wavemaker using the linear 
wavemaker theory (Gotoh et al., 2004). To prevent the wave reflections 
from the right end of the tank, an artificial damping region with a length 
of 3 wavelength is attached to the right end. In the damping region, the 
fluid velocity is corrected by a velocity damping during the correction 
stage of the projection procedure (Wei and Kirby, 1995). We choose the 
case with wave height H = 0.15D and wave period T = 1.2 s. The case 
considered here does not coincide with any case for training. For such 
wave condition, the second order Stokes wave theory (Madsen, 1971) is 
valid and provides the reference value for the error evaluation in the 
present numerical investigation. Fig. 4 shows the comparison of the 
wave profiles from numerical simulations using the initial particle 
spacing dx = 0.01 m with the analytical solution from the second-order 

Fig. 23. Time histories of the impact pressure on deck at P1.  

Fig. 24. Speedup ratio averaged over computational periods.  

Table 1 
Case configurations for the regular wave interactions with a freely floating box.  

Case D (m) L (m) dx (m) N 

1 0.4 20 0.01 80,000 
2 0.4 40 0.01 160,000 
3 0.4 80 0.01 320,000 
4 0.8 80 0.01 640,000 
5 0.8 160 0.01 1280,000  
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Stokes waves at x/D = 15. The result predicted by ISPH_GNN shows 
good agreement with that from analytical solution. 

Fig. 5 gives the corresponding surface elevations obtained by 
ISPH_GNN model with different particle spacings dx, ranging from 0.01 
m to 0.02 m, i.e. D/dx = 80 to 40, for the convergence investigation. It 
can be seen in Fig. 5 that the numerical results become closer to the 
analytical solution with reducing the particle spacing. The errors of 
numerical results are shown in Fig. 6, in which the error is computed by 

Erra =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
ηi,n − ηi,f

)2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
ηi,f

2

√ (31)  

where ηi,n is the surface elevation at i-th time step from the ISPH_GNN 
and the ηi,f is the corresponding analytical solution, N denotes the total 
number of time steps from t/T = 12 to 18. For convenience, the dash line 
representing first-order (k = 1) is included in the figure. It can be seen in 
Fig. 6 that the error of the ISPH_GNN reduces linearly as the particle size 
decreases, which demonstrates the linear convergence similar to that in 
the conventional ISPH. As can also be observed from Fig. 6 that the error 
of the ISPH_GNN is lower than the conventional ISPH, which indicates 
that the ISPH_GNN is slightly more accurate than the conventional ISPH 
if the particle spacing is the same. 

Further attention is paid to the solitary wave propagation with H =
0.32D and D = 0.25 m. Again this case does not coincide with any case 
used for training. The solitary wave is generated by the wavemaker 
using the technique presented in Ma and Zhou (2009). For comparison, 

the corresponding free-surface profiles at t̃ = 20 (̃t = t
̅̅̅
g
D

√

) between 
different ISPH results with initial particle spacing 0.01 m, i.e. D/dx = 25, 
are shown in Fig. 7. This figure confirms a good agreement between the 
ISPH_GNN result and the Boussinesq solution (Lee et al., 1982). The 
corresponding errors of results from the ISPH_GNN and ISPH methods 
for this case with different particle spacing are plotted in Fig. 8. The 
error is computed in the same way as that used in Eq. (31) but ηi,n and ηi,f 

are replaced by the wave elevations at i-th particle obtained from the 
numerical results and the analytical solution for this case; N is the total 
number of free-surface particles in the subdomain from x/D = 10.0 to 
x/D = 21.0 in Fig. 7. Overall, the ISPH_GNN has a similar convergence 
rate to the conventional ISPH, but it has a slightly higher accuracy than 
the conventional ISPH. 

4. Numerical investigations of wave-floater interactions 

In this section, we will demonstrate that the ISPH_GNN with the GNN 
model trained on wave-only propagation cases can be used to simulate 
the cases with wave-floater interactions. The cases considered include 
the roll decay test, the motions of a freely floating body under regular 
and solitary waves, the interaction between regular wave and a moored 
floating breakwater and the green water on the floating structure. These 
wave-floater interactions cases are beyond and more complex than the 
wave-only cases used to generate the training data for the training of 
GNN model. The corresponding results from the conventional ISPH 
(Zhang et al., 2018) are also presented for the purpose of comparison. 

4.1. Roll decay test 

Firstly, the case of roll decay of a floating box is studied, as shown in 
Fig. 9, in which a floating rectangular box with the width b = 0.75D and 
height h = 0.5D is placed with the initial angle θ0 = 15。 in the still 
water. The mass and the corresponding moment of inertia of the box are 
30 kg and 0.325 kg m2, respectively. In this case, the tank length L =
7.5D and the mean water depth D = 0.4 m is adopted. The floating box is 
homogeneous and its centre of mass is placed at (3.75D, 1.0D). 

The comparison of the roll angle time history between the numerical 
results and the experimental data (Ren et al., 2015) is presented in 
Fig. 10. The initial particle size dx is taken as D/dx = 40, and the time 
step is determined by dt/dx = 0.1. It can be observed that the floating 
box starts to roll and eventually stops at a balanced position after the 
release from its original position. The result predicted by ISPH_GNN 
shows good agreement with that from the experimental data, although 
some differences are visible. Compared with the experimental data in 
Fig. 10, the errors of the roll angle are about 13.2% for ISPH_GNN and 
13.5% for ISPH, respectively. To investigate the convergence of the 
model, Fig. 11 gives the computed results by ISPH_GNN with different 
spatial resolutions. As can be found in Fig. 11 that the numerical results 
tend to approach the experimental data more closely as the particle 
number increases, which implies the convergence of numerical results in 
spatial domains. 

4.2. Motions of a freely floating body in waves 

Secondly, ISPH_GNN with the trained fGNN is used to study the mo-
tions of a floating body in waves. The response of the freely floating box 
subjected to regular waves is considered, which has been experimentally 
investigated by Ren et al. (2015). A sketch of the present domain is given 
in Fig. 12. The water depth is D = 0.4 m. The width and the height of the 
rectangular box are b = 0.75D and h = 0.5D, respectively. The density of 
the body is uniform, i.e. 500 kg/m3, yielding to a half-immerged con-
dition at a still water (the initial draft is 0.25D). The centroid of the box 
is initially placed at (20.0D, 1.0D). 

Fig. 13 shows a series of snapshots comparing the ISPH_GNN results 
with the initial particle spacing dx = 0.01 m, i.e. D/dx = 40, and 
experimental photos for the motion at different time instants in the case 
with the wave height H = 0.1D and the wave period T = 1.2 s. As can be 
seen in Fig. 13(a) that the body drifts upwards under the wave action. 
Then, it rotates clockwise in Fig. 13(b) and returns to horizontality at T0 
+ 2T/4 in Fig. 13(c). Then the body starts to rotate anti-clockwise as 
shown in Fig. 13(d). From Fig. 13, the ISPH_GNN method can produce 
consistent and smooth pressure fields near the floating box. 

Fig. 14 shows the comparison of the corresponding time histories of 
the motion of the floating box with experimental data (Ren et al., 2015). 
Generally, the agreement between numerical results and experimental 
data is satisfactory, although some differences are visible from the 
experimental data. Based on the experimental results in Fig. 14, the 
errors of the sway motion are about 4.4% for ISPH_GNN and 4.1% for 
ISPH in Fig. 14(a), the errors of the heave motion are about 7.7% for 
ISPH_GNN, and 8.9 % for ISPH in Fig. 14(b) and the errors of the roll 
motion are about 13.8% for ISPH_GNN, and 15.2 % for ISPH in Fig. 14 
(c). 

The ISPH_GNN with fGNN is further used to simulate the solitary wave 
interactions with a floating body. For this purpose, a solitary wave with 
the wave height H = 0.27D and the water depth D = 0.3 m is studied. 
This rectangular body has dimensions with the width b = 1.0D and the 
height h = 0.33D. It is also half-immerged in the water initially. The 
centroid of the floating box is initially placed at (11.67D, 1.0D). The 
initial particle spacing dx = 0.01 m is adopted, i.e. D/dx = 30, in this 
case. Fig. 15 depicts the interaction process between the solitary wave 
and floating body computed by ISPH_GNN. As can be observed from 
Fig. 15(a) that as the wave front approaches, the floating box starts to 
rotate in clockwise direction. And the floating box reaches its maximum 
climbing point under the wave action at ̃t = 18.3 as shown in Fig. 15(b). 
Then after the solitary wave propagates over the body, it begins to run 
down and rotate in anti-clockwise direction in Fig. 15(c). Fig. 16 gives 
the comparisons of the heave and roll motions of the floating box be-
tween ISPH and ISPH_GNN. Generally, the agreement between them is 
satisfactory. 
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4.3. Interaction between regular wave and a moored submerged floating 
breakwater 

Further, the ISPH_GNN with fGNN is applied to study the interaction 
between regular waves and a moored floating breakwater. The corre-
sponding experiments have been carried out by Peng et al. (2013) and 
the configuration of the numerical simulation is illustrated in Fig. 17. In 
this case, the water depth D = 0.6 m is adopted. The mass and inertia 
moment of the structure are taken as 42 kg and 0.64 kg m2, respectively. 
The breadth and the height of the breakwater are b = 0.667D and h =
0.25D, respectively. The submerged depth of the breakwater (from the 
upper surface of the body to the mean water depth) is d = 0.17D. The 
mooring lines, which can be treated as the light spring model (Hong 
et al., 2005; Ren et al., 2017), are attached at lower corners of the body 
and anchored on the tank bed. To balance the moored body in static 
water, the pre-tension is added on the mooring line during the numerical 
simulation. And the mooring force can be estimated by 

|Fm| =

{
|Fm0| + k(lm − lm0) |Fm0| > k(lm0 − lm)
0 |Fm0| > k(lm0 − lm)

(32)  

where |Fm0| is the pretension force added on the mooring line, which 
equals to the difference between the buoyancy force and the floater 
weight. k = 1.2*105 N/m is the elasticity coefficient of mooring line used 
in this case. lm0 and lm are the initial and transient length of the mooring 
line, respectively. 

Correspondingly, the torque acting on the moored body from the 
mooring line can be obtained by 

Tm = (rm − rG) × Fm (33) where rm is the position vector of the joints 
between the mooring line and the moored body. 

The case with wave height H = 0.0767D and wave period T = 1.0 s is 
studied here. The initial particle spacing is taken as 0.01 m, i.e. D/dx =
60. The snapshots for the pressure field during the regular wave prop-
agation over the moored floater computed by the ISPH_GNN are given in 
Fig. 18. As can be seen from Fig. 18(a)–(b), the floater begins to move 
anti-clockwise as the wave front approaches, and then it returns to the 
initial position in Fig. 18(c). Then the floating breakwater rotates to the 
maximum angle in the clockwise direction as shown in Fig. 18(d). It can 
also be seen that the ISPH_GNN provides quite consistent and smooth 
pressure fields near the moored floating breakwater at different time 
instants. 

The comparisons between the experimental and numerical results for 
the sway, heave and roll of the breakwater are shown in Fig. 19. It can be 
observed from Fig. 19 that the results of the ISPH_GNN agree well with 
the experimental data, although there is small difference especially at 
the trough of the heave movement. In addition, Fig. 20 gives the time 
histories of the mooring force, in which Fs is the mooring force from the 
mooring line on the seaward side and FL is the leeside mooring force. The 
trend of the mooring forces is similar to that of the heave movement. The 
overall good agreement between the experimental results and the 
ISPH_GNN results can also be seen in Fig. 20, although ISPH_GNN 
slightly overestimates the mooring forces as compared with the exper-
imental results. The good agreement between the experimental results 
and the ISPH_GNN results indicates a promising potential of the 
ISPH_GNN on modelling the wave-floater interaction problems. 

4.4. Green water impact on a floating structure 

To further check the performance and robustness of the ISPH_GNN, 
the case of green water impact on the floating structure as shown in 
Fig. 21 is studied here. The corresponding physical experiment was 
carried out by Zheng et al. (2018). The water depth is D = 0.7 m and the 
initial draft of the structure is 0.357D. The main structure at the bottom 
is b = 0.714D in breadth and h = 0.429D in height. The superstructure is 
a square structure with the size d = 0.286D. The center of mass of the 
structure is located at 0.188D from the bottom and the moment of inertia 

of the structure is 6.531 kg m2. A pressure sensor P1 with a horizontal 
distance d1 = 0.0714D from the upper vertical plate is located on the 
deck to measure the pressure of inside deck. The initial particle spacing 
dx = 0.01 m is adopted, i.e. D/dx = 70. 

Fig. 22 gives the comparisons of the snapshots of the motion of the 
floating structure under the green water impact within one wave period 
obtained by the ISPH_GNN and experiments (Zheng et al., 2018) for the 
wave height H = 0.143D and wave period T = 1.0 s. As can be seen in 
Fig. 22(a) that when the severe green water occurs, the floater rolls to 
the wave-coming direction. Then the floater returns to the wave prop-
agation direction as shown in Fig. 22(c). The phenomenon of flow 
returning from the deck to the water is also observed from the ISPH_GNN 
simulations in Fig. 22(d). Generally, both the wave surface deformations 
and floater movement simulated by the ISPH_GNN are quite similar to 
the experimental photos. 

To investigate the accuracy of the ISPH_GNN in pressure prediction, 
the comparisons of the time histories of the green water impact pressures 
on the deck from ISPH and ISPH_GNN methods with the experimental 
data of Zheng et al. (2018) for the wave condition H = 0.143D and T =
1.2 s are illustrated in Fig. 23. Taking the experimental result from t/T =
0 to t/T = 5 as the reference, the errors of the green water impact 
pressures in Fig. 23 are about 18.7% for ISPH_GNN and 19.5% for ISPH, 
respectively, which shows that ISPH_GNN and the conventional ISPH 
have the similar level of accuracy. This also implies that the ISPH_GNN 
has the potential capability for the simulation of violent wave-float in-
teractions with the wave breaking and green water impact on deck. 

4.5. Computational efficiency 

The computational efficiency is one important issue to assess the 
performance of the ISPH_GNN model for the wave-floater interactions. 
To investigate the computational efficiency of the ISPH_GNN, the 
speedup ratio, the computational time per step required for solving PPE 
in the conventional ISPH to the corresponding computational time of the 
GNN model for the pressure prediction, is given in Fig. 24. For this 
purpose, the cases of regular wave interactions with a freely floating box 
(section 5.2) with different computational configurations (Table 1) are 
considered. These cases are carried out on the workstation with the main 
specification as follows: Intel Xeon Platinum 8268 CPU at 2.9 GHz, 256 
GB RAM and NVIDIA GeForce RTX 3090 with 24 GB RAM. 

As can be seen, the pressure estimation in the conventional ISPH can 
be significantly speeded up by using the trained GNN model. With the 
growth of particle numbers, the speed up ratio increase significantly. For 
example, at 1280k particles, the ISPH_GNN can achieve about 97 times 
acceleration for the pressure prediction compared with the conventional 
ISPH. This indicates that the ISPH_GNN method is particularly suitable 
for large-scale (large number of particles) numerical simulation. 

5. Conclusion 

This paper presents a new approach for simulating the wave-floater 
interactions. In this approach, the graphic neurol network (GNN) re-
places solving PPE for pressure in conventional ISPH method. More 
significantly, the GNN is trained on datasets obtained for the wave-only 
cases without any structure or objects involved. The ISPH combined 
with the GNN trained in such a way is applied to simulating the cases for 
wave-floater interaction. These cases include the roll decay test of a box, 
a floating box subjected to a wave, the regular wave interactions with a 
moored floating body and the violent green water impact on a floating 
object. The numerical results have been compared with experimental 
data in most of the cases. Surprising agreement between them has been 
shown. 

In addition, the method can produce similar results to those obtained 
by using the conventional ISPH with slightly smaller error than that of 
the conventional ISPH in most of cases if their particle spacing is the 
same. However, the present method takes much less computational 
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time, which can be 97 times less, compared to the conventional ISPH at 
similar level of accuracy for the cases considered. The significance of this 
paper lies in revealing a fact that the GNN trained using data for simple 
cases can be applied to more complex cases for wave-floater 
interactions. 

Above conclusions and observations are based only on the cases 
considered in this paper. They shed very positive light but they need to 
be confirmed using more different cases. On the basis of the datasets just 
for regular and solidary waves in this paper, more cases for other waves 
with different parameters, including broken waves may be added to the 
training data in future work. In addition, only two-dimensional wave- 
floater interactions have been studied in this paper. Three-dimensional 
wave-floater interactions needs to be investigated in future work. 
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