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Abstract

In this paper, we develop a ‘jump diffusion type’ financial model based on renewal processes

for the discontinuous part of the risk driver, and study its ability to price options and accurately

reproduce the corresponding implied volatility surfaces. In this model, the log-returns process

displays finite mean and variance, and non-vanishing skewness and excess kurtosis over the

long period. The proposed construction is parsimonious, and it allows for a simple and intuitive

pricing formula for European vanilla options; furthermore, it offers an efficient Monte Carlo

sample path generator for the pricing of exotic options. We illustrate the performance of the

proposed framework using observed market data, and we study the features of the best fitting

model specifications.
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1 Introduction

The aim of this paper is to develop a jump diffusion model that integrates classical Brownian

motion with a ‘compound renewal’ process, examining its effectiveness in accurately replicating

implied volatility surfaces. The log-returns process is expressed as

X(t) = σW (t) +

N(t)∑
j=1

Zj ,

where W (t) is a standard Brownian motion, σ > 0 denotes the diffusion coefficient, N(t) is an

independent renewal process, and Z is modelled by a sequence of independent and identically

distributed random variables, which are assumed independent of both W (t) and N(t).

The central contribution of this study lies in the investigation of the counting process N(t),

with particular focus on the distribution of the inter-arrival times governing N(t). The objective

is to circumvent issues related to the convergence to zero over the long period of the skewness

and excess kurtosis of the risk neutral distribution of the log-returns.

Traditional financial models based on jump diffusion processes trace back to Merton (1976),

and assume that the counting process N(t) is a Poisson process, i.e. the inter-arrival times

are exponentially distributed, so that the discontinuous part of the dynamics is modelled by a

compound Poisson process. Subsequent developments of this class of processes have been obtained

by focusing on the distribution of the jump sizes Z, which in the classical Merton (1976) model

are Normal distributed. Thus, we mention Kou (2002) and Cai and Kou (2011) as examples of

such developments in which the distributions of choice are respectively the double exponential

and the mixed-exponential ones.

However, under the restrictive assumption of a Poisson counting process, such constructions

belong to the class of Lévy processes, i.e. processes with independent and stationary increments.

Therefore, they are characterized by vanishing skewness and excess kurtosis over long periods of

time as a consequence of the central limit theorem, which impacts on the processes ability to fit

the implied volatility surface. Indeed, it is documented in Carr and Wu (2003) that the implied

volatility smirk in general does not flatten out when maturity increases within the expiry range

of traded option contracts. This becomes evident when the implied volatility is plotted against

moneyness defined as the logarithm of the strike over the forward, normalised by the square root

of maturity. As the downward slope and positive curvature of the implied volatility smirk reflect

respectively negative skewness and leptokurtosis in the risk neutral distribution of the log-returns

(see Backus et al., 2004, for example), any proposed model should display non-zero skewness and

excess kurtosis for increasing maturities, or at best such statistics should decay even more slowly

than in the Lévy case.

Two main approaches have been proposed in the literature to capture the persistence of

skewness and kurtosis over the long run. The first one is the log-stable model introduced by Carr

and Wu (2003), in which by construction the log-returns process exhibits infinite variance and

higher-order moments. This design allows the model to deviate from the assumptions of the central

limit theorem, and prevents skewness and excess kurtosis to vanish over the long period. However,

a log-returns distribution with infinite moments can be inconvenient as it introduces complexities

in the statistical analysis and may lead to challenges in model estimation and interpretation. For
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example, when stock returns have infinite variance, the implied volatility of an option becomes a

less reliable measure of future volatility. In such cases, implied volatility may still be calculated,

but it may not effectively capture the true level of risk associated with the underlying stock.

A second popular approach is the introduction of stochastic volatility in the return process, as

in Heston (1993) for example. Despite their flexibility in capturing the dynamic nature of volatility,

often this class of models struggles in fitting the implied volatility of short-term options, due to

their inability to generate sufficient probability mass in the tails over these short time horizons.

Our strategy for enhancing jump diffusion models and preventing the flattening of the model

implied volatility smirk involves a targeted examination of the counting process N(t), particu-

larly the distribution of its inter-arrival times. As the memoryless property of the exponential

distribution is at the origin of the ‘Lévy’ nature of the (compound) Poisson process, we advocate

a broader framework in which inter-arrival times follow distributions beyond the exponential one,

and a shift towards the class of renewal processes.

However, as long as the mean and the variance of the inter-arrival times are finite, both

the counting process and the compound renewal process are still subject to the central limit

theorem, hindering their ability to achieve the desired skewness and excess kurtosis long term

characteristics. We address this issue by modelling the inter-arrival times using the Mittag-

Leffler distribution (see Pillai, 1990, Jose and Abraham, 2011, for example) and its generalization

proposed by Cahoy and Polito (2013), which exhibit infinite moments of all orders, thus evading

the central limit theorem’s effects.

The proposed approach presents advantages compared to both the log-stable model of Carr

and Wu (2003) and the general class of stochastic volatility models. Indeed, in our setup the log-

returns distribution retains finite moments thanks to the properties of renewal processes, which is

in direct contrast with the approach of Carr and Wu (2003). Furthermore, the model is capable

of generating sufficient skewness and excess kurtosis over both short and long terms, guaranteeing

in this way a satisfactory fit to the volatility surface for both short and long maturities.

In this paper, we also focus on the issue of duration dependence modelling, whereby duration

dependence we refer to how the occurrence of an event in one period influence its subsequent

occurrences. By departing from the exponential distribution, we allow the inter-arrival times to

show either over or under dispersion, i.e. higher or lower variability compared to the exponential

distribution. These features reflect different regimes of duration dependence for the counting

process N(t). This deliberate modelling choice enhances flexibility in capturing market dynamics.

An additional contribution of this paper is the adoption of numerical schemes based on the

Hilbert transform (see Feng and Linetsky, 2008, Xue et al., 2013, Fusai et al., 2016, for example)

to recover relevant probability densities and moments of interest of the counting process. This

allows us to move away from renewal equations generally used in reliability theory, and make

both option pricing and Monte Carlo simulation accessible for any combination of distributions

for inter-arrival times and price revisions, as long as the corresponding characteristic functions are

known (we note in this regard that option pricing based on renewal equations has been explored

by Montero, 2008). Thanks to this efficient infrastructure, our paper makes a novel contribution

in assessing the empirical performance of models incorporating renewal processes in reproducing

market implied volatilities.

In this regards, we observe that by assuming price revisions which are independent of the
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inter-arrival times and are Gaussian distributed, a simple and intuitive analytical formula for

European vanilla option prices can be derived. This result also establishes analytically the link

between the log-returns volatility and the flow of information measured by transaction volume

argued by Ross (1989) and Jones et al. (1994) amongst others.

The results from our analysis based on market quotes for options on a number of equity

indices point towards a construction catering for both a Brownian motion, and a renewal process

with inter-arrival distribution capable of capturing under-dispersion, i.e. a situation in which the

business time flows at a more regular pace than postulated by the exponential distribution.

We conclude this Introduction with a brief review of the literature closely related to this

topic. Renewal processes, or equivalently continuous time random walks with time intervals

between successive steps modelled by random variables, can be interpreted as stochastic volatility

models in which both stock returns and variances are influenced by the duration between trades.

Already advocated by Clark (1973), models with trades occurring on the basis of a stochastic

clock which captures business time have found empirical evidence for ultra high-frequency equity

data in Engle and Russell (1998) and Engle (2000) amongst others. Such models have evolved in

the literature primarily along two directions.

The first one links directly to the work of Clark (1973) and started with subordinated Brownian

motions (i.e. a Brownian motion evolving on a time scale governed by a non-negative Lévy process,

that is a subordinator), such as the hyperbolic Lévy process of Eberlein and Keller (1995) and

Eberlein et al. (1998), the Variance gamma process of Madan et al. (1998), and the Normal inverse

Gaussian process of Barndorff-Nielsen (1997). This strand of literature has then been extended

to the more general setting of time changed Lévy processes by Carr et al. (2003), Carr and Wu

(2004), Huang and Wu (2004), Ballotta and Rayée (2022) and Ballotta et al. (2023). These models

present known characteristic functions for the key quantities of interest and therefore allow for

the adoption of Fourier transform based methods for option pricing (see Eberlein et al., 2010, for

example).

The second direction of this literature focuses instead on renewal processes/continuous time

random walks, so that the modelling attention is shifted from the stochastic clock to its pace, i.e.

the inter-arrival times between trades, also referred to as duration. The use of these processes

in finance has been pioneered by Scalas et al. (2000) and Mainardi et al. (2000) with the aim of

capturing microstructural price features exhibited by high-frequency financial time series, such as

memory effects and trade idle times. Option pricing with these processes has been addressed by

Cartea and Meyer-Brandis (2009), Cartea (2013) and more recently Jacquier and Torricelli (2020)

amongst others. We note a common denominator between Mainardi et al. (2000), Cartea and

Meyer-Brandis (2009) and Cartea (2013) which is the adoption of the Mittag-Leffler distribution

(see Pillai, 1990, Jose and Abraham, 2011, for example) to capture the inter-arrival times. Option

pricing is still amenable under the assumption of independence between duration and the price

change at the time of trade, also referred to as price revision, as plain vanilla contracts can be

priced exploiting Fourier transform based methods (see Cartea and Meyer-Brandis, 2009, Cartea,

2013, Jacquier and Torricelli, 2020, for details).

The paper is organised as follows. In section 2, we introduce renewal processes and study

their properties in light of financial applications, together with the necessary numerical schemes

for their practical implementation. In section 3, we develop the financial model and derive a
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useful option pricing formula. The calibration performance of the model is analysed in section 4,

and section 5 offers some concluding remarks.

2 Background: Renewal processes

In this section, we introduce renewal processes by reviewing the fundamental definitions, results

and properties which play an important role in the construction of the financial models, such as

duration dependence and asymptotic behaviour of the higher order cumulants.

2.1 Definitions and general facts

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space; as in this paper we focus on option pricing,

P denotes a risk neutral probability measure1. Let {Tj}j≥1 be a sequence of non-negative i.i.d.

random variables with cumulative distribution function (CDF) F (t) = P(Tj ≤ t) modelling the

inter-arrival times. The renewal sequence, representing the waiting time till the n-th event, is

then given by

Sn =

n∑
j=1

Tj ,

and the associated renewal counting process is

N(t) = sup{n ≥ 0 : Sn ≤ t} =
∞∑
n=1

1Sn≤t,

which has finite moments of all orders (see for example Gut, 1988, Theorem 3.1).

In the context of modelling financial (log-) returns, the sequence {Tj}j≥1 could be interpreted

as the time between trades, and consequently the sequence S1, S2, . . . can be interpreted as the

times at which a transaction takes place. In other words, the process Sn can be seen as a stochastic

clock governing business time, whilst the inter-arrival times would capture the pace at which the

clock runs. The renewal process N(t) returns the total number of trades occurred in the interval

(0, t].

It follows that the distribution of N(t) is

P(N(t) = n) = Fn(t)− Fn+1(t), (1)

with Fn(t) denoting the n-th convolution of the distribution of the inter-arrival times, i.e.

Fn(t) = P (Sn ≤ t)

= P(T1 + · · ·+ Tn ≤ t).

Such convolution is in general not known analytically; one exception is the classical case in which

the inter-arrival times are exponentially distributed and therefore N(t) is the Poisson process (see

Ross, 1970, for example). For all other cases, we resort to numerical schemes based on the Hilbert

transform, which we discuss in details in section 2.4.

1We note that the proposed market model is incomplete and consequently the risk neutral martingale measure
is not unique. Hence, we follow standard practice for incomplete markets and fix the risk neutral measure through
the prices of derivative contracts traded in the market.
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Finally, in addition to the renewal counting process N(t), we also introduce the ‘compound

renewal process’ (also known in literature as renewal reward process, see Ross, 1970, Sec. 3.9 for

example)

Y (t) =

N(t)∑
j=1

Zj , (2)

for Zj such that {(Tj , Zj) : j ≥ 1} are independent and identically distributed pairs of random

variables. In the context of our application, we can interpret the reward Zj as the price revision

at time of the trade modelled by the renewal process N(t).

Under the additional assumption of independence between Tj and Zj , we can express the

characteristic function of the compound renewal process as

ϕY (u; t) = E
(
ϕZ(u)

N(t)
)
=

∞∑
n=0

ϕZ(u)
nP(N(t) = n), (3)

with ϕZ(u) denoting the characteristic function of the price revision. With (numerical) knowledge

of the distribution of the process N(t), the characteristic function in Equation (3) allows us to

recover the probability function of the process Y (t) using appropriate inversion schemes. In this

respect, we note that if the sum of the random variables Zj has known density function then

P(Y (t) ∈ A) =

∞∑
n=0

P(Y (t) ∈ A|N(t) = n)P(N(t) = n), A ∈ R,

and the probability function for the process Y (t) can be recovered with knowledge only of the

probability of the counting process N(t).

Given our interest in the statistical features of the relevant distributions, we state the expres-

sions of the cumulants cn(·) of the process Y (t) which follow from the characteristic function (3)

(see Niki et al., 1990, as well).

c1(Y (t)) = c1(N(t))c1(Z) (4)

c2(Y (t)) = c2(N(t))c1(Z)2 + c1(N(t))c2(Z) (5)

c3(Y (t)) = c3(N(t))c1(Z)3 + 3c2(N(t))c1(Z)c2(Z) + c1(N(t))c3(Z) (6)

c4(Y (t)) = c4(N(t))c1(Z)4 + 6c3(N(t))c1(Z)2c2(Z)

+c2(N(t))
(
4c1(Z)c3(Z) + 3c2(Z)2

)
+ c1(N(t))c4(Z), (7)

with cn(N(t)) denoting the n-th order cumulant of the counting process. Bearing in mind that

E(Y (t)) = c1(Y (t)), Var(Y (t)) = c2(Y (t))

E
(
(Y (t)− E(Y (t)))3

)
= c3(Y (t)), E

(
(Y (t)− E(Y (t)))4

)
= c4(Y (t)) + 3c2(Y (t))2,

it follows that the indices of skewness and excess kurtosis are respectively

sk(Y (t)) =
c3(Y (t))

c2(Y (t))3/2
, ek(Y (t)) =

c4(Y (t))

c2(Y (t))2
.

The compound renewal process Y (t) can be considered as a generalization of the compound
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Poisson process commonly used in the literature (see Merton, 1976, Kou, 2002, Cai and Kou, 2011,

for example); however, in general the compound reward process no longer exhibits independent

and stationary increments. In other words, the counting process and the corresponding compound

renewal process associated to inter-arrival times distributions which are not exponential, no longer

belong to the class of Lévy processes. This might have a consequence on the behaviour over time

of the higher order moments of these processes; this is an aspect which we will explore in more

details in section 2.3.

2.2 Duration dependence

As already noted, in the case in which the inter-arrival times follow the exponential distribution,

the resulting renewal process is the Poisson process, i.e. a Lévy process with independent and

stationary increments. In all other cases, though, the renewal process is no longer Lévy and

therefore the increments show memory. Furthermore, choosing an inter-arrival distribution away

from the exponential one allows the modelling of the so-called duration dependence, i.e. the

impact that the occurrence of at least one event up to time t has on the probability of a further

occurrence in t+∆t.

As shown in Winkelmann (1995), by choosing a distribution with a varying hazard function

h(t) =
F ′(t)

1− F (t)
,

we can obtain either negative or positive duration dependence if the hazard function is decreasing

or increasing, respectively. Under the assumption of inter-arrival times with monotonic hazard

function, Winkelmann (1995) links these properties to the Variance-to-Mean Ratio (VMR) of the

renewal counting process N(t)

VMR =
Var(N(t))

E(N(t))
.

In some more details, negative duration dependence manifests itself for VMR > 1, and pos-

itive duration dependence is instead achieved for VMR < 1. Indeed, VMR < 1 implies that

the counting process shows a pattern of occurrences which is less random than the one of the

Poisson process, given that compared to the expected number of trades the variance is smaller.

In other words, the pace of the clock becomes more regular (positive duration dependence), and

its distribution is under-dispersed. Overdispersion on the other hand would be associated with

clustered distributions (i.e. VMR > 1). The exponential distribution, i.e. the Poisson process,

leads instead to equi-dispersion.

The above discussion leads to the following considerations. A robust financial model able

to reproduce implied volatility surfaces on a daily basis requires an underlying distribution with

sufficient flexibility on several features including duration dependence and dispersion.

2.3 Limit theorems and asymptotic behaviour

As mentioned in section 1, our goal is to develop a model for the underlying log-returns which is

consistent with the slow decay of skewness and excess kurtosis shown by options implied volatility

surfaces. To this purpose, in this section we study the asymptotic behaviour of these statistics

for the renewal counting process N(t) and the associated compound renewal process Y (t).
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Under typical regularity conditions, the central limit theorem applies to these processes as

well, and therefore the asymptotic distribution is normal. This is stated in the following.

Theorem 1 (Central Limit Theorem for Renewal Processes). Suppose that 0 < E(T ) < ∞,

Var(T ) <∞, E|Z| <∞ and Var(Z) <∞.

i) For t→∞

N(t) ∼ N
(

t

E(T )
,
Var(T )
E(T )3

t

)
.

ii) For t→∞

Y (t) ∼ N
(
E(Z)

E(T )
t,

γ2

E(T )3
t

)
for γ2 = E(T )2Var(Z) + E(Z)2Var(T ).

As the inter-arrival times are i.i.d. random variables which are independent of the sequence

of i.i.d. random variables Z modelling the rewards, the results follow from Gut (1988), Theorem

II.5.2, Theorem IV.2.3 and Remark IV.2.10.

Furthermore, Smith (1959) shows that under the assumption of finiteness of the (raw) moments

of the inter-arrival times, the cumulants of the renewal counting process N(t) have a linear

asymptotic form in time; consequently, skewness and excess kurtosis of both processes N(t) and

Y (t) decay respectively with the reciprocal of the square root of time and the reciprocal of time.

Theorem 1 shows on the one hand that under the assumption of inter-arrival times with finite

moments, the associated renewal and compound renewal processes behave asymptotically like

Lévy processes. On the other hand, Theorem 1 also shows the path to follow to ‘break’ the

central limit theorem: the renewal model needs to be built out of inter-arrival times distributions

with infinite moments, such as the Mittag-Leffler distribution (see for example Pillai, 1990, Jose

and Abraham, 2011, Huillet, 2016) and its generalised version (see for example Cahoy and Polito,

2013, Michelitsch and Riascos, 2020, and references therein), which we discuss in some more

details in the following. We note in any case that Theorem 3.1 in Gut (1988) guarantees the

finiteness of the moments of the counting process N(t) and therefore of the compound renewal

process Y (t), independently of the behaviour of the inter-arrival distribution.

The generalised Mittag-Leffler (GML) distribution is described by three parameters λ, δ > 0,

and ν ∈ (0, 1], has density function

f(t) = λδtδν−1Eδ
ν,δν(−λtν),

and cumulative distribution function

F (t) = λδtδνEδ
ν,δν+1(−λtν),

where

Eδ
ν,γ(z) =

∞∑
k=0

δ(k)zk

k!Γ(νk + γ)
, δ, γ, z, ν ∈ C,ℜ(ν) > 0,

is the generalised Mittag-Leffler function, or Prabhakar function (Prabhakar, 1971), and x(k) is
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the Pochhammer symbol for the rising factorial, i.e.

x(k) = x(x+ 1)(x+ 2) · · · (x+ k − 1)︸ ︷︷ ︸
k terms

.

The corresponding characteristic function is

ϕT (u) =

(
λ

λ− (iu)ν

)δ

, (8)

from which it can be deduced that the finiteness of the moments is only guaranteed for ν = 1.

The above reduces to the Mittag-Leffler (ML) distribution for δ = 1, and the Gamma distri-

bution for ν = 1. If δ = ν = 1, instead, we recover the exponential distribution. The renewal

processes built out of the ML and GML inter-arrival times distributions have been studied in de-

tails in Beghin and Orsingher (2010) and Michelitsch and Riascos (2020) amongst others, and are

known as (generalised) fractional Poisson processes. The corresponding probability mass function

is

P(N(t) = n) = (λtν)δnEδn
ν,δnν+1(−λtν)− (λtν)δ(n+1)E

δ(n+1)
ν,δ(n+1)ν+1(−λt

ν),

which follows from (1) and (8) (see also Michelitsch and Riascos, 2020).

For the case of the Mittag-Leffler distribution, i.e. for δ = 1, the following holds (the proof is

reported in Appendix A.1).

Proposition 2. Assume that the inter-arrival times follow a Mittag-Leffler distribution with

parameters λ > 0, ν ∈ (0, 1]. Let µk = E(Zk) and mk = λkΓ(1 + k)/Γ(1 + νk).

i) The first four cumulants of the compound ML renewal process Y (t) are

c1(Y (t)) = tνµ1m1

c2(Y (t)) = t2ν
(
m2 −m2

1

)
µ2
1 + tνµ2m1

c3(Y (t)) = t3νµ3
1

(
m3 − 3m2m1 + 2m3

1

)
+ 3t2νµ2µ1(m2 −m2

1) + tνµ3m1

c4(Y (t)) = t4νµ4
1(m4 − 4m1m3 + 6m2

1m2 − 3m4
1) + 6t3νµ2

1µ2(m3 − 2m1m2 +m3
1)

+t2ν(4µ1µ3(m2 −m2
1) + 3µ2

2m2) + tνµ4m1 − 3c2(Y (t))2.

ii) The asymptotic values for t → ∞ of the indices of skewness and excess kurtosis of the

compound ML renewal process Y (t) are

sk (Y (t)) = sgn(µ1)
m3 − 3m2m1 + 2m3

1(
m2 −m2

1

)3/2
ek (Y (t)) =

m4 − 4m1m3 + 6m2
1m2 − 3m4

1(
m2 −m2

1

)2 − 3.

iii) For small time horizons, i.e. t → 0, the indices of skewness and excess kurtosis of the
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compound ML renewal process Y (t) are

sk (Y (t)) =
µ3

√
tνm1µ

3/2
2

ek (Y (t)) =
µ4

tνm1µ2
2

− 3.

From Proposition 2 we deduce that over long time horizons the skewness and the excess

kurtosis of both the ML renewal and the compound ML renewal processes are non-vanishing, and

are controlled only by the parameters of the inter-arrival time distribution, whilst the parameters

of the distribution of the revisions Z control only the sign of the skewness of Y (t). Over the

short period, instead, skewness and excess kurtosis decay with the reciprocal of powers of time in

reasons of the parameter ν, specifically t−ν/2 and t−ν . As ν ∈ (0, 1), the decay is slower than in

the case of renewal processes whose inter-arrival distributions have finite moments. Furthermore,

the features of the distribution of the rewards Z play a more incisive role in controlling the

distribution of Y (t).

Although for the general case δ ̸= 1 analytical expressions for the cumulants of Y (t) are not

available, we can still recover them numerically as it will be discussed in section 2.4. Nevertheless,

we can gain more precise information about the asymptotic behaviour by means of an application

of the Tauberian theorems. In details, it is possible to show on the one hand that the indices

of skewness and excess kurtosis of the renewal process and the compound renewal process with

GML distributed inter-arrival times converge for t → ∞ to the values derived in Proposition 2,

i.e. they share the same asymptotic behaviour as the processes with ML distributed inter-arrival

times. On the other hand, over short periods of time, the rate of decay is affected also by the

parameter δ, as these statistics decay with rate t−νδ/2 and t−νδ respectively (see Appendix A.2

for the full argument). This implies that for t→ 0 the speed of convergence is faster in the GML

case than in the ML one if νδ > 1.

2.4 Numerical schemes for renewal processes

As previously noted, in general the distribution of the renewal counting process N(t) is not known

analytically. For this purpose, in this paper, we adopt the Hilbert transform technique, which is

commonly used for pricing purposes (see Feng and Linetsky, 2008, Xue et al., 2013, Fusai et al.,

2016, for example).

Thus, let ϕ(u), u ∈ R, denote the characteristic function of the distribution of the inter-arrival

times, then in virtue of their independence

Fn(t) =
1

2
− i

2
H(e−iutϕn(u))(0), i =

√
−1,

(see Feng and Lin, 2013), where Hf(·) denotes the Hilbert transform of the function f and is

defined as the Cauchy principal value integral

Hf(x) = 1

π
p.v.

∫
R

f(u)

x− u
du.

As shown in Feng and Linetsky (2008) and Fusai et al. (2016), the Hilbert transform can be

efficiently computed exploiting sinc functions.

10



a) Time horizon: 1 year b) Time horizon: 10 year

Figure 1: Recovering the distribution of N(t): the case of the Poisson process with λ = 0.4352. Hilbert
transform vs exact formula. Time horizons: Panel a) 1 year, Panel b) 10 years.

For illustration purposes, in Figure 1 we show the distribution of a renewal process with

exponentially distributed inter-arrival times recovered using the methodology described above.

As the resulting counting process is Poisson, we can benchmark the procedure against the known

formula of the Poisson probability mass. As Figure 1 confirms, the fit is very accurate.

Access to the distribution of the renewal process N(t) allows us to recover directly the mo-

ments, as

E(N(t)k) =
∞∑
n=0

nk P(N(t) = n), k = 1, 2, . . .

bypassing any related renewal Equation, as well as the characteristic function of the compound

renewal process Y (t) given in Equation (3). Moreover, the knowledge of the CDF F (t) permits us

to easily simulate the inter-arrival times via the inverse transform method, as shown in Algorithm

1. This is exploited in section 4.2.3 to price barrier options via Monte Carlo simulation.

3 The market model

We model the process driving the stock price as the sum of a Brownian motion and an independent

compound renewal process, that is

S(t) = S(0)e(r−q)t+X(t)−ϖ(t), (9)

for

X(t) = σW (t) + Y (t). (10)

In the above specification, S(0) is the spot price, r is the (constant) continuously compounded

risk free rate of interest, and q is the dividend yield. Furthermore, W (t) is a standard Brownian

motion and Y (t) is the compound renewal process as defined in Equation (2), and assumed

11



independent of W (t). The parameter σ ≥ 0 is the diffusion coefficient, and

ϖ(t) =
σ2

2
t+ lnϕY (−i; t)

is the exponential compensator of X(t), i.e. the risk neutral adjustment ensuring that the dis-

counted asset price is a martingale. Finally, we assume that the price revisions Z (see Equation

(2)) are normally distributed with mean µZ ∈ R and standard deviation σZ > 0.

The posited general specification includes as a special case the Merton (1976) jump diffusion

model, which can be recovered by choosing exponentially distributed inter-arrival times. Thus,

we refer to the general construction (10) as compound renewal diffusion process, which differs

from the Merton (1976) model in terms of the inter-arrival times distribution. Several choices are

possible and discussed in details in the following section.

3.1 Inter-arrival times and model properties

As noted in section 2, we require distributions which are sufficiently flexible to capture the market

dynamics implicit in option prices, and features such as implied volatility smirks which do not

flatten out as maturities increase up to the observable horizon offered by the option market.

For this purpose, we focus on the performance of the GML distribution for the inter-arrival

times. Indeed, as already noted, this distribution generates a compound renewal process Y (t) with

non vanishing skeweness and excess kurtosis. Furthermore, as the GML density function is com-

Algorithm 1 Sampling process (10)

1: procedure Simulation
2: Nsim ▷ Number of simulations
3: M ▷ Number of time-steps
4: T ▷ Time-horizon
5: sigma ▷ Diffusion
6: Initialization
7: dt=T/M
8: t=[0:dt:T] ▷ Time grid
9: X ▷ Matrix Nsim x M+1 with zeros elements

10: Compute the cdf F (t)→ F
11: for j=1:Nsim do
12: tau=0 ▷ Jump time
13: jumptime=[ ] ▷ Vector of jump-times
14: while tau<T do ▷ Countdown simulation
15: Sample uniform random number ← u
16: Find t such that F(t)=u ▷ Simulate the interarrival time inverting the cdf
17: tau=tau+t
18: jumptime=[jumptime tau];

19: for k=1:M do
20: Sample standard normal random number ← z
21: X(j,k+1)=X(j,k)+sigma*sqrt(dt)*z ▷ Sampling continuous part
22: for jj=1:length(jumptime)-1 do ▷ Sampling jump part
23: if t(k)<jumptime(jj)<=t(k+1) then
24: Sample from a N(µj ;σ

2
J) ← Z

25: X(j,k+1)=X(j,k+1)+Z ▷ Add the jump

12



pletely monotone for νδ ≤ 1 (see Capelas de Oliveira et al., 2011, for example), the monotonicity

of the corresponding hazard function, and therefore the type of duration dependence shown by

the renewal process N(t), depends on the combination of the values of the model parameters.

As the GML distribution includes the ML, Gamma and exponential distributions as special

cases, in the following we compare the performance of these nested models in terms of reproducing

the implied volatility smile observed from market option quotes. In particular, we note the

following points. Jose and Abraham (2011) have shown through extensive simulations that the

ML distribution is overdispersed for ν ∈ (0, 1), and consequently the resulting renewal process

has a clustered distribution. Similarly, Yannaros (1988) has shown that the Gamma distribution

is overdispersed if δ ∈ (0, 1) and under-dispersed otherwise, whilst the exponential distribution is

- as already noted - equidispersed.

In addition to the above, we consider also another generalization of the exponential distribu-

tion, which is the Weibull distribution, together with some other commonly used distributions for

non-negative random variables such as the noncentral chi-squared and the inverse Gaussian ones.

Table 1 summarizes the main features of these distributions.

In terms of dispersion properties, we note that the Weibull distributions is under-dispersed

for k > 1, and overdispersed when k ∈ (0, 1) (see McShane et al., 2008, Yannaros, 1994), whilst

the inverse Gaussian distribution is characterised by a unimodal hazard function, which increases

from 0 to its maximum value and then decreases asymptotically to a constant (see Lemeshko

et al., 2010, for further details); this implies that it is non-monotonic and therefore the VMR

depends on the combination of the values of the distribution’s parameters like in the case of the

GML distribution. Similar considerations hold for the noncentral chi-squared distribution as well.

Finally, we observe that, with the exception of the ML distribution and its generalised version,

the distributions in Table 1 have finite moments. Consequently, Theorem 1 applies and the

skewness and excess kurtosis of the associated renewal processes are vanishing over time with

decay rate of order t−1/2 and t−1 respectively. These convergence rates though can be quite slow

over the standard horizons given by the traded maturities. This is illustrated in Figure 2 in which

we reproduce the behaviour over time of the skewness and excess kurtosis of the compound renewal

process Y (t), and the log-returns process X(t) for the case of exponential and ML distributed

inter-arrival times. The parameters are chosen so that the renewal counting processes have the

same unit time mean, and the price revisions follow the same distribution. Over a 5 years period,

which is a time horizon longer than the maturities of the large majority of liquid options, the

statistics of these processes are quite far from their corresponding limiting values.

Figure 2 shows also another interesting feature, and it concerns the short time behaviour of

these statistics. Whilst the skewness and excess kurtosis over short periods of time of the process

Y (t) can reach significant levels, their magnitudes for the process X(t) are always smaller. This

feature is observed for all inter-arrival times distributions and it is due to the Brownian motion

component, which only contributes to increase, ceteris paribus, the level of the overall variance

without affecting the higher order cumulants. Indeed, we obtain from Equation (10) that

Var (X(t)) = σ2t+ Var (Y (t)) ,

cn(X(t)) = cn(Y (t)), n ≥ 3,
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Table 1: Inter-arrival distributions, their characteristic functions and related statistics. A note: the gamma
distribution with δ = 1 corresponds to the exponential distribution; the Weibull distribution with k = 1
corresponds to the exponential distribution with parameter 1/λ; the Mittag-Leffler distribution with ν = 1
corresponds to the exponential one; the generalised Mittag-Leffler distribution with δ = 1 corresponds to
the Mittag-Leffler one; the generalised Mittag-Leffler distribution with ν = 1 corresponds to the gamma
one.

Inter-arrival time Characteristic function E(T ) Var(T )
distribution ϕ(u) = E

(
eiuT

)
Exponential

λ

λ− iu
, λ > 0

1

λ

1

λ2

Gamma

(
λ

λ− iu

)δ

, λ, δ > 0
δ

λ

δ

λ2

Weibull recovered numerically2 from pdf λΓ
(
1 + 1

k

)
λ2

(
Γ
(
1 + 2

k

)
− Γ

(
1 + 1

k

)2)
k

λ

(x
λ

)k−1
exp

(
−
(x
λ

)k
)
, x ≥ 0, λ, k > 0

Noncentral chi-squared
exp

(
iuλ

1−2iu

)
(1− 2iu)k/2

, λ, k > 0 k + λ 2(k + 2λ)

Inverse Gaussian exp

(
λ
µ

(
1−

√
1− 2iuµ2

λ

))
, λ, µ > 0 µ

µ3

λ

Mittag-Leffler (ML)
λ

λ− (iu)ν
, λ > 0, ν ∈ (0, 1] Not defined if ν<1 Not defined if ν<1

Generalised Mittag-Leffler (GML)

(
λ

λ− (iu)ν

)δ

, λ, δ > 0, ν ∈ (0, 1] Not defined if ν<1 Not defined if ν<1

2 If W is distributed as a Weibull, then W = λX1/k, where X is distributed as an Exponential of parameter 1.

From that we get ϕ(u) =
∫∞
0 exp(iuλx1/k)exp(−x)dx which can be computed as

∑∞
n=0(−iλu)nΓ(1 + n/k)/Γ(1 + n),

exploiting the Fox H-function. This is stable if k > 1, otherwise an asymptotic expansion can be used, see Mathai et al. (2009).

where cn(·) denotes the cumulant of the n-th order. Thus, for short time horizons the diffusion

coefficient represents a mechanism to better regulate the skewness and the excess kurtosis of the

log-returns distribution.

This tempering effect of the Brownian motion could extend to the asymptotic case for t→∞,

even in the case of inter-arrival times distributions with infinite moments. Indeed, it can be

deduced from Proposition 2 and the following discussion in section 2.3 that if the GML parameter

ν is less than 0.5, the dominant term in the variance of X(t) is given by the diffusion part, i.e.

σ2t. As a consequence, the compound renewal diffusion process X(t) would exhibit vanishing

skewness and excess kurtosis.

We conclude this part with the following consideration. As already noted, in the case of the

models built on the ML and GML distributions, we stop the central limit theorem by assuming

inter-arrival times with infinite moments. Nevertheless, the processes N(t) and Y (t) do have

finite moments of all order and so does the log-returns process X(t). This is in contrast with

the approach adopted by Carr and Wu (2003) to prevent the ‘central limit theorem effect’ by

modelling the log-returns with a stable process: in their setting, in fact, the log-returns process

continues to have infinite variance, although the moments in the spot index level are finite.

3.2 Option pricing

The assumption of normally distributed price revisions allows us to derive a convenient semi-

analytical expression for the price of European options, as shown in the following.
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a) Skewness sk(X(t)) b) Excess kurtosis ek(X(t))

Figure 2: Skewness sk(·) and excess kurtosis ek(·): Merton jump diffusion process vs compound ML
renewal diffusion process. Diffusion coefficient: σ = 0.2. Compound Poisson process with rate of arrival
λ = 0.4352. Compound ML renewal process - parameters: λ = 0.4, ν = 0.75. Price revisions for both
models: Z ∼ N (−0.2, 0.22). Asymptotic value: see Proposition 2. Time expressed in years.

Proposition 3. The price of a European option C(0) struck at K, expiring at T , and written on

a stock with dynamics given by Equations (9)–(10) and Z ∼ N (µZ , σ
2
Z) is

C(0) =
∞∑
n=0

blsprice(S(0),K, r, T, v(n), q(n))P(N(T ) = n), (11)

with blsprice(S(0),K, r, T, v(n), q(n)) denoting the Black and Scholes (1973) price of a European

option written on an underlying asset with volatility

v(n) =

√
σ2 +

n

T
σ2
Z ,

and dividend yield

q(n) = q +
1

T
ln ϕY (−i;T )−

n

T

(
µZ +

σ2
Z

2

)
.

The proof is reported in Appendix A.3. Formula (11) can be easily extended to compute greeks,

as delta ∆ and gamma Γ. As an example, ∆ =
∑∞

n=0 blsdelta(S(0),K, r, T, v(n), q(n))P(N(T ) =

n), with blsdelta denoting the Black and Scholes (1973) delta.

The result offered in Proposition 3 is simple to implement and intuitive. Indeed, from the

point of view of the practical implementation, the infinite summation in the pricing Equation (11)

can be truncated to a value Nmax such that

P(N(T ) = Nmax) < ε1,

and
Nmax∑
i=0

P(N(T ) = i) ≤ 1− ε2.
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a) Skewness sk(X(t)) b) Excess kurtosis ek(X(t))

Figure 3: Impact of the GML parameters ν (top panels) and δ (bottom panels) on the skewness (left hand
side) and excess kurtosis (right hand side) of the distribution of the compound renewal diffusion process
X(t). Parameters: σ = 0.12, µZ = −0.3460, σZ = 0.2465, λ = 1.6166, δ = 3.7803 (top panels), ν = 0.4984
(bottom panels) - see Table 3, S&P500 case. Time expressed in years.

In our implementation, we set ε1 = 10−6 and ε2 = 10−5.

In terms of intuition, we can interpret the option price as an average of Black-Scholes prices

across all possible values of the renewal counting process N(T ). We pay particular attention to

the two inputs of the Black-Scholes formula q(n) and v(n). The former can be read as an adjusted

dividend yield.

The term v(n) can be instead interpreted as the (conditional) volatility of the log-returns,

which is now stochastic as it depends on the counting process N(T ) and its distribution. In the

case of the Merton (1976) jump diffusion model, N(T ) has independent and stationary increments,

thus the structure of this volatility is relatively elementary; in our framework instead this structure

is richer and therefore it has the potential for generating realistic implied volatility surfaces. Hence,

this construction formalizes the argument of Ross (1989) and Jones et al. (1994) that there is a

positive relation between the log-returns (implied) volatility and the rate of flow of information,

the latter being measured by the number of transactions taking place over any time interval.
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Figure 4: Impact of the parameter ν of the generalized Mittag-Leffler on the implied volatility. All others
parameters as in Table 3, S&P500 case. Standardized moneyness: d = ln(K/S)/(σI

√
T ), as in Foresi and

Wu (2005).

Figure 5: Impact of the parameter δ of the generalized Mittag-Leffler on the implied volatility. All others
parameters as in Table 3, S&P500 case. Standardized moneyness: d = ln(K/S)/(σI

√
T ), as in Foresi and

Wu (2005).

Finally, by means of Proposition 3 we can analyse the impact on the implied volatility of the

GML model parameters ν and δ which primarily control the decay rate of the indices of skewness

and excess kurtosis, as shown in section 2.3. In the interest of a realistic portray of the quantities

of interest, we use model parameters consistent with option market quotes (indeed we use the
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parameters obtained from the model calibration performed in section 4).

In Figure 3, we plot the skewness and the excess kurtosis of the compound GML renewal

diffusion process for the different values of ν (top panels) and δ (bottom panels). In Figures 4

and 5, we plot the implied volatilities generated by the same combination of parameters against

the standardized moneyness

d =
ln(K/S)

σI
√
T

,

(see Carr and Wu, 2003, Foresi and Wu, 2005, for example). Such moneyness measure expresses

the number of standard deviations that the log strike K is away from the log spot S; the scaling

by the time to maturity T allows comparison across maturities, whilst the scaling by σI allows

comparison across securities. The term σI represents a mean volatility level for each equity index,

proxyed by the sample average of the implied volatility quotes underlying each equity index. We

also plot the same quantities obtained from the Merton jump diffusion model, i.e. δ = ν = 1,

with all the other parameters kept constant.

In Figure 3, we observe that in general the log-returns distribution generated by the GML

model is more negatively skewed and leptokurtic than the one of the classical Merton jump

diffusion model. Furthermore, as ν increases the log-returns distributions become less asymmetric

and leptokurtic; the implied volatility instead reduces in value, as the smirk has less pronounced

slope and curvature, as shown in Figure 4. This is consistent with the intuition that the slope

and curvature of the smirk reflect the skewness and excess kurtosis of the underlying log-returns

distribution (see Backus et al., 2004, Foresi and Wu, 2005, for example).

The impact of δ on the statistics of the log-returns distribution is reversed compared to ν at

least over the short period of time. This is visible in terms of short maturities implied volatilities.

Indeed, this is consistent with the considerations offered in section 2.3.

4 Calibration

In this section we test the performance of our model in reproducing option implied volatility

surfaces by means of a number of experiments based on market data.

4.1 Data collection and experimental setting

We download from Refinitiv end of day market prices on March 3, 2023 for European options

written on four major international financial indices: Euro Stoxx, FTSE100, MIB and S&P500.

We use out-of-the-money call and put options with maturities up to almost 2 years. Options

with time to maturities less than 10 days, ask prices less than or equal to the bid price, and

bids less than 3/8 are excluded. To address liquidity concerns, for each time to maturity we

calculate the average open interest, and remove options with open interest less than 20% of this

average. Finally, for calibration purposes, a maturity is included if at least five calls and five puts

remain. The final number of time to maturities and contracts is summarized in Table 2. As a

standard practice, SVI (Gatheral and Jacquier, 2014) is applied to obtain arbitrage free surfaces,

if necessary. The term structure of discount rates is recovered implicitly from the put-call parity.
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Table 2: Financial indices: number of time to maturities and total number of contracts considered in the
calibration exercise.

Index Maturities Contracts

Euro Stoxx 12 531
FTSE 100 5 227
MIB 7 113
S&P500 9 614

For the purpose of model calibration, we define the error function

ϵ(θ,Ki, Ti) =
ivolmarket(Ki, Ti)− ivolmodel(Ki, Ti; θ)

ivolmarket(Ki, Ti)
(12)

where ivolmarket(Ki, Ti) is the end of day market implied volatility for a contract struck at Ki

and expiring at Ti, and ivolmodel(Ki, Ti; θ) denotes the corresponding implied volatility originated

by the model specification with parameter set θ under consideration. The calibration problem is

stated as

min
θ

M∑
i=1

ϵ(θ,Ki, Ti)
2, (13)

with θ within the parameter limits of the chosen model, and M denoting the total number of

contracts.

In the following, we compare the performance of our construction for the several inter-arrival

distributions reported in Table 1, bearing in mind that for the case of the exponential distribution

our model returns the classical Merton (1976) jump diffusion model, as already noted in previous

sections. The calibration performance is measured by the root mean square error

RMSE =

√√√√ 1

M

M∑
i=1

ϵ(θ∗,Ki, Ti)2,

with θ∗ denoting the calibrated parameter set, and by the contribution given by each maturity

slice

1

MT

MT∑
j=1

ϵ(θ∗,Kj , T )
2, (14)

with MT denoting the number of contracts with maturity T . Note that the performance measure

(14) is calculated using the calibrated parameter set θ∗ solution of the optimization problem (13),

which uses all available strikes and maturities.

4.2 Results

The goals of the empirical exercise are to gauge the ability of the several specifications of our

general setting in reproducing the full implied volatility surface, to understand the contribution

in terms of improved performance offered by the Brownian motion, and to analyse the model

behaviour across different time horizons.

In Table 3, we present the RMSEs together with the calibrated parameters obtained from our

exercise. We consider the case in which the log-returns are driven by either the pure compound
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Figure 6: Calibration performance for the two shortest maturities, and for the ones closest to 1 and
2 years, S&P500: pure jump compound Poisson process (σ = 0 - exponentially distributed inter-arrival
times). RMSE = 0.1388. Standardized moneyness: d = ln(K/S)/(σI

√
T ), as in Foresi and Wu (2005).

renewal process Y (t) (and therefore σ is not calibrated and set to 0), or the compound renewal

diffusion process X(t).

Upon initial inspection, the impact of the diffusion term in reducing the RMSE is evident,

as well as the benefit of replacing the exponential distribution with other distributions, notably

the generalized Mittag-Leffler distribution, which demonstrates the best performance across all

cases. In the following, in the interest of synthesis, we present only the calibration on the S&P500

options. Results for the other indices are available upon request.

4.2.1 The role of the diffusion component

In first instance, we quantify the contribution of the Brownian motion component. For illus-

tration purposes, we consider the case of exponentially distributed inter-arrival times, i.e. the

case in which the pure jump part is given by the compound Poisson process. The performances

as measured by the RMSE are respectively 0.1388 and 0.0722. The added contribution of the

Brownian motion component is evident.

Figures 6 and 7 illustrate the calibrated implied volatilities in correspondence of selected

maturities as a function of the standardized moneyness d. In particular, we show in Figure 6

the case in which σ = 0 is set by default, and in Figure 7 the case in which σ > 0 is given by

the calibration. These results highlight that the greatest improvement in adding the diffusion

component is obtained in correspondence of short maturities. This is a reflection of the higher

order moments ‘tempering’ effect that the Brownian motion offers as discussed in section 3.1.

In order to gain further insights, in Figure 8 we plot the error per maturity slice (14); panel a)

in particular shows that the improvements due to adding the Brownian motion is common among

all the maturities. Similar results hold for all inter-arrival distributions considered in this paper
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Table 3: Calibration RMSE and calibrated parameters. For each model, top row: pure compound renewal
risk driver Y (t), bottom row: compound renewal diffusion risk driver X(t). (*): calibrated Mittag-Leffler
parameter ν = 1, i.e. the resulting inter-arrival distribution coincides with the exponential one. (+):
calibrated generalised Mittag-Leffler parameter ν = 1, i.e. the resulting inter-arrival distribution coincides
with the gamma one.

Renewal log-returns RMSE σ µZ σZ Renewal Parameters

EUROSTOXX
Exponential Y (t) 0.1173 - -0.0865 0.2016 λ = 0.9413

X(t) 0.0846 0.0883 -0.1583 0.2793 λ = 0.3794
Gamma Y (t) 0.1173 - -0.0864 0.2014 δ = 0.9956, λ = 0.9346

X(t) 0.0826 0.0909 -0.1654 0.2816 δ = 1.0856, λ = 0.4465
Weibull Y (t) 0.1173 - -0.0863 0.2015 λ = 1.0728, k = 0.9901

X(t) 0.0823 0.0907 -0.1650 0.2819 λ = 2.4619, k = 1.0614
Noncentral chi-squared Y (t) 0.1278 - -0.1002 0.2465 k = 1.7569, λ = 0.0000

X(t) 0.0826 0.0908 -0.1650 0.2811 k = 2.1712, λ = 0.2388
Inverse Gaussian Y (t) 0.1418 - -0.0692 0.1580 µ = 1.5767, λ = 0.2862

X(t) 0.1110 0.0946 -0.1347 0.2207 µ = 3.3166, λ = 0.8199
Mittag-Leffler Y (t) 0.1172 - -0.0865 0.2023 λ = 0.9220, ν = 0.9874

X(t) 0.0846 0.0883 -0.1583 0.2794 λ = 0.3793, ν = 1.0000 (*)
Generalised Mittag-Leffler Y (t) 0.1144 - -0.0856 0.1997 δ = 1.8326, λ = 1.8895, ν = 0.7192

X(t) 0.0798 0.0900 -0.1625 0.2760 δ = 2.3990, λ = 1.3270, ν = 0.6135

FTSE 100
Exponential Y (t) 0.1037 - -0.0805 0.1909 λ = 0.7011

X(t) 0.0858 0.0382 -0.1035 0.2271 λ = 0.4741
Gamma Y (t) 0.1032 - -0.0802 0.1902 δ = 1.0319, λ = 0.7592

X(t) 0.0829 0.0403 -0.1046 0.2260 δ = 1.0813, λ = 0.5754
Weibull Y (t) 0.1030 - -0.0802 0.1905 λ = 1.3810, k = 1.0160

X(t) 0.0827 0.0402 -0.1045 0.2262 λ = 1.9034, k = 1.0584
Noncentral chi-squared Y (t) 0.1087 - -0.0915 0.2165 k = 1.8959, λ = 0.0000

X(t) 0.0835 0.0420 -0.1105 0.2373 k = 2.1155, λ = 0.0000
Inverse Gaussian Y (t) 0.1520 - -0.1009 0.2128 µ = 3.3888, λ = 0.7242

X(t) 0.1112 0.0502 -0.1093 0.1946 µ = 3.4982, λ = 0.7758
Mittag-Leffler Y (t) 0.1037 - -0.0805 0.1910 λ = 0.7010, ν = 1.0000 (*)

X(t) 0.0858 0.0382 -0.1035 0.2271 λ = 0.4741, ν = 1.0000 (*)
Generalised Mittag-Leffler Y (t) 0.1002 - -0.0791 0.1925 δ = 2.1674, λ = 1.7131, ν = 0.6329

X(t) 0.0788 0.0398 -0.1032 0.2249 δ = 2.7209, λ = 1.7353, ν = 0.5665

MIB
Exponential Y (t) 0.1549 - -0.0965 0.2481 λ = 0.7588

X(t) 0.0895 0.1324 -0.3892 0.3880 λ = 0.1391
Gamma Y (t) 0.1480 - -0.1438 0.3036 δ = 0.7076, λ = 0.2218

X(t) 0.0796 0.1253 -0.2759 0.3272 δ = 1.0032, λ = 0.1981
Weibull Y (t) 0.1542 - -0.0969 0.2492 λ = 1.3858, k = 0.9633

X(t) 0.0920 0.1277 -0.3151 0.3644 λ = 4.6767, k = 1.0870
Noncentral chi-squared Y (t) 0.1569 - -0.1130 0.2821 k = 1.8201, λ = 0.0000

X(t) 0.0921 0.1280 -0.3196 0.3697 k = 2.0658, λ = 2.1264
Inverse Gaussian Y (t) 0.1818 - -0.1081 0.2976 µ = 3.2450, λ = 0.7779

X(t) 0.1293 0.1103 -0.1437 0.2277 µ = 3.3478, λ = 0.8372
Mittag-Leffler Y (t) 0.1540 - -0.0968 0.2490 λ = 0.7280, ν = 0.9642

X(t) 0.0895 0.1324 -0.3892 0.3880 λ = 0.1391, ν = 1.0000 (*)
Generalised Mittag-Leffler Y (t) 0.1480 - -0.1438 0.3036 δ = 0.7076, λ = 0.2218, ν = 1.0000 (+)

X(t) 0.0796 0.1253 -0.2759 0.3272 δ = 1.0032, λ = 0.1981, ν = 1.0000 (+)

S&P500
Exponential Y (t) 0.1388 - -0.0948 0.1839 λ = 1.0757

X(t) 0.0722 0.1175 -0.3361 0.2639 λ = 0.2078
Gamma Y (t) 0.1388 - -0.0947 0.1844 δ = 0.9920, λ = 1.0560

X(t) 0.0678 0.1161 -0.3166 0.2468 δ = 1.1696, λ = 0.3523
Weibull Y (t) 0.1387 - -0.0941 0.1843 λ = 0.9411, k = 0.9876

X(t) 0.0671 0.1184 -0.3469 0.2487 λ = 3.7943, k = 1.1220
Noncentral chi-squared Y (t) 0.1506 - -0.1169 0.2341 k = 1.6851, λ = 0.0000

X(t) 0.0676 0.1171 -0.3299 0.2479 k = 2.2957, λ = 1.0544
Inverse Gaussian Y (t) 0.1582 - -0.0726 0.1651 µ = 2.1519, λ = 0.2974

X(t) 0.0892 0.1008 -0.1777 0.1979 µ = 3.8014, λ = 0.8470
Mittag-Leffler Y (t) 0.1386 - -0.0933 0.1844 λ = 1.0577, ν = 0.9827

X(t) 0.0722 0.1175 -0.3361 0.2639 λ = 0.2077, ν = 1.0000 (*)
Generalised Mittag-Leffler Y (t) 0.1367 - -0.0897 0.1785 δ = 1.5791, λ = 1.8785, ν = 0.7810

X(t) 0.0624 0.1200 -0.3460 0.2465 δ = 3.7803, λ = 1.6166, ν = 0.4984
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Figure 7: Calibration performance for the two shortest maturities, and for the ones closest to 1 and 2
years, S&P500: jump diffusion compound Poisson process (σ calibrated - exponentially distributed inter-
arrival times). RMSE = 0.0722. Standardized moneyness: d = ln(K/S)/(σI

√
T ), as in Foresi and Wu

(2005).

and are available upon request. Given these findings, in the following we consider the case σ > 0

only.

4.2.2 Renewal processes

Table 3 shows the benefit of replacing the exponential distribution with other distributions, no-

tably the generalized Mittag-Leffler distribution, which demonstrates the best performance across

all cases. A very close second best is given by both the gamma and the Weibull distributions.

From Panel b) of Figure 8, we can observe that the improvement offered by the generalised

Mittag-Leffler construction with respect to the Merton jump diffusion model is mainly on the

short maturities: the model is therefore able to perform a good fit on the short maturities with-

out losing accuracy on replicating the implied volatility surface on the long ones. In particular,

from Table 3 we note the calibrated value of the parameter ν in the compound GML renewal

diffusion process, which is always greater than 0.5, signalling a non vanishing long term implied

volatility smirk, with the only exception of the S&P500 index, in which case the calibrated value

is very close to the 0.5 threshold.

Looking at the resulting (unit time) mean and variance of the renewal process in Table 4, we

observe that market option prices imply positive duration dependence except in the case of the

ML model, which can only cater for negative duration dependence (see Jose and Abraham, 2011,

for example). This could explain the fact that the calibration returns ν = 1, i.e. equidispersion.

In Figure 9 we portray the calibrated probability of the generalised Mittag-Leffler renewal

process at time 1 year and 3 years respectively. Figure 10 presents the resulting renewal function

denoted as m(t) = E(N(t)). Although for the exponential distribution the renewal function

exhibits linearity, as m(t) = λt, Figure 10 unequivocally demonstrates that this linearity does not
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a) Exponential b) Exponential vs GML

Figure 8: Calibration performance per maturity slice. Error:
∑MT

j=1 ϵ(θ
∗,Kj , T )

2/MT (see Equation
(14)). Exponentially distributed inter-arrival times vs generalised Mittag-Leffler distributed inter-arrival
times. Panel a): Role of the diffusion coefficient in the Exponential case. Panel b): Performance of the
Exponential/Poisson jump diffusion model vs the GML compound renewal diffusion. Parameters: Table 3
for S&P500.

Table 4: Dispersion properties of the renewal distribution and first inter-arrival time. VMR: Variance-to-
Mean ratio of the renewal process (see section 2.2). Parameters: Table 3 for the S&P500.

E(N(1)) Var(N(1)) VMR

Exponential 0.208 0.208 1.000
Gamma 0.253 0.245 0.971
Weibull 0.221 0.216 0.976
Noncentral chi-squared 0.238 0.232 0.972
Inverse Gaussian 0.582 0.535 0.920
Mittag-Leffler 0.208 0.208 1.000
Generalised Mittag-Leffler 0.214 0.214 0.999

hold true for the generalised Mittag-Leffler distribution.

Finally, Figure 11 shows the distribution of the inter-arrival times: whilst the exponential

one (which coincides with the Mittag-Leffler) is monotone, all the others are increasing and

then decreasing, confirming the superiority of unimodal distributions in terms of flexibility for

calibration purposes. The only noticeable exception is the inverse Gaussian distribution, which

shows a different scale with respect to the others: this distribution seems not flexible enough to

capture the market information properly, resulting in the worst calibration performance, as shown

in Table 3.

4.2.3 Pricing exotic options

As a further analysis, we examine Up & Out put options on forwards with a maturity of 349 days

and a strike of 3325. Prices are computed by Monte Carlo simulation based on the pseudocode

1 offered in section 2.4, leveraging the Antithetic Variates technique for variance reduction. The
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a) P (N(1) = n) b) P (N(3) = n)

Figure 9: Calibrated distribution of the generalised Mittag-Leffler renewal process and Poisson process.
Parameters: Table 3 for the S&P500.

a) Renewal function b) Zoom

Figure 10: The renewal function m(t) = E (N(t)) for different time horizons (time in years). Parameters:
Table 3 for the S&P500.
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Figure 11: Calibrated distribution of the inter-arrival times. Parameters: Table 3 for S&P500.

Table 5: Up&Out put option pricing with upper barrier U . Maturity: 349 days. Strike: 3325. Forward
price: 4276.59. Risk-free interest rate: 4.80%. Market price for the European Call: 988.20. Calibrated price
for the exponential distribution (generalised Mittag-Leffler): 985.20 (987.88). PriceE (PriceGML): barrier
option price assuming the exponential (generalised Mittag-Leffler) distribution. Monte Carlo simulation
with Antithetic Variates. N. simulation: 107 with monthly monitoring.

U 4300 4350 4400 4450 4500 4750 5000

PriceE 57.49 84.16 116.30 152.90 193.06 417.93 630.16
PriceGML 56.02 81.32 111.61 146.19 184.26 400.70 611.50

|PriceE−PriceGML|
PriceGML

2.62% 3.49% 4.20% 4.59% 4.78% 4.30% 3.05%

precise computation of the CDF using the Hilbert transform enables us to simulate inter-arrival

times by employing numerical inversion and uniformly distributed random variables.

We compare the option prices derived from two different models: the one based on the expo-

nential distribution for the inter-arrival times and the best model, which is built on the generalised

Mittag-Leffler distribution.

From Table 5, it is evident that the maximum pricing error when using the exponential

distribution, rather than the generalised Mittag-Leffler distribution, is 4.78%, with an average

error across the entire table amounting to 3.86%. In contrast, for the calibrated European call

options with the same maturity and strike, the error is merely 0.27%. This discrepancy underscores

the substantial impact of the counting process on the pricing of path-dependent derivatives.

5 Conclusions

We have developed an option pricing model based on renewal processes, with the aim of studying

the impact of the choice of the underlying inter-arrival distribution on the fit to market volatility

surfaces. The proposed setting offers a simple and intuitive formula for the price of European
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vanilla options which is analytical up to an infinite summation, and a fast and immediate Monte

Carlo simulation procedure for exotic options. The implementation of both is based on the Hilbert

transform for the recovery of the probability function of the resulting counting process; this allows

us to compute the key quantities in analytical form.

The results from the empirical study based on market quotes for options written on major

indices show that the best fit is achieved with a log-returns dynamics which includes both a Brow-

nian motion and a compound renewal process whose inter-arrival times are distributed according

to the generalised Mittag-Leffler distribution. Thus, the log-returns process shows finite mean

and variance (in contrast to the log-stable model of Carr and Wu, 2003) but non-vanishing skew-

ness and excess kurtosis over the time horizons; furthermore, based on the calibrated parameters,

its discontinuous part is characterised by a distribution of both the inter-arrival times and the

counting process which is under-dispersed. In other words, the number of trades captured by the

renewal process is more regular than in the case of the Poisson process, denoting positive duration

dependence.

The option pricing formula also formalizes analytically the positive relation between the log-

returns distribution implied volatility and the number of trades occurring in the given period.

As the latter are no longer modelled by a process with independent and stationary increments,

we can better capture the behaviour of the implied volatility across the several tenors, and gain

interesting insights into the generation of stochastic volatility behaviours.
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Cartea, Á., Derivatives pricing with marked point processes using tick-by-tick data. Quantitative

Finance, 2013, 13, 111–123.
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A Appendix: Proofs

A.1 Proof of Proposition 2

i) We first consider the probability generating function of the renewal counting process

GN(t)(u) = E
(
uN(t)

)
=

∞∑
n=0

unP(N(t) = n), |u| ≤ 1, (A.1)

which in the case of the Mittag-Leffler distribution, i.e. for δ = 1, has analytical expression

GN(t)(u) = Eν (λt
ν(u− 1)) .

By straightforward differentiation (and setting u = 1) of the above, we can obtain the

factorial moments (see Huillet, 2016, for example)

E ((N(t))k) = mkt
kν

with (x)k denoting the falling factorial, i.e.

(x)k = x(x− 1)(x− 2) · · · (x− k + 1)︸ ︷︷ ︸
k terms

.

The raw moments of N(t) can now be recovered from the factorial ones using the known

relationship

E
(
N(t)k

)
=

k∑
j=0

S(j, k)E ((N(t))k) ,

with S(j, k) denoting the Stirling numbers of the second kind. We recall also the relationship

between raw moments and cumulants

c1(N(t)) = E (N(t))

c2(N(t)) = E
(
N(t)2

)
− E (N(t))2

c3(N(t)) = E
(
N(t)3

)
− 3E

(
N(t)2

)
E (N(t)) + 2E (N(t))3

c4(N(t)) = E
(
N(t)4

)
− 4E

(
N(t)3

)
E (N(t)) + 6E

(
N(t)2

)
E (N(t))2

−3E (N(t))4 − 3c2(N(t))2,

from which it follows that the first four cumulants of the renewal process N(t) are

c1(N(t)) = tνm1

c2(N(t)) = t2ν
(
m2 −m2

1

)
+ tνµ2

c3(N(t)) = t3ν
(
m3 − 3m2m1 + 2m3

1

)
+ 3t2ν(m2 −m2

1) + tνm1

c4(N(t)) = t4ν(m4 − 4m1m3 + 6m2
1m2 − 3m4

1) + 6t3ν(m3 − 2m1m2 +m3
1)

+t2ν(7m2 − 4m2
1) + tνm1 − 3c2(N(t))2.

The stated result then follows from equations (4)–(7).
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ii) The result follows by observing that when taking the limit for t → ∞ the only terms of

relevance are the ones containing the highest power of tν .

iii) For small t, c2 ∼ tνµ2m1, c3 ∼ tνµ3m1 and c4 ∼ tνµ4m1 − 3c2(t)
2, from which the result

follows.

A.2 The asymptotic moments of the compound GML renewal process

Although, in the GML case the cumulants of the process Y (t) cannot be recovered analytically,

useful information can be obtained from the Laplace transform of the probability generating

function of the associated renewal process N(t) by extending an argument of Michelitsch and

Riascos (2020) based on Tauberian theorems.

In details, the Laplace transform of (A.1) is

L
(
GN(t)(u)

)
(s) =

1− L (f(t)) (s)
s(1− uL (f(t)) (s))

.

By repeated differentiation with respect to u (and setting u = 1), it follows that the Laplace

transform of the factorial moment of order k ∈ N of the renewal process N(t) is

L (E ((N(t))k)) (s) =
Γ(k + 1)

s
((

1 + sν

λ

)δ − 1
)k

. (A.2)

We note that for small values of s, i.e. for |s| → 0,

L (E ((N(t))k)) (s) ≈
(
λ

δ

)k

Γ(k + 1)s−νk−1,

from which the asymptotic behaviour for t→∞ of the factorial moments can be obtained as

E ((N(t))k) ≈
(
λ

δ

)k Γ(k + 1)

Γ(νk + 1)
tνk.

Following the same steps as in the proof of Proposition 2, we can verify that for t → ∞ the

asymptotic values of sk(Y (t)) and ek(Y (t)) coincide with the ones reported in Proposition 2.ii.

In order to deduce the behaviour for t → 0, we need instead to consider large value of s in

equation (A.2): for |s| → ∞, indeed, we have

L (E ((N(t))k)) (s) ≈ Γ(k + 1)λδks−νδk−1,

from which it follows that the asymptotic behaviour for t → 0 of the factorial moments can be

obtained as

E ((N(t))k) ≈
Γ(k + 1)

Γ(νk + 1)
λδktνδk.

A.3 Proof of Proposition 3

From the definition of the stock price process in Equation (9), by conditioning on N(T ) = n ∈ N,
and considering the sum of the n independent normally distributed random variables with mean
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µZ and variance σ2
Z , we deduce that

ln
S(T )

S(0)
= (r − q)T −ϖ(T ) + σW (T ) + nµZ +

√
nσZζ,

for ζ ∼ N (0, 1), independent of the Brownian motion W (T ). Consequently,

Var
(
ln

S(T )

S(0)

)
= σ2T + nσ2

Z = v2(n)T

for

v(n) =

√
σ2 +

n

T
σ2
Z ,

and

ln
S(T )

S(0)

∣∣∣∣
N(T )=n

∼ N
((

r − q(n)− 1

2
v2(n)

)
T, v2(n)T

)
for

q(n) = q +
1

T
ln ϕY (−i;T )−

n

T

(
µZ +

σ2
Z

2

)
.

Let B(T ) be a Brownian motion, from the previous results it follows that, conditioned on

N(T ) = n, we can rewrite the stock price as

S(T ) = S(0)e(r−q(n)− 1
2
v2(n))T+v(n)B(T ),

which is in the appropriate form for the application of the Black-Scholes formula to a price process

with dividend yield q(n) and volatility v(n). The price of the option then follows by averaging

over the distribution of the counting process N(T ).
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