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Abstract: This paper contributes novel analytical formulae for H∞ optimal tuning of non-grounded 

tuned mass-damper-inerter (TMDI) for minimizing free-end displacement of base-excited primary 

structures. The derivation relies on the fixed-point theory, making use of single-mode modelling of 

the primary structure while accommodating any arbitrary TMDI placement along the structure height. 

Optimal TMDI tuning parameters are derived for given dominant mode shape of primary structure 

and TMDI inertial properties (i.e., secondary mass and inertance) under two different types of 

harmonic excitations with frequency-independent displacement and acceleration amplitudes. The 

applicability of the derived TMDI tuning formulae for response mitigation of lightly damped primary 

structures under stationary broadband support excitation is established through comparisons with 

numerically optimal TMDI properties for a wide range of TMDI inertial properties. Moreover, the 

analytical TMDI tuning formulae derived in this study achieve enhanced structural performance for 
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base-excited structures compared to those from the literature, derived under various modelling 

assumptions and optimality criteria. Lastly, the potential of the proposed TMDI tuning for structural 

response mitigation is numerically evaluated by examining displacement, acceleration, and energy 

dissipation response history data of an experimentally identified reinforced concrete bridge pier 

model subjected to 100 earthquake ground motion (GM) records. Overall, reported results 

demonstrate that the derived analytical formulae can significantly extend the practical application of 

TMDI as a bona fide dynamic vibration absorber for base-excited structures by circumventing the 

need for computationally demanding numerical TMDI tuning optimization. 

Keywords: Optimal structural vibration control, Base-excited cantilevered structures, Seismic 

response mitigation, Non-grounded tuned mass damper inerter, Analytical fixed-point optimal tuning, 

Seismic energy dissipation. 

1 Introduction 

In recent years, passive inerter-based dynamic vibration absorbers (IDVAs) have attracted 

significant research attention for the vibration control of dynamically excited structures [1-3]. The 

effectiveness of IDVAs relies on leveraging the inertial property of a two-terminal mechanical 

element, termed inerter [4], in order to amplify either the secondary oscillatory mass of tuned mass 

dampers (TMDs) [5] and/or the energy-dissipative capability of viscous dampers [6]. These benefits 

are enabled by the scalability of the inertial property, termed inertance, by which the inerter element 

resists the relative acceleration across its two terminals. Technologically, the inertance property can 

be materialized by various mechanics, including mechanical gearing [7-10], living hinges [11], 

electromagnetic principles [12], hydraulics pumps [13, 14], and fluid dynamic principles [15-17]. By 

virtue of any of these mechanics, inerter devices may be manufactured whose inertance can well be 
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orders of magnitude higher than their physical mass [18]. Typical configurations of IDVAs include 

the tuned viscous mass damper (TVMD) [6], rotational inertia double tuned mass damper (RIDTMD) 

[19], tuned inerter damper (TID) [20], tuned mass damper inerter (TMDI) [5], tuned liquid column 

damper inerter (TLCDI) [21], tuned tandem mass damper inerter (TTMDI) [22], lever-arm tuned 

mass damper inerter (LTMDI) [23-25], grounded inerter-based two-degree-of-freedom tuned mass 

damper (GI-TDOF-TMD) [26], tuned cable-inerter system (TCIS) [27], and tuned liquid inerter 

damper (TLID) [28, 29]. 

Among the above IDVA configurations, the tuned mass damper inerter (TMDI) has been 

extensively studied for mitigating dynamic responses in wind-excited tall buildings [30-33], long-

span bridges [34-37], and wind turbines [38, 39], as well as in engineering structures subjected to 

base/seismic excitations, including buildings [40-43], wind turbines [44], and base-isolated structures 

[45-48]. The TMDI consists of a conventional TMD paired with an inerter device; the latter connects 

the secondary oscillatory mass either to the ground (grounded TMDI configuration) [49], or to the 

primary structure (non-grounded TMDI configuration). In non-grounded TMDIs, the inerter may be 

configured parallel to the viscoelastic connection of the secondary mass (parallel TMDI configuration) 

[50], in which case the secondary mass is linked to the primary structure at a single location, or the 

inerter may link the secondary mass to a different location of the primary structure from the location 

of the viscoelastic connection (non-parallel TMDI configuration) [51]. In the latter case, the TMDI is 

attached to primary structure at two distinct locations with different kinematics. Regardless of the 

TMDI configuration, the TMDI tuning principles are the same and fairly similar to the TMD tuning 

since the TMD can be interpreted as a TMDI with zero inertance [5]. In particular, TMD(I) tuning 

involves optimizing its viscoelastic properties (i.e., stiffness and damping) given inertial properties 
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(i.e., secondary mass and inertance) to achieve effective kinetic energy dissipation from the primary 

structure [5, 52]. Consequently, the control efficiency of TMDI heavily depends on the chosen tuning 

strategy. 

In this regard, various numerical optimization approaches for TMDI tuning have been developed 

in recent years [53-56]. However, their implementation involves significant computational effort, 

which hinders their applicability in expeditious parametric investigations and structural performance 

assessments at preliminary structural design stages. The latter limitation is particularly important for 

non-grounded TMDI whose structural response mitigation capability depends heavily on the 

dominant mode shape of the primary structure, hence on the design of the primary structure [33, 55, 

57]. To this end, analytical closed-form TMDI tuning expressions, relying on simplified structural 

and excitation models, are practically useful for facilitating TMDI implementation in various 

structural control applications.  

In this respect, several studies contributed analytical tuning formulae for various TMDI 

configurations in different force-excited primary structures applications. Specifically, Hu and Chen 

[50] derived analytical formulae for tuning parallel TMDIs subjected to harmonic and white-noise 

excitations using H∞ and H2 optimization criteria, respectively. Zhang and Fitzgerald [38] addressed 

the edgewise vibration of wind turbine blades using parallel TMDI by deriving analytical tuning 

formulae assuming harmonic external forces applied to the blades. For non-parallel non-grounded 

TMDIs, Sarkar and Fitzgerald [39] derived analytical formulae for controlling vibrations of wind 

turbine towers under white-noise force excitation, while Su et al. [58] reported closed-form formulae 

for harmonic force excited slender cantilevered structures. Moreover, Zhang et al. [59] derived 

analytical tuning formulae for non-parallel non-grounded TMDIs which account for the effect of 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

5 

 

background flexibility from higher non-resonant modes in multi-storey buildings, modelled as 

lumped-mass multi-degree-of-freedom (MDOF) systems. Further, Xu et al. [34] determined the 

equivalent damping ratio of TMDI-equipped bridges and derived a design formula for controlling 

vortex-induced vibrations of bridge decks, while Chen et al. [60] derived the equivalent modal 

damping of flexible structures equipped with grounded TMDI and proposed analytical TMDI tuning 

formulae based on this derivation. 

Nevertheless, research effort focusing on the derivation of analytical TMDI tuning formulae for 

base-excited primary structures is much more limited than for force-excited primary structures with 

relevant studies treating mostly TMDI configurations with grounded inerter. For example, Marian 

and Giaralis derived in [5] and in [61] analytical grounded TMDI tuning formulae for undamped 

single-degree-of-freedom (SDOF) primary structures under harmonic and white-noise base 

excitations based on H2 and H∞ optimality criteria, respectively, while analytical tuning approaches 

for various grounded TMDI configurations are reported in [62, 63] for base-isolated primary 

structures under white-noise excitation. In this regard, there is a lack of simplified analytical tuning 

expressions for non-grounded TMDI configurations in base-excited non-isolated cantilevered 

structures. Notably, the consideration of non-grounded TMDI configurations is the most relevant for 

fixed-based cantilevered structures since, in this class of structures, the peak structural response is 

commonly attained at the free-end. This observation calls for connecting the TMDI secondary mass 

via the viscoelastic link as close to the tip of the primary structure as possible, similarly to 

conventional TMD implementations. In this setting, it is practically challenging for the inerter device 

to reach all the way to the ground, therefore non-grounded TMDI configurations are most applicable.  

To this end, this paper aims to fill the above identified gap in the literature by contributing novel 
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closed-form analytically derived expressions for optimal tuning of non-grounded TMDI for dynamic 

response mitigation of base-excited cantilevered structures. This pursuit is facilitated by adopting the 

generic 2-DOF model of TMDI-equipped cantilevered structures in [57] which allows for 

accommodating any arbitrary inerter connectivity in non-grounded TMDI configurations. In the 

adopted model, the primary cantilevered structure is represented by a single dominant mode which is 

a reasonable assumption since the dynamic response of cantilevered structures is mostly contributed 

by their first (fundamental) mode [39, 51, 58], even under broadband excitations [64]. Subsequently, 

the fixed-point theory, originally developed by Den Hartog [65], is applied to the 2-DOF system to 

derive closed-form expressions for optimal TMDI parameters that minimize the structure’s free-end 

displacement under H∞ optimality for harmonic base displacement excitation and for harmonic base 

acceleration with frequency-independent amplitude. The achieved level of structural response 

mitigation of the proposed TMDI tuning formulae is compared with several analytical tuning 

expressions from the literature derived for grounded TMDI in base-excited structures as well as for 

non-grounded TMDI in force-excited structures for a wide range of TMDI inertial properties. These 

comparisons establish the importance and practical usefulness of the herein derived formulae vis-à-

vis previously derived tuning formulae for the case of grounded TMDI in base-excited structures and 

of non-grounded TMDI in force-excited structures. Further, comprehensive parametric analyses are 

undertaken to assess the accuracy of the derived TMDI tuning expressions compared to numerical 

tuning for lightly damped structures under harmonic and white noise base excitations. Finally, the 

robustness of the derived H∞-optimal tuning formulae to uncertainty in the base-excitation properties 

is numerically assessed by statistically evaluating various dynamic performance metrics of a 

reinforced concrete bridge pier model with experimentally identified properties, subjected to three 
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different suites of recorded earthquake ground motions (GMs) with different frequency content 

prepared for the FEMA P659 report [66]. 

The remainder of the paper is organized as follows. Section 2 establishes the governing equations 

for the TMDI-equipped structure under fixed-amplitude displacement and acceleration harmonic base 

excitations. Employing the fixed-point theory, Section 3 derives closed-form expressions for H∞-

optimal TMDI tuning parameters. Section 4 assesses the accuracy and robustness of the derived 

TMDI tuning formulae for lightly damped structures under broadband excitation. Section 5 compares 

the structural performance achieved using the proposed TMDI tuning expressions versus analytical 

tuning expressions from the literature. Lastly, Section 6 quantifies the potential of the derived TMDI 

tuning expressions for earthquake engineering applications, while Section 7 summarizes the main 

conclusions of this study. 

2 Modelling of TMDI-equipped cantilevered structures 

This section presents the adopted generic dynamic modelling of fixed-based cantilevered structures 

equipped with a TMDI and establishes its governing equations of motion for displacement and 

acceleration harmonic base excitations with frequency-independent amplitudes. The dynamic model 

is utilized in Section 3 to derive novel analytical formulae for the optimal tuning parameters of the 

non-grounded TMDI in base-excited structures. 

2.1 System description and dynamic modelling 

Consider the generic cantilevered (primary) structure with height 𝐻 shown in Fig. 1(a), subjected 

to a horizontal base excitation with acceleration trace �̈�𝑔(𝑡), where a dot over a symbol denotes 

differentiation with respect to time 𝑡. Let 𝑦(𝑥, 𝑡) be the lateral relative displacement of the structure 

with respect to the ground (deflection) at height 𝑥, with 0≤𝑥≤𝐻. Further, assume that 𝑦(𝑥,𝑡) can 
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be faithfully approximated by a single mode shape such that 𝑦(𝑥, 𝑡) = 𝜙(𝑥)𝑦s(𝑡), where 𝜙(𝑥) is a 

deformation (shape) function which satisfies the fixed-end boundary conditions and 𝑦s(𝑡) is the 

free-end structural deflection. In this regime, the primary structure can be modelled as a generalized 

SDOF system with mass, Ms, inherent damping coefficient, Cs, and stiffness, Ks, given as 

𝑀𝑠 = ∫ 𝑚(𝑥)𝜙2(𝑥)
𝐻

0

𝑑𝑥 ,𝐶𝑠 = 2𝑀𝜔𝑠𝜉𝑠  , and   𝐾𝑠 = ∫ 𝐸𝐼(𝑥)
𝐻

0

(
𝑑2𝜙(𝑥)

𝑑𝑥 2
)

2

𝑑𝑥, (1) 

where 𝑚(𝑥) and 𝐸𝐼(𝑥) are the distributed mass and the flexural rigidity along the height of the 

primary structure, respectively, while 𝜔𝑠 and 𝜉𝑠  are the generalized system natural frequency and 

critical damping ratio, respectively. 

   

 

Fig. 1 Base-excited cantilevered structure (a) without TMDI and (b) equipped with TMDI. 

In this work, a TMDI is considered to suppress the lateral motion of the considered primary 

structure. The TMDI comprises a secondary mass 𝑚𝑡  attached to the free-end of the primary 

structure via a linear spring with stiffness coefficient 𝑘𝑡 in parallel connection with a linear dashpot 

with damping coefficient 𝑐𝑡 as shown in Fig. 1(b). Further, the secondary mass is also supported to 

the primary structure at height ℎ (0ℎ𝐻) by an ideal inerter element with inertance coefficient 𝑏. 

By assuming that the primary structure is sufficiently stiff such that the shape function 𝜙(𝑥) is not 
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influenced by the presence of the TMDI, the lateral motion of the TMDI-equipped structure can be 

defined using the structural free-end deflection, 𝑦𝑠, and the TMDI stroke, 𝑦𝑑=𝑦𝑡 − 𝑦𝑠, that is, the 

secondary mass deflection relative to the primary structure free-end deflection. Therefore, the adopted 

modelling assumptions results in a 2-DOF dynamic system [57]. 

2.2 Equations of motion 

The governing equations of the TMDI-equipped structure in Fig.(1b) modelled as detailed in the 

previous section are written as 

𝑀�̈�𝑠 + 𝐶�̇�𝑠 + 𝐾𝑦𝑠 = −𝑀𝑒�̈�𝑔 + 𝜙(𝐻)𝐹𝑡 + 𝜙(ℎ)𝐹𝑏    (2) 

and 

𝑚𝑡(�̈�𝑠 + �̈�𝑑) = −𝑚𝑡�̈�𝑔 − 𝐹𝑡 − 𝐹𝑏 , (3) 

where 𝑀𝑒 = ∫ 𝑚(𝑥)𝜙(𝑥)
𝐻

0
𝑑𝑥  and 𝐹𝑏   and 𝐹𝑡   are the resisting forces of the inerter and of the 

damper exerted to the primary structure at heights ℎ and 𝐻, respectively, given as 

𝐹𝑡 = 𝑘𝑡𝑦𝑑 + 𝑐𝑡�̇�𝑑 and 𝐹𝑏 = 𝑏�̈�𝑑. (4) 

Consider the cases of harmonic base displacement and acceleration excitations with frequency 𝜔 

defined as [67] 

𝑦𝑔 = 𝑦𝑔,0 ∙ 𝑒𝑖𝜔𝑡  and   �̈�𝑔 = �̈�𝑔,0 ∙ 𝑒𝑖𝜔𝑡 , (5) 

respectively, where 𝑖 = √−1  and 𝑢 ,0  is the amplitude of 𝑢  quantity. Notably, in Eq.(5) the 

amplitude of the ground acceleration, �̈�𝑔,0 , is frequency-independent (i.e., �̈�𝑔,0 ≠ 𝜔2 𝑦𝑔 ), which 

ensures the applicability of H∞ optimal TMDI tuning, pursued in the next section, for acceleration 

ground motion with pre-specified amplitude across all the excitation frequencies. Under any of the 

two excitations in Eq.(5), the response of the 2-DOF system governed by Eqs.(2) and (3) is also 

harmonic with   
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𝑦𝑠 = 𝑦𝑠,0 ∙ 𝑒𝑖𝜔𝑡  and  𝑦𝑑 = 𝑦𝑑,0 ∙ 𝑒𝑖𝜔𝑡 . (6) 

Then, by introducing the following five dimensionless system parameters: TMDI frequency ratio,  𝜐𝑡, 

TMDI critical damping ratio, 𝜉𝑡, mass ratio, 𝜇, inertance ratio, 𝛽, and effective modal mass ratio, γ, 

defined by  

𝜐𝑡 =
√

𝑘𝑡

𝑚𝑡 + 𝑏

𝜔𝑠

, 𝜉𝑡 =
𝑐𝑡

2(𝑚𝑡 + 𝑏)𝜔𝑡

, 𝜇 =
𝑚𝑡

𝑀𝑠

, 𝛽 =
𝑏

𝑀𝑠

, and 𝛾 =
𝑀𝑒

𝑀𝑠

=
∫ 𝑚(𝑥)𝜙(𝑥)

𝐻

0
𝑑𝑥

∫ 𝑚(𝑥)𝜙2(𝑥)
𝐻

0
𝑑𝑥

, (7) 

the equations of motion in Eqs. (2) and (3) can be written in matrix form as 

−Ω2 [
1 + 𝜇 + (1 − 𝜙(ℎ))

2
𝛽 𝜇 + (1 − 𝜙(ℎ))𝛽

𝜇 + (1 − 𝜙(ℎ))𝛽 𝜇 + 𝛽
] {

𝑦𝑠,0

𝑦𝑑,0
} 

+𝑖Ω [
2𝜉𝑠 0

0 2(𝜇 + 𝛽)𝜐𝑡𝜉𝑡

] {
𝑦𝑠,0

𝑦𝑑,0
} + [

1 0
0 (𝜇 + 𝛽)𝜐𝑡

2 ] {
𝑦𝑠,0

𝑦𝑑,0
} = {

𝛾 + 𝜇
𝜇 } 𝐿 

(8) 

where Ω = 𝜔 𝜔𝑠⁄ , and 𝐿 = Ω2𝑦𝑔,0 for harmonic base displacement excitation and 𝐿 = − �̈�𝑔,0 𝜔𝑠
2⁄  

for harmonic base acceleration excitation with frequency-independent amplitude. Note that in 

deriving Eq. (8), the mode shape normalization 𝜙(𝐻)=1 has been taken to simplify the analytical 

work, without loss of generality.  

It is important to note that the herein adopted dynamic formulation of the TMDI-equipped primary 

structure allows for modelling the grounded TMDI configuration and the non-grounded parallel 

TMDI configuration as special cases by setting 𝜙(ℎ) =0 and 𝜙(ℎ) =1 in Eq.(8), respectively. As 

discussed in the introduction, the above two TMDI configurations have been heavily studied in the 

literature for base excited primary structures modelled as lumped-mass SDOF systems [5, 46, 50, 61]. 

The latter class of primary structures can be readily modeled by setting 𝛾=1 in Eq.(8). Further, the 

case of a conventional TMD can be retrieved by setting 𝛽=0 in Eq. (8). In the following sections, Eq. 

(8) is used to determine analytically two different objective functions for optimal H∞ tuning of TMDI 
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in the general case of 0≤ℎ≤𝐻 and 𝛾≠1. 

3 Proposed analytical H∞-optimal TMDI tuning 

In this section, closed-form expressions for H∞-optimal TMDI tuning parameters are presented 

using the 2-DOF dynamic modelling of a generic cantilevered TMDI- equipped structure. Two 

different optimization problem formulations are introduced in Section 3.1, which adopt the same 

design variables (TMDI tuning parameters) but utilize different objective functions. Both the 

objective functions can be analytically evaluated as detailed in Appendix A. In Section 3.2, closed-

form expressions for the H∞-optimal TMDI tuning parameters are reported, derived using fixed-point 

theory as detailed in Appendix B. The generality of these expressions is demonstrated using analytical 

H∞ optimal tuning formulae from the literature for specific TMD(I) configurations. 

3.1 Formulation of the optimization problem  

Given TMDI inertial property ratios μ and β in Eq.(7) and primary structure shape function value 

𝜙(ℎ), the proposed optimal TMDI tuning involves determining the TMDI frequency ratio, 𝜐𝑡, and 

critical damping ratio,  𝜉𝑡 , in Eq. (7) to minimize the structural displacement amplitude under 

harmonic base excitation. Herein, analytical expressions for the optimal TMDI parameters under 

harmonic base excitations are pursued, assuming that the structural damping is negligible compared 

to the supplementary damping provided by the TMDI (i.e., 𝜉𝑠 =0) [68]. To this aim, two different 

objective functions (OFs), considered by Tsai and Lin [67], are adopted, corresponding to the two 

different types of harmonic base excitation in Eq.(5). The first, OF1, is defined as the magnitude of 

the complex ratio 𝑦𝑠,0 𝑦𝑔,0⁄  (i.e., structural displacement amplitude over amplitude of the harmonic 

displacement base excitation). The second, OF2, is defined as the magnitude of the complex ratio 

𝑦𝑠,0 �̈�𝑔,0⁄   (i.e., structural displacement amplitude over frequency-independent amplitude of the 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

12 

 

harmonic acceleration base excitation) multiplied by 𝜔𝑠
2 . Mathematically, the optimal tuning 

problem for the displacement base excitation can be written as 

min
𝜐𝑡 ,𝜉𝑡

{OF1 = |
𝑦𝑠 ,0

𝑦𝑔 ,0

|}, given 𝜇,   𝛽,   𝜙(ℎ) (9) 

and the optimal tuning problem for the acceleration base excitation can be written as 

min
𝜐𝑡 ,𝜉𝑡

{OF2 = 𝜔𝑠
2 |

𝑦𝑠,0

𝑦�̈� ,0

|}, given 𝜇,   𝛽,   𝜙(ℎ). (10) 

In this junction, it is important to note that the numerator in Eq. (10) should not be interpreted as 

structural acceleration amplitude as the term 𝜔𝑠
2 in the numerator is solely included to ensure that 

OF2 is dimensionless [61, 67]. 

The OFs in Eqs. (9) and (10) can be readily evaluated by the analytic expressions provided in 

Appendix A for 𝜉𝑠 =0. Using these expressions, OF1 and OF2 are plotted in Fig.2 in the form of 

frequency response functions (FRFs), that is, with respect to the excitation frequency ratio, Ω, for 

three TMDI damping ratios, 𝜉𝑡 . Both sets of FRFs are seen to intersect at two fixed excitation 

frequency ratios, i.e., Ω𝑃 and Ω𝑄 , which are independent of 𝜉𝑡. In light of this, the classical fixed-

point theory [65, 68] can be used to derive closed-form expressions for the optimal TMDI frequency 

and damping ratios. The derivations are detailed in Appendix B. 
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Fig. 2 Normalized structural displacement FRF curves for (a) OF1 and (b) OF2. The curves are plotted with the 

following parameters: mass ratio 𝜇 =0.01, inertance ratio 𝛽 =0.2, TMDI frequency ratio 𝜐𝑡  =1, shape function 

𝜙(ℎ)=0.8, shape-specific effective modal mass ratio 𝛾=1, and TMDI damping ratios 𝜉𝑡=0, 0.05 and 0.2. 
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3.2 Analytical expressions for H∞-optimal TMDI tuning 

Analytical expressions for the optimal TMDI tuning parameters and corresponding OF minimal 

values derived by application of the fixed-point theory to the optimization problems in Eqs.(9) and 

(10) are summarized in Table 1 (see Appendix B for the detailed derivations). The achieved optimality 

through the fixed-point theory approach is commonly regarded as H∞ since it minimizes the OF values 

at the resonant frequency of the uncontrolled structures (Ω=1) [65]. To this end, for the sake of 

comparison, Table 2 reports optimal H∞ tuning formulae previously derived in the literature for 

undamped lumped-mass SDOF structures under harmonic base excitation equipped with different 

TMD(I) configurations. It is found that all the tuning formulae of Table 2 are special cases of the 

herein derived optimal tuning expressions in Table 1. In particular, by setting 𝛽=0 (i.e., no inerter 

element) and 𝛾=1 in Table 1, the analytical H∞ optimal design formulae for the conventional TMD 

reported in [67] for OF1 and in [52] for OF2 are retrieved. Moreover, the H∞ optimal design formulae 

for OF2 and for grounded TMDI derived in [61] is obtained by setting 𝜙(ℎ) = 0 and 𝛾=1 to the 

analytical expressions for OF2 in Table 1.  

Table 1 Closed-form formulae for H∞ optimal TMDI tuning 

OFs 𝜐𝑡 ,𝑜𝑝𝑡 𝜉𝑡,𝑜𝑝𝑡 Analytical expression of OFs 

OF1 √
2𝑎3𝑎4 − 𝜇𝑎1

2𝑎2𝑎3𝑎4
 

𝑎1√

𝜇2𝑎2 + 𝑎4(5𝜇𝑎1 − 6𝑎3𝑎4)

8𝑎3𝑎4 [
𝜇𝑎1𝑎2

+𝑎4(𝑎1
2 − 2𝑎2𝑎3)]

 |
𝑦𝑠 ,0

𝑦𝑔,0
| =

𝑎4 (
√𝑎2(2𝑎3𝑎4 − 𝜇𝑎1)

−𝑎1√𝑎4(2𝑎3𝑎4 − 𝜇𝑎1)
)

√𝑎2 (𝑎1√𝑎2𝑎4(2𝑎3𝑎4 − 𝜇𝑎1)

−𝑎1
2𝑎4

)

 

OF2 √

2𝑎2𝑎3𝑎4

−𝜇𝑎1𝑎2 − 2𝑎1
2𝑎4

2𝑎2
2𝑎3𝑎4

 
𝑎1√

𝑎2𝑎4(6𝑎3𝑎4 + 𝜇𝑎1)

−(𝜇𝑎2)2 − 6(𝑎1𝑎4)2

8𝑎2𝑎3𝑎4 (
2𝑎2𝑎3𝑎4

−𝜇𝑎1𝑎2 − 2𝑎1
2𝑎4

)
 |

𝜔𝑠
2𝑦𝑠,0

�̈�𝑔,0
| =

1

𝑎1
√𝑎4 (

2𝑎2𝑎3𝑎4

−𝜇𝑎1𝑎2 − 𝑎1
2𝑎4

) 

* 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are given in Eq. (9) 

 

 

 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

14 

 

Table 2 Previous analytical H∞ optimal tuning formulae for specific TMD(I) configurations 

OFs Absorbers 𝜐𝑡 ,𝑜𝑝𝑡 𝜉𝑡,𝑜𝑝𝑡 Analytical expressions of OFs 

OF1 
TMD (i.e., TMDI 

with 𝛽=0) [67] 

√1 + 𝜇 2⁄

1 + 𝜇
 √

3𝜇

8(1 + 𝜇)
 |

𝑦𝑠 ,0

𝑦𝑔,0
| = √

2 + 𝜇

𝜇
 

OF2 
TMD (i.e. TMDI 

with 𝛽=0) [52] 

√1 − 𝜇 2⁄

1 + 𝜇
 √

3𝜇

8(1 + 𝜇)(1 − 𝜇 2⁄ )
 |

𝜔𝑠
2𝑦𝑠,0

�̈�𝑔,0
| = (1 + 𝜇)√

2

𝜇
 

OF2 

Grounded TMDI 

(i.e., TMDI with 

ℎ=0) [61] 

√
(1 + 𝜇)(2 − 𝜇) − 𝜇𝛽

2(1 + 𝜇 + 𝛽)2(1 + 𝜇)
 √

𝛽2𝜇 + 6𝜇(1 + 𝜇)2

+𝛽(1 + 𝜇)(6 + 7𝜇)

8(1 + 𝜇)(1 + 𝜇 + 𝛽)

∙ [2 + 𝜇(1 − 𝜇 − 𝛽)]

 |
𝜔𝑠

2𝑦𝑠,0

�̈�𝑔,0
| = √

(1 + 𝜇)(𝛽 + 2𝜇 + 2)

𝜇 + 𝛽
 

To further demonstrate the generality of the analytical expressions in Table 1 to account for 

cantilevered structures with distributed mass/stiffness properties, Fig. 3 presents illustrative plots of 

the achieved minimum OF values and of the corresponding optimal TMDI parameters. These plots 

demonstrate that the well-known trends for lumped-mass primary structure (𝛾=1) reported in [61] 

hold for the case of distributed-mass continuous primary structures modelled as generalized SDOF 

systems (𝛾>1). Specifically, TMDI motion capability improves with inertance and/or mass ratios (β 

and μ), while the optimal TMDI frequency ratio reduces with 𝜇  and 𝛽 , and the optimal TMDI 

damping ratio increases with 𝜇  and 𝛽 . Further, Fig. 3 shows that the mass distribution of the 

cantilevered structure and the assumed dominant mode shape, as reflected on the 𝛾  value, has 

insignificant influence to the optimal TMDI frequency and damping properties, but affect 

significantly the TMDI control performance. In particular, for fixed TMDI inertial properties, higher  

𝛾, signifying skewed mass distribution towards the base of the primary structure, leads to higher OF 

values. These trends and observations echo the ones reported in [57], based on numerical optimization.  
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Fig. 3 Effects of the shape-specific effective modal mass ratio, 𝛾 , on normalized optimal FRF values and 

corresponding tuning parameters under conditions of fixed-amplitude displacement and acceleration base 

excitations. The upper panels (a-c) show the structural FRF values, optimal TMDI frequency ratios, and optimal 

TMDI damping ratios based on OF1, each varying with mass and inertance ratios; the lower panels (d-f) show the 

corresponding values based on OF2. The analyses consider mass ratio range 𝜇 =[0-0.2], inertance ratio range 

𝛽=[0.005-0.5], effective modal mass ratio values 𝛾=1, 1.5, 2 and 2.5, and a common shape function 𝜙(ℎ)=0.8. 

 

4. Applicability of proposed H∞-optimal TMDI tuning for damped structures 

The optimal TMDI tuning formulae in Table 1 assume no structural damping (𝜉𝑠 =0) and harmonic 

base excitations. This section evaluates the effectiveness of these formulae for vibration suppression 

in lightly damped structures, under both harmonic and white noise base excitations. To this aim, it 

compares the optimal tuning parameters and corresponding structural displacement FRF curves, 

derived analytically using expressions in Table 1, with those obtained through numerical solutions of 

optimal design problems, first for 𝜉𝑠 =0 under harmonic excitations, and then for 𝜉𝑠 0 under both 
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harmonic and white noise excitations.  

4.1 Damped primary structures under harmonic excitation 

First, the accuracy of the analytical formulae is assessed for the case of damped primary structures. 

To this end, two different optimal TMDI tuning problems are formulated aiming to minimize the 

maximum value of the two OFs considered in Section 3 for 𝜉𝑠 0, which are mathematically written 

as 

min
𝜐𝑡 ,𝜉𝑡

{max
𝛺

[OF1 = |
𝑦𝑠,0

𝑦𝑔,0

|]}, given 𝜇,   𝛽,   𝜙(ℎ) (11) 

and 

min
𝜐𝑡 ,𝜉𝑡

{max
𝛺

[OF2 = 𝜔𝑠
2 |

𝑦𝑠,0

𝑦̈𝑔,0

|]}, given 𝜇,   𝛽,   𝜙(ℎ) (12) 

The optimization problems in Eqs. (11) and (12) are numerically solved using the built-in Genetic 

Algorithm of MATLAB® with OF values analytically determined using the closed-form expressions 

in Appendix A. 

In Fig. 4, the displacement FRF curves are plotted for OF1 and OF2 using the analytical expressions 

of Table 1 for undamped primary structure. Numerically obtained FRF curves derived from solving 

Eqs. (11) and (12) are superposed in Fig. 4. For both OFs, the FRF ordinates increase monotonically 

with 𝛽 for the parallel TMDI configuration, that is, the parallel TMDI configuration is less effective 

than the conventional TMD which confirms previously reported data [50, 69]. However, FRF 

ordinates reduce with 𝛽  for the non-parallel and grounded TMDIs confirming the improved 

vibration suppression capability of non-parallel TMDI configurations compared to TMD [53, 57]. 

More importantly, Fig. 4 demonstrates perfect matching between the FRF curves obtained through 

the numerical optimization and analytical formulae, confirming the accuracy of the derived 

expressions for undamped primary structure. 
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Fig. 4 Comparison of normalized structural displacement FRF curves derived from the analytical design formulae 

in Table 1 and those obtained through numerical optimization (with structural damping ratio 𝜉𝑠=0). The upper 

panels (a-c) show displacement FRF curves based on OF1 under various inerter connectivity: (a) parallel TMDI with 

𝜙(ℎ)=1, (b) non-parallel TMDI with 𝜙(ℎ)=0.5, and (c) grounded TMDI with 𝜙(ℎ)=0. The lower panels (d-f) 

show the corresponding displacement FRF curves based on OF2. The analyses employ a mass ratio 𝜇 =0.01, 

inertance ratio 𝛽=0, 0.02, 0.05 and 0.1, and an effective modal mass ratio 𝛾=1. 

Additionally, Fig. 5 plots the same type of results for the same TMDI properties but for damped 

primary structure with 𝜉𝑠  =0.02. Expectedly, in this case, the analytical formulae of Table 1 are 

suboptimal as manifested by the fact that the two local maxima of all the analytically obtained FRFs 

in Fig. 5 do not attain the same maximum value, with the FRF value at the first resonant frequency 

being slightly higher than the FRF value of the second resonant frequency. Still, the analytical FRFs 

lie reasonably close to the FRF curves of the optimally designed TMDIs derived numerically by 

solving Eq. (10). These trends suggest that the proposed analytical formulae may be practically 

applicable for lightly damped structures (see also [70] for the case of conventional TMDs). 
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Fig. 5 Comparison of normalized structural displacement FRF derived from the analytical design formulae in Table 

1 and those obtained through numerical optimization (with structural internal damping ratio 𝜉𝑠=0.02). The upper 

panels (a-c) show displacement FRF curves based on OF1, employing the same inerter connectivity as used in Fig. 

4. The lower panels (d-f) show the corresponding displacement FRF curves based on OF2. The TMDI inertial 

properties are the same as those used in Fig. 4. 

To demonstrate the potential applicability of the analytical formulae for lightly damped structures, 

further numerical results are provided in Figs. 6 and 7 plotting the discrepancy (error) between 

numerical TMDI frequency and damping properties for 𝜉𝑠  =0.02, respectively, and analytically 

computed TMDI properties for undamped primary structure using the formulae in Table 1. That is, 

𝐸𝑟𝑟𝜐,𝑡 =
𝜐𝑡,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝜐𝑡,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

𝜐𝑡,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

 (13) 

is plotted in Fig. 6 and 

𝐸𝑟𝑟𝜉,𝑡 =
𝜉𝑡 ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝜉𝑡,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

𝜉𝑡,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

 (14) 

is plotted in Fig.7. 

Figure 6 shows that the error of the analytically optimal frequency ratios is practically negligible 

from the engineering viewpoint ranging within [-0.35%, +1.20%] for both OFs, with the formula for 
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OF1 yielding consistently lower errors compared to the formula for OF2. The larger error for OF2 (i.e. 

+1.2% as opposed to -0.35% for OF1) is manifested in Figs. 5(d-f) by a larger deviation of the equal 

local peak values in the FRFs for OF2 obtained using the analytical tuning, compared to the negligible 

deviation for OF1 in Figs. 5(a-c). Further, for OF1, the percentage errors decrease as 𝜇 increases 

and/or as 𝛽  decreases, while for OF2, the percentage errors increase with increasing 𝛽  for the 

practically important non-parallel TMDI configuration. Therefore, TMDI design using OF2 frequency 

ratio formula with large inertance values should be used with caution. 
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Fig. 6 Percentage errors between analytically and numerically derived optimal frequency ratios for two OFs, three 

TMDI configurations, and the damping ratio of 𝜉𝑠=0.02. The upper panels are the percentage errors of frequency 

ratios based on OF1 at different inerter connectivity, (a) parallel TMDI 𝜙(ℎ)=1, (b) non-parallel TMDI assuming 

𝜙(ℎ)=0.5, and (c) grounded TMDI 𝜙(ℎ)=0, respectively. The corresponding percentage errors of frequency ratios 

based on OF2 are depicted in (d-f) of the lower panels, respectively. The mass and inertance ratios are varied within 

the ranges [0.005, 0.05] and [0, 0.1], respectively. 

Turning the attention to the errors in the TMDI damping ratio in Fig. 7, it is seen that unacceptably 

high errors (above 10%) are only attained for the practically least useful case of parallel TMDI 
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connection with very low secondary mass, 𝜇≤1%. For the most beneficial TMDI configurations, the 

deviation of the TMDI damping ratio from the optimal value determined by the analytical formulae 

is consistently below 5% which is deemed acceptable.  
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Fig. 7 Percentage errors between analytically and numerically determined optimal damping ratios for two OFs, three 

TMDI configurations, and the damping ratio of 𝜉𝑠=0.02. The upper panels are the percentage errors of damping 

ratios based on OF1 at different inerter connectivity, (a) parallel TMDI 𝜙(ℎ)=1, (b) non-parallel TMDI assuming 

𝜙(ℎ)=0.5, and (c) grounded TMDI 𝜙(ℎ)=0, respectively. The corresponding percentage errors of damping ratios 

based on OF2 are depicted in (d-f) of the lower panels, respectively. The TMDI inertial properties are same with 

those in Fig. 6. 

4.2 Damped primary structures under white noise base excitation 

Here, the applicability of the analytical TMDI formulae is assessed for damped structures, base-

excited by stationary random white noise, taken as the extreme example of broadband excitation. To 

this aim, the TMDI performance is measured by the standard deviation of the free-end displacement 

of TMDI-equipped structure, normalized by the standard deviation of the free-end displacement of 

the uncontrolled structure. The adopted performance index is mathematically given as 
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𝐽 =
𝜎𝑠

𝜎𝑢𝑛

 (15) 

where  

𝜎𝑠 = √∫ |𝐻𝑠(𝜔)|2+∞

−∞
𝑆0𝑑𝜔  and  𝜎𝑢𝑛 = √∫ |𝐻𝑢𝑛(𝜔)|2+∞

−∞
𝑆0𝑑𝜔 (16) 

in which |𝐻𝑠(𝜔)|2 and |𝐻𝑢𝑛 (𝜔)|2 are the squared modulus of the free-end displacement transfer 

functions for the TMDI-controlled and uncontrolled structures and 𝑆0  is the constant amplitude 

power spectral density function of the assumed ideal white noise.  

Fig. 8 plots the performance index in Eq. (15) on the frequency ratio-damping ratio plane. The 

performance is significantly more sensitive with respect to the TMD(I) frequency ratio than with 

respect to the TMD(I) damping ratio. With increasing the structural damping ratio, the contribution 

of TMD(I) damping effect decreases, thus causing a reduction to the performance index in Eq.(15). 

Similar trend is reported for white noise force-excited TMDI-equipped structures [58]. Further, the 

performance of TMDI-equipped structure is superior to that of TMD-equipped structure. It is seen 

that the deviation of the OF1 and OF2 values of TMD(I) tuning parameters from the optimal values 

and the corresponding 𝐽 index value is in the range of only 1% across all inherent critical damping 

ratios 𝜉𝑠  considered. This fact showcases numerically that the proposed analytical TMD(I) tuning 

expressions can effectively support the TMD(I) design for vibration mitigation of damped primary 

structure under broadband (white-noise) base excitation. 
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Fig. 8 Contour plots of control ratio with different structural damping ratios for TMD(I). (a-c) display the influence 

of TMDI frequency and damping ratios on the performance index in Eq. (13a) for structural damping ratios, 

𝜉𝑠 =0.5%, 1%, 3%, respectively; (d-f) examines the same for TMD design parameters with identical structural 

damping ratios. The mass ratio 𝜇=0.01, inertance ratio 𝛽=0.2, and 𝜙(ℎ)=0.5 for TMDI and the mass ratio 𝜇=0.01 

for TMD are adopted. The range of TMD(I) frequency and damping ratios are 𝜐𝑡  =[0.5, 1.5] and 𝜉𝑡 =[0, 0.3], 

respectively. The shape-specific effective modal mass ratio 𝛾=1. The locations of TMD(I) frequency and damping 

ratios obtained by the expressions based on OF1 and OF2, as well as the optimal locations of design parameters are 

marked by the square green, the triangular black, and the blue circle symbols, respectively. The corresponding 

performance index (𝐽), and design parameters (𝜐 and 𝜉) with subscripts ‘OF1’, ‘OF2’, and ‘Ov’ are reported under 

the panels. 
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5. Performance comparison of proposed tuning formulae for various TMDI 

configurations  

In this section, the structural displacement performance under base excitation achieved by the 

TMDI tuning formulae in Table 1 is compared to that achieved by previous tuning formulae from the 

literature for the following three different TMDI configurations: 1) grounded TMDI 𝜙 (ℎ =0)=0 

optimized based on H2 and H∞ criteria for lumped-mass SDOF structures under base excitation [5, 

61], 2) parallel TMDI 𝜙(ℎ=𝐻)=1 optimized based on H2 and H∞ criteria for lumped-mass structures 

under force excitation [50], and 3) non-parallel TMDI 0<𝜙(0<ℎ<𝐻)<1 optimized based on empirical 

fitting and H∞ optimal data for structures under force excitation [58, 71]. The purpose of these 

comparisons is to demonstrate and quantify the improved TMDI control performance accomplished 

by the herein proposed TMDI tuning formulae. 

5.1 Grounded TMDI configuration 𝝓(𝒉=𝟎)=0 

Optimal tuning formulae for grounded TMDI in base-excited lumped-mass structures have been 

derived by Marian and Giaralis based on H∞ [61] optimality (fixed-point theory approach) as 

𝜐𝑡,𝑜𝑝𝑡 = √
(1 + 𝜇)(2 − 𝜇) − 𝜇𝛽

2(1 + 𝜇 + 𝛽)2(1 + 𝜇)
 and 𝜉𝑡,𝑜𝑝𝑡 = √

𝛽2𝜇 + 6𝜇(1 + 𝜇)2 + 𝛽(1 + 𝜇)(6 + 7𝜇)

8(1 + 𝜇)(1 + 𝜇 + 𝛽)[2 + 𝜇(1 − 𝜇 − 𝛽)]
, (14) 

as well as based on H2 [5] optimality (structural displacement variance minimization under white 

noise excitation) as 

𝜐𝑡,𝑜𝑝𝑡 = √
[𝛽(𝜇 − 1) + (2 − 𝜇)(1 + 𝜇)]

(1 + 𝜇 + 𝛽)√2(1 + 𝜇)
 and  

𝜉𝑡,𝑜𝑝𝑡 =
√𝜇 + 𝛽√𝛽(3 − 𝜇) + (4 − 𝜇)(1 + 𝜇)

2√2(1 + 𝜇 + 𝛽)[𝛽(1 − 𝜇) + (2 − 𝜇)(1 + 𝜇)]
. 

(15) 
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Fig. 9 Comparison of structural displacement FRF values and optimal parameters using different design formulae 

of grounded TMDI. (a) Displacement FRF value based on OF1; (b) Displacement FRF value based on OF2; (c) 

Frequency ratio of TMDI; (d) Damping ratio of TMDI. The TMDI design parameters are calculated using the 

formulae in Table 1, and in Eqs. (14) and (15) for mass ratio range 𝜇=[0-0.2], inertance ratio range 𝛽=[0-0.5], and 

shape-specific effective modal mass ratio 𝛾=1. 

 

A comparison of the normalized displacement FRF values achieved by the above tuning formulae 

and the formulae in Table 1 is provided in Fig. 9. It is found that TMDI tuning using the herein derived 

expressions achieve significantly better performance in terms of OF1 in Fig. 9(a) for all 𝜇 and 𝛽 

values (i.e., the yellow performance surface lies always lower than the other surfaces). This 

improvement stems from a higher frequency ratio obtained from the herein expressions as 

demonstrated in Fig. 9(c), as well as differences in the optimal damping ratios in Fig. 9(d). The OF2 

performance in Fig. 9(b) achieved by the expressions from this study is the same with the one 

achieved by the expressions derived by Marian and Giaralis [61] since the two sets of expressions are 
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same as noted in section 3.2 (i.e., the gray and cyan surfaces in Figs. 9(b-d) coincide). However, 

improved OF2 performance from the expressions of this study is achieved compared to the 

performance of H2 expressions in [5]. 

 

5.2 Parallel TMDI configuration 𝝓(𝒉=𝑯)=1 

For parallel TMDI configuration in force-excited lumped-mass structures, Hu and Chen [50] 

derived optimal tuning formulae based on H optimality (fixed-point theory approach) as 

𝜐𝑡,𝑜𝑝𝑡 = √
𝜇 + (1 + 𝜇)𝛽

(1 + 𝜇)2(𝜇 + 𝛽)
 and 𝜉𝑡,𝑜𝑝𝑡 = √

3𝜇2

8(1 + 𝜇)(𝜇 + 𝛽)
, (16) 

as well as based on H2 optimality (structural displacement variance minimization under white noise 

excitation) as 

𝜐𝑡,𝑜𝑝𝑡 = √
[2𝛽(1 + 𝜇) + 𝜇(𝜇 + 2)]

2(1 + 𝜇)2(𝜇 + 𝛽)
 and  

𝜉𝑡,𝑜𝑝𝑡 = √
(𝜇 + 𝛽) + 𝜐𝑡,𝑜𝑝𝑡

4 (𝜇 + 𝛽)(1 + 𝜇) 2 − 𝜐𝑡,𝑜𝑝𝑡
2 𝜇(𝜇 + 2) − 2𝛽𝜐𝑡,𝑜𝑝𝑡

2 (1 + 𝜇)

4𝜐𝑡,𝑜𝑝𝑡
2 (𝜇 + 𝛽)(1 + 𝜇)

. 

(17) 

In Fig. 10, the performance in terms of OF1 and OF2 achieved by the above expressions is compared 

with the performance achieved by the TMDI tuning formulae in Table 1. It is seen in Figs. 10(a) and 

10(b) that the OF1 and OF2 performances achieved by the tuning formulae derived in this study are 

consistently better than those achieved by Eqs.(16) and (17) for the full range of TMDI properties.  

Nevertheless, the improvement in performance offered by the herein derived formulae reduces as the 

mass ratio decreases. This trend can be attributed to the fact that as the TMDI mass ratio reduces, the 

difference in the dynamic response of force-excited and base-excited TMDI-equipped structures 

becomes less important. 
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Fig. 10 Comparison of structural displacement FRF values and optimal parameters using different design formulae 

of parallel TMDI. (a) Displacement FRF value based on OF1; (b) Displacement FRF value based on OF2; (c) 

Frequency ratio of TMDI; (d) Damping ratio of TMDI. The TMDI design parameters are calculated using the 

formulae in Table 1, and in Eqs. (16) and (17) for mass ratio range 𝜇=[0-0.2], inertance ratio range 𝛽=[0-0.5], and 

shape-specific effective modal mass ratio 𝛾=1. 

Still, the optimal frequency ratio expression for OF1 criterion in this study coincides with that in 

Eq. (17) from Hu and Chen [50] for H2 optimal tuning (i.e., the yellow and magenta surfaces in Fig. 

10(c) coincide). Similarly, the optimal damping ratio expression for OF2 criterion in this study 

coincides, with that in Eq. (16) from Hu and Chen [50] for H optimal tuning (i.e., the yellow and 

cyan surfaces in Fig. 10(d) coincide). In this regard, the tuning formulae of Hu and Chen [50] are 

special cases of the herein proposed ones in Table 1. However, the surfaces in Figs. 10(a) and 10(b) 

suggest that the use of the tuning formulae derived in this study should be used for base-excited 
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structures since in practice the mass ratio is non-negligible, even in cases of no intended secondary 

mass, as the actual TMDI device components, will always have some non-zero self-weight (e.g. [9, 

47]). 

5.3 Non-parallel TMDI configuration 0<𝝓(𝟎<𝒉<𝑯)<1 

For the most general case of non-parallel TMDI configuration, Su et al. reported TMDI tuning 

formulae accounting for the location of the inerter connection at height h, for force-excited 

cantilevered structures, using H optimality [58] (fixed-point theory approach) as  

𝜐𝑡,𝑜𝑝𝑡 =
√1 + 𝜇𝛽𝜙2(ℎ) (𝜇 + 𝛽)⁄

1 + 𝜇 + 𝛽(1 − 𝜙(ℎ))
2  and 𝜉𝑡,𝑜𝑝𝑡 = √

3

8

𝜇 + 𝛽(1 − 𝜙(ℎ))
2

− 𝜇𝛽𝜙2(ℎ) (𝜇 + 𝛽)⁄

1 + 𝜇 + 𝛽(1 − 𝜙(ℎ))
2  , (18) 

as well as by empirical fitting [71] to numerically derived data as 

𝜐𝑡,𝑜𝑝𝑡 = √
1

1 + 𝜇 + 𝛽(1 − 𝜙(ℎ))
2 ∙

1

1 + (𝜇 + 𝛽)(1 − 𝜙(ℎ))
2  𝑎𝑛𝑑  

𝜉𝑡,𝑜𝑝𝑡 =
1

4
(√

𝜇 + 𝛽(1 − 𝜙(ℎ))2

1 + 𝜇 + 𝛽(1 − 𝜙(ℎ))2 + √
(𝜇 + 𝛽)(1 − 𝜙(ℎ))2

1 + (𝜇 + 𝛽)(1 − 𝜙(ℎ))2
). 

(19) 

Pertinent results are provided in Fig. 11 to compare the achieved OF1 and OF2 performances and 

the underlying TMDI tuning parameters obtained from Eqs. (18) and (19) vis-à-vis the expressions 

in Table 1 derived in this study. As in all previous comparisons with tuning formulae from the 

literature examined, the TMDI tuning formulae proposed in this study achieve improved OF1 and OF2 

performances than those achieved by Eqs. (18) and (19). Nevertheless, the improvement reduces for 

lower mass ratio values for the same reason explained in the previous sub-section. Looking at the 

optimal TMDI properties in Figs. 11(c) and 11(d), the values obtained by the expressions in this study 

are significantly different from the empirically fitted data by Su et al. [71], and also deviate from the 

H based expressions of Su et al. [58], except for very small values of mass ratio. In this respect, the 
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use of the formulae in Table 1 is recommended over Eqs. (18) and (19) for base-excited TMDI-

equipped structures with non-negligible secondary mass ratios. 

  

  

Fig. 11 Comparison of structural displacement FRF values and optimal parameters using different design formulae 

of non-parallel TMDI. (a) Displacement FRF value based on OF1; (b) Displacement FRF value based on OF2; (c) 

TMDI frequency ratio; (d) TMDI damping ratio. The TMDI design parameters are calculated using the formulae in 

Table 1, and in Eqs. (18) and (19) for mass ratio range 𝜇=[0-0.2], inertance ratio range 𝛽=[0-0.5], shape-specific 

effective modal mass ratio 𝛾=1, and shape function value 𝜙(ℎ)=0.8. 

As a closure to this section, Figs. 9-11 are collectively discussed vis-à-vis to draw some practically 

important observations on the optimal TMD(I) tuning parameters obtained in this study compared 

against to those obtained from formulae published in the literature. Specifically, it is seen that in some 

cases the herein proposed formulae require higher TMDI frequency and/or damping ratios. This is 

particularly evident for the grounded TMDI in Fig. 9(c), where noticeably higher optimal frequency 
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ratio values are obtained by using the tuning formulae for OF1. Nevertheless, it should be noted that 

the herein obtained frequency ratio values are similar to those derived in the optimal design of 

conventional TMDs [67]. Further, this increase in the optimal frequency ratio is not observed in Figs. 

10(c) and 11(c) for the parallel and non-parallel TMDI configurations, which are arguably more 

practical than the grounded TMDI. Meanwhile, the optimal TMDI damping ratios based on OF2 for 

non-grounded TMDI configurations are only slightly larger than those calculated using previous 

formulae from the literature as shown in Figs. 10(d) and 11(d). For the remaining cases, the optimal 

TMDI parameters based on both OFs do not consistently yield the highest values among all compared 

design formulae. Interestingly, the optimal frequency ratios based on OF2 for non-grounded TMDIs 

are the smallest as shown in Figs. 10(c) and 11(c). Collectively, the above observed trends in the 

optimal parameters yielded by the proposed formulae suggest that improved TMDI vibration 

suppression performance achieved is not associated with out-of-ordinary values for the TMDI 

stiffness and damping parameters. Therefore, the proposed TMDI tuning formulae in Table 1 are not 

expected to have adverse consequences to the manufacturability and/or upfront costs of the TMDI. 

 

6 Performance assessment of proposed formulae under earthquake excitations 

Having established the usefulness of the proposed tuning formulae in Table 1, this final section 

aims to demonstrate their applicability for transient non-stationary base excitations focusing on 

earthquake-induced ground motions (GMs). This is pursued by taking a large-scale model of a bridge 

pier from the literature as the benchmark structure, excited by a suite of 100 recorded GMs. For these 

GMs, statistical time domain response performance metrics and data from cumulative seismic energy 

dissipation analyses are presented for the primary structure equipped with TMDI tuned by both OF1 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

30 

 

and OF2.  

6.1 Benchmark primary structure and recorded ground motions 

The scaled-down model of a double-column reinforced concrete bridge pier shown in Fig. 12(a) is 

adopted from [72] for numerically evaluating the seismic response mitigation performance of the 

TMDI tuned by the formulae in Table 1. This is supported by idealizing the bridge pier specimen as 

a SDOF system by lumping its total mass, M=6520 kg, at the girder location as shown in Fig. 12(b). 

The natural frequency and damping ratio of the bridge pier were identified in the linear elastic stage 

using the improved empirical wavelet transform in [72] to be 𝜔𝑠=22.62 rads-1 and to vary within 

𝜉𝑠  = [0.03, 0.04], respectively. For conservatism, an inherent damping ratio of 𝜉𝑠  =0.03 is herein 

employed. The TMDI inertial properties are chosen to be 𝑚𝑡=130.4 kg, corresponding to mass ratio 

𝜇=0.02, and 𝑏=652 kg, corresponding to inertance ratio 𝛽=0.1, with 𝜙(ℎ)=0 which is a practically 

reasonable configuration for bridge applications [73]. Optimal TMDI parameters obtained by the 

formulae of Table 1 for OF1 and OF2 are reported in Table 3, for 𝛾=1 which is consistent with the 

model in Fig.12(b).  

mt=130.4 kg

b
mt

kt

ct

M

b=652 kg

Equivalent 

additional mass

Pier

M=6520 kg

K=3523796 N·m-1

C=6063 Ns·m-1

kt=34748 N·m-1

ct=6233 Ns·m-1

(a) (b)

 

Fig. 12 (a) RC double-column bridge pier [72] and (b) its schematic equipped with TMDI.  
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Table 3 Design parameters of TMDI 

 𝜇 𝛽 𝜙(ℎ) 𝜐𝑡 ,𝑜𝑝𝑡 𝜉𝑡,𝑜𝑝𝑡 

OF1 
0.02 0.1 0 

0.9403 0.2054 

OF2 0.8879 0.2019 

Τhe seismic performance of the TMDI-equipped model of the benchmark structure in Fig. 12 is 

evaluated using 50 pairs of horizontal acceleration GM records with perpendicular directions per pair, 

i.e., 100 horizontal GMs in total, chosen from the Pacific Earthquake Engineering Research Center 

(PEER) database for FEMA P659 [66]. The GMs are classified in three different groups based on 

seismological criteria as follows: 28 near-fault GMs in 14 pairs without directivity pulse (NPNF), 28 

near-fault GMs in 14 pairs with low-frequency pulse (PNF), and 44 far-field GMs in 22 pairs (FF). 

For the purposes of this study, all the GMs with peak ground acceleration (PGA) above 0.3g, where 

g=9.81 m·s-2 is the gravitational acceleration, are uniformly scaled down to have PGA= 0.3g. This 

scaling ensures that the linear structural behavior assumption holds for the adopted benchmark 

structure, based on shaking table testing in [72] showing no plastic deformation for excitations with 

PGA≤ 0.3g. Acceleration response spectra of the unscaled GMs are shown in Fig. 13 alongside the 

median response spectrum of the unscaled and the scaled-down records, for each GM group.  

   

Fig. 13 Acceleration response spectra of 100 recorded GMs in FEMA P659 [66]. (a) 28 NPNF spectra; (b) 28 PNF 

spectra; (c) 44 FF spectra. Blue and red lines indicate the unscaled and scaled median response spectra, respectively. 

The scaled median response ensures that the linear elastic seismic response behavior assumption holds for the 

adopted benchmark structure. 
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Linear response history analysis is conducted to obtain numerically, by application of the Runge-

Kutta method to Eqs. (2) and (3) written in state-space form, the response of the benchmark structure 

equipped with TMDI tuned by the formulae of Table 1 for the 100 scaled 100 GMs. In the remainder 

of this Section the performance of the considered system is assessed and discussed based on the thus 

obtained data. 

6.2 Time-domain performance 

The effectiveness of TMDI tuned by the expressions in Table 1 for seismic response mitigation of 

the benchmark structural model is herein evaluated by examining peak absolute structural 

displacement and acceleration data normalized by their corresponding values attained by the 

uncontrolled structure. The data are plotted in Fig. 14 for three GM groups in the form of percentage 

reduction ratios (i.e. higher values signify higher performance gains compared to the uncontrolled 

structure). Significant average response reductions in both structural displacement and acceleration 

for all GM groups are evidenced, despite the large record-to-record variability which is typical of 

recorded GMs (see also Fig. 13). Specifically, average response reduction of more than 26% is noted 

in terms of peak displacements and more than 30% in terms of peak accelerations for all GMs. Higher 

average response reductions are noted for the FF GM group, reaching more than 28% and 33% for 

peak displacements and accelerations, respectively. Moreover, average percentage reductions for 

near-fault GM groups are only slightly lower compared to the FF GM group which demonstrate that 

the TMDI tuned to the herein proposed formulae are robust to near-fault GM features, including low-

frequency pulses. Indeed, there is insignificant difference of the average peak displacement 

reductions between the NPNF and PNF groups while average peak acceleration reductions of the PNF 

is very similar to that of the FF group. Further, there is very small difference in the achieved peak 
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response reductions across the groups for the two different TMDI tunings. Still, OF2-based TMDI 

tuning achieves consistently higher average displacement reduction ratios than OF1 while OF1-based 

TMDI tuning achieves consistently higher average acceleration reduction ratios than OF2 as shown 

by the reported COVs. In this regard, it is recommended to use the OF2 formulae for TMDI tuning in 

Table 1 when structural displacement response mitigation is prioritized over acceleration response 

mitigation, which is commonly the case when structural damage risk reduction is deemed more 

essential from secondary equipment/traffic seismic risk reduction (see discussion in [74] and therein 

references). 
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Fig. 14 Reduction ratios of peak structural displacement and acceleration achieved by TMDI. The upper panels (a-

c) display the displacement reduction ratios under NPNF, PNF, and FF, respectively; the lower panels (d-f) show 

the corresponding acceleration reduction ratios. “RSN” refers to the GM record sequence number, while “Com. 1” 

and “Com. 2” denote the two perpendicular components of GM records. Horizontal solid and dashed lines represent 

the mean reduction ratios achieved by the TMDI tuned to OF1 and OF2 criteria, respectively. 

To gain a further appreciation of the response reduction of TMDI tuned to the formulae of Table 1, 

Fig. 15 plots time histories of response structural displacement and acceleration for both TMDI-
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controlled and uncontrolled structure under three different GMs, each one arbitrarily chosen from one 

of the three GM groups considered. The presented data show that the TMDI tuned to any of the two 

OF1 and OF2 criteria can effectively mitigate all the local maximum responses. Therefore, the tuned 

TMDI not only reduces the absolute peak responses (i.e., for the Kocaeli/Turkey event peak 

displacement response reduction are 58.6% for OF1 and 57.4% for OF2 while peak acceleration 

response reduction is 58.85% for OF1 and 57.91% for OF2) but also the temporal response averages 

(e.g. root mean square responses) which become important in reducing the risk of cumulative seismic 

damage. The latter issue is further examined in the following sub-section by looking into the seismic 

energy dissipation in time for the controlled and the uncontrolled structure. 
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Fig. 15 Time histories of uncontrolled and TMDI-controlled structural displacement and acceleration under three 

GMs. The upper panels (a-c) show displacements under NPNF record #165 (Imperial Valley-06, PGA=0.28g), PNF 

record #1165 (Kocaeli, Turkey, PGA=0.22g), and FF record #1111 (Kobe, Japan, scaled PGA=0.3g); the lower 

panels (d-f) display the corresponding accelerations. 
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6.3 Seismic energy dissipation performance 

Here, the cumulative temporal seismic energy dissipation capability of the TMDI tuned to the 

newly derived formulae of Table 1 is assessed. For this purpose, standard seismic energy balance 

considerations are employed [75]. Specifically, for the uncontrolled structure, the total input seismic 

energy, 𝐸𝐶 _𝑢𝑛, is equal to the dissipated energy through the inherent structural damping, that is, 

𝐸𝐶 _𝑢𝑛 = ∫ 2𝑀𝜔𝑠 𝜉𝑠[�̇�𝑠(𝑡)]2
𝑡

0

𝑑𝑡. (20) 

Further, for the TMDI-controlled structure, the total input energy, 𝐸𝐶_𝑐𝑜𝑛 , is dissipated through 

both the structural inherent damping, 𝐸𝐶_𝑠, and the TMDI supplementary damping, 𝐸𝐶 _𝑇 , [76], i.e., 

𝐸𝐶 _𝑐𝑜𝑛 = 𝐸𝐶 _𝑠 + 𝐸𝐶 _𝑇 = ∫ 2𝑀𝜔𝑠𝜉𝑠 [�̇�𝑠(𝑡)]2
𝑡

0

𝑑𝑡 + ∫ 2(𝑚𝑡 + 𝑏)𝜔𝑡𝜉𝑡[�̇�𝑑(𝑡)]2
𝑡

0

𝑑𝑡 (21) 

The TMDI seismic energy dissipation performance is evaluated by examining the time histories of 

accumulated energy dissipated by the structure and by the TMDI as shown in Fig. 16. In the latter 

figure, time histories of accumulated seismic input energy and dissipated energy are normalized by 

the corresponding maximum accumulated energy, for the same GM records considered in Fig.15. As 

seen, the total input energy to the bridge pier is significantly reduced when a TMDI is deployed, 

irrespective of the tuning formulae used, though OF1-based tuning appears to yield a slightly better 

performance. For instance, for TMDI tuned to OF1 criteria the reductions in the total seismic input 

energy are 16.2%, 47.6%, and 18.4% with respect to the uncontrolled structure for the three GMs in 

Figs. 15(a-c), respectively. Further, most of the input seismic energy is dissipated by the TMDI. 

Indeed, approximately 78%, 87.5%, and 80% of the total seismic input energy are absorbed by the 

TMDI for the three GMs in Figs. 15(a-c), respectively. 
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Fig. 16 Normalized accumulated energy dissipated through the TMDI, tuned using the analytical expressions for 

OF1 and OF2. (a) NPNF record #165 (Imperial Valley-06, PGA=0.28g); (b) PNF record #1165 (Kocaeli, Turkey, 

PGA=0.22g); (c) FF record #1111 (Kobe, Japan, scaled PGA=0.3g). 

Overall, numerical data confirm that the use of the analytical optimal tuning expressions in Table 

1 render the TMDI a bona fide passive vibration absorber for transient earthquake-induced base 
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excitations. 

7. Concluding remarks 

Novel analytically derived closed-form expressions for H∞-optimal tuning of the TMDI have been 

presented based on fixed-point theory for arbitrary inerter connectivity in base-excited cantilevered 

structures modelled by a single (dominant) vibration mode. The derived optimal TMDI stiffness and 

damping properties minimize the free-end primary structure displacement for harmonic base 

excitations, assuming no inherent structural damping. The generality and enhanced control 

performance achieved by the proposed TMDI tuning expressions over previous tuning formulae 

reported in the literature has been numerically established and discussed for different TMDI 

configurations including for grounded and non-grounded TMDI configurations. Further, the influence 

of the assumed dominant vibration mode of the primary structure to the optimal TMDI tuning 

properties and to the achieved vibration suppression performance has been parametrically quantified 

for a wide range of TMDI inertial properties. Lastly, the robustness and applicability of the herein 

derived TMDI tuning expressions for response mitigation of lightly damped primary structures under 

stationary broadband support excitation as well as under transient earthquake-induced GMs have been 

demonstrated. The latter involved the numerical assessment of the structural displacement, 

acceleration, and energy dissipation performance of H∞-optimal TMDI-equipped lab specimen of a 

reinforced concrete bridge pier subjected to a suite of 100 recorded earthquake GM records grouped 

into far-field, near-fault non-pulse, and near-fault pulse-like categories. 

Overall, the reported numerical results suggest that the herein derived TMDI tuning formulae 

endow efficient vibration suppression capability for a much wider range of TMDI configurations and 

modal primary structure properties than the currently available analytical tuning expressions in the 
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literature. Still, it is recognized that the assessment of the effectiveness of the proposed TMDI tuning 

formulae for multi-modal vibration suppression has not been pursued in this study as it is highly 

structure-and-excitation-dependent. However, it is anticipated that the proposed formulae shall 

significantly extend the application of TMDI as a bona fide dynamic vibration absorber for base-

excited structures by supporting an effective tuning without the need for computationally demanding 

multi-modal numerical TMDI property optimization under application-specific excitations. This 

expectation is reinforced by the well-established broadband damping effect of the TMDI [53] 

whereby higher vibration modes from the targeted one by TMDI tuning are intrinsically suppressed 

in multi-mode structures.  
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Appendix A. Analytical expressions of objective functions OF1 and OF2 

Using Eq. (8), the structural displacement response amplitude over ground displacement excitation 

amplitude ratio involved in the definition of OF1 in Eqs. (9) and Eq. (11) can be expressed as  

𝑦s,0

𝑦𝑔,0

=
𝐴 + 2𝑖𝜉𝑡𝐵

𝐶 + 2𝑖𝜉𝑡𝐷
, (A.1) 

with coefficients 

𝐴 = 𝜇𝑎1Ω4 + 𝑎4(𝑎3𝜐𝑡
2 − 𝑎3Ω2)Ω2, 𝐵 = 𝑎4𝑎3Ω3𝜐𝑡  , 

𝐶 = −𝑎1
2 Ω4 + (1 − 𝑎2Ω2 + 2𝑖Ω𝜉𝑠)(𝑎3𝜐𝑡

2 − 𝑎3 Ω2), and 𝐷 = 𝑎3𝜐𝑡 Ω(1 − 𝑎2Ω2 + 2𝑖Ω𝜉𝑠), 
(A.2) 

where  

𝑎1 = 𝜇 + 𝛽(1 − 𝜙(ℎ)), 𝑎2 = 1 + 𝜇 + 𝛽(1 − 𝜙(ℎ))2, 𝑎3 = 𝜇 + 𝛽, and 𝑎4 = 𝛾 + 𝜇. (A.3) 

Eqs.(A.1) to (A.3) are used to solve analytically the minimization problem in Eq.(9) by setting ξs=0 

(undamped primary structure) as detailed in Appendix B, as well as to solve numerically the 

optimization problem in Eq. (11) for damped primary structures (ξs≠0). 

 Further, the structural acceleration response amplitude over ground acceleration excitation 

amplitude ratio involved in the definition of the objective function OF2 in Eq. (10) and Eq.(12) can 

be expressed as  

𝜔𝑠
2𝑦𝑠,0

�̈�𝑔,0

= −
1

Ω2

𝐴 + 2𝑖𝜉𝑡𝐵

𝐶 + 2𝑖𝜉𝑡𝐷
 (A.4) 

with same coefficients given in Eqs.(A.2) and (A.3). Equations (A.2) to (A.4) are used to solve 

analytically the minimization problem in Eq.(10) by setting ξs=0 (undamped primary structure) as 

discussed in Appendix B, as well as to solve numerically the optimization problem in Eq. (12). 
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Appendix B. Derivation of optimal TMDI parameters 

B.1 Derivation of optimal TMDI frequency ratio 

The standard fixed-point theory [65] for treating minimization problems like those in Eqs.(9) and 

(10) requires that the OF attains the same height at the two fixed frequency ratios Ω𝑃 and Ω𝑄 , which 

are TMDI damping independent (see Fig.2). This requirement suffices to determine the optimal TMDI 

frequency ratio. To this aim, the location of the two specific frequencies is first found by enforcing 

the condition that the OF value is the same for 𝜉𝑡→ and for 𝜉𝑡→0. Focusing on OF1 and using Eq. 

(A.1), this condition yields 

𝐴2

𝐶 2 =
𝐵2

𝐷2    or   𝐴𝐷 = ±𝐵𝐶. (B.1) 

By using Eqs. (A.2) and (A.3) with Eq. (B.1), one obtains 

(2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 𝑎1
2 𝑎4) ∙ Ω4 − (2𝑎2𝑎3𝑎4𝜐𝑡

2 + 2𝑎3𝑎4 − 𝜇𝑎1) ∙ Ω2 + 2𝑎3𝑎4𝜐𝑡
2 = 0, (B.2) 

for the case of 𝐴𝐷 = −𝐵𝐶, and 

𝜐𝑡 Ω5𝑎1𝑎3(𝜇 − 𝜇𝑎2Ω2 + 𝑎1𝑎4Ω2) = 0, (B.3) 

for the case of 𝐴𝐷 = +𝐵𝐶. In the latter case, Eq.(B.3) yields a zero and negative solutions for Ω2  

with no physical meaning for the problem at hand. In this regard, only Eq. (B.2) is used to solve for 

the two fixed points in the FRF curve.  

For this purpose, an expression for the sum of Ω𝑃
2  and Ω𝑄

2  is first found as  

Ω𝑃
2 + Ω𝑄

2 =
2𝑎2𝑎3𝑎4𝜐𝑡

2 + 2𝑎3𝑎4 − 𝜇𝑎1

2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 𝑎1
2 𝑎4

. (B.4) 

Further, by setting 𝜉𝑡→, the FRF values of OF1 at Ω𝑃
2  and Ω𝑄

2  are determined as 

|
𝑦𝑠,0

𝑦𝑔,0

|

𝑃

= |
𝐵

𝐷
| =

𝑎4Ω𝑃
2

1 − 𝑎2Ω𝑃
2

, (B.5) 

and 
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|
𝑦𝑠,0

𝑦𝑔,0

|

𝑄

= |
𝐵

𝐷
| =

−𝑎4Ω𝑄
2

1 − 𝑎2Ω𝑄
2

, (B.6) 

respectively. By setting Eqs. (B.5) and (B.6) to be equal (i.e. enforcing that the FRF curve attains the 

same height at Ω𝑃 and Ω𝑄), one obtains 

𝑎4Ω𝑃
2

1 − 𝑎2Ω𝑃
2

=
−𝑎4Ω𝑄

2

1 − 𝑎2Ω𝑄
2

. (B.7) 

The last equation can be rearranged as  

Ω𝑃
2 + Ω𝑄

2 = 2𝑎2Ω𝑃
2 ∙ Ω𝑄

2 . (B.8) 

Using Eq.(B.2), the product Ω𝑃
2 ∙ Ω𝑄

2  in the rhs of Eq.(B.8) can be written as  

Ω𝑃
2 ∙ Ω𝑄

2 =
2𝑎3𝑎4𝜐𝑡

2

2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 𝑎1
2 𝑎4

. (B.9) 

Next, by substituting Eq. (B.9) into Eq. (B.8), the sum Ω𝑃
2 + Ω𝑄

2  is expressed by 

Ω𝑃
2 + Ω𝑄

2 =
4𝑎2𝑎3𝑎4𝜐𝑡

2

2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 𝑎1
2 𝑎4

 (B.10) 

As a final step, Eqs. (B.4) and (B.10) are combined to yield an analytic formula for the optimal TMDI 

frequency ratio, 𝜐𝑡 ,𝑜𝑝𝑡, for OF1 as 

𝜐𝑡 ,𝑜𝑝𝑡 = √
2𝑎3𝑎4 − 𝜇𝑎1

2𝑎2𝑎3𝑎4

       (𝑓𝑜𝑟 OF1) (B.11) 

By application of the same steps as above, the optimal frequency ratio for OF2 is found as 

𝜐𝑡 ,𝑜𝑝𝑡 = √
2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 2𝑎1

2𝑎4

2𝑎2
2 𝑎3𝑎4

       (𝑓𝑜𝑟 OF2) (B.12) 

B.2 Derivation of optimal TMDI damping ratio 

With the optimal frequency ratio known, the classical fixed-point theory [65] proceeds by requiring 

that the OF attains local maximum values at the two fixed frequency ratios Ω𝑃  and Ω𝑄  . This 

condition allows for determining the optimal damping ratio. For this purpose, knowledge of the FRF 

values at frequencies Ω𝑃 and Ω𝑄  is required. For OF1, this value is determined by first substituting 
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the optimal frequency ratio of Eq. (B.11) into Eq. (B.2), to reach the quadratic equation 

(2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 𝑎1
2 𝑎4) ∙ Ω4 − (4𝑎3𝑎4 − 2𝜇𝑎1) ∙ Ω2 +

2𝑎3𝑎4 − 𝜇𝑎1

𝑎2

= 0 (B.13) 

with roots Ω𝑃
2  and Ω𝑄

2 . Then, the roots Ω𝑃
2  and Ω𝑄

2  are determined by solving analytically Eq. 

(B.13) and the OF1 value at frequencies Ω𝑃 and Ω𝑄  is found by substituting Ω𝑃 and Ω𝑄  into Eq. 

(B.5) as 

|
𝑦𝑠,0

𝑦𝑔,0

|

𝑃,𝑄

=
𝑎4(√𝑎2(2𝑎3𝑎4 − 𝜇𝑎1) − 𝑎1√𝑎4(2𝑎3𝑎4 − 𝜇𝑎1))

√𝑎2(𝑎1√𝑎2𝑎4(2𝑎3𝑎4 − 𝜇𝑎1) − 𝑎1
2 𝑎4)

 (B.14) 

Following the same steps as above, the OF2 value at frequencies Ω𝑃 and Ω𝑄  is found as 

|
𝜔𝑠

2𝑦𝑠 ,0

�̈�𝑔,0

|
𝑃,𝑄

=
1

𝑎1

√𝑎4(2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 𝑎1
2𝑎4) (B.15) 

With the value of the OF at frequencies Ω𝑃 and Ω𝑄  known, the optimal damping ratio can be 

determined by setting the first derivative of the OF squared with respect to Ω2 equal to zero [68]. 

For OF1, the latter operation yields 

𝜕|𝑦𝑠 ,0 𝑦𝑔,0⁄ |
𝑃,𝑄

2

𝜕(Ω2)
= 0

⬚
⇒

𝜕𝑝

𝜕Ω2
= |

𝑦𝑠,0

𝑦𝑔,0

|

𝑃,𝑄

2

∙
𝜕𝑞

𝜕Ω2
, (B.16) 

where 

𝑝 = 𝐴2 + (2𝜉𝑡)2𝐵2 𝑎𝑛𝑑 𝑞 = 𝐶2 + (2𝜉𝑡)2𝐷2. (B.17) 

Substituting Eq. (B.14) into Eq. (B.16), functional expressions of the square critical TMDI 

damping ratios at frequencies Ω𝑃 and Ω𝑄  are obtained which are concisely written as 

(𝜉𝑡
2)𝑃,𝑄 = 𝑓(𝜇, 𝛽, 𝜙(ℎ),𝜐𝑡 ,𝑜𝑝𝑡 , Ω𝑃,𝑄

2 ) (B.18) 

since the functional 𝑓 is too elaborate to report. Finally, the optimal damping ratio 𝜉𝑡,𝑜𝑝𝑡  for OF1 is 

analytically found as 

𝜉𝑡,𝑜𝑝𝑡 = 𝑎1√
𝜇2 𝑎2 + 𝑎4(5𝜇𝑎1 − 6𝑎3𝑎4)

8𝑎3𝑎4 [𝜇𝑎1𝑎2 + 𝑎4(𝑎1
2 − 2𝑎2𝑎3)]

      (𝑓𝑜𝑟 OF1) (B.19) 
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by taking the mean value of 𝜉𝑡
2  at the two fixed frequency points 𝑃 and 𝑄. Following the same 

steps as above for OF2, the optimal damping ratio 𝜉𝑡,𝑜𝑝𝑡  is analytically found as 

𝜉𝑡,𝑜𝑝𝑡 = 𝑎1√
𝑎2 𝑎4(6𝑎3𝑎4 + 𝜇𝑎1) − (𝜇𝑎2)2 − 6(𝑎1𝑎4)2

8𝑎2𝑎3𝑎4(2𝑎2𝑎3𝑎4 − 𝜇𝑎1𝑎2 − 2𝑎1
2𝑎4)

      (𝑓𝑜𝑟 OF2) (B.20) 

 

References  

[1] R. Ma, K. Bi, H. Hao, Inerter-based structural vibration control: A state-of-the-art review, Eng. 

Struct., 243 (2021) 112655. 

[2] M.Z. Chen, Y. Hu, Inerter and its application in vibration control systems, Springer, 2019. 

[3] S. Chowdhury, A. Banerjee, S. Adhikari, A critical review on inertially-amplified passive vibration 

control devices, Arch. Comput. Methods Eng., (2024) 1-37. 

[4] M.C. Smith, Synthesis of mechanical networks: the inerter, IEEE Trans. Automat. Control, 47 

(2002) 1648-1662. 

[5] L. Marian, A. Giaralis, Optimal design of a novel tuned mass-damper-inerter (TMDI) passive 

vibration control configuration for stochastically support-excited structural systems, Prob. Eng. 

Mech., 38 (2014) 156-164. 

[6] K. Ikago, K. Saito, N. Inoue, Seismic control of single-degree-of-freedom structure using tuned 

viscous mass damper, Earthq. Eng. Struct. Dyn., 41 (2012) 453-474. 

[7] C. Papageorgiou, N.E. Houghton, M.C. Smith, Experimental testing and analysis of inerter 

devices, J. Dyn. Syst. Meas. Contr., 131 (2009). 

[8] P. Brzeski, M. Lazarek, P. Perlikowski, Experimental study of the novel tuned mass damper with 

inerter which enables changes of inertance, J. Sound Vib., 404 (2017) 47-57. 

[9] D. Pietrosanti, M. De Angelis, A. Giaralis, Experimental study and numerical modeling of 

nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested 

on shaking table under harmonic excitation, Int. J. Mech. Sci., 184 (2020) 105762. 

[10] Z. Li, K. Xu, K. Bi, Q. Han, X. Du, Inerter nonlinearity and its influence on control efficiency 

of TMDI for suppressing vortex-induced vibration of bridges, J. Bridge Eng., 27 (2022) 04022101. 

[11] E.D. John, D.J. Wagg, Design and testing of a frictionless mechanical inerter device using living -



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

44 

 

hinges, J. Franklin Inst., 356 (2019) 7650-7668. 

[12] A. Gonzalez-Buelga, L. Clare, S. Neild, J. Jiang, D. Inman, An electromagnetic inerter-based 

vibration suppression device, Smart Mater. Struct., 24 (2015) 055015. 

[13] F.C. Wang, M.F. Hong, T.C. Lin, Designing and testing a hydraulic inerter, J. Mech. Eng. Sci., 

225 (2010) 66-72. 

[14] Y. Shen, Y. Liu, L. Chen, X. Yang, Optimal design and experimental research of vehicle 

suspension based on a hydraulic electric inerter, Mechatronics, 61 (2019) 12-19. 

[15] S. Swift, M.C. Smith, A. Glover, C. Papageorgiou, B. Gartner, N.E. Houghton, Design and 

modelling of a fluid inerter, Int. J. Control., 86 (2013) 2035-2051. 

[16] X. Liu, J.Z. Jiang, B. Titurus, A. Harrison, Model identification methodology for fluid-based 

inerters, Mech. Syst. Signal Process., 106 (2018) 479-494. 

[17] D. De Domenico, P. Deastra, G. Ricciardi, N.D. Sims, D.J. Wagg, Novel fluid inerter based tuned 

mass dampers for optimised structural control of base-isolated buildings, J. Franklin Inst., 356 (2019) 

7626-7649. 

[18] M.C. Smith, The inerter: a retrospective, Annu. Rev. Control Robot. Auton. Syst., 3 (2020) 361-

391. 

[19] H. Garrido, O. Curadelli, D. Ambrosini, Improvement of tuned mass damper by using rotational 

inertia through tuned viscous mass damper, Eng. Struct., 56 (2013) 2149-2153. 

[20] I. Lazar, S. Neild, D. Wagg, Using an inerter-based device for structural vibration suppression, 

Earthq. Eng. Struct. Dyn., 43 (2014) 1129-1147. 

[21] Q. Wang, N.D. Tiwari, H. Qiao, Q. Wang, Inerter-based tuned liquid column damper for seismic 

vibration control of a single-degree-of-freedom structure, Int. J. Mech. Sci., 184 (2020) 105840. 

[22] L. Cao, C. Li, Tuned tandem mass dampers-inerters with broadband high effectiveness for 

structures under white noise base excitations, Struct. Contr. Health Monit., 26 (2019) e2319. 

[23] N. Su, J. Bian, Z. Chen, Y. Xia, A novel lever-type inerter-based vibration absorber, Int. J. Mech. 

Sci., 254 (2023) 108440. 

[24] Z. Li, K. Xu, R. Ma, K. Bi, Q. Han, A novel lever-arm tuned mass damper inerter (LTMDI) for 

vibration control of long-span bridges, Eng. Struct., 293 (2023) 116662. 

[25] Z. Li, R. Ma, K. Xu, Q. Han, Closed-form solutions for the optimal design of lever-arm tuned 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

45 

 

mass damper inerter (LTMDI), Mech. Syst. Signal Process., 206 (2024) 110889. 

[26] E. Barredo, Z. Zhao, C. Mazón-Valadez, J.M. Larios, I. Maldonado, A grounded inerter-based 

oscillating TMD for suppressing harmonic and random vibrations, Int. J. Mech. Sci., 254 (2023) 

108438. 

[27] Z. Jiang, J. Tang, K. Dai, C. Fang, Y. Luo, A tuned cable-inerter system for wind turbine blades 

vibration suppression, Int. J. Mech. Sci., 269 (2024) 109030. 

[28] H. Sun, H. He, Y. Cheng, X. Gao, Theoretical and experimental study on vibration control of a 

tuned liquid inerter damper with additional damping net and sloped-bottom, Mech. Syst. Signal 

Process., 213 (2024) 111356. 

[29] Z. Zhao, R. Zhang, Y. Jiang, C. Pan, A tuned liquid inerter system for vibration control, Int. J. 

Mech. Sci., 164 (2019) 105171. 

[30] F. Petrini, A. Giaralis, Z. Wang, Optimal tuned mass-damper-inerter (TMDI) design in wind-

excited tall buildings for occupants’ comfort serviceability performance and energy harvesting, Eng. 

Struct., 204 (2020) 109904. 

[31] J. Dai, Z.-D. Xu, P.-P. Gai, Tuned mass-damper-inerter control of wind-induced vibration of 

flexible structures based on inerter location, Eng. Struct., 199 (2019) 109585. 

[32] Z. Zhu, W. Lei, Q. Wang, N. Tiwari, B. Hazra, Study on wind-induced vibration control of linked 

high-rise buildings by using TMDI, J.  Wind  Eng.  Ind.  Aerodyn., 205 (2020) 104306. 

[33] Z. Wang, A. Giaralis, Top-story softening for enhanced mitigation of vortex shedding-induced 

vibrations in wind-excited tuned mass damper inerter-equipped tall buildings, J. Struct. Eng., 147 

(2021) 04020283. 

[34] K. Xu, Q. Dai, K. Bi, G. Fang, Y. Ge, Closed-form design formulas of TMDI for suppressing 

vortex-induced vibration of bridge structures, Struct. Contr. Health Monit., 29 (2022) e3016. 

[35] K. Xu, K. Bi, Q. Han, X. Li, X. Du, Using tuned mass damper inerter to mitigate vortex-induced 

vibration of long-span bridges: Analytical study, Eng. Struct., 182 (2019) 101-111. 

[36] Z. Li, K. Xu, K. Bi, L. Xu, Q. Han, Suppressing wind-induced bending and torsional vibrations 

of long-span bridges by series-type tuned mass damper inerters (STMDIs), Struct, 48 (2023) 918-933. 

[37] K. Xu, Q. Dai, K. Bi, G. Fang, L. Zhao, Multi-mode vortex-induced vibration control of long-

span bridges by using distributed tuned mass damper inerters (DTMDIs), J.  Wind  Eng.  Ind.  



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

46 

 

Aerodyn., 224 (2022) 104970. 

[38] Z. Zhang, B. Fitzgerald, Tuned mass-damper-inerter (TMDI) for suppressing edgewise 

vibrations of wind turbine blades, Eng. Struct., 221 (2020) 110928. 

[39] S. Sarkar, B. Fitzgerald, Vibration control of spar-type floating offshore wind turbine towers 

using a tuned mass-damper-inerter, Struct. Contr. Health Monit., 27 (2020) e2471. 

[40] R. Ruiz, A. Taflanidis, A. Giaralis, D. Lopez-Garcia, Risk-informed optimization of the tuned 

mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures, Eng. 

Struct., 177 (2018) 836-850. 

[41] A. Kaveh, M.F. Farzam, H.H. Jalali, Statistical seismic performance assessment of tuned mass 

damper inerter, Struct. Contr. Health Monit., 27 (2020) e2602. 

[42] D. Patsialis, A. Taflanidis, A. Giaralis, Tuned-mass-damper-inerter optimal design and 

performance assessment for multi-storey hysteretic buildings under seismic excitation, Bull. 

Earthquake Eng., (2021) 1-36. 

[43] K. Rajana, Z. Wang, A. Giaralis, Optimal design and assessment of tuned mass damper inerter 

with nonlinear viscous damper in seismically excited multi-storey buildings, Bull. Earthquake Eng., 

(2023) 1-31. 

[44] G. Alotta, C. Biondo, A. Giaralis, G. Failla, Seismic protection of land-based wind turbine towers 

using the tuned inerter damper, Structures, 51 (2023) 640-656. 

[45] D. De Domenico, G. Ricciardi, An enhanced base isolation system equipped with optimal tuned 

mass damper inerter (TMDI), Earthq. Eng. Struct. Dyn., 47 (2018) 1169-1192. 

[46] M. De Angelis, A. Giaralis, F. Petrini, D. Pietrosanti, Optimal tuning and assessment of inertial 

dampers with grounded inerter for vibration control of seismically excited base-isolated systems, Eng. 

Struct., 196 (2019) 109250. 

[47] D. Pietrosanti, M. De Angelis, A. Giaralis, Experimental seismic performance assessment and 

numerical modelling of nonlinear inerter vibration absorber (IVA)-equipped base isolated structures 

tested on shaking table, Earthq. Eng. Struct. Dyn., 50 (2021) 2732-2753. 

[48] L. Zhang, R. Zhang, L. Xie, S. Xue, Dynamics and isolation performance of a vibration isolator 

with a yoke-type nonlinear inerter, Int. J. Mech. Sci., 254 (2023) 108447. 

[49] X. Jin, M.Z. Chen, Z. Huang, Minimization of the beam response using inerter-based passive 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

47 

 

vibration control configurations, Int. J. Mech. Sci., 119 (2016) 80-87. 

[50] Y. Hu, M.Z. Chen, Performance evaluation for inerter-based dynamic vibration absorbers, Int. J. 

Mech. Sci., 99 (2015) 297-307. 

[51] D. Pietrosanti, M. De Angelis, M. Basili, A generalized 2-DOF model for optimal design of 

MDOF structures controlled by Tuned Mass Damper Inerter (TMDI), Int. J. Mech. Sci., 185 (2020) 

105849. 

[52] G.B. Warburton, Optimum absorber parameters for various combinations of response and 

excitation parameters, Earthq. Eng. Struct. Dyn., 10 (1982) 381-401. 

[53] A. Giaralis, A. Taflanidis, Optimal tuned mass-damper-inerter (TMDI) design for seismically 

excited MDOF structures with model uncertainties based on reliability criteria, Struct. Contr. Health 

Monit., 25 (2018) e2082. 

[54] A.A. Taflanidis, A. Giaralis, D. Patsialis, Multi-objective optimal design of inerter-based 

vibration absorbers for earthquake protection of multi-storey building structures, J. Franklin Inst., 356 

(2019) 7754-7784. 

[55] D. Pietrosanti, M. De Angelis, M. Basili, Optimal design and performance evaluation of systems 

with Tuned Mass Damper Inerter (TMDI), Earthq. Eng. Struct. Dyn., 46 (2017) 1367-1388. 

[56] D. De Domenico, G. Ricciardi, Optimal design and seismic performance of tuned mass damper 

inerter (TMDI) for structures with nonlinear base isolation systems, Earthq. Eng. Struct. Dyn., 47 

(2018) 2539-2560. 

[57] Z. Wang, A. Giaralis, Enhanced motion control performance of the tuned mass damper inerter 

through primary structure shaping, Struct. Contr. Health Monit., 28 (2021) e2756. 

[58] N. Su, J. Bian, S. Peng, Y. Xia, Generic optimal design approach for inerter-based tuned mass 

systems, Int. J. Mech. Sci., 233 (2022) 107654. 

[59] Z. Zhang, B. Chen, X. Hua, Closed-form optimization of tuned mass-damper-inerter (TMDI) in 

flexible structures, J. Build. Eng., 72 (2023) 106554. 

[60] B. Chen, Z. Zhang, X. Hua, Equal modal damping-based optimal design of a grounded tuned 

mass-damper-inerter for flexible structures, Struct. Contr. Health Monit., 29 (2022) e3106. 

[61] L. Marian, A. Giaralis, The tuned mass-damper-inerter for harmonic vibrations suppression, 

attached mass reduction, and energy harvesting, Smart Struct. Syst., 19 (2017) 665-678. 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

48 

 

[62] A. Di Matteo, C. Masnata, A. Pirrotta, Simplified analytical solution for the optimal design of 

tuned mass damper inerter for base isolated structures, Mech. Syst. Signal Process., 134 (2019) 

106337. 

[63] C. Masnata, A. Di Matteo, C. Adam, A. Pirrotta, Smart structures through nontraditional design 

of Tuned Mass Damper Inerter for higher control of base isolated systems, Mech. Res. Commun., 

105 (2020) 103513. 

[64] D.K. Pandey, S.K. Mishra, Inerter assisted robustness of compliant liquid column damper, Struct. 

Contr. Health Monit., 28 (2021) e2763. 

[65] J.P. Den Hartog, Mechanical vibrations, 4th edition, McGraw-Hall Book Company, New York, 

1956. 

[66] A.T. Council, Quantification of building seismic performance factors, US Department of 

Homeland Security, FEMA, 2009. 

[67] H.C. Tsai, G.C. Lin, Optimum tuned-mass dampers for minimizing steady-state response of 

support-excited and damped systems, Earthq. Eng. Struct. Dyn., 22 (1993) 957-973. 

[68] W.O. Wong, Y. Cheung, Optimal design of a damped dynamic vibration absorber for vibration 

control of structure excited by ground motion, Eng. Struct., 30 (2008) 282-286. 

[69] L. Marian, The tuned mass damper inerter for passive vibration control and energy harvesting in 

dynamically excited structural systems, in, City University London, 2015. 

[70] A. Ghosh, B. Basu, A closed-form optimal tuning criterion for TMD in damped structures, Struct. 

Contr. Health Monit., 14 (2007) 681-692. 

[71] N. Su, Y. Xia, S. Peng, Filter-based inerter location dependence analysis approach of Tuned mass 

damper inerter (TMDI) and optimal design, Eng. Struct., 250 (2022) 113459. 

[72] H. Qin, K. Bi, H. Dong, Q. Han, X. Du, Shake table tests on RC double-column bridge piers 

with self-centering energy dissipation braces, J. Bridge Eng., 28 (2023) 04023049. 

[73] M. De Angelis, F. Petrini, D. Pietrosanti, Optimal design of the ideal grounded tuned mass 

damper inerter for comfort performances improvement in footbridges with practical implementation 

considerations, Struct. Contr. Health Monit., 28 (2021) e2800. 

[74] D. Patsialis, A. Taflanidis, A. Giaralis, Exploring the impact of excitation and structural 

response/performance modeling fidelity in the design of seismic protective devices, Eng. Struct., 291 



Li Z, Xu K, Wang Z, Bi K, Qin H, Giaralis A (2024) Analytical design of non-grounded tuned mass damper inerter for base-excited 

structures, International Journal of Mechanical Sciences, accepted, 15/5/2024.   

49 

 

(2023) 115811. 

[75] C.-M. Uang, V.V. Bertero, Use of energy as a design criterion in earthquake-resistant design, 

Earthquake Engineering Research Center, University of California Berkeley, 1988. 

[76] Z. Zhao, R. Zhang, C. Pan, Q. Chen, Y. Jiang, Input energy reduction principle of structures with 

generic tuned mass damper inerter, Struct. Contr. Health Monit., 28 (2021) e2644. 

 


