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Abstract

We study the properties of foreign exchange risk premiums that can explain the
forward bias puzzle, defined as the tendency of high-interest rate currencies to ap-
preciate rather than depreciate. These risk premiums arise endogenously from the
no-arbitrage condition relating the term structure of interest rates and exchange
rates. Estimating affine (multi-currency) term structure models reveals a noticeable
tradeoff between matching depreciation rates and accuracy in pricing bonds. Risk
premiums implied by our global affine model generate unbiased predictions for cur-
rency excess returns and are closely related to global risk aversion, the business cycle,
and traditional exchange rate fundamentals.
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1 Introduction

Uncovered interest rate parity (UIP) postulates that the expected exchange rate change

must equal the interest rate differential or (because covered interest parity holds) the

forward premium. UIP also forms the economic foundation for the forward unbiasedness

hypothesis (FUH), stating that the forward exchange rate should be an unbiased predictor

of the future spot rate. The empirical observation that there is a negative association

between forward premiums and subsequent exchange rate returns, first noted in Hansen

and Hodrick (1980), Bilson (1981), and Fama (1984), implies a rejection of UIP and the

FUH. This stylized fact is often termed the ‘forward bias puzzle’. A large literature has

argued that risk premiums must be at the heart of this observation.

In this paper, we re-examine the relation between the term structure of interest rates

and exchange rates by expressing the link between forward and spot exchange rates from

the principle of no-arbitrage without assuming risk neutrality. This setting implies that

the forward exchange rate is the sum of the expected spot rate plus a time-varying risk

premium which compensates both for currency risk and interest rate risk. We start from

noting that forward rates are generally biased predictors of future spot exchange rates, and

expected spot rate changes comprise a time-varying risk premium in addition to the forward

premium. We refer to these general, model-free relations that extend the conventional FUH

and UIP - in that they are free of risk preferences and consistent with no-arbitrage - as

the ‘risk-adjusted FUH’ (RA-FUH) and as ‘risk-adjusted UIP’ (RA-UIP).

To work with the RA-UIP condition empirically, we put structure on the interna-

tional financial market with a model for interest rate risk and currency risk. We use an

affine multi-economy term structure model that relates countries’ pricing kernels such that

arbitrage-free pricing is ensured. We employ latent factors to model the uncertainty under-

lying the international economy for two reasons. First, this approach gives us maximum

flexibility with respect to the statistical framework even with a relatively small number of

factors. Second, we do not have to rely on exogenous observable variables driving the econ-

omy which are available only at low frequencies.1 The design of our multi-economy model

1Such economic variables are typically available at quarterly or at best at monthly frequency. In our
context this is not feasible, as we are also interested in short horizons such as 1 day or 1 week, and our
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follows the pioneering work of Backus et al. (2001) but is more general in that it accounts

for interest rate risk arising from fluctuations in the bond market over multiple periods.

It also accommodates the findings of Brennan and Xia (2006) and extends their work in

that we do not approximate the risk premium but derive the exact functional form of the

term structure of foreign exchange risk premiums in closed form. This allows us to jointly

match the term structures of interest rates and the term structure of foreign exchange risk

premiums in the estimation procedure. Using daily data for six major US dollar exchange

rates over the last 20 years, we generate model-implied exchange rate expectations and

risk premiums for horizons ranging from 1 day to 4 years.

The global affine model used in this paper is designed to identify the stochastic discount

factor that prices both currencies and bonds in all countries examined. However, an

empirical tradeoff emerges. Specifically, we estimate two different models: a global model

which estimates all foreign term structures of yields and foreign exchange risk premiums

conditional on the US pricing kernel, using bond and currency market information; and

a set of single-country term structure models that separately estimate countries’ pricing

kernels from which we then compute implied foreign exchange risk premiums. Depreciation

rates implied by the global model closely match observed ones, but at the expense of

low accuracy in fitting bond yields. Conversely, single-country term structure models

price bonds with high accuracy, but imply depreciation rates very different from actual

rates. Since both modeling strategies reveal empirical deficiencies, the choice of the model

depends on the objective of the application. To study the properties of foreign exchange

risk premiums, we choose the global model.

The empirical results reveal that the RA-UIP model is capable of identifying time-

varying risk premiums that closely match observed exchange rate behavior. In particular,

they fulfill the two conditions established by Fama (1984) such that the omission of the

risk premium in conventional UIP tests results in a forward bias. We then show that the

model generates unbiased predictions for exchange rate excess returns. This implies that

accounting for risk premiums can be sufficient to resolve the forward bias puzzle without

model estimation is hence based on daily data. However, as discussed below, we relate the model-implied
risk premiums to observable economic variables later in the paper to refine our understanding of the drivers
of the latent factors.
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additionally requiring departures from rational expectations. We also perform a variety of

predictive ability tests which, on the one hand, complement evidence that excess returns

are predictable, and, on the other hand, further confirm that the RA-UIP model fits the

exchange rate data substantially better than UIP and also better than a random walk.

Finally, we decompose the risk premium, and show that although there is a compensation

for interest rate risk, deviations from UIP and hence excess returns can almost entirely be

explained by the premium for currency risk.

We also provide empirical evidence that risk premiums are closely linked to economic

variables that proxy for global risk, the US business cycle, and traditional exchange rate

fundamentals. The results suggest that expected excess returns reflect flight-to-quality and

flight-to-liquidity considerations. Expected excess returns also depend on macroeconomic

variables (e.g. output growth, money supply growth, consumption growth) in a way that

risk premiums in dollar exchange rates are countercyclical to the US economy. Overall, a

large part of expected excess returns can be explained by fundamentals deemed relevant

in traditional exchange rate models.

Related literature in more detail Earlier papers that study the link between in-

terest rates and exchange rates with term structure factor models include Nielsen and

Saá-Requejo (1993), Saá-Requejo (1994), Bakshi and Chen (1997), and Bansal (1997). A

pioneering paper is Backus et al. (2001), who adapt modern (affine) term structure theory

to a multi-economy setting. They establish important theoretical relations that must hold

in the absence of arbitrage between the pricing kernels and the exchange rate driving the in-

ternational economy. In their discrete-time one-period setting, they can replicate the puzzle

under the following two alternative specifications: either there is a common-idiosyncratic

factor structure and interest rates take on negative values with positive probabilities, or

global factors and state variables have asymmetric effects on state prices in different coun-

tries. Motivated by the latter, related empirical studies, e.g. Dewachter and Maes (2001),

Ahn (2004), Inci and Lu (2004), Mosburger and Schneider (2005), and Anderson et al.

(2010), elaborate on the effects of local versus global factors in an international economy.2

2Another recent related article is Leippold and Wu (2007). Instead of using an affine model, they
propose a class of multi-currency quadratic models.
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Brandt and Santa-Clara (2002) and Anderson et al. (2010) extend affine multi-country

term structure models to account for market incompleteness and investigate exchange rate

excess volatility.

Brennan and Xia (2006) investigate the relations between the foreign exchange risk pre-

mium, exchange rate volatility, and the volatilities of the pricing kernels for the underlying

currencies, under the assumption of integrated capital markets. The continuous-time model

proposed by Brennan and Xia (2006) jointly determines the term structure of interest rates

and an approximation of the risk premium in a no-arbitrage setting. Their analysis sug-

gests that the volatility of exchange rates is associated with the estimated volatility of the

relevant pricing kernels, and risk premiums are significantly related to both the estimated

volatility of the pricing kernels and the volatility of exchange rates. The estimated risk

premiums mostly satisfy the Fama (1984) necessary conditions for explaining the forward

bias puzzle, although the puzzle remains in several cases.3

The choice of variables and the results from our analysis of the economic drivers of

foreign exchange risk premiums is consistent with recent research. Our evidence that

expected excess returns are (i) related to global risk aversion is consistent with the flight-

to-quality and flight-to-liquidity arguments in Lustig et al. (2010) and Brunnermeier et al.

(2008), (ii) countercyclical to the state of the US economy is in line with e.g. Lustig and

Verdelhan (2007), De Santis and Fornari (2008), and Lustig et al. (2010), and (iii) driven

by traditional exchange rate fundamentals is supported by Engel and West (2005).

The remainder of the paper is set out as follows. Section 2 discusses the link between

interest rates and exchange rates in light of previous literature and elaborates the rela-

tion between forward and expected spot rates implied by no-arbitrage. We describe the

empirical model, the estimation procedure and the criteria applied to evaluate RA-UIP

3There are many other papers that try to shed light on the puzzle from other angles than relating the
term structure of interest rates of two countries and their exchange rate. Explanations that build on risk
premium arguments - based, among others, on equilibrium models or consumption-based asset pricing -
include Frankel and Engel (1984), Domowitz and Hakkio (1985), Hodrick (1987), Cumby (1988), Mark
(1988), Backus et al. (1993), Bekaert and Hodrick (1993), Bansal et al. (1995), Bekaert (1996), Bekaert
et al. (1997), Lustig and Verdelhan (2007), Brunnermeier et al. (2008), Farhi and Gabaix (2011), Jurek
(2009), Lustig et al. (2011), Verdelhan (2010), Bansal and Shaliastovich (2010), Farhi et al. (2009), and
Menkhoff et al. (2011). Other recent papers look at the puzzle, for instance, in the context of incomplete
information processing, e.g. Bacchetta and van Wincoop (2009); differences in developed versus emerging
markets, e.g. Bansal and Dahlquist (2000) and Frankel and Poonawala (2010); and the profitability and
economic value of currency speculation, e.g. Burnside et al. (2010), and Della Corte et al. (2009).
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in Section 3. We present the results in Section 4 and discuss extensions and robustness

checks in Section 5. Section 6 presents empirical evidence that financial and macroeco-

nomic variables are important drivers of the foreign exchange risk premium. Section 7

concludes. The Appendix provides technical details on derivations and some estimation

procedures. A separate Internet Appendix reports the parameter estimates in detail and

provides additional empirical results related to extensions and robustness checks.

2 Exchange rates, interest rates and no-arbitrage

This section defines the fundamental relations linking exchange rates and interest rates,

and shows the implications of imposing the no-arbitrage condition in this context. This

results in the risk-adjusted variants of UIP and FUH, which are shown to imply intuitive

properties for the foreign exchange risk premium.

2.1 Uncovered interest parity and forward unbiasedness

We express exchange rates as domestic currency prices per unity of foreign currency. St

denotes the spot exchange rate, Ft,T is the forward exchange rate for an exchange of

currencies at time T > t, st and ft,T are the corresponding log exchange rates. The

domestic and foreign T -period yields of the respective zero bonds are yt,T ≡ − log pt,T

and y?
t,T ≡ − log p?

t,T . Assuming risk-neutrality and rational expectations, UIP postulates

that the expected exchange rate change must equal the yield differential or equivalently,

because Covered Interest Parity (CIP) holds, the forward premium

EPt [∆st,T ] = ft,T − st = yt,T − y?
t,T ,

where ∆st,T = sT − st and EPt denotes the conditional expectation under the physical

probability measure. UIP further implies that excess returns, rxt,T ≡ sT − ft,T , should be

unpredictable and it also forms the economic foundation for the FUH that the forward rate

should be an unbiased predictor of the future spot exchange rate, ft,T = EPt [sT ]. Empirical
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tests are usually performed by estimating the ‘Fama regressions’ (Fama, 1984)

∆st,T = α + β(yt,T − y?
t,T ) + ηt,T , (1)

rxt,T = α + γ(yt,T − y?
t,T ) + ηt,T , (2)

where γ = β − 1. The null hypotheses that UIP is valid holds if α = 0, β = 1, and ηt,T

is serially uncorrelated. Empirical research has consistently rejected UIP; for surveys see

Hodrick (1987), Froot and Thaler (1990), Engel (1996). It is now considered a stylized fact

that estimates of β are closer to minus unity than plus unity, implying that higher interest

rate currencies tend to appreciate when UIP predicts them to depreciate. This finding is

commonly referred to as the ‘forward bias puzzle’.

2.2 Risk-adjusted UIP and FUH under no-arbitrage

Fama (1984) argues that the forward bias may be caused by a time-varying risk premium

λt,T that is priced in forward rates, ft,T = EPt [sT ] + λt,T . The omission of λt,T in the Fama

regressions results in a value of β below unity if the variance of the risk premium is greater

than the variance of the expected depreciation, and the risk premium’s covariance with

expected exchange rate changes is negative (see e.g. Brennan and Xia, 2006, p. 762);

VP [λt,T ] > VP
[
EPt [∆st,T ]

]
,

CovP
[
λt,T ,EPt [∆st,T ]

]
< 0.

(3)

We relax the assumption of risk-neutrality and derive risk-adjusted counterparts to the

conventional UIP and FUH that endogenize time-varying risk premiums in the spirit of

Fama (1984). Since the price of a forward contract changes over time due to both spot

rate and interest rate fluctuations, we investigate the relation between spot and forward

exchange rates in a no-arbitrage setting with stochastic interest rates. We choose pt,T as

the numeraire where the associated probability measure is the T -forward measure QT.4

4See for example Björk (2004, p. 355), or Mele (2009, p. 242).
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Combining the no-arbitrage pricing equation with CIP gives

Ft,T = EQTt [ST ] = EQt
[
dQT
dQ

ST

]
. (4)

Hence, under no-arbitrage the forward rate is the expected spot rate under the T -forward

measure QT and in general not under the risk neutral measure Q associated with the bank

account Bt = e
∫ t
0 rs ds, where r is the short rate of interest. Only in the case of deterministic

interest rates, the Radon-Nikodym derivative
dQT
dQ = 1 and hence Q equals QT. We term

the unbiasedness of the forward rate as a predictor for the expected spot rate under the

T -forward measure the risk-adjusted FUH (RA-FUH).

Under the assumption of rational expectations, taking conditional expectation yields

the natural right-hand sides of predictive relations for log exchange rate returns

∆st,T = EPt [sT − st] + εt,T

= EPt [sT ]− (
log Ft,T − (yt,T − y?

t,T )
)

+ εt,T

= νt,T + (yt,T − y?
t,T ) + εt,T

(5)

and excess returns

rxt,T = νt,T + εt,T (6)

with νt,T = EPt [log ST ] − logEQTt [ST ]. Expression (5), which we term risk-adjusted UIP

(RA-UIP), shows that in the absence of arbitrage exchange rate returns are governed by

the yield differential - as postulated by UIP - but additionally comprise a time-varying

component νt,T . This component νt,T drives excess returns and since it is determined by

the difference in expectations of the (log) spot exchange rate under the physical and the

T -forward measure, it reflects risk adjustments. Hence RA-UIP explicitly identifies the

risk premium postulated by Fama (1984) as λt,T = −νt,T . Forward exchange rates in

general deviate from future spot exchange rates unless interest rates are deterministic (i.e.
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QT = Q) and agents are risk-neutral (i.e. P = Q).5 To see this in more detail, note that

EPt [sT ] = EQTt [sT ]−
(
EQt [sT ]− EPt [sT ]

)
−

(
EQTt [sT ]− EQt [sT ]

)
(7)

which allows us to decompose the risk premium λt,T = −νt,T as

λt,T = logEQTt [ST ]− EPt [sT ]

=
(
EQt [sT ]− EPt [sT ]

)

︸ ︷︷ ︸
pure currency risk

+
(

logEQTt [ST ]− EQt [sT ]
)

︸ ︷︷ ︸
impact of stochastic rates

. (8)

The first term is a pure currency risk component which reflects corrections for risk aversion,

the second term takes into account the impact of interest rates’ stochastic nature on the

risk premium.6

3 The empirical model, estimation and evaluation of

RA-UIP

3.1 Affine multi-country term structure model

The RA-FUH and RA-UIP expressions derived in the previous section are model-free

relations that extend the conventional FUH and UIP in that they are free of risk preferences

and consistent with no-arbitrage. To make these relations amenable for empirical work,

we employ a parametric framework that allows to evaluate expressions (5) and (8) in

closed form. We use a continuous-time, arbitrage-free dynamic multi-country affine term

structure model with latent factors to model the international financial market.7 The

5Even in this extreme case, the risk premium takes into account some mechanical Jensen’s type terms,
as then νt,T = EPt [log ST ] − logEPt [ST ] in Eq. (5). These Jensen terms are considered to be very small
in currency markets, though; see e.g. the survey of Engel (1996). For completeness and comparison, we
provide analogous derivations without logs in Appendix A.

6We provide a formal derivation of Eq. (8) in Appendix A.2 .
7 It is well-established practice in the term structure literature to employ 3 factors (Litterman and

Scheinkman, 1991). For international markets Leippold and Wu (2007) recommend using up to 7 factors
per country pair. To keep the model as small as possible and focus on the economic ideas of this paper,
we do not estimate such a large model. Instead we allocate 2 factors per country, starting from the
domestic economy, which also serves as the common driver behind the international market. Our model
is structured such that each foreign economy can be estimated sequentially, while still maintaining rich
patterns of correlation between currencies. This parameterization reflects the co-movement between yields
in different countries and captures common factors in a parsimonious way. For further reading on term
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design of the model is guided by the pioneering work of Backus et al. (2001) as well

as the more recent insights of Brennan and Xia (2006). Domestic risk in our model is

compensated for with the flexible extended affine formulation. Compensation for foreign

risk is directly related to domestic risk, but allows for completely affine adjustments that

are specific to the foreign economy. Our model is flexible enough to meet the conditions

formulated by Backus et al. (2001) for their completely affine model (asymmetric effects of

state variables on state prices in different countries or negative nominal interest rates with

positive probability) as well as the relations emphasized by Brennan and Xia (2006) in

their essentially affine model (association between volatilities of pricing kernels, exchange

rates, and risk premiums).

We describe the details of the model in the next subsection. However, three extensions

deserve to be mentioned here. First, in contrast to Backus et al. (2001), we use a multi-

period setting to account for fluctuations in the bond market; this allows us to disentangle

pure currency risk from interest rate risk as in the decomposition in Eq. (8). Second,

while Brennan and Xia (2006) use a linear first order approximation in time around the

infinitesimal moments of the risk premium, our model produces exact, horizon-dependent

risk premiums. As a result, we can derive the term structure of foreign exchange risk

premiums in closed form. Third, we estimate our model sequentially for multiple countries,

but still maintaining a unique domestic pricing kernel.

3.1.1 A continuous-time model for an international economy

For the econometric analysis, to put structure on the coefficients and error terms appearing

in the predictive equation (5), we endow the international financial market with a model

for interest rate risk and currency risk. This section therefore engineers a continuous-time,

arbitrage-free dynamic term structure model for the global economy, along with exchange

rates. The workhorse for this exercise is the framework of affine diffusion processes. To re-

flect the co-movement between yields in different countries and to capture common factors

in a parsimonious way we choose a latent factor setting.

The first building block of the global economy are two domestic factors (X1t, X2t)t>0

structure models with latent factors, see Duffee (2002, 2006, 2011) and Bikbov and Chernov (2010, 2011).
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with a representation in stochastic differential equation (SDE) form under probability

measure M

d


X1t

X2t


 =





aM1

aM2


 +


bM11 0

bM21 bM22





X1t

X2t





 dt +



√

X1t 0

0
√

1 + βX1t


 d


WM

1t

WM
2t


 . (9)

These factors also serve as common driver behind the world economy. For each foreign

economy ?i, i = 1, . . . , n we add two additional factors (X?i
1t , X

?i
2t )t>0 with SDE representa-

tion

d


X?i

1t

X?i
2t


 =





a?iM

1

a?iM
2


 +


b?iM

11 0 b?iM
13 0

b?iM
21 b?iM

22 b?iM
23 b?iM

24







X1t

X2t

X?i
1t

X?i
2t







dt

+




√
X?i

1t 0

0
√

1 + γ?i
1 X1t + γ?i

2 X?i
1t


 d


W ?iM

1t

W ?iM
2t


 .

(10)

Note that the domestic system (9) is a Markov process on its own. The sec-

ond system (10) is a Markov process only jointly with (9). We define X?i
t ≡

(X1t, X
?i
1t , X2t, X

?i
2t )

> for this joint system. The world economy is denoted by Xt ≡
(X1t, X

?1
1t , . . . , X

?n
1t , X2t, X

?1
2t , . . . , X

?n
2t )>. Similarly the Brownian innovations W ?iM

t ≡
(WM

1t ,W
?iM
1t ,WM

2t ,W
?iM
2t )> and WM

t ≡ (WM
1t ,W

?1M
1t , . . . ,W ?nM

1t ,WM
2t ,W

?1M
2t , . . . , W ?nM

2t )>.

The system of factors driving the world economy can then concisely be written in SDE

form

dXt = (aM + bMXt)dt + σ(Xt)dWM
t , (11)

where the matrices aM, bM and σ(Xt) are given in Appendix B.1 .

For the domestic short rate rt we assume the functional form rt ≡ δ0 + δ>X?i
t =

δ0 + δ1X1t + δ2X2t. Each foreign short rate is specified as r?i
t ≡ δ?i

0 + (δ?i)>X?i
t =

δ?i
0 + δ?i

1 X1t + δ?i
2 X?i

1t + δ?i
3 X2t + δ?i

4 X?i
2t . Through the common factors (9) we intro-

duce rich patterns of correlation between the economies. For example, the instanta-

neous quadratic covariation between the short rates of foreign economies ?i and ?j is
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d〈r?i
t , r

?j

t 〉 = (δ?i
1 δ

?j

1 X1t + δ?i
2 δ

?j

2 (1 + βX1t))dt. The constant coefficients in the diffusion

functions above are restricted to unity for identification purposes. Factors X1 and X?i
1

are square-root processes that drive conditional variance. Factors X2 and X?i
2 are condi-

tionally Gaussian to accommodate negative correlation between the state variables, which

the yield data usually require; see e.g. Dai and Singleton (2000). With a setting com-

prised only of square-root processes, correlation would be constrained to be positive, both

instantaneously and for a fixed time horizon greater zero.

To ensure arbitrage-free markets, we start by relating the domestic pricing kernel to

the pricing kernel and the exchange rate Si of the ?i economy

M?i
t

M?i
0

≡ Si
t

Si
0

Mt

M0

. (12)

Here, M is the global pricing kernel in domestic currency, and M?i is the global pricing

kernel in foreign currency ?i. This relation has been established by Backus et al. (2001).

Graveline (2006) notes that it ensures that the foreign pricing kernel is the minimum-

variance (MV) kernel, provided the domestic kernel is the MV kernel. This condition puts

restrictions on the dynamic behavior of the pricing kernels and the spot exchange rate. It

will only be possible to specify the dynamics of two of the three constituents of (12), while

the third will be determined endogenously. Our dynamic specification builds on these

ideas. The general guideline is to maintain a tractable model with maximum flexibility.

The dynamics of the domestic pricing kernel are

dMt

Mt

= −rtdt− Λ(Xt)
>dW P

t , (13)

where Λ is the solution to

Λ(x) = σ(x)−1
(
aP + bPx− (aQ + bQx)

)
. (14)

The drift matrix bQ inherits the block form of bP. To unambiguously determine the uncon-

ditional mean of the domestic short rate, which is affected by the constant factor loading δ0

and the unconditional mean of X2 in a very similar way, we impose aQ2 = 0. The parame-
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ters aQ1 and a?iQ
1 are identified through the behavior of the square-root factors X1 and X?i

1 ,

in particular near the boundary of the state space. The market price of risk specification

Λ follows Cheridito et al. (2007), imposing boundary-nonattainment in addition to the

admissibility conditions from Duffie et al. (2003). For stationarity we also require strictly

negative eigenvalues of bM,M ∈ {P,Q,Q?1 , . . . ,Q?n}.
We define the dynamics of the foreign pricing kernel for economy ?i as

dM?i
t

M?i
t

= −r?i
t dt− (Λ(Xt)

> − Σ?i σ(Xt)) dW P
t , (15)

where the drift of Xt under Q?i
(the foreign Q measure) solves

aQ?i + bQ?i x = aP + bPx− σ(x)(Λ(x)> − Σ?iσ(x))>. (16)

Computing the solution to Eqs. (13) and (15) and using Eq. (12) we find that the foreign

exchange rate Si
t evolves according to

dSi
t

Si
t

= (rt − r?i
t + Σ?i σ(Xt) Λ(Xt))dt + Σ?iσ(Xt)dW P

t , (17)

where Σ?i ≡ (Σ?i
1 , Σ?i

2 , 0, . . . , 0, Σ?i
i+2, Σ

?i
i+3, 0, . . . , 0). The corresponding dynamics of si

t are

then

dsi
t =

(
rt − r?i

t + Σ?i σ(Xt) Λ(Xt)− 1

2
Σ?i σ(Xt) σ(Xt)

> (Σ?i)>
)

dt + Σ?iσ(Xt)dW P
t , (18)

which turn out to be affine in Xt.

The instantaneous covariance matrix of Z?i
t = (X?i

t , si
t) is singular (while σ(x)σ(x)> is

non-singular), since we have a 5-dimensional process with only 4 driving Brownian motions.

Nevertheless, Z?i
t is an affine Markov process under probability measures P,Q, and Q?i

.

For a fixed time horizon T > t it turns out that the conditional covariance matrix of

Z?i
T |Z?i

t is non-singular, in contrast to the instantaneous one. As a consequence of the

affine formulation we have that yields and spot predictions based on RA-UIP in Eq. (5)

12



are all affine in the state variables Z?i
t

ȳt,T = − (A(T − t) + B(T − t) Z?i
t ) , (19)

ȳ?i
t,T = − (A?i(T − t) + B?i(T − t) Z?i

t ) , (20)

EPt [si
T ] = AQ?i(T − t) + BQ?i(T − t) Z?i

t , (21)

logEQTt [Si
T ] = log

EQt
[
e−

∫ T
t rs ds eSi

T

]

pt,T

= φ?i(T − t, u)− A?i(T − t) + (ψ?i(T − t, u)−B?i(T − t)) Zt

(22)

where a bar indicates ‘model-implied’. A(T − t), B(T − t) (and A?i(T − t), B?i(T − t)) in

Eqs. (19) and (20) are the solutions ψ(T−t, 0) and φ(T−t, 0) from the ordinary differential

equation (ODE) in (B.8) with domestic (foreign) Q parameters respectively; see Appendix

B.2 for details.8 Eq. (21) can be computed using formula (B.5) with a selection vector

F with non-zero entry only for s, and φ and ψ in (22) solve the ODE in Eq. (B.8) with

initial condition u = (0, 0, 0, 0, 1).

3.2 Model estimation

The model described above is formulated in terms of latent state variables. Relative to

the small number of these driving state variables, the set of observables that we need to

fit is large. One can therefore think of these driving state variables as a low-dimensional

representation of observed asset prices, very similar to factor reduction. Our estimation

procedure differs from those used in previous research on multi-country affine term struc-

ture models in both the methodology as well as in terms of the conceptual setup. First, our

methodological framework is Bayesian, which yields a posterior distribution of both latent

state variables and the parameters of the model. Employing Markov Chain Monte Carlo

(MCMC) methods, the Bayesian methodology allows us to perform parameter inference

without resorting to asymptotics, and it provides a very natural way to cope with latent

8Writing the yield equations (19) and (20) in terms of the enlarged state vector Z?i instead of X is
just a matter of notational convenience as ∂Bsi

∂τ = 0 together with the initial condition Bsi(0) = 0 imply
zero factor loadings on the log exchange rate for any maturity τ .
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state variables by treating them as parameters.9 Second, we consider the joint dynamics

of the latent state variables with the exchange rate. The evolution of the exchange rate

therefore affects the distribution of the parameters. Third, in the estimation procedure we

do not only fit bond yields in the US and the foreign country but also match the predictive

relation implied by RA-UIP derived in Eq. (5). In other words, we jointly fit the domes-

tic and foreign term structures of interest rates as well as the term structure of foreign

exchange risk premiums.

To ensure a unique US pricing kernel we estimate the model in two steps. We first

estimate the two-factor model (9) on the US term structure. We then estimate the foreign

economies (term structures, as well as foreign exchange data) by adding a two-factor system

(10) per additional country. The collection of domestic and foreign systems in Eq. (11) is

parameterized for sequential estimation and we estimate the foreign economies conditional

on the US factors which therefore also serve as common drivers behind the world economy.

Details of the estimation procedure can be found in Appendix D.

3.3 Model evaluation

In contrast to the standard formulation of UIP, the RA-UIP introduced in this paper

explicitly accounts for a time-varying risk premium that arises from the assumption of no-

arbitrage. This section describes how we assess whether the model is capable of identifying

the risk premium. The RA-UIP model predictions for exchange rate changes ∆ŝt,T and

excess returns r̂xt,T are obtained from Eqs. (5) and (6) using the estimation procedure

outlined in the previous section.10

As a first step, we check whether the model risk premium, λ̂t,T = −ν̂t,T , fulfills the

conditions formulated by Fama (1984), given in Eq. (3): first, the variance of the risk

premium is greater than the variance of the expected depreciation, ∆ŝt,T ; second, the

covariance between the model-implied risk premium and expected depreciation is negative.

9This is a non-negligible advantage over Maximum Likelihood estimation, where the state variables are
either integrated out, some prices are assumed to be observed without error to back out the state variables,
or filters are employed which are either expensive to evaluate, or approximations. For GMM estimation
similar constraints apply; see for instance the implied-state GMM approach in Pan (2002).

10To be precise, the expressions are evaluated at the multivariate median of the parameter posterior
distribution along with a smoothed estimate of the trajectory of the latent state variables.
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If the model risk premium satisfies these conditions, its omission in the Fama regression

causes β to be lower than unity.

The next step is to analyze whether the risk premium allows for unbiased predictions

of excess returns and hence spot rate changes (or whether the risk premium just accounts

for part of the forward bias). We therefore regress observed excess returns on the RA-UIP

model predicted excess returns r̂xt,T

rxt,T = α′ + β′ r̂xt,T + η′t,T (23)

and test whether α′ = 0 and whether the slope coefficients are statistically significant and

if β′ = 1. If we cannot reject that α′ = 0 and β′ = 1, this indicates that accounting for

the risk premium can be sufficient to resolve the forward bias puzzle without additionally

requiring departures from rational expectations.

Finally, we assess the predictive accuracy of the model by using four additional evalu-

ation criteria: the hit-ratio (HR), an R2-measure, the test proposed by Clark and West

(2007) based on mean squared prediction errors (CW ), and the Giacomini and White

(2006) test for conditional predictive ability (GW ). The predictions are all in-sample pre-

dictions, because our focus is not to provide forecasting models but to evaluate departures

from UIP.11 In other words, we have a twofold motivation for applying these criteria: first,

we gain additional insight on the model’s goodness of fit as compared to only considering

the R2 of regression (23). Second, we complement the evidence on the predictability of ex-

cess returns by assessing the predictive ability of the model per se as well as relative to the

benchmark predictions based on UIP and a random walk (RW) without drift. These results

will show whether empirical exchange rate dynamics are more adequately characterized by

RA-UIP, UIP or the RW.

We apply the four evaluation criteria to compare the accuracy of the RA-UIP model

predictions for excess returns, r̂xt,T , to predictions based on the benchmarks. The UIP

predicted exchange rate change is given by ∆ŝUIP
t,T = (yt,T − y?

t,T ) and the corresponding

11Moreover, some recent research argues that it is not clear whether out-of-sample tests of predictability
are powerful enough to discriminate among competing predictive variables or models, showing that in-
sample tests can be more reliable under certain conditions; e.g. Campbell and Thompson (2008) and the
references therein.
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excess return prediction is r̂xUIP
t,T = 0. The RW predictions are ∆ŝRW

t,T = 0 and r̂xRW
t,T =

−(yt,T − y?
t,T ). HR is calculated as the proportion of times the sign of the excess return is

correctly predicted. The remaining criteria are defined as functions of squared prediction

errors of the model, SEM , and of the respective benchmark B, SEB (where B is either

UIP or RW); the respective means are denoted by MSEM and MSEB. The R2 measure

of the model as compared to the benchmark is given by

R2 = 1− MSEM

MSEB
. (24)

Positive values indicate that the model performs better than the benchmark.

The CW test statistic is defined as

CW = MSEB −MSEM + N−1

N∑
n=1

(
r̂xB

t,T − r̂xM
t,T

)2

, (25)

where N is the number of observations in the sample. The CW test allows to compare

the predictive ability of the RA-UIP model as compared to that of the nested alternatives.

In contrast to other tests which are only based on the difference in MSEs, e.g. Diebold

and Mariano (1995), the last term in Eq. (25) adjusts for the upward bias in MSEM

caused by parameter estimates in the larger model whose population values are zero and

just introduce noise. In the empirical analysis, we apply the block bootstrap procedure

described in Appendix F to obtain p-values for the CW test statistics.

To assess the conditional predictive ability of the RA-UIP model, we implement the

GW test for the full sample as follows.12 The predictions are based on the full time-t

information set Ft. Using an Ft-measurable test function ht, we test the null hypothesis

that predictions based on the model and the benchmark predictions have equal conditional

predictive ability, H0,h : E[ht∆LT ] = 0. ∆LT denotes the differential in loss functions of

the two competing predictions at t for time T ; for the case of the squared prediction error

loss function, ∆LT = SEB
T − SEM

T . The test function we use is ht = (1, ∆Lt)
>. The GW

12Although the main focus of Giacomini and White (2006) is on rolling window methods, their results
also hold for a fixed estimation sample (p. 1548).
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statistic is given by

GW = N

(
N−1

N∑
n=1

ht∆LT

)>

Ω̂−1
N

(
N−1

N∑
n=1

ht∆LT

)
(26)

where Ω̂−1
N is a consistent estimate of the variance of ht∆LT .13 The empirical results are

based on block-bootstrapped p-values for the GW test statistic.

4 Empirical analysis

4.1 Data

Daily interest rate and spot exchange rate data are obtained from Datastream. Riskless

zero-coupon yields are bootstrapped from money market (Libor) rates with maturities of

1, 3, and 6 months and swap rates with maturities of 1, 2, 3 and 4 years. Feldhütter and

Lando (2008) show that swap rates are the best parsimonious proxy for riskless rates. The

model estimation is performed on daily zero-yields and spot exchange rates for the US

dollar against the Australian dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF),

the merged Deutsch mark and euro series (DEM-EUR), the British pound (GBP) and

Japanese yen (JPY). The sample periods are October 12, 1994 to October 10, 2008 for

AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10,

2008 for CHF, DEM-EUR, GBP, and JPY.

To relate the model risk premiums to financial market and macroeconomic variables,

we also obtain daily data for the VIX S&P 500 implied volatility index. Data for industrial

production and narrow money supply are obtained from the OECD Main Economic Indica-

tors at the monthly frequency for all countries except industrial production in Australia and

Switzerland, which is only available quarterly. The sample periods match those mentioned

above with the exception of the VIX series which starts in January 1990. To measure

US consumption growth, we use consumption data (available quarterly), the consumer

price index, and population figures from the International Monetary Fund’s International

13To obtain a HAC consistent estimate for T − t > 1 we use the weight function as in Newey and West
(1987) with the truncation lag being equal to T − t− 1, as suggested by Giacomini and White (2006).

17



Financial Statistics database.

4.2 Descriptive statistics and Fama regressions

The empirical analysis presented here is based on non-overlapping observations for pre-

diction horizons of 1 day, 1 week, and 1 month. For the longer horizons of 3 months, 1

year, and 4 years we choose a monthly frequency to maintain a reasonable number of data

points. Tables 1 and 2 report descriptive statistics for annualized exchange rate returns

and yield differentials.

As a preliminary exercise, we estimate the conventional Fama regression (1). The

results reported in Table 3 are consistent with the ‘forward bias’ documented in previous

research. While the estimates of the intercept α are in most cases small and statistically

insignificantly different from zero, the β estimates are generally negative and different

from the UIP theoretical value of unity for all currencies. For the GBP, estimates across

all six horizons are positive but only the 4-year β estimate is statistically significant at

conventional significance levels.14 As outlined in Section 2.1 , the two Fama regressions in

Eqs. (1) and (2) contain the same information because γ = β−1. Since t[γ = 0] = t[β = 1]

the results are in line with previous evidence that excess returns are predictable on the

basis of the lagged interest differential (forward premium).

4.3 Model estimation results

In this section, we discuss results related to how well our model fits the US and foreign term

structures of interest rates as well as observed depreciation rates, and we give economic

interpretations to the latent factors that drive the international economy. Further estima-

tion results (parameter estimates, confidence intervals, and properties of market prices of

risk) are reported in detail in Internet Appendix AA.

14These values are likely to reflect two major UIP reversions the GBP experienced in our sample: the
ERM crisis in 1992 and for the 4-year horizon also the impact of the current financial crisis on the UK
and its currency.
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4.3.1 Yield pricing errors and matching depreciation rates

We present results showing that depreciation rates implied by the global model closely

match observed rates and that yield pricing errors are in the range of some recent studies

(see e.g. Anderson et al., 2010). The yield pricing errors are, however, substantially larger

than those of single-country models, which, conversely, price bonds with high accuracy but

imply depreciation rates almost uncorrelated with actual rates.

Panel A of Table 4 summarizes results for the global model. We report the root

mean squared pricing errors of the domestic US yields and the respective foreign yields

measured in basis points. The other columns report the correlations between model-implied

and observed depreciation rates, and results from regressing observed on model-implied

depreciation rates; for details related to the corresponding computations see Appendix B.4 .

The correlations range from 0.891 to 0.999. The regression results show that intercepts (c0)

are virtually zero and slope coefficients (c1) are close to one. Although most c1 estimates

are different from one from a statistical perspective, we find the results very satisfactory

from an economic perspective with estimates ranging from 0.94 to 1.22 and R2s from 0.793

to 0.998.

As mentioned earlier, we also evaluate an alternative specification in which we estimate

single-country term structure models and perform an ex-post analysis of the currency

implications. In contrast to the global model, this modeling strategy is performed in

three steps and does not allow to condition on information from currency markets. We

first estimate the domestic pricing kernel using a standard A1(3) latent factor model, e.g.

Dai and Singleton (2000). In the second step, we use the same specification to estimate

the foreign pricing kernel. Third, we compute currency dynamics implied by the pricing

kernels using the no-arbitrage relation in Eq. (12). We describe the technical details of

this approach in Appendix E. The advantage of this single-country approach estimating

domestic and foreign pricing kernels separately is that it effectively allows to use six factors

to model two yield curves. In the global model, in which we fix the domestic pricing kernel

in the first step and jointly estimate the foreign term structure of interest rates and foreign

exchange risk premiums conditional on the domestic pricing kernel in the second step,
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the two economies are modelled using four factors. The drawbacks of the single-country

model are that it does not account for (the empirically observed) covariation of yields

across countries and disregards all information available from currency forwards and the

dynamics of the exchange rate. The results in Panel B show, as one would expect, on the

one hand that the yield pricing errors are lower for the single-country model as compared

to those produced by the global model but, on the other hand, also that model-implied

depreciation rates do not match observed rates satisfactorily, with correlations between

−0.04 and 0.10 and R2s below 0.0104.

These findings highlight the substantial tradeoff between the accuracy of fitting yield

curves and depreciation rates. On the one hand, the single-country model results show

that using bond market information alone is not enough to price currencies. On the other

hand, forcing affine models to also match exchange rate data results in inferior bond pricing

accuracy. Given this tradeoff, the choice of modeling strategy in general depends on the

purpose of the empirical application. Since our primary objective is to study the properties

of foreign exchange risk premiums (and not to price bonds), we argue that the global model

is better suited for the purpose of this paper. In what follows, we report detailed results

for the global model and briefly summarize findings from the single-country models in

Appendix E.15

4.3.2 Interpretation of latent factors

While we examine the drivers of foreign exchange risk premiums later in Section 6, we

now perform a factor rotation to gain insights on the forces behind the state variables

governing the international economy. Collin-Dufresne et al. (2008) show that the latent

factors underlying single-country affine term structure models can be rotated into vari-

ables with unambiguous economic interpretations. Building on the results of Litterman

and Scheinkman (1991), they further show how to obtain model-independent estimates of

the state variables, which allows to estimate their globally identifiable representation and

facilitates the interpretation of multi-factor models. We perform three rotations and com-

pare the model-implied processes to their corresponding model-free estimates. The results

15Further results for the single-country models are available from the authors upon request.
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reported below show that the factor dynamics are strongly related to the information in

the US yield curve and to the carry factor (i.e. the interest rate differential) between the

US and the foreign country. Technical details and resulting factor loadings are given in

Appendix C.

Our model design allows to perform the factor rotation sequentially on a country-by-

country basis. For each rotation, we use the factors X?i defined in Section 3.1.1 . With

the first rotation, we investigate how the estimated factor dynamics are related to the US

term structure expressed in terms of the level of the instantaneous short rate, the slope,

and the quadratic variations of both. We start by rotating the third state variable (the

first Gaussian) into the level of the US short rate rt and subsequently define the slope µt

as the instantaneous drift of rt. The remaining two state variables are rotated into the

quadratic variations of the short rate and of the slope. As a result, we obtain an observable

representation of the model in terms of the instantaneous US short rate level (rt), slope

(µt), short rate variance (Vt), and slope variance (Ut),




dVt

dUt

drt

dµt




=







ϕV

ϕU

ϕr

ϕµ




+




ϑV ϑV U 0 0

ϑUV ϑU 0 0

0 0 0 1

ϑµV ϑµU ϑµr ϑµ







Vt

Ut

rt

µt







dt

+




c1 c2 0 0

d1 d2 0 0

δ11 δ12 δ13 δ14

%1 %2 %3 %4




diag




f0 + f1Vt + f2Ut

g0 + g1Vt + g2Ut

y0 + y1Vt + y2Ut

z0 + z1Vt + z2Ut







dW1t

dW2t

dW3t

dW4t




.

We also follow Collin-Dufresne et al. (2008) in estimating the model-free state variables.

We perform a principal components analysis (PCA) to obtain the first three principal

components of yield levels and express yield curve derivatives (i.e. level and slope) as

sums of derivatives of the PCA loading functions. Using maturities of up to one year, we

use lower-order polynomials to extrapolate the loading functions down to zero. We then

calculate the model-free estimates of the short rate level (Lt) and slope (Slt) based on the
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fitted polynomials.

Table 5 presents the correlations of the model-implied processes and their model-free

counterparts in columns labeled Rotation 1. The level correlations are around 99.6%, the

slope correlations are around 50%, and the correlation for the quadratic variations of the

two is around 50% and 46% across all countries, with some differences for AUD and CAD

because of their shorter sample periods. Overall, the results show that the information in

the US yield curve plays a fundamental role in the international economy, as one would

expect for a model of USD exchange rates.

In the second rotation, we again rotate the third state variable into the US short rate,

rt, and then rotate the fourth into the differential of the US and the foreign short rate,

rt − r?i
t , to obtain a carry factor. Our motivation to do so is twofold. First, the short

rate differential represents the expected instantaneous depreciation under the risk-neutral

measure. Second, research on the cross-section of foreign exchange excess returns suggests

that the riskiness of different currencies can be understood in terms of a dollar risk factor

and a carry risk factor; see e.g. Lustig et al. (2011). Vt and Ut now represent the quadratic

variations of the US short rate level and the level differential. We obtain the model-free

estimates for the level differential analogously to those of the US level, and Table 5 reports

results in columns labeled Rotation 2. For all countries we find - as in Rotation 1 - that

we match the US level and a high correlation between its model-implied and observed

quadratic variation. For CHF, DEM-EUR, GBP, and JPY we also find high correlations

of rt − r?i
t with the model-free level differential (40% to 63%) and the related variance

processes Ut and QVt[L − L?i ] (45% to 79%). For these countries, the foreign yield curve

contains valuable information not contained in the US curve and thus carry risk is an

important factor. For AUD and CAD, the information in the foreign term structure seems

less relevant as compared to that in the US curve.

While the second rotation indicates that the short rate differential adds information

beyond the US curve, we now check whether the US term structure adds information when

the carry factor has been already accounted for. We do so because Lustig et al. (2011)

find that the US risk factor essentially captures average excess returns across currencies.

In a setting like ours, the carry for each country potentially already incorporates this
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information because of its bilateral nature. We thus modify the rotation in that we first

rotate the third state variable into rt − r?i
t and subsequently the fourth into rt. Table 5

reports results in columns labeled Rotation 3. We find that the level differential has a

correlation of more than 96% for all countries and the correlations of the US level range

from -5% to 40%. These results suggest that the carry factor already comprises most, but

not all of the information contained in the US curve.

Fig. 1 plots the US risk factors and carry risk factors implied by the model and their

model-independent counterparts. Overall, the results show that both the US term structure

as well as the carry between the US and the foreign country are driving forces behind the

latent factor international economy. These results are consistent with recent studies on the

cross-section of currency returns; however, in our setting, the carry factor conveys most of

the information.

4.4 Model evaluation

To evaluate the RA-UIP model we employ the criteria described in Section 3.3 . The

empirical results reveal that the model predictions are unbiased and have higher accuracy

than the UIP and RW benchmarks.

4.4.1 Fama conditions and unbiasedness of model predictions

We first verify whether the model risk premium fulfills the conditions in Eq. (3) such that

the omission of the risk premium causes a downward bias in the β estimate. To check the

first condition whether the variance of the risk premium is greater than that of expected

depreciation, we report variance ratios which, if the condition is fulfilled, should be greater

than one. The second condition requires a negative correlation between the risk premium

and expected depreciation. The variance ratios and correlation coefficients in Table 6

show that both conditions are fulfilled for all currencies except the GBP. Specifically,

for the GBP the condition of negative correlation is satisfied across all six horizons but

the variance of the risk premium is smaller than than variance of expected depreciation.

However, the violation of the variance condition is consistent with the relatively small

forward bias reported for the GBP in Table 3. We thus rather view this as a corroboration

23



of the flexibility of the model.

Table 7 presents results for regression (23) by reporting parameter estimates along

with block-bootstrapped standard errors in parentheses as well as t-statistics for the null

hypothesis of unbiasedness β′ = 1.16 The table also reports the R2 of the regressions but

we defer a detailed discussion of the model fit to the next subsection where we evaluate the

predictive ability criteria described in Section 3.3 . In brief, we find strong evidence that

excess return predictions based on the model risk premium are unbiased. All estimates of

the intercept α′ are very small and not significantly different from zero (except GBP at the

1-day horizon). All estimates of the slope coefficient β′ are positive (except GBP and JPY

at the 1-day horizon) and are closer to unity and more significant for longer prediction

horizons. Parameter estimates are significantly positive across all horizons for AUD, CAD,

CHF, and DEM-EUR, for horizons longer than 1 week for the JPY, and at the 4-year

horizon for the GBP. At the same time the estimates of β′ are not statistically different

from unity except at the very short horizons in some cases. The less pronounced evidence

for the GBP is again consistent with the comparably smaller forward bias as judged by

the Fama regression results in Table 3.

To reiterate, the findings related to the Fama conditions and the unbiasedness of model

predictions are consistent with the notion that the time-varying risk premium accounts

for the forward bias puzzle. While results from the Fama conditions show that the risk

premium has the general properties to cause a downward bias in the β estimate of the

Fama regression across horizons, the unbiasedness results strengthen this evidence as they

indicate that accounting for the risk premium can be sufficient to resolve the puzzle without

requiring departures from rational expectations.

4.4.2 Predictability of excess returns

In Table 8, we present results for the predictive ability criteria discussed in Section 3.3 .

The HR, R2, CW , and GW measures allow us to gain insight into the model’s goodness

16We calculate block-bootstrapped standard errors for all subsequent regressions. The block-bootstrap
procedure avoids the necessity to rely on asymptotic theory but still allows to handle serial correlation and
heteroskedasticity. We also calculate, but do not report, Newey and West (1987) standard errors with the
optimal truncation lag chosen as suggested by Andrews (1991). These standard errors are very similar or
slightly smaller than those obtained from the block-bootstrap procedure.
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of fit as compared to only considering the R2 of the predictive regression. Furthermore, we

complement previous evidence on the predictability of excess returns based on the model

per se and as compared to the benchmark predictions based on UIP and the RW.

The HR indicates that the model predictions have high directional accuracy: while the

HR is slightly above 50% for the 1-day horizon, it dramatically increases across horizons

for all currencies. The highest HR is achieved for the 1-year and 4-year horizons with

the largest values across currencies ranging from 68% to 95%.17 There is evidence that

the model fits the data very well in that it replicates the sign of excess returns, i.e. UIP

deviations.

The values reported for the R2-measure, as defined in Eq. (24), indicate that the model

outperforms both benchmarks. The R2s are positive for all currencies across all horizons

against the UIP benchmark. The R2s are also positive across currencies and horizons

against the RW benchmark with the exception of negative values at the short horizons for

the JPY and for the GBP. A common feature across currencies is that the highest R2 is

typically reached for the longest horizons, ranging from 31% to 68% against UIP and from

22% to 63% against the RW.18 In other words, the mean-squared prediction errors of the

model are much smaller than those of the benchmarks providing another piece of evidence

that the RA-UIP model fits the empirical behavior of exchange rates better than UIP and

the RW.

The results for the Clark and West (2007) test and the Giacomini and White (2006)

test for conditional predictive ability further support that the model predictions are more

accurate than those of the benchmarks. We report p-values for the test statistics which are

obtained from the block-bootstrap procedure described in Appendix F. The CW p-values

generally decrease with the prediction horizon and indicate that the model predictions

significantly outperform UIP predictions for 4 currencies at the 1-day and 1-week horizon,

for 5 currencies at the 1 month horizon, and for all 6 currencies at horizons of 3 months

or longer. The results for the RW benchmark generally follow the same pattern but

17The Pesaran and Timmermann (1992) test statistics for directional accuracy also suggest that most
of the HRs are highly significant. Results are omitted to save space but available on request.

18The increasing predictability with longer horizons does not result from a mechanical link between
short- and long-horizon predictions similar to the arguments of e.g. Cochrane (2001, p. 389) or Boudoukh
et al. (2006). Note that we have a different predictor and different dependent variable for each horizon.
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exhibit more variability in terms of significance at the shorter horizons. The GW results

indicate that the model dominates UIP and RW also in terms of conditional predictive

ability. Again, the p-values exhibit some cross-currency variability for shorter horizons,

but they indicate significantly stronger predictive ability of the model as compared to UIP

at horizons beyond 1 month for AUD, CAD, CHF, and DEM-EUR; for the GBP and JPY

results are significant at the 1-year and 4-year horizons. The results for the RW benchmark

are very similar.

Overall, the predictions from the model dominate those based on the benchmarks,

thereby providing evidence that the empirical behavior of exchange rates is more accurately

characterized by RA-UIP as compared to UIP or the RW. The superior predictive ability

arises from the fact that the model-implied no-arbitrage conditions allow to identify the

risk premiums that drive (excess) returns.19

4.5 Decomposing foreign exchange risk premiums

Following the derivations of the RA-FUH and RA-UIP in Section 2.2 , we show in Eq.

(8) that the foreign exchange risk premium can be decomposed into a pure currency risk

component and a second component that accounts for the fact that interest rates are

stochastic. Table 9 displays descriptive statistics for estimated risk premiums and their

components on an annualized basis.

The premium for pure currency risk can be positive or negative. Consistent with

intuition, we find that compensation for bearing interest rate risk is strictly positive. The

average interest rate risk premium contributes, depending on the currency, a sizable level

to the overall risk premium. However, the standard deviations are very small compared to

those of the overall risk premiums.

These results suggest that the variation in foreign exchange risk premiums - and hence

deviations from UIP constituting the forward bias puzzle - are largely driven by the pure

currency risk component. We redo the empirical model evaluation analysis in Section 4.4

based on model expectations comprising only the pure currency risk component. We find

19The finding that no-arbitrage improves predictions has similarly been documented in the term structure
literature, see e.g. Ang and Piazzesi (2003), Christensen et al. (2010), Diez de los Rios (2009) and Almeida
and Vicente (2008).
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that the results (not reported) are qualitatively identical to those above and that quanti-

tative differences are very small. Nevertheless, although the interest rate risk component

does not vary much, its sizable contribution to the average level of foreign exchange risk

premiums may be relevant in other contexts, for example assessing the profitability of

currency speculation, which we do not investigate in this paper.

5 Extensions and robustness checks

We perform various extensions and robustness checks. We first show that for models with a

smaller number of latent factors the tradeoff between fitting the term structure of interest

rates and fitting depreciation rates is aggravated, mainly at the expense of yield pricing

errors. Second, we provide evidence that extending the information set by currency options

does not qualitatively change the results, and finally we show that our conclusions are not

affected by the recent financial crisis. Detailed empirical results are given in the Internet

Appendix.

5.1 Smaller models

In our setting, the international economy is driven by four latent factors. In this Section

we investigate a smaller model with only one factor for the domestic economy (which also

serves as a common driver behind the world economy) and two factors for the foreign term

structure and the exchange rate.20 We report pricing errors and model-implied depreciation

rates as well as predictive regression estimates and predictive ability statistics for these

models with three factors in Tables A.2 to A.4.

We find that smaller models also match observed depreciation rates and produce risk

premiums that have predictive ability but at the expense of substantially larger yield

pricing errors. The RMSEs of US yields range from 11 to 95 basis points (as compared to

20Alternatively, we could choose to maintain two factors for the domestic term structure of interest
rates (with these factors also being the common drivers behind the world economy) and to only have
one factor per foreign country. However, this single factor would have to price both the foreign country’s
yield curve and generate exchange rate predictions (and dynamics). We therefore argue that the small
model specification that we consider in the paper is better suited for the analysis of foreign exchange risk
premiums.
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the range from 5 to 23 in the larger model) and similarly most of the foreign yield pricing

errors are higher. The correlations between model-implied and observed depreciation rates

range from 0.954 to 0.999, and regressing observed on model-implied depreciation rates

results in slope coefficients between 0.999 and 1.141 and R2s from 0.852 to 0.999. The

properties of model-implied foreign exchange risk premiums, as judged by the regression

and predictive ability results reported in Tables A.3 and A.4, are qualitatively similar to

those reported for the larger model with some quantitative differences.

Overall, the results illustrate a worsening of the tradeoff between jointly fitting, on the

one hand, the domestic and foreign yield curves and, on the other hand, depreciation rates

as well as the term structure of foreign exchange risk premiums, mainly at the expense of

(domestic) yield pricing errors. As compared to the standard model, the smaller model

appears to be overstrained in accomplishing this task.

5.2 Information in currency options

One issue that has arisen in the literature on affine term structure models is that bonds

may be insufficient to span fixed income markets and that derivatives may be needed to

fully identify pricing kernels.21 In our model, exchange rate dynamics are driven by the

difference in the innovations of two pricing kernels. In the international economy there

is no source of risk that exclusively affects exchange rates and hence currency derivatives

combine the information embedded in domestic and foreign fixed income derivatives.22 To

analyze whether currency options convey additional information about foreign exchange

risk premiums we rely on the concept of model-free implied variance (MFIV).

Britten-Jones and Neuberger (2000) show that MFIV equals the expected realized

variance under the risk neutral measure. MFIV is fully determined by current option

prices and defined as

MFIVt,T =
2

T − t

[∫ Ft,T

0

Pt,T (K)

pt,T K2
dK +

∫ ∞

Ft,T

Ct,T (K)

pt,T K2
dK

]

21See the work of Collin-Dufresne and Goldstein (2002) on unspanned stochastic volatility and the
subsequent literature building on their work; for a recent paper see e.g. Bikbov and Chernov (2009)

22That is, since all factors affect exchange rate as well as domestic and foreign interest rate dynamics,
currency derivatives can be hedged/replicated using domestic and foreign fixed income derivatives.
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where Pt,T (K) and Ct,T (K) are the respective time-t prices of T -period European put and

call options with strike K.23 To calculate MFIV we use daily currency option data obtained

from JP Morgan comprising 1-month implied volatilities for five points, which is standard

in currency markets (Carr and Wu, 2007): at-the-money forward (ATMF), 10-delta call,

10-delta put, 25-delta call, and 25-delta put.24 To calculate implied volatilities and option

prices for other strikes, we follow the suggestions of Jiang and Tian (2005).

To incorporate the information conveyed by MFIV, we augment the estimation pro-

cedure to require that the model-implied expectation of realized variance matches MFIV

for maturities of one month and three months. The MFIV time series are assumed to be

observed with cross-sectionally and intertemporally independent observation errors. We as-

sess whether MFIV has additional information content for foreign exchange risk premiums

by comparing estimation results with and without currency options. For all currencies, the

sample period is January 24, 1996 to October 10, 2008, except for the DEM-EUR series,

for which the sample starts on January 1, 1998. We discuss the main estimation results

and the properties of foreign exchange risk premiums below. In Internet Appendix BB we

report and compare (rotated) parameters for both estimations in detail. Overall, we find

that only around 7% of the parameters are statistically different (specifically 17 out of 240

parameters) and that most of these differences occur for the JPY estimations.

The results in Table A.5 reveal that our baseline estimation (Panel A) and the esti-

mation augmented with MFIV (Panel B) produce virtually identical yield pricing errors

and model-implied depreciation rates. The largest difference in yield pricing errors across

estimations is one basis point for all countries except JPY, where the yield pricing errors

are reduced by three and five basis points for maturities of three and four years when

conditioning on MFIV. Correlation and regressions results for depreciation rates are very

similar. Panel C summarizes descriptives for MFIV estimates and also shows that MFIV

23Jiang and Tian (2005) discuss how to inter- and extrapolate when only a finite range of strike prices is
available and show that resulting approximation errors are small. They also demonstrate that the MFIV
concept is still valid if the underlying asset price process has jumps and they provide evidence that MFIV
contains more information than other volatility predictors. For a recent application of the MFIV concept
to foreign exchange markets see Della Corte et al. (2011).

24Since the data provides implied volatilities and deltas, but not prices directly, we infer strike prices
from deltas and implied volatilities and calculate option prices using Garman and Kohlhagen (1983). Note
that in FX markets the convention is to multiply put deltas by -100 and call deltas by 100.
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pricing errors are satisfactory.

Our empirical analysis suggests that conditioning on the information in currency op-

tions does not have a material effect on how well the model matches foreign exchange risk

premiums. In general, when we regress realized excess returns on model predictions from

both estimations, the slope coefficients in Eq. (2) and the R2s are very similar; see Tables

A.6 and A.7. The predictive accuracy of both models as compared to the UIP and RW

benchmarks is very similar as well; see Tables A.8 and A.9. These results suggest that the

specification of our model is flexible enough to capture the variance dynamics of exchange

rates and hence, for the purpose of this paper, it is not necessary to additionally condition

on the information in currency options, perhaps with the exception of the model for the

JPY.25

5.3 Sample excluding the financial crisis

As mentioned above, we bootstrap zero yields from money market and swap rates based

on the argument put forward by Feldhütter and Lando (2008) that these are the best

parsimonious proxy for riskless rates. Due to the recent financial crisis this choice may

not be innocuous because the rates may be confounded with credit risk. We therefore

repeat the empirical analysis for a sample that excludes the financial crisis by only using

data until the end of 2006. We present yield errors, predictive regression estimates, and

predictive ability statistics in Tables A.13 to A.15. The results are quantitatively very

similar and qualitatively identical to those reported for the full sample.

6 Drivers of the risk premium

The above results provide strong empirical support for the existence of time-varying risk

premiums as stated by RA-UIP. In this section we show that the time variation in expected

excess returns is closely related to global risk measures and to macroeconomic variables.

25We also redo the other empirical checks of our analysis (e.g. Fama conditions and drivers of risk
premiums) for the shorter sample starting in 1996 for which options data is available. Using the estimations
with and without accounting for MFIV we find that the results (not reported) are qualitatively identical
and that quantitative differences are very small.
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Our proxy for global risk is based on the VIX S&P 500 implied volatility index traded

at the CBOE, which is highly correlated with similar volatility indexes in other countries;

see e.g. Lustig et al. (2010). Furthermore, the VIX can also be viewed as a proxy for

funding liquidity constraints, noted in Brunnermeier et al. (2008). If the VIX captures

global risk appetite and funding liquidity constraints, expected currency excess returns

should be negatively related to the VIX multiplied by the sign of the yield differential,

sV IXt ≡ V IXt × sign[yt − y?
t ]: in times of global market uncertainty and higher funding

liquidity constraints, investors demand higher risk premiums on high yield currencies while

they accept lower (or more negative) risk premiums on low yield currencies, consistent with

‘flight-to-quality’ and ‘flight-to-liquidity’ arguments.26

Recent research suggests that risk premiums on US exchange rates are countercyclical to

the US economy, similar to risk premiums in other markets; see e.g. Lustig and Verdelhan

(2007), De Santis and Fornari (2008), and Lustig et al. (2010). As proxies for the state of

the US economy, we use industrial production (IPt) as a measure of output, and M1 as a

measure for narrow money supply (NMt). Using monthly data, the growth rates ∆IPt and

∆NMt are defined as 1-year log changes. If the model risk premium is countercyclical, the

relation between expected excess returns and output growth should be negative, whereas

the relation with money growth should be positive.

Lustig and Verdelhan (2007) show that high interest rate currencies depreciate on aver-

age when domestic consumption growth is low while low interest rate currencies appreciate

under the same conditions. They argue that low interest rate currencies hence provide do-

mestic investors with a hedge against aggregate domestic consumption growth risk. We

construct a quarterly series of US consumption based on total private consumption de-

flated by the consumer price index and divided by population figures to obtain per capita

consumption. Consumption growth is defined as the 1-year log change. To account for

the asymmetric effect of low versus high interest rate currencies, we multiply consumption

growth by the sign of the yield differential. The findings of Lustig and Verdelhan (2007)

suggest that expected excess returns should be negatively related to signed consumption

26We also use the TED spread (difference between the 3-month Eurodollar rate and the 3-month Treasury
rate) as an alternative proxy. The results are similar to those based on the VIX reported in the paper;
this is in line with Brunnermeier et al. (2008).
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growth s∆COt.

Finally, we relate the risk premium to macroeconomic variables deemed relevant in tra-

ditional monetary models of the exchange rate. As a proxy for exchange rate fundamentals

we use the “observable fundamentals” as in Engel and West (2005), defined as the country

differential in money supply minus the country differential in output. We measure output

and money supply in the foreign countries analogously to the US variables and define the

change in observable fundamentals as ∆OFt = (∆NMt−∆NM?
t )− (∆IPt−∆IP ?

t ). Tra-

ditional exchange rate models suggest that the relation between these fundamentals and

expected excess returns should be positive.

Table 10 presents contemporaneous correlations of expected excess returns with the

variables described above; the significance indicated by the asterisks is judged by block

bootstrapped standard errors which are not reported to save space. The correlations

strongly support our priors as all coefficients are signed correctly across currencies and

horizons, in most cases with a high level of significance. These results thus suggest that

foreign exchange risk premiums are driven by global risk perception and macroeconomic

variables in a way that is consistent with economic intuition.

We also run univariate regressions of expected excess returns on the signed VIX, signed

consumption growth, and the observable fundamentals, as well as multivariate regressions

on combinations of these variables. We report OLS estimates in Table 11. The univariate

results confirm the correlation analysis for the three proxies in terms of sign and statistical

significance of coefficients, in most cases accompanied with large explanatory power (as

judged by the R2). The signed VIX has lowest explanatory power for the GBP, but for all

other currencies it is substantial: at the 1-day horizon the R2 ranges from 0.03 to 0.38, at

the 1-year horizon it ranges from 0.20 to 0.73. The regressions of expected excess returns

on observable fundamentals (for horizons of 3 months and 1 year) produces R2s in the

range of 0.20 to 0.30 for CHF and GBP and in the range of 0.48 to 0.72 for the other

currencies. The results for signed consumption growth suggest low explanatory power for

the GBP but R2s for all other currencies range from 0.29 to 0.67.

In the multivariate regression analysis we combine the observable fundamentals with

either the signed VIX or signed consumption growth. The results are very similar for both
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specifications. Signs and significance of coefficients are similar to the univariate regressions

but the explanatory power can be substantially larger. The 3-month and 1-year R2s are

lowest for the GBP with values between 0.17 and 0.24, the values for the CHF range from

0.41 to 0.45, and for AUD, CAD, DEM-EUR, and JPY the R2s are between 0.62 and 0.84.

Overall, we find that the model risk premium is related to global risk aversion, counter-

cyclical to the US economy, and associated with traditional exchange rate fundamentals.

The few cases in which significance is less pronounced or explanatory power is lower may

even corroborate our results. For example, the absence of a strong relation between the

GBP and the global risk proxy is consistent with the comparably smaller forward bias in

the GBP data set. Also, finding that the CHF is the only currency for which the explana-

tory power of observable fundamentals is lower than that of the proxies for risk seems

consistent with Switzerland being viewed as a ‘safe haven’ and primarily as a destination

for flight-to-quality.

7 Conclusion

There is a large literature documenting the empirical failure of uncovered interest rate par-

ity and of the forward unbiasedness hypothesis: the forward premium is a biased predictor

for subsequent exchange rate changes, and the forward rate is a biased predictor for the

future spot exchange rate. In this paper we show from the principle of no-arbitrage that

currency forwards are in general biased predictors for spot exchange rates, because they

not only reflect expected spot rates but additionally comprise time-varying risk premiums

that compensate for both currency risk and interest rate risk. We develop an expression for

the risk premium and employ it in a prediction model resembling the Fama (1984) regres-

sion. Expected exchange rate returns are driven by the yield differential but additionally

comprise a time-varying risk premium (Fama’s omitted variable), which we estimate from

a multi-currency term structure model.

For the empirical analysis, we extend affine term structure models applied in a multi-

currency context to explicitly account for these properties of forward rates and embedded

risk premiums. We take the model to US exchange rate data and find that there is

33



a tension between fitting bond yields and currency depreciation rates. Single-country

models that price bonds with high accuracy imply rates of depreciation that are virtually

uncorrelated with actual rates. The global model sacrifices yield pricing accuracy but

produces depreciation rates that closely match observed rates, and we thus argue that this

model is better suited to study the properties of foreign exchange risk premiums. We find

that estimated model expectations and risk premiums satisfy the necessary conditions for

explaining the forward bias puzzle. Moreover, the model is capable of producing unbiased

predictions for excess returns and hence we conclude that accounting for risk premiums can

be sufficient to resolve the forward bias puzzle without additionally requiring departures

from rational expectations.

Furthermore, we provide empirical evidence that risk premiums are closely linked to eco-

nomic variables that proxy for global risk, the US business cycle, and traditional exchange

rate fundamentals. Our results suggest that expected excess returns reflect flight-to-quality

and flight-to-liquidity considerations, and that they also depend on macroeconomic vari-

ables (output growth, money supply growth, consumption growth) such that risk premiums

in dollar exchange rates are countercyclical to the US economy.

We disentangle the risk premiums into compensation for currency risk and interest

rate risk. We find that the time variation in expected excess returns is almost entirely

driven by currency risk. The premium for interest rate risk exhibits very little variation

but contributes substantially to the level of risk premiums for some currencies. Given

its sizable contribution to the overall level of compensation for risk in foreign exchange

markets, interest rate risk should be explicitly accounted for in future research, for instance,

when assessing the profitability and economic value of currency speculation.

More generally, additional work is needed to empirically identify a currency’s pricing

kernel such that it jointly prices returns on all assets denominated in this currency with

high accuracy. The results in this paper show that global affine models are unable to

price bonds as accurately as single-country models and to simultaneously match observed

depreciation rates as well as the term structure of foreign exchange risk premiums. As

a consequence, the choice of modeling strategy depends on the purpose of the empirical

application. It is thus a challenge for future research to overcome this tradeoff.
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A Additional derivations for RA-UIP and RA-FUH

A.1 Predictive relations without logarithms

Analogously to Eqs. (5) and (6) we derive the predictive relations for changes of the

spot exchange rate and excess returns without taking logarithms. For the sake of easier

readability, we use the same notation for εt,T , νt,T ; and λt,T here for the case of no logarithms

as in the main text where we use logarithms.

Define ∆St,T ≡ (ST − St)/St. Under the assumption of rational expectations, taking

conditional expectation yields the natural right-hand side of a predictive relation for the

exchange rate return

∆St,T = EPt [ST ] /St − 1 + εt,T

=
(
EPt [ST ] /EQTt [ST ]

)
e(yt,T−y?

t,T ) − 1 + εt,T

= νt,T + e(yt,T−y?
t,T ) − 1 + εt,T ,

(A.1)

with νt,T =
(
EPt [ST ] /EQTt [ST ] − 1

)
e(yt,T−y?

t,T ). Hence, unless QT = P, i.e. under risk-

neutrality and deterministic short rates, there is a time-varying risk premium, λt,T = −νt,T .

Analogously, we find that excess returns defined as RXt,T = (ST − Ft,T )/St comprise the

time-varying risk premium

RXt,T =
EPt [ST ]− EQTt [ST ]

St

+ εt,T ,

=
EPt [ST ]− EQTt [ST ]

EQTt [ST ]
e(yt,T−y?

t,T ) + εt,T ,

= νt,T + εt,T .

(A.2)
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A.2 Decomposition of the risk premium

The relation in Eq. (7) is formally established from

EQTt [sT ] = EQt
[
dQT

dQ
sT

]

= EQt [sT ] + CovQt

[
dQT

dQ
, sT

]

= EPt
[
dQ
dP

sT

]
+ CovQt

[
dQT

dQ
, sT

]

= EPt [sT ] + CovPt

[
dQ
dP

, sT

]
+ CovQt

[
dQT

dQ
, sT

]

= EPt [sT ] +
(
EQt [sT ]− EPt [sT ]

)
+

(
EQTt [sT ]− EQt [sT ]

)
.

B Technical details related to the model

B.1 Drift and diffusion coefficients for the global model

The diffusion function as well as the drift coefficients of the global system (11) are given

below under probability measure M

aM =
(
a1, a

?1M
1 , . . . , a?nM

1 , aM2 , a?1M
2 , . . . , a?nM

2

)>
. (B.1)

The matrix bM is of the block form

bM =


 bMV 0n+1×n+1

bMV G bMG


 , (B.2)

where matrices bV , bV G, and bG are of lower triangular form and σ(Xt) is a diagonal matrix

bMV =




bM11

b?1M
11 b?1M

13

b?2M
11 0 b?2M

13

...
...

. . .

b?nM
11 0 . . . 0 b?nM

13




, bMV G =




bM21

b?1M
21 b?1M

23

b?2M
21 0 b?2M

23

...
...

. . .

b?nM
21 0 . . . 0 b?nM

23




,
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bMG =




bM22

b?1M
22 b?1M

24

b?2M
22 0 b?2M

24

...
...

. . .

b?nM
22 0 . . . 0 b?nM

24




, σ(Xt) = diag




√
X1t

√
X?1

1t

...
√

X?n
1t

√
1 + βX1t

√
1 + γ?1

1 X1t + γ?1
2 X?1

1t

...
√

1 + γ?n
1 X1t + γ?n

2 X?n
1t




.

B.2 Conditional moments of polynomial processes

It is shown in Cuchiero et al. (2008) that affine processes such as the one used in the

present paper are a subclass of polynomial processes. Polynomial processes are particularly

attractive because their conditional moments are polynomials in the state variables. The

coefficients of the polynomial are determined by the parameters of the process and the

time horizon. To be more precise, consider a time-homogeneous (affine) Markov process

X ≡ (Xt)t≥0,X0=x0∈D living on state space D ⊂ RN . Denote the finite dimensional vector

space of all polynomials of degree less than or equal to l by Pol≤l(D). An affine process X

induces the semigroup

Ptf(x) ≡ E [f(Xt)|X0 = x] ∈ Pol≤l(D) for f ∈ Pol≤l(D), (B.3)

which maps polynomial moments to polynomials. For affine Xt with state space D =

Ri
+ × RN−i define

µ(x) ≡ a + b x, V (x) ≡ G + H x = G + H1x1 + · · ·+ Hixi, (B.4)

where G is a N × N matrix and H is a N × N × N cube. Polynomial moments can be

computed using the semigroup’s infinitesimal generator

Af(x) =
1

2

N∑

j,l=1

Vjl(x)
∂2f(x)

∂xj∂xl

+
N∑

j=1

µj(x)
∂f(x)

∂xj

.
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Choose a basis E ≡< e1, . . . , eq > of Pol≤k(D), where q = dim Pol≤k(D) =
∑k

j=0

(
N−1+j

j

)
,

and a selection vector F ≡< f1, . . . , fq >. Conditional polynomial moments are then

computed according to

Ptf = F et A E>, (B.5)

where A = (aij)i,j=1,...,q is defined implicitly through

Aei =

q∑
j=1

aijej. (B.6)

For discounted exponential moments we have that

Et

[
e−

∫ T
t δ0+δX Xs ds euXT

]
= eφ(τ,u)+ψ(τ,u)Xt , (B.7)

where φ(τ, u) and φ(τ, u) solve a system of Riccati equations with τ ≡ T − t

dψ(τ, u)

dτ
= −δX + b ψ(τ, u) +

1

2
ψ(τ, u)> H ψ(τ, u), ψ(0, u) = u

dφ(τ, u)

dτ
= −δ0 + a ψ(τ, u) +

1

2
ψ(τ, u)> Gψ(τ, u), φ(0, u) = 0.

(B.8)

For u = (0, 0, . . . , 0) we recognize the bond price equation, for which we will suppress the

second argument in the coefficients.

B.3 Second moment of forecast errors

Assuming L ≤ T we are interested in the model-implied covariance structure of the error

terms from Eq. (5)

Covt [εt,T , εt,L] = Covt [sT , sL]

= EPt [sT sL]− EPt [sT ]EPt [sL]

= EPt
[
EPL [sT ] sL

]
︸ ︷︷ ︸

I.

−EPt [sT ]EPt [sL]︸ ︷︷ ︸
II.

.

II. can be computed according to Eq. (21). For I. we get
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EPt
[
EPL [sT ] sL

]
= EPt [(AQ(T − L) + BQ(T − L)ZL) sL]

= AQ(T − L) (AQ(L− t) + BQ(L− t)Zt) + BQ(T − L)EPt [ZLsL]

The vector of cross-sectional moments EPt [ZLsL] is a quadratic form in the state vari-

ables and can be computed using formula (B.5).

B.4 Model-implied depreciation rates

To assess model-implied depreciation rates we discretize the SDE from system (9) and (10)

using a first-order Euler approximation. With daily data the approximation error can be

considered to be negligible. We put the posterior estimates of the state variables on a daily

grid and put ι = 1/255. Using the posterior point estimates of the parameters with the

drift and diffusion expressions of the global system developed in Appendix B.1 we obtain

σ(Xt)
−1

(
∆Xt+ι − (aP + bPXt)ι

) ≈ ∆W P
t+ι (B.9)

where ∆Xt+ι ≡ Xt+ι − Xt. The innovations ∆W P
t+ι ≡ W P

t+ι − W P
t correspond to the

Brownian increments from eqs. (9) and (10). Denote with ∆si
t+ι ≡ si

t+ι− si
t. Plugging the

Brownian increments ∆W P
t+ι together with the state variables X into the discretized Eq.

(18) we then obtain a time series of implied depreciation rates

∆si
t+ι =

(
rt − r?i

t + Σ?i σ(Xt) Λ(Xt)− 1

2
Σ?i σ(Xt) σ(Xt)

> (Σ?i)>
)

ι + Σ?iσ(Xt)∆W P
t+ι.

C Details related to factor rotations

We perform the factor rotations on a country-by-country basis for each foreign economy ?i.

Using the factors X?i
t , we define Yt ≡ (X1t, X

?i
1t , X2t, X

?i
2t )

> and omit the country identifier

for lighter notation. In all rotations, the first step is to rotate Y3t into

πt = κ0 +
4∑

j=1

κjYjt

where πt is the US short rate in Rotations 1 and 2, i.e. κ0 = δ0, κ = δ, and the short rate

differential in Rotation 3, i.e. κ0 = δ0 − δ?i
0 , κ = δ − δ?i . The πt dynamics are
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dπt = (ω0 + ω1Y1t + ω2Y2t + ω3πt + ω4Y4t) dt +
4∑

j=1

κjσjdWjt

where σj denotes the jj-th element of σ(Yt) ≡
diag(

√
Y1t,

√
Y2t,

√
1 + βY1t,

√
1 + γ?i

1 Y1t + γ?i
2 Y2t) and

ω3 =
κ4b43

κ3

+ b33, ω0 =
4∑

i=1

κiai − κ0ω3, ωj =
4∑

i=j

κibij − κjω3 for j = {1, 2, 4}.

Given these πt dynamics, we then rotate Y4t into the process Πt which either represents

the instantaneous slope of the US term structure, the level differential, or the US level:

Πt = Ω0 + Ω1Y1t + Ω2Y2t + Ω3πt + Ω4Y4t, where in

• R1 (slope): Ω = ω, based on slope µt ≡ ω0 + ω1Y1t + ω2Y2t + ω3πt + ω4Y4t.

• R2 (rt − r?i
t ): Ω3 = ω3 − δ?i

3 /δ3 and Ωj = ωj − δ?i
j + (δ?i

3 /δ3)δj for j = {0, 1, 2, 4}.

• R3 (rt): Ω3 = ω3 + δ?i
3 /δ3 and Ωj = ωj + δ?i

j − (δ?i
3 /δ3)δj for j = {0, 1, 2, 4}.

The dynamics of Πt are

dΠt = (λ0 + λ1Y1t + λ2Y2t + λ3πt + λ4Πt)dt +
4∑

j=1

%jσjdWjt

where

λ0 = Ω1a1 + Ω2a2 + Ω3ω0 + Ω4a4 − Ω0(Ω3(ω4/Ω4) + b44) + (b43/κ3)(Ω0κ4 − Ω4κ0),

λ1 = Ω1b11 + Ω2b21 + Ω3ω1 + Ω4b41 − Ω1(Ω3(ω4/Ω4) + b44) + (b43/κ3)(Ω1κ4 − Ω4κ1),

λ2 = Ω2b22 + Ω3ω2 + Ω4b42 − Ω2(Ω3(ω4/Ω4) + b44) + (b43/κ3)(Ω2κ4 − Ω4κ2),

λ3 = Ω3ω3 − Ω3(Ω3(ω4/Ω4) + b44) + (b43/κ3)(Ω3κ4 + Ω4),

λ4 = Ω3(ω4/Ω4) + b44 − (b43/κ3)κ4,

%3 = κ3Ω3,

%j = (Ω3κj + Ωj) for j = {1, 2, 4}.
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Next, we compute the quadratic variation of πt and Πt and define

Vt ≡ c0 + c1Y1t + c2Y2t Ut ≡ d0 + d1Y1t + d2Y2t

where

c0 = κ2
3 + κ2

4 d0 = %2
3 + %2

4

cj = κ2
j + κ2

3βj + κ2
4γj dj = %2

j + %2
3βj + %2

4γj for j = {1, 2}.

Note that lower bounds for the variances of πt and Πt are given by κ2
3 + κ2

4 and ρ2
3 + ρ2

4

respectively. Solving for Y1 and Y2 we get

Y1 =
c2 (d0 − U) + d2 (V − c0)

c1d2 − c2d1

≡ f0 + f1V + f2U,

Y2 =
c1 (U − d0) + d1 (c0 − V )

c1d2 − c2d1

≡ g0 + g1V + g2U.

From this, we compute the joint dynamics of (V, U), rewrite π and Π dynamics in terms

of V and U and finally obtain the dynamics of the observable system




dVt

dUt

dπt

dΠt




=







ϕ1

ϕ2

ϕ3

ϕ4




+




ϑ11 ϑ12 0 0

ϑ21 ϑ22 0 0

ϑ31 ϑ32 ϑ33 ϑ34

ϑ41 ϑ42 ϑ43 ϑ44







Vt

Ut

πt

Πt







dt

+




c1 c2 0 0

d1 d2 0 0

κ1 κ2 κ3 κ4

%1 %2 %3 %4




diag




f0 + f1Vt + f2Ut

g0 + g1Vt + g2Ut

y0 + y1Vt + y2Ut

z0 + z1Vt + z2Ut







dW1t

dW2t

dW3t

dW4t




where
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ϕ1 = c1(a1 + b11f0) + c2(a2 + b21f0 + b22g0),

ϕ2 = d1(a1 + b11f0) + d2(a2 + b21f0 + b22g0),

ϕ3 = ω0 + ω1f0 + ω2g0 − (ω4/Ω4)(Ω0 + f0Ω1 + g0Ω2),

ϕ4 = λ0 + λ1f0 + λ2g0,

ϑ1j = c1b11fj + c2(b21fj + b22gj) for j = {1, 2},

ϑ2j = d1b11fj + d2(b21fj + b22gj) for j = {1, 2},

ϑ3j = ω1fj + ω2gj − (ω4/Ω4)(fjΩ1 + gjΩ2) for j = {1, 2},

ϑ33 = ω3 − (ω4/Ω4)Ω3,

ϑ34 = ω4/Ω4,

ϑ4j = λ1fj + λ2gj for j = {1, 2},

ϑ4j = λj for j = {3, 4},

y0 = 1 + β1f0 + β2g0,

yj = β1fj + β2gj for j = {1, 2},

z0 = 1 + γ1f0 + γ2g0,

zj = γ1fj + γ2gj for j = {1, 2}.

D Model estimation

In this section we describe the estimation procedure. The global system in Eq. (11) is

specified such that each foreign economy may be estimated sequentially using Eq. (10),

conditional on the domestic economcy in Eq. (9). We first describe the estimation of the

domestic system using US zero yields in Appendix D.1 . Second, for each foreign economy

?i we perform an estimation procedure conditional on the estimated domestic system (9);

see Appendix D.2 .

We employ Bayesian methodology. Due to the high-dimensional and nonlinear na-

ture of the econometric problem, we sample the parameters and the latent states using

Metropolis-Hastings steps with random walk proposal densities. By construction this pro-

posal yields autocorrelated draws. In each step of the estimation procedure, we therefore

generate 10,000,000 samples of which we discard the first 5,000,000. From the remain-
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ing draws we take every 1,000th draw to obtain (approximately) independent draws from

the posterior distribution. We report parameter estimates of the models in the separate

Internet Appendix in Section AA.

D.1 Domestic (US) market

The observed data are seven US zero-yields y = {yt}, where yt = (yt,t+1m, yt,t+3m, yt,t+6m,

yt,t+1y, yt,t+2y, yt,t+3y, yt,t+4y)
>D and D ≡ diag(12, · · · , 1/4). We assume that yields are

observed with cross-sectionally and intertemporally i.i.d. errors %t ∼ MVN(0, Σ%). Let

ȳ = {ȳt}, where ȳt = (ȳt,t+1m, . . . ȳt,t+4y)
>D, denote the corresponding model-implied

quantities from Eq. (19). We assume that the pricing errors enter additively into the

pricing equations

yt = ȳt + %t, (D.1)

and that the covariance matrix of the errors is diagonal with parameter ζ and Σ% =

diag(ζ , · · · , ζ ). Let θUS =
{
aP1 , a

P
2 , . . . , δ1, δ2, ζ

}
be the set of 13 parameters governing the

dynamics of the domestic process in Eq. (9). We employ a standard uninformative prior

π(θUS
i ) ∝





11{θUS
i admissible} θUS

i ∈ R
11{θUS

i
admissible}
θUS
i

θUS
i ∈ R+

(D.2)

and sample from the posterior distribution

p(X1, X2, θ
US | y) ∝ p(y | X1, X2, θ

US) p(X1, X2 | θUS)π(θUS) (D.3)

by in turn drawing from

p(X1, X2 | y, θUS) ∝ p(y | X1, X2, θ
US) p(X1, X2 | θUS)

and

p(θUS | y, X1, X2) ∝ p(y | X1, X2, θ
US) p(X1, X2 | θUS)π(θUS)
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using MCMC methods (Hammersley and Clifford, 1970).27

The likelihood of the observation errors is a product of normal densities. To approxi-

mate the true, unknown transition density p(X1, X2 | θUS) we employ a quasi-maximum

likelihood density. Denote with φ(y; υ, Ω) the density of the multivariate normal distri-

bution with mean υ and covariance Ω. With Y an affine process and θ denoting its

parameters, we approximate transition densities of affine processes p(Yt | Yt−1, θ) with a

normal distribution, which has been shown previously to perform well in likelihood-based

inference28

p(X1, X2 | y, θUS) =
N∏

n=2

p(X1n, X2n | X1(n−1), X2(n−1), θ
US)

≈
N∏

n=2

φ
(
X1n, X2n;EP

[
X1n, X2n | X1(n−1), X2(n−1)

]
,VPt

[
X1n, X2n | X1(n−1), X2(n−1)

])
.

The likelihood of the yield pricing errors is

p(y | X1, X2, θ
US) =

N∏
n=1

φ (yn; ȳn, Σ%) .

D.2 Foreign markets

Once we have estimated the domestic system in Eq. (9), we sequentially add foreign

economies ?i as given in Eq. (10) and perform the estimation conditional on the domestic

term structure and factors. Through the parameterization introduced in Section 3.1 this

approach guarantees a unique domestic pricing kernel and arbitrage-free cross rates in the

international economy.

The model ought to fit zero-coupon yields of the respective currencies, represent the

joint evolution of the latent state variables with the foreign exchange rate, as well as predict

changes in the log spot rate. We observe seven foreign zero-yields y?i , matching the matu-

rities of the US yields, and the log exchange rate si
t. We assume that the exchange rate is

27A comprehensive reference for MCMC methods in finance is Johannes and Polson (2009).
28We approximate p(Yt | Yt−1, θ) ≈ φ(Yt;EP [Yt | Yt−1] ,VPt [Yt | Yt−1]), where mean EP [Yt | Yt−1] and

covariance VPt [Yt | Yt−1] are the first two true conditional moments, which are again computed using
formula (B.5) in Appendix B.2 .
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observed without error and that yields are observed with cross-sectionally and intertempo-

rally i.i.d. errors %?i
t ∼ MVN(0, Σ%?i ). Let ȳ?i = {ȳ?i

t }, where ȳ?i
t = (ȳ?i

t,t+1m, . . . ȳ?i
t,t+4y)

>D

denote the corresponding model-implied quantities from Eq. (20). We assume that the

pricing errors enter additively into the pricing equations

y?i
t = ȳ?i

t + %?i
t . (D.4)

For parsimony we again assume that the covariance matrices of the errors are diagonal

with parameters ζ?i , where Σ%?i = diag(ζ?i , · · · , ζ?i).

To match model-implied depreciation rates to the data, we implement the predictive

equation (5) for horizons of 1 day, 1 week, 1 month, 3 months, 1 year, and 4 years.

Specifically, we use the affine formulations for EPt and logEQTt given in equations (21) and

(22), respectively, to compute the model-implied risk premium νt,T = EPt [si
T ]− logEQTt [Si

t ].

Adding up the risk premium and the corresponding yield differential, which we compute

using the affine formulations in Eqs. (19) and (20) for domestic and foreign yields, we

estimate the expected depreciation by matching the conditional mean to the data. We

specify the covariance matrix of prediction errors such that it reflects the cross-sectional

covariance structure of the model, Σε
?i
t
≡ VPt [ε?i

t ] with ε?i
t ≡ (ε?i

t,t+1d, . . . ε
?i
t,t+4y). Appendix

B.3 derives how it can be computed as a function of state variables and model parameters.

We specify the errors to be normally distributed with mean zero and these model-implied

covariances.

Estimation is performed using Bayesian methodology where we employ the usual un-

informed prior

π(θ?i
i ) ∝





11{θ?i
i admissible} θ?i

i ∈ R
11{θ

?i
i

admissible}
θ

?i
i

θ?i
i ∈ R+.

(D.5)

The posterior distribution is

p(X?i
1 , X?i

2 , θ?i | y?, si , X1, X2, θ
US) ∝ p(y?i , si

+ | X?i , si−, θ?i , θUS) p(X?i , si | θ?i , θUS)π(θ?i)

(D.6)
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where si
+ denotes the log exchange rates to be predicted, and si− denotes the log exchange

rates on which the prediction is based. We sample from this high-dimensional and com-

plicated distribution by in turn drawing from

p(X?i
1 , X?i

2 , | y?, si , θ?i , X1, X2, θ
US) ∝ p(y?, si

+ | X?i , si−, θ?i , θUS) p(X?i , si | θ?i , θUS)

and

p(θ?i | y?i , si , X?i , θUS) ∝ p(y?, si
+ | X?i , si−, θ?i , θUS) p(X?i , si | θ?i , θUS)π(θ?i)

using MCMC methods (Hammersley and Clifford, 1970). Again we approximate the tran-

sition density p(Z?i = (X?i , si) | θ?i) with the quasi maximum likelihood density

p(Z?i | θ?i) =
N∏

n=2

p(Z?i
n | Z?i

n−1, θ
?i)

≈
N∏

n=2

φ
(
Z?i

n ;EP
[
Z?i

n | Z?i
n−1

]
,VPt

[
Z?i

n | Z?i
n−1

])
.

The density of the yield pricing errors and the exchange rate prediction errors is given by

p(y?, si
+ | X?i , si−, θ?i , θUS) =

N∏
n=1

φ (y?i
n ; ȳ?i

n , Σ%?i ) φ
(
ε?i

n ; 0, Σε
?i
n

)
.

E Alternative specification: single-country model

As an alternative specification to our global model, we investigate how well estimating

single-country term structure models and the currency dynamics implied by the pricing

kernels match the data.29 We describe the model setup and briefly summarize the empirical

results below.

29In terms of estimation strategy, this approach is similar to the one in Brennan and Xia (2006); the
model setup is very different, however. For instance, while Brennan and Xia (2006) model real interest
rates using observable state variables, we model nominal interest rates with latent factors, since we are
also considering very short horizons for which macro data is not available.
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E.1 The single-country model

For each economy, the US and the foreign countries ?i, we estimate a 3-dimensional affine

term structure model from the Dai and Singleton (2000) A1(3) family. The dynamics for

the factors driving the economy, Xt ≡ (X1t X2t X3t)
>, are specified in SDE form as30

d




X1t

X2t

X3t


 =




aP1 + bP11X1t

aP2 + bP21X1t + bP22X2t

aP3 + bP31X1t + bP32X2t + bP33X3t


 dt + diag




√
X1t

√
1 + βX1t

√
1 + γX1t







dW P
1t

dW P
2t

dW P
3t


 . (D.7)

The short rate is assumed to be of the form rt ≡ δ0+(δ)>Xt. To keep the log exchange rate

dynamics satisfying the no-arbitrage relation in Eq. (12) affine and tractable, we follow

Dai and Singleton (2000) and specify

Λ(Xt) ≡




√
X1tλ1

√
1 + βX1tλ2

√
1 + γX1tλ3


 (D.8)

and the risk-adjusted drift µQ of dynamics (D.7) is then given by

µQ(Xt) =




aP1 + (bP11 − λ1)X1t

aP2 − λ2 + (bP21 − βλ2)X1t + bP22X2t

aP3 − λ3 + (bP31 − γλ3)X1t + bP32X2t + bP33X3t


 .

For each country we estimate the model analogously to the procedure described in Ap-

pendix D.1 . To inspect the implications for exchange rates we compute the dynamics from

Eq. (12). We use the US as domestic economy and foreign quantities carry a superscript

?i as in Section 3.1

dsi
t =

(
rt − r?i

t +
1

2

(
Λ(Xt)

>Λ(Xt)− Λ?i(X?i
t )>Λ?i(X?i

t )
))

dt

+Λ(Xt)
>dW P

t − Λ?i(X?i
t )>dW ?iP

t .

(D.9)

30Note that we use a similar notation for state variables, parameters, etc. as in our global model for the
sake of readability.
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To obtain model-implied depreciation rates analogous to those for the global model from

Appendix B.4 , we put the posterior estimates of the state variables on a daily grid and

put ι = 1/255. From an Euler discretization of Eq. (D.7) we obtain Brownian increments

conditional on the states Xt

∆W P
t+ι = diag




√
X1t

√
1 + βX1t

√
1 + γX1t




−1

(
∆Xt+ι − µP(Xt)ι

)
, (D.10)

with identical discretization for the foreign economies. We then plug these increments into

the discretized version of the log-exchange rate dynamics (D.9) to obtain model-implied

depreciation rates.

E.2 Summary of empirical results

As discussed in Section 4.3.1 , the single-country model produces smaller yield pricing

errors as compared to the global model but the model-implied depreciation rates exhibit

only low correlations with observed rates. We also conduct the empirical analysis described

in Section 4.4 and summarize the main findings here; detailed results are available from

the authors upon request. Consistent with Brennan and Xia (2006) we find that the Fama

conditions in (3) are mostly satisfied. Results analogous to Table 6 show that variance

ratios across countries range from 0.9937 to 1.0315 and that correlations are very close to -1.

The risk premiums implied from the single-country model thus can account for a downward

bias in Fama regression estimates. We also find that some slope coefficients in regressions

of observed on model-implied excess returns, analogous to Table 7, are significant; however,

all slope coefficients are significantly below unity suggesting that these risk premiums are

not sufficient to fully resolve the forward bias puzzle. Furthermore, several intercepts are

non-zero. The predictive ability results, analogous to Table 8, are less pronounced than

for the global model; for instance the directional accuracy results reveal that 13 of 36

hit-ratios are less than 50%, whereas for the global model all hit-ratios are greater than

50%. These results support our argument that the global model is better suited for the
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analysis of foreign exchange risk premiums.

F Block bootstrap procedure

We use the tests proposed by Clark and West (2007) and Giacomini and White (2006) to

assess the predictive ability of the model. The null hypothesis of the CW test is that the

nested models have equal (adjusted) mean squared errors; under the alternative hypothesis

the larger model exploits (additional) predictive information and has a lower mean squared

error. The null hypothesis of the GW test is that the models have equal conditional predic-

tive ability; the test statistic is based on the series of squared prediction error differentials.

The bootstrap procedure described below computes how often an economy in which there

is no predictability would produce as much predictability as found in actual data.

Specifically, we impose a data generating process of no predictability. We consider

an overlapping block resampling scheme which can handle serial correlation and also het-

eroscedasticity; see e.g. Künsch (1989), Hall et al. (1995), Politis and White (2004), Patton

et al. (2009). Let yt be the dependent variable and ŷt the prediction of that variable, and

proceed as follows:

1. Run the regression of form yt = α+βŷt+εt, compute the CW and GW test-statistics,

and set ỹt = ε̂t.

2. Form an artificial sample S∗t = (y∗t , ŷ
∗
t ) by randomly sampling, with replacement, b

overlapping blocks of length l from the sample (ỹ, ŷt).

3. Run the regression y∗t = α∗ + β∗ŷ∗t + ε∗t , and compute the CW ∗ and GW ∗ test-

statistics.

4. Repeat steps 2 and 3 5,000 times.

5. Determine the one-sided p-values of the two test-statistics by computing the propor-

tional number of times that CW ∗ > CW and GW ∗ > GW .
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Cheridito, P., Filipović, D., Kimmel, R., 2007. Market price of risk specifications for affine
models: Theory and evidence. Journal of Financial Economics 83, 123–170.

Christensen, J., Diebold, F., Rudebusch, G., 2010. The affine arbitrage-free class of nelson-
siegel term structure models. Journal of Econometrics. Forthcoming.

Clark, T., West, K., 2007. Approximately normal tests for equal predictive accuracy in
nested models. Journal of Econometrics 138, 291–311.

Cochrane, J., 2001. Asset Pricing. Princeton University Press.

51



Collin-Dufresne, P., Goldstein, R., 2002. Do bonds span the fixed income markets? Theory
and evidence for unspanned stochastic volatility. Journal of Finance 57, 1685–1730.

Collin-Dufresne, P., Goldstein, R., Jones, C., 2008. Identification of maximal affine term
structure models. Journal of Finance 63, 743–795.

Cuchiero, C., Teichmann, J., Keller-Ressel, M., 2008. Polynomial processes and their
application to mathematical finance. http://arxiv.org/abs/0812.4740.

Cumby, R., 1988. Is it risk? explaining deviations from uncovered interest parity. Journal
of Monetary Economics 22, 279–299.

Dai, Q., Singleton, K., 2000. Specification analysis of affine term structure models. Journal
of Finance 55, 1943–1978.

De Santis, R., Fornari, F., 2008. Does business cycle risk account for systematic returns
from currency positioning? European Central Bank, Working paper.

Della Corte, P., Sarno, L., Tsiakas, I., 2009. An economic evaluation of empirical exchange
rate models. Review of Financial Studies 22, 3491–3530.

Della Corte, P., Sarno, L., Tsiakas, I., 2011. Spot and forward volatility in foreign exchange.
Journal of Financial Economics 100, 496–513.

Dewachter, H., Maes, K., 2001. An admissible affine model for joint term structure dy-
namics of interest rates. KU Leuven, Working paper.

Diebold, F., Mariano, R., 1995. Comparing predictive accuracy. Journal of Business &
Economic Statistics 13, 253–263.

Diez de los Rios, A., 2009. Can affine term structure models help us predict exchange
rates? Journal of Money, Credit and Banking 41, 755–766.

Domowitz, I., Hakkio, C., 1985. Conditional variance and the risk premium in the foreign
exchange market. Journal of International Economics 19, 47–66.

Duffee, G., 2002. Term premia and interest rate forecasts in affine models. Journal of
Finance 57, 405–443.

Duffee, G., 2006. Term structure estimation without using latent factors. Journal of
Financial Economics 79, 507–536.

Duffee, G., 2011. Information in (and not in) the term structure. Review of Financial
Studies. Forthcoming.
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Table 1: Descriptive Statistics of Exchange Rate Changes

We express exchange rates as domestic currency prices per unity of foreign currency. Log exchange rate returns are
based on non-overlapping observations for horizons up to 1 month and on monthly frequency for horizons of 3 months
and beyond. All figures are annualized. N denotes the number of observations. AC(T − t) denotes the autocorrelation
for the lag being equal to the horizon. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June
1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
N 2632 527 120 120 120 120
Mean 0.0042 0.0061 0.0065 0.0025 0.0020 0.0089
Std Dev 0.1048 0.1012 0.0962 0.1009 0.1193 0.1311
Skewness −0.1745 −0.3243 −0.1458 −0.0555 0.0146 −0.1600
Kurtosis 6.3153 3.6681 2.9266 2.9369 2.5032 1.6528
AC(T − t) 0.0050 −0.0063 0.1390 0.0776 0.1909 −0.2202
CAD
N 2989 598 136 136 136 136
Mean 0.0049 0.0055 0.0045 0.0041 0.0077 0.0168
Std Dev 0.0592 0.0601 0.0586 0.0600 0.0607 0.0817
Skewness 0.1058 0.0807 0.2504 0.6931 0.7804 0.3879
Kurtosis 5.2707 3.7735 3.1555 3.9702 3.2926 1.5467
AC(T − t) −0.0065 −0.0902 0.0951 0.0312 0.2476 0.3284
CHF
N 3954 791 180 180 180 180
Mean 0.0234 0.0230 0.0239 0.0222 0.0138 0.0122
Std Dev 0.1134 0.1151 0.1131 0.1174 0.1100 0.0929
Skewness 0.1323 −0.0520 −0.0506 −0.1887 0.0220 −0.3004
Kurtosis 4.8408 3.9049 3.4349 2.8253 2.2132 2.2479
AC(T − t) 0.0098 −0.0370 0.0899 −0.0864 −0.0380 −0.5532
DEM-EUR
N 3954 791 180 180 180 180
Mean 0.0167 0.0165 0.0170 0.0151 0.0077 0.0072
Std Dev 0.1043 0.1061 0.1044 0.1109 0.1080 0.1042
Skewness 0.0218 −0.1681 −0.1188 −0.1078 0.1037 −0.1305
Kurtosis 4.6383 3.7138 3.6990 2.6264 2.0779 1.9378
AC(T − t) 0.0149 −0.0175 0.1361 −0.0764 0.0383 −0.4480
GBP
N 3954 791 180 180 180 180
Mean 0.0109 0.0105 0.0109 0.0114 0.0071 0.0067
Std Dev 0.0897 0.0960 0.0960 0.0983 0.0876 0.0693
Skewness −0.1615 −0.8473 −1.0329 −1.1814 −0.3579 −0.0093
Kurtosis 5.6681 8.8557 6.5192 8.1755 3.5891 1.9332
AC(T − t) 0.0587 0.0211 0.0772 −0.0528 −0.0481 −0.4144
JPY
N 3954 791 180 180 180 180
Mean 0.0209 0.0208 0.0222 0.0212 0.0207 0.0106
Std Dev 0.1103 0.1178 0.1118 0.1206 0.1054 0.0879
Skewness 0.5513 0.9126 0.4784 0.3244 −0.4827 0.2869
Kurtosis 7.5747 8.6013 4.0976 3.5989 2.5784 3.3482
AC(T − t) 0.0282 −0.0728 0.0927 −0.0405 0.0882 −0.6362
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Table 2: Descriptive Statistics of Yield Differentials

We express exchange rates as domestic currency prices per unity of foreign currency and yield differentials as domestic
yields minus foreign yields. The results are based on non-overlapping observations for horizons up to 1 month and
on monthly frequency for horizons of 3 months and beyond. All figures are annualized. N denotes the number of
observations. AC(T − t) denotes the autocorrelation for the lag being equal to the horizon. The sample periods are
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989
to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 month 1 year 4 years
AUD
N 2632 527 120 120 120 120
Mean −0.0131 −0.0131 −0.0131 −0.0128 −0.0119 −0.0100
Std Dev 0.0010 0.0023 0.0048 0.0084 0.0162 0.0214
Skewness −0.3051 −0.3061 −0.3349 −0.3190 −0.2261 −0.0673
Kurtosis 1.7540 1.7549 1.7769 1.7445 1.6728 1.4826
AC(T − t) 0.9994 0.9969 0.9852 0.9630 0.7311 −0.7606
CAD
N 2989 598 136 136 136 136
Mean −0.0007 −0.0007 −0.0007 −0.0009 −0.0016 −0.0022
Std Dev 0.0007 0.0017 0.0035 0.0060 0.0110 0.0163
Skewness 0.3745 0.3753 0.3558 0.3259 0.2664 −0.2217
Kurtosis 2.4859 2.4823 2.5052 2.5196 2.5426 2.1107
AC(T − t) 0.9981 0.9929 0.9639 0.8690 0.4487 −0.5120
CHF
N 3954 791 180 180 180 180
Mean 0.0112 0.0112 0.0112 0.0113 0.0130 0.0184
Std Dev 0.0016 0.0035 0.0074 0.0125 0.0214 0.0247
Skewness −0.5354 −0.5367 −0.5466 −0.5492 −0.4674 −0.4514
Kurtosis 2.4617 2.4654 2.493 2.5214 2.5549 3.0721
AC(T − t) 0.9995 0.9978 0.9900 0.9650 0.7859 −0.4463
DEM-EUR
N 3954 791 180 180 180 180
Mean −0.0033 −0.0033 −0.0032 −0.0028 −0.0008 0.0034
Std Dev 0.0016 0.0035 0.0074 0.0125 0.0213 0.0235
Skewness −0.7088 −0.7087 −0.7178 −0.6905 −0.5951 −0.4391
Kurtosis 2.5272 2.5248 2.5444 2.5393 2.5838 2.9784
AC(T − t) 0.9998 0.9988 0.9936 0.9730 0.7332 −0.4389
GBP
N 3954 791 180 180 180 180
Mean −0.0239 −0.0239 −0.0238 −0.0235 −0.0209 −0.0134
Std Dev 0.0014 0.0031 0.0065 0.0109 0.0181 0.0228
Skewness −0.7826 −0.7731 −0.7769 −0.7799 −0.7458 −0.5988
Kurtosis 2.4733 2.4506 2.4422 2.4927 2.6521 2.8806
AC(T − t) 0.9991 0.9964 0.9859 0.9549 0.6958 −0.0064
JPY
N 3954 791 180 180 180 180
Mean 0.0262 0.0262 0.0263 0.0269 0.0292 0.0333
Std Dev 0.0015 0.0034 0.0071 0.0121 0.0221 0.0319
Skewness −0.1771 −0.1774 −0.1777 −0.1353 −0.0510 −0.1614
Kurtosis 1.7206 1.7215 1.7298 1.6821 1.6267 1.8823
AC(T − t) 0.9997 0.9981 0.9918 0.9745 0.7942 −0.1129
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Table 3: Fama Regressions

The table shows the results from estimating, by ordinary least squares, the Fama regression (1),
∆st,T = α + β(yt,T − y?

t,T ) + ηt,T , for the horizons indicated in the column headers. Values in parentheses are
asymptotic autocorrelation and heteroscedasticity consistent standard errors following Newey and West (1987).
t[β = 1] is the t-statistic for testing β = 1. R2 is the in-sample coefficient of determination. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively. The results are based on non-overlapping observations for
horizons up to 1 month and on monthly frequency for horizons of 3 months and beyond. The sample periods are
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989
to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
α −0.0003 −0.0013 −0.0057∗ −0.0176∗∗ −0.0582∗∗ 0.0052
se(α) (0.0002) (0.0008) (0.0032) (0.0069) (0.0269) (0.1364)
β −5.5010∗∗∗ −5.6732∗∗∗ −5.6021∗∗∗ −5.5060∗∗∗ −5.0384∗∗∗ −0.7535
se(β) (1.9883) (1.9086) (1.7643) (1.8159) (1.3612) (1.2085)
t[β = 1] [-3.27] [-3.50] [-3.74] [-3.58] [-4.44] [-1.45]
R2 0.0029 0.0166 0.0787 0.2097 0.4709 0.0151
CAD
α 0.0000 0.0001 0.0002 0.0004 0.0026 0.0635
se(α) (0.0001) (0.0003) (0.0015) (0.0035) (0.0102) (0.0765)
β −3.4228∗∗ −3.4443∗∗ −2.8355∗∗ −2.9106∗∗∗ −3.0959∗∗∗ −0.4018
se(β) (1.4524) (1.4718) (1.4214) (1.0993) (0.9108) (1.2704)
t[β = 1] [-3.05] [-3.02] [-2.70] [-3.56] [-4.50] [-1.10]
R2 0.0019 0.0091 0.0288 0.0852 0.3144 0.0065
CHF
α 0.0002∗∗ 0.0008 0.0035 0.0098 0.032 0.1296∗∗∗

se(α) (0.0001) (0.0006) (0.0027) (0.0086) (0.0273) (0.0423)
β −1.4813 −1.419 −1.4412 −1.3672 −1.3929 −1.0922
se(β) (1.1402) (1.1567) (1.1429) (1.2871) (1.0399) (0.7152)
t[β = 1] [-2.18] [-2.09] [-2.14] [-1.84] [-2.30] [-2.93]
R2 0.0004 0.0019 0.0089 0.0211 0.0736 0.0845
DEM-EUR
α 0.0001 0.0003 0.0012 0.0032 0.0064 0.0419
se(α) (0.0001) (0.0005) (0.0023) (0.0059) (0.0204) (0.0768)
β −0.6817 −0.6919 −0.8104 −1.0400 −1.6348 −0.9614
se(β) (1.0521) (1.0695) (1.0568) (1.131) (1.1785) (0.8931)
t[β = 1] [-1.60] [-1.58] [-1.71] [-1.80] [-2.24] [-2.20]
R2 0.0001 0.0005 0.0033 0.0138 0.1035 0.0471
GBP
α 0.0001 0.0003 0.0013 0.0041 0.0131 0.1118∗

se(α) (0.0001) (0.0007) (0.0031) (0.0068) (0.0245) (0.0632)
β 0.2833 0.2496 0.1932 0.1842 0.2879 1.5835∗∗∗

se(β) (1.0295) (1.1018) (1.1073) (1.5776) (1.3194) (0.4945)
t[β = 1] [-0.70] [-0.68] [-0.73] [-0.52] [-0.54] [1.18]
R2 0.0000 0.0001 0.0002 0.0004 0.0036 0.2715
JPY
α 0.0003 0.0014 0.0066∗ 0.0205∗∗ 0.0933∗∗∗ 0.1764
se(α) (0.0002) (0.0009) (0.0036) (0.0082) (0.0155) (0.1174)
β −1.9643∗ −1.9416 −2.0449∗ −2.152∗∗ −2.4908∗∗∗ −1.0064∗

se(β) (1.1533) (1.2303) (1.1661) (1.0076) (0.7335) (0.6056)
t[β = 1] [-2.57] [-2.39] [-2.61] [-3.13] [-4.76] [-3.31]
R2 0.0007 0.0031 0.017 0.0467 0.2731 0.1331
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Table 4: Yield Pricing Errors and Matching Depreciation Rates

The table reports pricing errors for domestic (US) and foreign yields as well as results for how well model implied
depreciation rates match observed rates. Columns labeled “Yield Pricing Errors” report annualized root mean squared
errors in basis points for the yield maturities indicated in the header. Columns labeled “Matching Depreciation Rates”
report correlations of model implied and observed rates (“corr”) and results of regressing the later on the former
with c0 denoting the intercept, c1 the slope coefficient, and se(·) the respective block-bootstrapped standard errors in
parentheses. R2 is the in-sample coefficient of determination. Panel A presents results for the global model in which
the international economy is driven by two domestic (common) factors and two factors per foreign country. The model
is described in detail in Section 3.1 . Panel B presents results for the single-country model specification with three
factors per country as described in Appendix E. The results are based on daily observations for the sample periods
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989
to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Panel A: Global Model
Yield Pricing Errors Matching Depreciation Rates

1m 3m 6m 1y 2y 3y 4y corr c0 se(c0) c1 se(c1) R2

USD 5 4 6 17 14 11 23
AUD 5 7 8 14 16 23 40 0.9989 -0.0000 (0.0000) 1.0142 (0.0009) 0.9979
CAD 8 10 10 16 29 43 65 0.9985 -0.0000 (0.0000) 1.0311 (0.0012) 0.9971
CHF 8 9 8 14 27 39 52 0.9002 -0.0000 (0.0000) 0.9350 (0.0099) 0.8104
DEM-EUR 10 12 12 18 37 53 71 0.8909 0.0000 (0.0000) 0.9996 (0.0110) 0.7937
GBP 10 10 10 24 38 56 84 0.9561 0.0000 (0.0000) 1.2241 (0.0105) 0.9142
JPY 6 9 11 16 23 45 75 0.9862 0.0000 (0.0000) 0.9789 (0.0035) 0.9726

Panel B: Single-Country Models and Currency Implications
Yield Pricing Errors Matching Depreciation Rates

1m 3m 6m 1y 2y 3y 4y corr c0 se(c0) c1 se(c1) R2

USD 2 3 4 5 6 6 8
AUD 1 2 3 4 5 6 8 -0.0372 0.0000 (0.0001) -0.0006 (0.0004) 0.0014
CAD 2 3 5 6 9 10 13 0.1022 -0.0000 (0.0001) 0.0008 (0.0002) 0.0104
CHF 2 3 4 5 7 6 8 0.0770 0.0001 (0.0001) 0.0015 (0.0004) 0.0059
DEM-EUR 2 2 4 6 7 6 8 0.0582 0.0001 (0.0001) 0.0014 (0.0005) 0.0034
GBP 2 3 4 5 8 7 10 0.0175 0.0000 (0.0001) 0.0003 (0.0004) 0.0003
JPY 1 2 3 4 6 5 7 0.0477 0.0001 (0.0001) 0.0011 (0.0004) 0.0023
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Table 5: Interpretation of Latent State Variables: US Risk Factors and Carry Risk Factors

The table reports results related to the three factor rotations discussed in Section 4.3.2 . For each rotation, we report
the correlation (in percentage points) of the model-implied variables to the respective model-independent estimates in
blocks of four columns each: the first two columns report results for the US short rate level (rt), the slope (µt), and
the level differential (rt − r?i

t ) implied from the model. Vt and Ut are the corresponding quadratic variations. In the
rows, Lt denotes the model-free estimate of the US short rate level, Slt the estimate for the slope, and Lt−L?i

t for the
short rate differential. QVt[·] denotes the respective quadratic variation. In the last two rows and columns we report
correlations to Q-expected depreciation (EQt [ds]) and to the model-implied variance of the exchange rate (QVt[ds]).
The results are based on parameter and states variable estimates of the model using daily data from October 12, 1994
to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008
for CHF, DEM-EUR, GBP, and JPY.

Rotation 1 Rotation 2 Rotation 3

rt µt Vt Ut rt rt − r
?i
t Vt Ut rt − r

?i
t rt Vt Ut EQt [ds] QVt[ds]

AUD
Lt 99.6 −56.9 35.7 35.7 99.6 −73.9 35.7 35.7 84.6 26.1 36.0 48.4 84.6 51.0
Slt −8.7 48.8 45.2 45.2 −5.2 27.8
Lt − L

?i
t 84.4 −34.7 23.9 23.9 99.0 9.3 23.8 16.9 99.0 13.3

QVt[L] 29.5 6.0 40.3 40.3 29.5 15.1 40.3 40.3 43.9 −6.3 40.1 24.9 43.9 16.2
QVt[Sl] 45.6 0.4 51.5 51.5 41.6 51.8
QVt[L− L?i ] 45.1 −13.4 3.5 3.5 60.8 −9.0 3.3 −5.0 60.8 −8.5

EQt [ds] 85.3 −53.9 24.8 24.8 85.3 −34.7 24.8 24.8 100.0 4.3 24.7 18.5 100.0 15.1
QVt[ds] 52.8 27.3 82.3 82.3 52.8 −41.1 82.3 82.4 15.2 4.2 82.9 98.6 15.1 100.0
CAD
Lt 99.6 −53.4 31.4 31.4 99.6 −83.0 31.4 19.4 62.7 26.0 −28.8 −30.4 62.7 −30.4
Slt −9.8 55.8 51.8 51.8 6.1 −4.1
Lt − L

?i
t 65.1 −21.5 21.3 −11.6 96.1 11.5 −87.2 −88.0 96.2 −88.0

QVt[L] 31.2 7.5 36.7 36.7 31.2 −20.7 36.7 35.7 11.8 22.1 −0.4 −2.5 11.8 −2.6
QVt[Sl] 50.5 2.6 49.1 49.1 15.6 3.6
QVt[L− L?i ] 33.3 −48.1 −1.9 6.6 −5.6 17.3 23.3 23.3 −5.7 23.3

EQt [ds] 64.2 −31.9 23.0 23.0 64.2 −17.3 23.0 −10.5 100.0 −1.4 −88.5 −89.4 100.0 −89.4
QVt[ds] −31.2 14.9 −11.8 −11.8 −31.2 −15.7 −11.8 25.3 −89.2 −15.7 99.8 100.0 −89.4 100.0
CHF
Lt 99.6 −43.0 43.6 43.6 99.6 −69.3 43.6 45.9 19.8 40.7 43.9 44.1 19.8 44.1
Slt −17.2 49.7 34.3 34.3 22.1 −29.0
Lt − L

?i
t 27.7 51.1 −40.1 −74.2 99.2 −78.5 −76.7 −76.6 99.2 −76.6

QVt[L] 23.8 29.8 50.0 50.0 23.8 −63.3 50.0 69.3 −51.3 69.0 69.0 69.1 −51.3 69.1
QVt[Sl] 23.1 26.4 45.8 45.8 −45.6 62.7
QVt[L− L?i ] 37.5 −79.3 52.2 78.9 −53.3 78.4 79.5 79.5 −53.3 79.5

EQt [ds] 25.0 −62.7 −40.4 −40.4 25.0 54.5 −40.4 −76.3 100.0 −80.7 −79.1 −79.0 100.0 −78.9
QVt[ds] 39.6 35.0 68.9 68.9 39.6 −91.8 68.9 99.4 −78.9 99.8 100.0 100.0 −78.9 100.0
DEM-EUR
Lt 99.6 −43.0 43.6 43.6 99.6 −59.3 43.6 75.4 40.1 −5.3 75.4 75.4 40.2 75.0
Slt −17.2 49.7 34.3 34.3 18.3 −23.6
Lt − L

?i
t 48.4 39.7 −21.3 −23.7 97.3 −10.0 −23.7 −23.7 97.8 −23.8

QVt[L] 23.8 29.8 50.0 50.0 23.8 −60.2 50.0 65.3 −44.0 6.0 65.3 65.4 −44.2 65.5
QVt[Sl] 23.1 26.4 45.8 45.8 −39.6 60.4
QVt[L− L?i ] 8.4 −63.7 46.2 62.3 −60.9 12.4 62.3 62.3 −61.0 62.4

EQt [ds] 45.0 −61.8 −22.2 −22.2 45.0 46.2 −22.2 −26.8 99.9 −24.1 −26.8 −26.8 100.0 −26.9
QVt[ds] 72.2 11.7 74.1 74.1 72.2 −87.6 74.1 100.0 −26.5 −2.0 100.0 100.0 −26.9 100.0
GBP
Lt 99.6 −43.0 43.6 43.6 99.6 −81.3 43.6 48.2 −11.4 8.5 47.1 47.1 −11.4 47.1
Slt −17.2 49.7 34.3 34.3 45.5 −40.8
Lt − L

?i
t −6.9 62.5 −36.8 −90.8 98.0 −6.7 −91.8 −91.9 98.2 −91.8

QVt[L] 23.8 29.8 50.0 50.0 23.8 −48.3 50.0 67.4 −52.1 7.4 66.2 66.1 −52.2 66.2
QVt[Sl] 23.1 26.4 45.8 45.8 −44.2 57.5
QVt[L− L?i ] 3.3 −22.2 35.3 45.1 −39.2 4.2 44.1 44.0 −39.3 44.1

EQt [ds] −5.3 −28.9 −33.2 −33.2 −5.3 63.4 −33.2 −90.7 99.9 −13.3 −92.0 −92.0 100.0 −92.0
QVt[ds] 42.2 18.8 55.1 55.1 42.2 −83.6 55.1 99.8 −91.8 8.4 100.0 100.0 −92.0 100.0
JPY
Lt 99.6 −43.0 43.6 43.6 99.6 −66.3 43.6 46.5 32.2 19.8 56.9 56.8 28.0 56.8
Slt −17.2 49.7 34.3 34.3 21.3 −18.2
Lt − L

?i
t 34.6 47.5 −34.3 −38.5 99.4 −60.1 −59.2 −60.0 99.2 −58.9

QVt[L] 23.8 29.8 50.0 50.0 23.8 −68.5 50.0 54.1 −50.1 64.6 73.5 73.9 −51.3 73.3
QVt[Sl] 23.1 26.4 45.8 45.8 −46.3 67.3
QVt[L− L?i ] 27.5 −73.2 53.1 57.5 −51.3 68.7 78.0 78.5 −52.4 77.8

EQt [ds] 33.1 −61.8 −32.6 −32.6 33.1 50.0 −32.6 −37.1 99.5 −57.9 −60.2 −61.3 100.0 −59.9
QVt[ds] 53.6 32.6 78.7 78.7 53.6 −90.0 78.7 83.6 −56.6 65.9 100.0 99.8 −59.9 100.0
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Table 6: Fama Conditions

The table shows the relevant variance ratios and correlations to assess the Fama-conditions in Eq. (3). Rows
labeled “Variance ratios” report the variance of the model implied risk premium, λ̂t,T , divided by the variance of
the model expected depreciation, ∆ŝt,T . Rows labeled “Correlations” report the correlation between λ̂t,T and ∆ŝt,T .
The results are based on non-overlapping observations for horizons up to 1 month and on monthly frequency for
horizons of 3 months and beyond. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June
1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
Variance ratios 1.2224 1.2369 1.3016 1.3851 1.4874 1.4208
Correlations −0.9935 −0.9935 −0.9936 −0.9947 −0.9978 −0.9918
CAD
Variance ratios 1.2181 1.2505 1.3619 1.4357 1.4390 1.3743
Correlations −0.9907 −0.9905 −0.9905 −0.9913 −0.9904 −0.9851
CHF
Variance ratios 1.0222 1.0705 1.5664 2.1308 2.1822 2.1071
Correlations −0.9982 −0.9936 −0.9686 −0.9705 −0.9702 −0.9606
DEM-EUR
Variance ratios 1.0220 1.0715 1.4816 1.8508 1.8973 1.8629
Correlations −0.9987 −0.9947 −0.9754 −0.9731 −0.9734 −0.9701
GBP
Variance ratios 0.7870 0.6367 0.5861 0.5861 0.6054 0.6712
Correlations −0.9341 −0.8796 −0.8459 −0.8501 −0.8842 −0.9339
JPY
Variance ratios 1.3072 1.3721 1.6790 2.0476 2.1191 2.4140
Correlations −0.9736 −0.9711 −0.9654 −0.9717 −0.9783 −0.9842
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Table 7: Regressions of Excess Returns on Expected Excess Returns

The table shows the results from estimating, by ordinary least squares, the regression (23), ERt,T = α′+β′ÊRt,T +η′t,T ,
for the horizons indicated in the column headers. Values in parentheses are block-bootstrapped standard errors.
t[β′ = 1] is the t-statistic for testing β′ = 1. R2 is the in-sample coefficient of determination. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively. The results are based on non-overlapping observations for
horizons up to 1 month and on monthly frequency for horizons of 3 months and beyond. The sample periods are
October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989
to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
α′ 0.0001 0.0004 0.0018 0.0031 0.0038 0.0207
se(α′) (0.0001) (0.0006) (0.0023) (0.0061) (0.0217) (0.0832)
β′ 0.6187∗ 0.6346∗ 0.6768∗ 1.0780∗∗∗ 1.2281∗∗∗ 0.7597∗∗

se(β′) (0.3524) (0.3366) (0.3681) (0.3195) (0.2913) (0.3101)
t[β′ = 1] [-1.08] [-1.09] [-0.88] [0.24] [0.78] [-0.78]
R2 0.0018 0.0099 0.0463 0.2474 0.5875 0.3771
CAD
α′ 0.0000 0.0001 0.0001 −0.0007 −0.0016 0.0078
se(α′) (0.0001) (0.0003) (0.0012) (0.0033) (0.0078) (0.0331)
β′ 0.6676∗∗ 0.6680∗∗ 0.6898∗∗ 0.9071∗∗∗ 1.0110∗∗∗ 0.9210∗∗∗

se(β′) (0.2636) (0.2766) (0.2721) (0.2737) (0.1753) (0.2053)
t[β′ = 1] [-1.26] [-1.20] [-1.14] [-0.34] [0.06] [-0.38]
R2 0.0026 0.0120 0.0484 0.1816 0.5945 0.6010
CHF
α′ 0.0000 0.0001 0.0003 0.0015 0.0008 0.0046
se(α′) (0.0001) (0.0006) (0.0024) (0.0067) (0.0202) (0.0388)
β′ 0.5026∗∗∗ 0.5829∗∗∗ 0.9802∗∗∗ 1.1423∗∗∗ 1.0699∗∗∗ 0.8785∗∗∗

se(β′) (0.0819) (0.1147) (0.2668) (0.3322) (0.3790) (0.2874)
t[β′ = 1] [-6.07] [-3.64] [-0.07] [0.43] [0.18] [-0.42]
R2 0.0131 0.0247 0.0491 0.1012 0.2539 0.3259
DEM-EUR
α′ −0.0000 0.0003 0.0014 0.0040 0.0080 0.0072
se(α′) (0.0001) (0.0006) (0.0023) (0.0061) (0.0188) (0.0512)
β′ 0.7825∗∗∗ 0.3900∗∗∗ 0.5871∗∗ 0.9673∗∗∗ 1.0513∗∗∗ 0.7828∗∗∗

se(β′) (0.0953) (0.1392) (0.2344) (0.3390) (0.3567) (0.2907)
t[β′ = 1] [-2.28] [-4.38] [-1.76] [-0.10] [0.14] [-0.75]
R2 0.0476 0.0146 0.0214 0.0917 0.3039 0.3041
GBP
α′ 0.0002∗∗ 0.0007 0.0027 0.0078 0.0220 0.0204
se(α′) (0.0001) (0.0005) (0.0025) (0.0072) (0.0205) (0.0387)
β′ −0.5997 0.0495 0.3372 0.4070 0.4736 0.7633∗∗∗

se(β′) (0.7242) (1.0026) (1.0677) (1.1015) (0.7624) (0.2716)
t[β′ = 1] [-2.21] [-0.95] [-0.62] [-0.54] [-0.69] [-0.87]
R2 0.0005 0.0000 0.0010 0.0040 0.0249 0.3384
JPY
α′ −0.0000 −0.0001 −0.0001 −0.0004 0.0010 −0.0029
se(α′) (0.0002) (0.0007) (0.0025) (0.0063) (0.0211) (0.0439)
β′ −0.3499 0.1139 0.5334∗ 0.8291∗∗ 1.1093∗∗∗ 0.9443∗∗∗

se(β′) (0.3793) (0.3756) (0.3239) (0.3676) (0.3502) (0.1992)
t[β′ = 1] [-3.56] [-2.36] [-1.44] [-0.46] [0.31] [-0.28]
R2 0.0004 0.0002 0.0108 0.0496 0.3200 0.6187
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Table 9: Decomposing Foreign Exchange Risk Premiums

This table reports means and standard deviations (in parentheses) of annualized foreign exchange risk premiums and
their components, i.e. the pure currency risk component and the component that accounts for the fact that interest rates
are stochastic; for the decomposition see Section 2.2 , in particular Eq. (8). The descriptives are calculated from daily
model estimates of the risk premiums. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June
1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
Risk Premium Mean 0.0038 0.0030 0.0004 −0.0037 −0.0090 −0.0185

Std Dev (0.0072) (0.0158) (0.0299) (0.0472) (0.0811) (0.1086)
- Pure currency risk Mean −0.0020 −0.0028 −0.0052 −0.0093 −0.0147 −0.0239

Std Dev (0.0072) (0.0158) (0.0299) (0.0472) (0.0811) (0.1086)
- Stochastic rates Mean 0.0058 0.0058 0.0056 0.0056 0.0057 0.0054

Std Dev (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0001)
CAD
Risk Premium Mean −0.0036 −0.0045 −0.0068 −0.0089 −0.0109 −0.0185

Std Dev (0.0046) (0.0098) (0.0177) (0.0285) (0.0509) (0.0706)
- Pure currency risk Mean −0.0053 −0.0063 −0.0084 −0.0105 −0.0127 −0.0206

Std Dev (0.0046) (0.0098) (0.0178) (0.0286) (0.0512) (0.0708)
- Stochastic rates Mean 0.0017 0.0017 0.0017 0.0017 0.0018 0.0020

Std Dev (0.0000) (0.0001) (0.0001) (0.0002) (0.0004) (0.0006)
CHF
Risk Premium Mean −0.0051 −0.0051 −0.0045 −0.0036 −0.0001 0.0081

Std Dev (0.0259) (0.0303) (0.0244) (0.0328) (0.0556) (0.0670)
- Pure currency risk Mean −0.0121 −0.0120 −0.0113 −0.0104 −0.0072 0.0005

Std Dev (0.0259) (0.0304) (0.0246) (0.0332) (0.0564) (0.0682)
- Stochastic rates Mean 0.0070 0.0070 0.0067 0.0068 0.0071 0.0076

Std Dev (0.0001) (0.0002) (0.0004) (0.0007) (0.0014) (0.0026)
DEM-EUR
Risk Premium Mean −0.0260 −0.0247 −0.0199 −0.0138 −0.0066 −0.0030

Std Dev (0.0123) (0.0261) (0.0437) (0.0517) (0.0620) (0.0785)
- Pure currency risk Mean −0.0330 −0.0317 −0.0267 −0.0208 −0.0149 −0.0144

Std Dev (0.0124) (0.0263) (0.0440) (0.0523) (0.0630) (0.0790)
- Stochastic rates Mean 0.0070 0.0070 0.0068 0.0070 0.0083 0.0114

Std Dev (0.0002) (0.0004) (0.0009) (0.0015) (0.0033) (0.0071)
GBP
Risk Premium Mean −0.0116 −0.0114 −0.0111 −0.0113 −0.0132 −0.0199

Std Dev (0.0034) (0.0051) (0.0091) (0.0154) (0.0292) (0.0458)
- Pure currency risk Mean −0.0159 −0.0158 −0.0153 −0.0155 −0.0173 −0.0237

Std Dev (0.0034) (0.0049) (0.0088) (0.0149) (0.0282) (0.0441)
- Stochastic rates Mean 0.0044 0.0044 0.0042 0.0042 0.0042 0.0038

Std Dev (0.0001) (0.0003) (0.0006) (0.0010) (0.0018) (0.0023)
JPY
Risk Premium Mean 0.0067 0.0062 0.0046 0.0040 0.0086 0.0235

Std Dev (0.0061) (0.0128) (0.0217) (0.0330) (0.0604) (0.0862)
- Pure currency risk Mean 0.0009 0.0003 −0.0011 −0.0017 0.0026 0.0169

Std Dev (0.0061) (0.0128) (0.0217) (0.0330) (0.0605) (0.0872)
- Stochastic rates Mean 0.0058 0.0058 0.0057 0.0057 0.0060 0.0066

Std Dev (0.0000) (0.0000) (0.0000) (0.0001) (0.0002) (0.0011)
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Table 10: Correlations of Expected Excess Returns with Financial and Fundamental Variables

The table presents contemporaneous correlations of expected excess returns with the VIX signed by the yield differential
(sV IXt), the 1-year log changes in US industrial production (∆IPt) and US narrow money supply (∆NMt), the
observable fundamentals, ∆OFt = (∆NMt − ∆NM?

t ) − (∆IPt − ∆IP ?
t ), and the 1-year log change in CPI deflated

private consumption per capita in the US (s∆COt). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively. The significance is judged by block-bootstrapped standard errors which are not reported. The results are
based on non-overlapping observations for horizons up to 1 month and on monthly frequency for horizons of 3 months
and beyond. The sample periods are October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008
for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY. Analysis involving the
VIX start in January 1990.

1 day 1 week 1 month 3 months 1 year 4 years

AUD
sV IXt −0.5352∗∗∗ −0.5466∗∗∗ −0.5342∗∗∗ −0.7128∗∗∗ −0.7847∗∗∗ −0.7662∗∗∗
∆IPt −0.4309∗∗∗ −0.7577∗∗∗ −0.8388∗∗∗ −0.8994∗∗∗
∆NMt 0.3049 0.3931 0.5490∗ 0.6715∗∗
∆COt −0.6895∗∗ −0.7655∗∗ −0.7308∗∗
∆OFt 0.7116∗∗∗ 0.7854∗∗∗ 0.8226∗∗∗

CAD
sV IXt −0.6189∗∗∗ −0.6364∗∗∗ −0.6700∗∗∗ −0.7440∗∗∗ −0.7715∗∗∗ −0.7260∗∗∗
∆IPt −0.5797∗∗∗ −0.8712∗∗∗ −0.9218∗∗∗ −0.9219∗∗∗
∆NMt 0.6162∗∗∗ 0.6810∗∗∗ 0.7595∗∗∗ 0.7128∗∗∗
s∆COt −0.7012∗∗ −0.7049∗∗ −0.6531∗∗
∆OFt 0.4899∗∗∗ 0.7597∗∗∗ 0.7726∗∗∗ 0.7186∗∗∗

CHF
sV IXt −0.1622∗∗∗ −0.2541∗∗∗ −0.5097∗∗∗ −0.6441∗∗ −0.5946∗ −0.4782
∆IPt −0.2615∗ −0.6980∗∗∗ −0.7723∗∗∗ −0.8472∗∗∗
∆NMt 0.5508∗∗∗ 0.8043∗∗∗ 0.8577∗∗∗ 0.8818∗∗∗
s∆COt −0.5636∗∗ −0.5391∗ −0.4746
∆OFt 0.4849∗ 0.5200∗∗ 0.4428∗

DEM-EUR
sV IXt −0.1659∗∗∗ −0.2662∗∗∗ −0.5663∗∗∗ −0.7256∗∗∗ −0.7634∗∗∗ −0.7781∗∗∗
∆IPt −0.3001∗∗ −0.7830∗∗∗ −0.8282∗∗∗ −0.8556∗∗∗
∆NMt 0.6368∗∗∗ 0.8100∗∗∗ 0.8528∗∗∗ 0.8449∗∗∗
s∆COt −0.5931∗∗ −0.6321∗∗∗ −0.6510∗∗∗
∆OFt 0.4702∗∗∗ 0.6932∗∗∗ 0.7416∗∗∗ 0.7454∗∗∗

GBP
sV IXt −0.0471 −0.1196 −0.1333 −0.1880 −0.1833 −0.1801
∆IPt −0.2065 −0.5651∗∗ −0.5126∗ −0.4030
∆NMt 0.5215∗∗∗ 0.5107∗∗∗ 0.4568∗∗ 0.3275
s∆COt −0.1550 −0.1661 −0.1911
∆OFt 0.5462∗∗∗ 0.5004∗∗ 0.4447∗ 0.3120

JPY
sV IXt −0.5421∗∗∗ −0.5885∗∗∗ −0.6650∗∗∗ −0.7199∗∗ −0.7743∗∗ −0.7757∗∗
∆IPt −0.3892∗∗ −0.6284∗∗∗ −0.6128∗∗∗ −0.5946∗∗∗
∆NMt 0.5184∗∗∗ 0.6405∗∗∗ 0.6057∗∗∗ 0.5637∗∗
s∆COt −0.7788∗∗∗ −0.8178∗∗∗ −0.8273∗∗∗
∆OFt 0.5246∗∗∗ 0.8289∗∗∗ 0.8502∗∗∗ 0.8506∗∗∗
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Figure 1: Interpretation of Latent State Variables: US Risk Factors and Carry Risk Factors

The figure plots the US risk factors and Carry risk factors as described in Section 4.3.2 . The solid (black) lines represent model-implied
estimates obtained through factor rotations. The dashed lines (red) are the corresponding model-independent estimates. The first column
plots the US short rate level from Rotations 1 and 2, the second the US slope from Rotation 1, the third the carry factor from Rotation 2,
and the fourth the carry factor from Rotation 3. Estimations are based on daily data from October 12, 1994 to October 10, 2008 for AUD;
June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.
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Internet Appendix for

“Properties of Foreign Exchange Risk Premiums”

(not for publication)

This separate Internet Appendix first reports and discusses detailed empirical results

related to parameter estimations. We then present a number of Tables which are discussed

and referenced in the main text but are not included in the paper.

AA Details related to model estimation results

We present the parameter estimates for the global model of the US and the six foreign

countries estimated using the zero yields of the two countries and the respective spot

exchange rate applying the procedure described in Section 3.2 . Table A.1 reports point

estimates and corresponding 95 percent confidence intervals for the US parameters in Panel

A and for the foreign economies in Panel B. Point estimates are computed as the draw

from the posterior distribution with minimal L1 distance to the other draws. Confidence

intervals are computed from the empirical posterior distribution. All confidence intervals

are fairly tight, only for 18 of the 182 parameters we report the confidence interval includes

zero and most of these are significant at the 10 percent level.

We also check whether the properties of model-implied US bond risk premiums are

consistent with those reported in other studies. Duffee (2002) demonstrates that affine

term structure models can replicate observed term structure characteristics only if the

specification of the market price of risk is flexible enough. A first check reveals that the

risk premiums implied by the model change signs and are highly variable, a necessary

condition to match the observed data. Following Duffee (2002), we assess the specification

of the market price of risk by analyzing whether the model is capable to replicate the

empirical relation between expected returns and the slope of the yield curve. We generate

yield predictions for maturities of 6 months, 2 years, and 4 years (the longest maturity

in our data set) at prediction horizons of 3 months, 6 months, and 1 year, and regress

the prediction errors on the slope defined as the 4-year minus the 3-month yield. The

t-statistics are all small and insignificant (ranging from -0.20 to -1.24) which implies that
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the model captures the information contained in the slope. Overall, the results suggest

that the market price of risk specification is indeed consistent with the prevailing literature

on US term structure risk premiums.

BB Comparison of model parameters for estimations condition-

ing on information in currency options

To take another close look at the effect of conditioning on MFIV, we compare parameters

and state variables of our baseline estimation to the estimation that requires the model

to match MFIV. Bayesian methodology treats the latent state variables as free parame-

ters. Consequently the state variable estimates can be different for the estimations with

and without MFIV. For a meaningful comparison we therefore apply the third rotation

described in Section 4.3.2 , where the international economy is driven by the carry factor

(i.e. the interest rate differential), the level of the domestic short rate, and the quadratic

variations of both. This allows us to compare the rotated parameters, as calculated in

Appendix C, for the two estimation strategies, because the factors and their parameters

then have the same economic interpretation.

For the comparison, we use the posterior draws from the MCMC estimations and con-

sider the joint distribution of all rotated parameters. Tables A.10 and A.11 report point

estimates and confidence intervals for the parameters of the estimations with and without

information in currency options, and Table A.12 presents results for parameter compar-

isons. We report quantiles of the marginal distributions of the parameters as descriptives

and use multiple-testing procedures to compare parameters.31 We first test whether the

parameters of the two estimations are different by calculating empirical p-values for each

parameter and subsequently control for the dependency of these tests using conventional

Bonferroni corrections and a (more powerful) procedure controlling for false discovery rates

(FDR); for both see Benjamini and Hochberg (1995). The results in Table A.12 report

whether parameters are significantly different at the 1%, 5%, or 10% level using Bonferroni

31We apply multiple-testing procedures to test for equality of parameters across estimations because
the notion of a multivariate quantile is subject to current statistical research (see Hallin et al., 2010, for a
recent advance); for a survey see the article by Serfling (2002).
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and FDR corrections, indicated by bbb, bb, or b, and fff, ff, or f, respectively. We find

that for the Bonferroni test 17 of the 240 parameters are significantly different, for the

FDR corrections two more parameters are different across estimations with and without

MFIV at conventional levels of significance. These results suggests that 7% to 8% of the

parameters significantly change once we condition on MFIV. Taking a closer look reveals

some interesting observations. First, most of these differences (7 parameters) are found

for the JPY estimations. Second, as one would expect, most of the differences in param-

eters are associated with the processes for quadratic variations (rotated state variables 1

and 2). Third, most of the differences do not appear to be quantitatively important (are

economically small) when comparing the respective values in Tables A.10 and A.11.

Overall, these findings suggest that conditioning on MFIV does not have a material

effect on the estimation results and the argument that differences are very small in economic

terms is supported by the fact the empirical model evaluation results reported in Section

5.2 are qualitatively identical to those above and quantitatively very similar for both

estimation strategies, perhaps with the exception of the model for the JPY.
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Table A.2: Yield Pricing Errors and Matching Depreciation Rates: Small Model

The table reports pricing errors for domestic (US) and foreign yields as well as results for how well
model implied depreciation rates match observed rates. Columns labeled “Yield Pricing Errors” report
annualized root mean squared errors in basis points for the yield maturities indicated in the header.
Columns labeled “Matching Depreciation Rates” report correlations of model implied and observed rates
(“corr”) and results of regressing the later on the former with c0 denoting the intercept, c1 the slope
coefficient, and se(·) the respective block-bootstrapped standard errors in parentheses. R2 is the in-sample
coefficient of determination. The results are for the global model described in section 3.1 based on daily
observations for the sample periods October 12, 1994 to October 10, 2008 for AUD; June 1, 1993 to Oc-
tober 10, 2008 for CAD; and September 18, 1989 to October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

Yield Pricing Errors Matching Depreciation Rates
1m 3m 6m 1y 2y 3y 4y corr c0 se(c0) c1 se(c1) R2

USD 11 15 16 19 37 67 95
AUD 9 11 12 14 23 35 50 0.9996 -0.0000 (0.0000) 1.0190 (0.0005) 0.9992
CAD 24 38 47 54 54 56 71 0.9995 -0.0000 (0.0000) 0.9990 (0.0006) 0.9991
CHF 8 10 10 14 29 44 57 0.9545 -0.0000 (0.0000) 1.1431 (0.0061) 0.9111
DEM-EUR 12 18 20 21 32 49 69 0.9993 -0.0000 (0.0000) 1.0087 (0.0008) 0.9987
GBP 30 45 54 58 39 30 51 0.9979 -0.0000 (0.0000) 1.0497 (0.0013) 0.9958
JPY 7 10 12 17 23 47 79 0.9231 0.0001 (0.0000) 1.0347 (0.0106) 0.8522
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Table A.3: Regressions of Excess Returns on Expected Excess Returns: Small Model

The table shows the results from estimating, by ordinary least squares, the regression (23),
ERt,T = α′ + β′ÊRt,T + η′t,T , for the horizons indicated in the column headers. Values in paren-
theses are block-bootstrapped standard errors. t[β′ = 1] is the t-statistic for testing β′ = 1. R2 is the
in-sample coefficient of determination. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively. The results are based on non-overlapping observations for horizons up to 1 month and
on monthly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994
to October 10, 2008 for AUD; June 1, 1993 to October 10, 2008 for CAD; and September 18, 1989 to
October 10, 2008 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
α′ 0.0000 0.0001 0.0007 −0.0004 −0.0065 0.0085
se(α′) (0.0001) (0.0007) (0.0027) (0.0076) (0.0235) (0.0805)
β′ 0.9249∗∗ 0.9580∗∗ 0.9491∗∗ 1.2867∗∗∗ 1.3708∗∗∗ 0.8841∗∗

se(β′) (0.4252) (0.4097) (0.4436) (0.3661) (0.3486) (0.3640)
t[β′ = 1] [-0.18] [-0.10] [-0.11] [0.78] [1.06] [-0.32]
R2 0.0024 0.0134 0.0563 0.2250 0.5117 0.4530
CAD
α′ 0.0000 0.0001 −0.0000 −0.0018 −0.0067 0.0033
se(α′) (0.0001) (0.0003) (0.0014) (0.0035) (0.0090) (0.0353)
β′ 0.1207 0.1518 0.4149 0.9399∗∗ 1.1292∗∗∗ 0.8966∗∗∗

se(β′) (0.1341) (0.1473) (0.2704) (0.3949) (0.2356) (0.2189)
t[β′ = 1] [-6.56] [-5.76] [-2.16] [-0.15] [0.55] [-0.47]
R2 0.0004 0.0026 0.0380 0.1894 0.5345 0.5961
CHF
α′ 0.0000 0.0002 0.0005 0.0016 −0.0018 −0.0086
se(α′) (0.0001) (0.0006) (0.0023) (0.0067) (0.0217) (0.0411)
β′ 0.1563∗ 0.3314∗∗ 0.9079∗∗∗ 0.9654∗∗ 1.0330∗∗ 0.8444∗∗∗

se(β′) (0.0798) (0.1596) (0.3511) (0.4260) (0.4514) (0.2721)
t[β′ = 1] [-10.57] [-4.19] [-0.26] [-0.08] [0.07] [-0.57]
R2 0.0008 0.0029 0.0215 0.0553 0.2115 0.3479
DEM-EUR
α′ 0.0001 0.0003 0.0010 0.0025 0.0020 0.0001
se(α′) (0.0001) (0.0005) (0.0020) (0.0055) (0.0188) (0.0512)
β′ 0.6698∗∗∗ 0.7241∗∗∗ 1.0010∗∗∗ 1.1782∗∗∗ 1.1037∗∗∗ 0.8412∗∗∗

se(β′) (0.1683) (0.1408) (0.1410) (0.1983) (0.3661) (0.2913)
t[β′ = 1] [-1.96] [-1.96] [0.01] [0.90] [0.28] [-0.55]
R2 0.0089 0.0404 0.1545 0.2044 0.3141 0.3306
GBP
α′ 0.0002 0.0009 0.0039 0.0105 0.0179 0.0126
se(α′) (0.0002) (0.0008) (0.0035) (0.0107) (0.0309) (0.0385)
β′ −0.4337 −0.4900 −0.4784 −0.2518 0.4578 0.8147∗∗∗

se(β′) (1.4099) (1.3706) (1.3952) (1.3813) (0.9305) (0.2815)
t[β′ = 1] [-1.02] [-1.09] [-1.06] [-0.91] [-0.58] [-0.66]
R2 0.0001 0.0004 0.0016 0.0012 0.0190 0.3174
JPY
α′ −0.0001 −0.0001 0.0005 0.0030 0.0129 −0.0135
se(α′) (0.0002) (0.0006) (0.0022) (0.0058) (0.0204) (0.0472)
β′ 0.6026∗∗∗ 0.9029∗∗∗ 0.5413∗ 0.8397∗∗∗ 0.9897∗∗∗ 0.8495∗∗∗

se(β′) (0.1038) (0.2269) (0.3028) (0.3204) (0.2887) (0.2008)
t[β′ = 1] [-3.83] [-0.43] [-1.51] [-0.50] [-0.04] [-0.75]
R2 0.0319 0.0549 0.0165 0.0723 0.3426 0.5853
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Table A.5: Yield Pricing Errors, Matching Depreciation Rates, and Fitting Model-Free Implied Vari-
ance: Sample 01/1996 to 10/2008

The table reports pricing errors for domestic (US) and foreign yields as well as results for how well
model implied depreciation rates match observed rates. Columns labeled “Yield Pricing Errors” report
annualized root mean squared errors in basis points for the yield maturities indicated in the header.
Columns labeled “Matching Depreciation Rates” report correlations of model implied and observed rates
(“corr”) and results of regressing the later on the former with c0 denoting the intercept, c1 the slope
coefficient, and se(·) the respective block-bootstrapped standard errors in parentheses. R2 is the in-sample
coefficient of determination. Panel A presents results for the global model described in section 3.1 and
Panel B presents results for the model that accounts for information in currency options as described in
Section 5.2 . Panel C presents descriptives for model-free implied variance (MFIV) estimates and MFIV
pricing errors when the estimation conditions on MFIV. The results are based on daily observations for
the sample periods are January 24, 1996 to October 10, 2008 for AUD, CAD, CHF, GBP, and JPY. For
DEM-EUR the sample period is January 1, 1998 to October 10, 2008.

Panel A: Global Model
Yield Pricing Errors Matching Depreciation Rates

1m 3m 6m 1y 2y 3y 4y corr c0 se(c0) c1 se(c1) R2

USD 4 3 6 14 13 11 21
AUD 5 6 8 12 15 23 37 0.9957 0.0000 (0.0000) 1.0261 (0.0020) 0.9914
CAD 5 6 7 15 23 35 53 0.9986 0.0000 (0.0000) 1.0227 (0.0012) 0.9972
CHF 6 6 7 12 20 30 41 0.9004 0.0000 (0.0000) 0.9445 (0.0109) 0.8107
DEM-EUR 6 7 6 10 19 27 35 0.9086 0.0000 (0.0001) 1.0158 (0.0112) 0.8255
GBP 7 7 8 17 23 40 63 0.9774 -0.0000 (0.0000) 1.1021 (0.0049) 0.9552
JPY 5 7 9 9 16 33 52 0.9990 0.0000 (0.0000) 1.0538 (0.0013) 0.9979

Panel B: Global Model including Information in Currency Options
Yield Pricing Errors Matching Depreciation Rates

1m 3m 6m 1y 2y 3y 4y corr c0 se(c0) c1 se(c1) R2

USD 4 3 6 14 13 11 21
AUD 4 6 8 11 14 23 37 0.9963 -0.0000 (0.0000) 1.0244 (0.0020) 0.9926
CAD 5 6 7 14 22 34 53 0.9989 -0.0000 (0.0000) 1.0259 (0.0011) 0.9978
CHF 6 6 6 12 20 30 41 0.8878 0.0000 (0.0000) 0.9418 (0.0115) 0.7882
DEM-EUR 6 7 6 10 19 27 35 0.8869 0.0000 (0.0001) 0.9990 (0.0131) 0.7866
GBP 7 7 8 17 22 40 62 0.9742 -0.0000 (0.0000) 1.1185 (0.0057) 0.9491
JPY 4 7 8 8 15 30 47 0.9989 0.0000 (0.0000) 1.0566 (0.0015) 0.9977

Panel C: Descriptive Statistics for MFIV and Pricing Errors
1-Month Options 3-Month Options

MFIV Pricing Errors MFIV Pricing Errors
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

AUD 0.1111 0.0266 0.0003 0.0269 0.1076 0.0230 0.0038 0.0233
CAD 0.0671 0.0190 −0.0050 0.0166 0.0657 0.0166 −0.0029 0.0141
CHF 0.1119 0.0154 −0.0025 0.0157 0.1143 0.0125 −0.0051 0.0130
DEM-EUR 0.1110 0.0182 −0.0041 0.0170 0.1124 0.0152 −0.0054 0.0138
GBP 0.0861 0.0147 0.0002 0.0159 0.0885 0.0120 −0.0025 0.0132
JPY 0.1202 0.0331 0.0051 0.0345 0.1210 0.0282 0.0046 0.0289
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Table A.6: Regressions of Excess Returns on Expected Excess Returns: Sample 01/1996 to 10/2008

The table shows the results from estimating, by ordinary least squares, the regression (23),
ERt,T = α′ + β′ÊRt,T + η′t,T , for the horizons indicated in the column headers. Values in paren-
theses are block-bootstrapped standard errors. t[β′ = 1] is the t-statistic for testing β′ = 1. R2 is the
in-sample coefficient of determination. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively. The results are based on non-overlapping observations for horizons up to 1 month and on
monthly frequency for horizons of 3 months and beyond. The sample periods are January 24, 1996 to
October 10, 2008 for AUD, CAD, CHF, GBP, and JPY. For DEM-EUR the sample period is January 1,
1998 to October 10, 2008.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
α′ 0.0001 0.0003 0.0018 0.0055 0.0028 0.0234
se(α′) (0.0002) (0.0007) (0.0027) (0.0068) (0.0257) (0.0898)
β′ 0.6311∗∗ 0.7629∗∗ 1.0990∗∗∗ 1.3020∗∗∗ 1.2971∗∗∗ 0.8069∗∗

se(β′) (0.3117) (0.3242) (0.3134) (0.3495) (0.3506) (0.3144)
t[β′ = 1] [-1.18] [-0.73] [0.32] [0.86] [0.85] [-0.61]
R2 0.0017 0.0125 0.0918 0.3046 0.6172 0.3686
CAD
α′ 0.0000 0.0002 0.0004 0.0000 −0.0068 0.0031
se(α′) (0.0001) (0.0004) (0.0013) (0.0033) (0.0076) (0.0339)
β′ 0.0735 0.2137 0.6613∗∗∗ 0.8933∗∗∗ 1.0452∗∗∗ 0.9984∗∗∗

se(β′) (0.1679) (0.2041) (0.2372) (0.2291) (0.1522) (0.1340)
t[β′ = 1] [-5.52] [-3.85] [-1.43] [-0.47] [0.30] [-0.01]
R2 0.0001 0.0024 0.0660 0.2373 0.7342 0.7647
CHF
α′ −0.0000 −0.0001 0.0005 0.0026 0.0019 −0.0033
se(α′) (0.0001) (0.0006) (0.0027) (0.0077) (0.0186) (0.0439)
β′ 0.5902∗∗∗ 0.6574∗∗∗ 0.8048∗∗∗ 1.0554∗∗∗ 1.1648∗∗∗ 0.9620∗∗∗

se(β′) (0.1318) (0.1579) (0.2232) (0.2842) (0.2482) (0.1985)
t[β′ = 1] [-3.11] [-2.17] [-0.87] [0.19] [0.66] [-0.19]
R2 0.0249 0.0405 0.0501 0.1580 0.5423 0.5199
DEM-EUR
α′ −0.0001 −0.0000 0.0017 0.0047 −0.0061 0.0239
se(α′) (0.0002) (0.0007) (0.0037) (0.0080) (0.0122) (0.0625)
β′ 1.0570∗∗∗ 0.7741∗∗∗ 0.6238∗ 1.1669∗∗∗ 1.5131∗∗∗ 0.8066∗∗∗

se(β′) (0.1254) (0.1358) (0.3356) (0.3423) (0.1386) (0.2130)
t[β′ = 1] [0.45] [-1.66] [-1.12] [0.49] [3.70] [-0.91]
R2 0.1264 0.0845 0.0413 0.2111 0.8016 0.6240
GBP
α′ 0.0002∗∗ 0.0007 0.0009 0.0010 −0.0005 −0.0032
se(α′) (0.0001) (0.0005) (0.0023) (0.0070) (0.0223) (0.0335)
β′ −0.1942 0.0779 1.1666∗∗ 1.3306∗∗∗ 1.2225∗∗∗ 0.9788∗∗∗

se(β′) (0.1390) (0.2763) (0.5132) (0.4962) (0.4373) (0.1442)
t[β′ = 1] [-8.59] [-3.34] [0.32] [0.67] [0.51] [-0.15]
R2 0.0003 0.0001 0.0397 0.1601 0.4197 0.6419
JPY
α′ 0.0002 0.0001 0.0001 0.0052 0.0345 −0.0296
se(α′) (0.0003) (0.0009) (0.0038) (0.0090) (0.0225) (0.0469)
β′ 1.3048∗∗ 0.6544 0.6008 1.0009∗∗ 1.5739∗∗∗ 0.7871∗∗

se(β′) (0.6125) (0.3995) (0.5140) (0.4788) (0.4942) (0.3184)
t[β′ = 1] [0.50] [-0.86] [-0.78] [0.00] [1.16] [-0.67]
R2 0.0032 0.0041 0.0118 0.0640 0.3102 0.2805
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Table A.7: Regressions of Excess Returns on Expected Excess Returns: Sample 01/1996 to 10/2008
including Currency Options

The table shows the results from estimating, by ordinary least squares, the regression (23),
ERt,T = α′ + β′ÊRt,T + η′t,T , for the horizons indicated in the column headers. Values in paren-
theses are block-bootstrapped standard errors. t[β′ = 1] is the t-statistic for testing β′ = 1. R2 is the
in-sample coefficient of determination. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively. The results are based on non-overlapping observations for horizons up to 1 month and on
monthly frequency for horizons of 3 months and beyond. The sample periods are January 24, 1996 to
October 10, 2008 for AUD, CAD, CHF, GBP, and JPY. For DEM-EUR the sample period is January 1,
1998 to October 10, 2008.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
α′ 0.0000 0.0003 0.0016 0.0057 0.0054 0.0175
se(α′) (0.0001) (0.0007) (0.0028) (0.0067) (0.0249) (0.0911)
β′ 0.7983∗∗ 0.8625∗∗ 1.1095∗∗∗ 1.3339∗∗∗ 1.3164∗∗∗ 0.7856∗∗

se(β′) (0.3261) (0.3384) (0.3303) (0.3412) (0.3430) (0.3095)
t[β′ = 1] [-0.62] [-0.41] [0.33] [0.98] [0.92] [-0.69]
R2 0.0023 0.0139 0.0864 0.3009 0.6361 0.3719
CAD
α′ 0.0000 0.0002 0.0007 0.0012 −0.0031 −0.0008
se(α′) (0.0001) (0.0004) (0.0014) (0.0035) (0.0078) (0.0334)
β′ 0.2620 0.2853 0.5862∗∗ 0.8365∗∗∗ 1.0189∗∗∗ 0.9981∗∗∗

se(β′) (0.1863) (0.2058) (0.2324) (0.2259) (0.1509) (0.1285)
t[β′ = 1] [-3.96] [-3.47] [-1.78] [-0.72] [0.12] [-0.01]
R2 0.0007 0.0045 0.0592 0.2285 0.7328 0.7664
CHF
α′ −0.0000 −0.0000 0.0006 0.0024 0.0013 −0.0038
se(α′) (0.0001) (0.0007) (0.0026) (0.0079) (0.0183) (0.0441)
β′ 0.6983∗∗∗ 0.6569∗∗∗ 0.7093∗∗∗ 0.9655∗∗∗ 1.1230∗∗∗ 0.9748∗∗∗

se(β′) (0.1032) (0.1422) (0.1949) (0.2873) (0.2408) (0.2006)
t[β′ = 1] [-2.92] [-2.41] [-1.49] [-0.12] [0.51] [-0.13]
R2 0.0451 0.0453 0.0466 0.1523 0.5473 0.5216
DEM-EUR
α′ −0.0001 −0.0003 0.0019 0.0051 −0.0056 0.0369
se(α′) (0.0003) (0.0007) (0.0027) (0.0078) (0.0127) (0.0584)
β′ 1.0159∗∗∗ 0.8894∗∗∗ 0.7747∗∗ 1.0622∗∗∗ 1.4242∗∗∗ 0.7559∗∗∗

se(β′) (0.1083) (0.1355) (0.3836) (0.2983) (0.1280) (0.1940)
t[β′ = 1] [0.15] [-0.82] [-0.59] [0.21] [3.31] [-1.26]
R2 0.2020 0.1786 0.0693 0.1897 0.7949 0.6284
GBP
α′ 0.0001 0.0005 0.0009 0.0011 0.0003 0.0010
se(α′) (0.0001) (0.0004) (0.0024) (0.0079) (0.0250) (0.0299)
β′ 0.3529∗∗∗ 0.4692∗∗ 1.0896∗∗ 1.2216∗∗ 1.1351∗∗ 0.9260∗∗∗

se(β′) (0.1121) (0.2281) (0.4739) (0.5412) (0.4765) (0.1237)
t[β′ = 1] [-5.77] [-2.33] [0.19] [0.41] [0.28] [-0.60]
R2 0.0022 0.0034 0.0355 0.1350 0.3712 0.6548
JPY
α′ 0.0001 −0.0001 −0.0009 0.0001 0.0168 −0.0357
se(α′) (0.0002) (0.0008) (0.0038) (0.0083) (0.0244) (0.0453)
β′ 1.1021∗∗ 0.6532∗ 0.4919 0.8068∗∗ 1.4156∗∗∗ 0.7554∗∗

se(β′) (0.5526) (0.3433) (0.4290) (0.3551) (0.4000) (0.3029)
t[β′ = 1] [0.18] [-1.01] [-1.18] [-0.54] [1.04] [-0.81]
R2 0.0037 0.0068 0.0138 0.0669 0.3619 0.2948
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Table A.12: Comparison of Model Parameters for Estimations Conditioning on Information in Currency
Options: Sample 01/1996 to 10/2008

Using the joint distribution of parameter estimates, we assess whether parameters in A.11 are equal to
corresponding estimates in Table A.10. We first calculate empirical p-values for individual parameter
tests of equality and subsequently control for the dependency of these tests using conventional Bonferroni
corrections and a procedure controlling for false discovery rates; see Benjamini and Hochberg (1995). b,
bb, and bbb indicate significance at the 10%, 5%, and 1% levels using the Bonferroni corrections. f, ff,
and fff indicate significance at the 10%, 5%, and 1% levels when controlling for false discovery rates.

AUD CAD CHF DEM-EUR GBP JPY
ϕ1 – – – – – –
ϕ2 – – – – – bbb/fff
ϕ3 – bbb/fff – – – –
ϕ4 – – – bbb/fff f bbb/fff
ϑ11 – – – – – –
ϑ12 – – – – – bbb/fff
ϑ21 – – – bbb/fff – –
ϑ22 – – – – – –
ϑ31 – – – – – –
ϑ32 – – – – – –
ϑ33 – – – – – –
ϑ34 – – – – – –
ϑ41 – bbb/fff – bbb/fff – bbb/fff
ϑ42 – bbb/fff – bbb/fff – –
ϑ43 – – – – – bbb/fff
ϑ44 – – – – – bbb/fff
c1 – – – – – –
c2 – – – – – –
d1 – – – – – –
d2 – – – – – –
κ1 – – – – – –
κ2 – – – – – –
κ3 – – – – – –
κ4 – – – – – –
ρ1 – – – ff – –
ρ2 – – – – – –
ρ3 – – – – – bbb/fff
ρ4 – – – – – –
f0 – bbb/fff – – – –
f1 – – – – – –
f2 – – – – – –
g0 – – – – – –
g1 – – – – – –
g2 – – – – – –
y0 – bbb/fff – – – –
y1 – – – – – –
y2 – – – – – –
z0 – – – – – –
z1 – – – – bbb/fff –
z2 – – – – – –
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Table A.13: Yield Pricing Errors and Matching Depreciation Rates: Sample until December 2006

The table reports pricing errors for domestic (US) and foreign yields as well as results for how well model
implied depreciation rates match observed rates. Columns labeled “Yield Pricing Errors” report annual-
ized root mean squared errors in basis points for the yield maturities indicated in the header. Columns
labeled “Matching Depreciation Rates” report correlations of model implied and observed rates (“corr”)
and results of regressing the later on the former with c0 denoting the intercept, c1 the slope coefficient,
and se(·) the respective block-bootstrapped standard errors in parentheses. R2 is the in-sample coefficient
of determination. The results are for the global model described in section 3.1 based on daily observations
for the sample periods are October 12, 1994 to December 29, 2006 for AUD; June 1, 1993 to Decem-
ber 29, 2006 for CAD; and September 18, 1989 to December 29, 2006 for CHF, DEM-EUR, GBP, and JPY.

Yield Pricing Errors Matching Depreciation Rates
1m 3m 6m 1y 2y 3y 4y corr c0 se(c0) c1 se(c1) R2

USD 5 4 6 17 15 11 23
AUD 6 7 9 14 18 24 41 0.9990 -0.0000 (0.0000) 1.0171 (0.0010) 0.9981
CAD 9 10 11 17 30 44 68 0.9845 -0.0000 (0.0000) 0.9908 (0.0043) 0.9693
CHF 8 9 9 16 29 41 55 0.9365 0.0000 (0.0000) 0.9940 (0.0072) 0.8771
DEM-EUR 12 15 14 17 39 61 84 0.9990 0.0000 (0.0000) 1.0239 (0.0008) 0.9980
GBP 10 11 10 24 38 58 89 0.9554 0.0000 (0.0000) 1.1636 (0.0097) 0.9129
JPY 7 10 12 19 28 50 82 0.8804 0.0001 (0.0000) 1.0241 (0.0178) 0.7752

83



Table A.14: Regressions of Excess Returns on Expected Excess Returns: Sample until December 2006

The table shows the results from estimating, by ordinary least squares, the regression (23),
ERt,T = α′ + β′ÊRt,T + η′t,T , for the horizons indicated in the column headers. Values in paren-
theses are block-bootstrapped standard errors. t[β′ = 1] is the t-statistic for testing β′ = 1. R2 is the
in-sample coefficient of determination. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively. The results are based on non-overlapping observations for horizons up to 1 month and on
monthly frequency for horizons of 3 months and beyond. The sample periods are October 12, 1994 to
December 29, 2006 for AUD; June 1, 1993 to December 29, 2006 for CAD; and September 18, 1989 to
December 29, 2006 for CHF, DEM-EUR, GBP, and JPY.

1 day 1 week 1 month 3 months 1 year 4 years
AUD
α′ −0.0000 −0.0002 −0.0010 −0.0019 0.0039 0.0083
se(α′) (0.0001) (0.0006) (0.0026) (0.0061) (0.0185) (0.0857)
β′ 0.3285 0.3402 0.3488 0.7917∗∗∗ 1.2774∗∗∗ 0.5761
se(β′) (0.2890) (0.2825) (0.2755) (0.2227) (0.1460) (0.4098)
t[β′ = 1] [-2.32] [-2.34] [-2.36] [-0.94] [1.90] [-1.03]
R2 0.0011 0.0062 0.0238 0.2369 0.7198 0.2917
CAD
α′ −0.0001 −0.0003 −0.0012 −0.0027 −0.0003 0.0062
se(α′) (0.0001) (0.0003) (0.0012) (0.0034) (0.0096) (0.0340)
β′ 0.4318∗ 0.5349∗∗ 0.5382∗∗ 0.6282∗∗∗ 1.0288∗∗∗ 0.8464∗∗

se(β′) (0.2500) (0.2426) (0.2560) (0.2358) (0.2765) (0.3686)
t[β′ = 1] [-2.27] [-1.92] [-1.80] [-1.58] [0.10] [-0.42]
R2 0.0009 0.0060 0.0271 0.1043 0.5194 0.4570
CHF
α′ 0.0000 0.0001 0.0002 0.0010 0.0014 0.0036
se(α′) (0.0001) (0.0006) (0.0027) (0.0073) (0.0235) (0.0425)
β′ 0.3798∗∗∗ 0.6031∗∗∗ 0.7641∗∗ 1.0403∗∗∗ 1.0369∗∗ 0.9146∗∗∗

se(β′) (0.0914) (0.1359) (0.3426) (0.3772) (0.4078) (0.2908)
t[β′ = 1] [-6.78] [-2.92] [-0.69] [0.11] [0.09] [-0.29]
R2 0.0038 0.0170 0.0267 0.0868 0.2413 0.3319
DEM-EUR
α′ 0.0000 0.0001 0.0006 0.0009 0.0025 0.0022
se(α′) (0.0001) (0.0005) (0.0024) (0.0063) (0.0213) (0.0519)
β′ 1.2621∗∗∗ 0.9379∗∗∗ 0.8902∗∗ 0.9634∗∗ 1.0362∗∗ 0.7076∗∗

se(β′) (0.3122) (0.3341) (0.3656) (0.3858) (0.4316) (0.3035)
t[β′ = 1] [0.84] [-0.19] [-0.30] [-0.09] [0.08] [-0.96]
R2 0.0033 0.0085 0.0319 0.0897 0.2765 0.2465
GBP
α′ 0.0002∗∗ 0.0006 0.0025 0.0061 0.0198 0.0209
se(α′) (0.0001) (0.0005) (0.0025) (0.0077) (0.0198) (0.0398)
β′ −1.7946 −0.8173 −0.3884 −0.0375 −0.0365 0.7485∗

se(β′) (1.3293) (1.3965) (1.4380) (1.4750) (0.9902) (0.4138)
t[β′ = 1] [-2.10] [-1.30] [-0.97] [-0.70] [-1.05] [-0.61]
R2 0.0016 0.0011 0.0010 0.0000 0.0001 0.2515
JPY
α′ 0.0001 −0.0003 −0.0011 −0.0037 −0.0065 −0.0117
se(α′) (0.0003) (0.0009) (0.0027) (0.0071) (0.0227) (0.0465)
β′ 0.9237∗∗∗ 0.8238∗∗∗ 0.4083∗ 0.7152∗∗ 1.0602∗∗∗ 0.9134∗∗∗

se(β′) (0.0877) (0.1519) (0.2271) (0.2893) (0.2707) (0.1968)
t[β′ = 1] [-0.87] [-1.16] [-2.61] [-0.98] [0.22] [-0.44]
R2 0.1974 0.1913 0.0168 0.0493 0.3368 0.6157
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