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Abstract

In this short review we present the key definitions, ideas and techniques involved
in the study of symmetry resolved entanglement measures, with a focus on the sym-
metry resolved entanglement entropy. In order to be able to define such entanglement
measures, it is essential that the theory under study possess an internal symme-
try. Then, symmetry resolved entanglement measures quantify the contribution to
a particular entanglement measure that can be associated to a chosen symmetry
sector. Our review focuses on conformal (gapless/massless/critical) and integrable
(gapped/massive) quantum field theories, where the leading computational technique
employs symmetry fields known as (composite) branch point twist fields.
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1 Introduction

The study of entanglement measures in the context of low-dimensional quantum field theory
(QFT) has been a very active field of research within theoretical physics for the past 30 years.
Among this class of models, 1+1D conformal field theories (CFTs), which capture the universal
properties of quantum systems at criticality, have received the most attention. We find some of
the most influential early works [1–3] to be devoted precisely to the study of these models. The
results of these early papers, in conjunction with numerical and analytical work in integrable
spin chain models [4–7], that is, lattice versions of CFT and QFT in 1+1 dimensions, revealed
how entanglement measures, such as the ubiquitous entanglement entropy [8], display universal
scaling at conformal critical points. They also demonstrated numerically evaluating the entan-
glement entropy of an interval in a spin chain to be the most effective method for identifying
and classifying critical points.

In parallel with the developments above, which fall mainly within the areas of mathematical
and theoretical physics, in the field of information theory the question has been asked of what
constitutes a good measure of entanglement. A good review of possible answers to this question
can be found in [9] and there are indeed many such answers: entanglement entropy, Rényi
entropy, concurrence, fidelity, purity, negativity, to name just a few. It is natural to wonder
why we may want to have so many distinct functions supposed to measure the same quantity.
A partial answer is that different entanglement measures are suitable to different situations. In
particular the nature of the quantum state (i.e. mixed or pure), the value of certain parameters
(i.e. finite or zero temperature) and the nature of the partition (i.e. are we measuring the
entanglement between complementary or non-complementary regions?), all play a role in the
choice of entanglement measure. There are some very few properties that seem natural though:
we would like good measures to increase in value when entanglement increases, to be invariant
under certain transformations of the state and (in many cases) to be vanishing for unentangled
regions or states and non-vanishing for entangled ones1.

In recent years, particular attention has been paid to yet another feature of quantum systems,
namely, whether or not an internal symmetry is present. Mathematically speaking, all measures
of entanglement rely on the diagonalisation of a reduced density matrix. In the presence of a
symmetry, the structure of this density matrix is altered, it becomes block-diagonal, with each
block associated with a distinct symmetry sector. It is then natural to ask whether one could
define measures of entanglement which capture not the full entanglement of the state but the
contribution to it which can be associated to a chosen symmetry sector. This question has
been recently answered in the affirmative and the aim of this review is to provide a summary
of the main ideas, definitions, properties and techniques that play a role in the computation of
symmetry resolved entanglement measures in the context of 1+1D QFT.

In the context of CFT, the definition of the symmetry resolved entanglement entropy (SREE)
was put forward in [11], where it was related to correlation functions of generalised (or composite)
branch point twist fields. At around the same time, the role of symmetries and the contribution
of symmetry sectors to the total entanglement was also studied in [12] for a quantum spin chain.
In the context of entanglement measures, the connection with correlation functions of fields
associated with conical singularities was introduced in [3]. A few years later, a different pic-
ture relating entanglement to correlators of symmetry fields associated with cyclic permutation

1This is not the case for instance for the negativity where the difference between so-called destillable and non-
destillable entanglement plays a role and so there can be entangled states which have vanishing negativity [10].
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symmetry in replica theories was introduced [13, 14] which is the picture generalised in [11] to
composite fields. The basic idea is that in theories that possess an underlying symmetry (com-
mon symmetries in QFT are Up1q and Zk for some integer k) entanglement can be expressed as
a sum over contributions from different symmetry sectors. Remarkably such contributions are
experimentally measurable [15–20], which provides further motivation to study this quantity.

This review article is organised as follows: in Section 2 we present the definitions of symmetry
resolved entanglement entropies and partition functions, as well as introducing the charged
moments. In Section 3 we review the properties of (composite) twist fields and their applications
in the context of entanglement. We present two examples: the sine-Gordon model and the Ising
field theory. Section 4 contains a literature review. In Section 5 we derive the main properties of
the symmetry resolved entanglement entropy, including equipartition, and show that they follow
from simple CFT and QFT arguments. In Section 6 we introduce the form factor program for
composite twist fields. In Section 7 we show how finite region size corrections can be derived
using form factors. In Section 8 we discuss the universal properties of the symmetry resolved
entanglement entropy of a certain class of excited states. We conclude in Section 9.

2 Symmetry Resolved Entanglement Entropy: Definitions

Let us now introduce some basic definitions and notation. This being a short review, we will
consider the simplest setup. This means that we will discuss only the case of spacial bipartitions
of pure states and study a single symmetry resolved measure, namely the entropy. Let |Ψy be
a pure state of a 1+1D QFT and let us define a bipartition of space into two complementary
regions A and Ā so that the Hilbert space of the theory H also decomposes into a direct product
HA b HĀ. Then the reduced density matrix associated to subsystem A is obtained by tracing
out the degrees of freedom of subsystem Ā as

ρA “ TrĀp|ΨyxΨ|q , (1)

and the von Neumann (or entanglement) and nth Rényi entropy of a subsystem A are defined
as

S “ ´TrApρA log ρAq and Sn “
logpTrAρ

n
Aq

1 ´ n
, (2)

where TrAρ
n
A :“ Zn{Zn

1 can be interpreted as the normalised partition function of a theory
constructed from n non-interacting copies or replicas of the original model. We will call this the
“replica theory”2. It is easy to show that S “ limnÑ1 Sn.

In the presence of an internal symmetry, we can also define a symmetry operator Q and
its projection onto subsystem A, QA. In the original work [11], QA was specifically related
to the number of charged particles in one region when inserting a space-time Aharonov-Bohm
flux into the n-sheeted space, which couples to the particles’ charge. They assume that the pure
wavefunction |Ψy of the total system is an eigenfunction of the total conserved quantity, which is
a sum of contributions of the two subsystems. This hypothesis can be justified because the total

2For readers more familiar with discrete systems, such as quantum spin chains, it would be more natural to
think of the state |Ψy as a state of the full chain and the region A as a subset of the spins in the chain, with Ā
its complement. The QFT description is an appropriate continuous version of the spin chain, where the number
of spins becomes very large and their mutual spacing very small, in a controlled way so that the fundamental
degrees of freedom become local quantum fields rather than local spins.
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particle number in a system is usually fixed, so the conserved quantity associated to the particle
number and the Hamiltonian commute, and share a basis of common eigenstates. This property
extends to other types of symmetry too, ensuring that rQA, ρAs “ 0. If q is the eigenvalue of
operator QA in a particular symmetry sector, then Znpqq “ TrApρnAPpqqq with Ppqq the projector
onto the symmetry sector of charge q, can be identified as the symmetry resolved partition
function. In terms of this object, the symmetry resolved entanglement entropies (SREEs) can
be written as

Snpqq “
1

1 ´ n
log

Znpqq

Zn
1 pqq

and Spqq “ lim
nÑ1

Snpqq . (3)

An interesting feature of these formulae is that if we compute the total entropy S in terms of
the symmetry resolved contributions Spqq we find the following structure

S “
ÿ

q

rppqqSpqq ´ ppqq log ppqqs , (4)

where ppqq :“ Z1pqq represents the probability that a measurement of the symmetry charge
delivers the value q. In the context of symmetry resolved measures, the first contribution is
known as configuration entropy which, as we can see, is the sum of the SREEs weighted by the
probability of the corresponding charge sector. The second contribution is the number entropy or
fluctuation entropy, which is associated to fluctuations in the value of the charge of subsystem A.
If particle number is the conserved quantity in the system, then the number entropy relates the
number of the particles in one subsystem to that of the other, for a given total particle number,
that is, it characterises particle-number fluctuations between subsystems and is experimentally
measurable [20, 21]. Thus, the total entropy is not just the sum over symmetry sectors of the
symmetry resolved entropy. Instead we have a contribution of this type, but with each SREE
contribution Spqq weighted by ppqq, plus the number entropy3.

As discussed in [11] the symmetry resolved partition function can be obtained from its Fourier
modes, the so-called charged moments Znpαq “ TrApρnAe

2πiαQAq. The expression for these
depends on the type of symmetry under consideration, in particular whether it is continuous or
discrete. Two common examples are

Znpqq “

$

’

’

’

’

&

’

’

’

’

%

1
2
ş

´ 1
2

dα
2πZnpαqe´2πiαq, for a Up1q continuous symmetry,

1
N

N´1
ř

k“0

Zn

`

2πk
N

˘

e´i 2πkq
N , for a ZN discrete symmetry .

(5)

The key contribution of [11] was the realisation that these charged moments can be expressed
in terms of correlation functions of symmetry fields, and therefore are more easily accessible
analytically than the partition functions themselves. These correlation functions are directly
proportional to the partition function of the n-sheeted Riemann surface with a generalised
Aharonov-Bohm flux. We now proceed to introduce branch point twist fields and their composite
versions.

3The names “number entropy” and “configuration entropy” may seem counterintutitive since in the context of
statistical mechanics, the quantity ´kB

ř

n pn log pn, where kB is the Boltzmann constant and pn is the probability
of state n, is called the configuration or configurational entropy.
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3 Branch Point Twist Fields in Quantum Field Theory

Consider again the formulae (2). It is clear that if we know how to compute TrAρ
n
A we will

then have access to all entropies. Indeed, research into entanglement measures in QFT often
centers around the numerical and/or analytical evaluation of this quantity. Many investiga-
tions of entanglement in QFT are based on numerical simulations of quantum spin chains in
the scaling limit. This includes some pioneering works such as [4–7]. In this setting, the re-
duced density matrix ρA is large but finite so that a suitable diagonalisation method can be
found. Once all eigenvalues are know, the evaluation of the trace is straightforward. There are
relatively few models for which analytic computations of such a complex quantity are possible.

Figure 1: Relationship between the replica
partition function and the correlation func-
tion of branch point twist fields for n “ 3
and a compact region of length |a´b|. |Ψyn

is a pure state in the replica theory.

Exceptions to this are free models such as the XY
chain where the reduced density matrix can be ex-
plicitly constructed and diagonalised both at and
away from equilibrium [6, 22], and CFTs, where
many leading features of entanglement are well-
understood also both at equilibrium [2, 3, 23] and
away [24–29]. An scarcity of analytical results is
typical when going beyond criticality. However,
over the past few years, analytical results for inter-
acting QFTs, especially integrable ones have be-
come accessible through the use of branch point
twist fields (BPTFs). It can be shown that the
trace TrAρ

n
A is proportional to a correlation func-

tion of BPTFs and a suitable generalisation of this
map has also been found for symmetry resolved
measures.

The trace TrAρ
n
A associated with a connected

subsystem A of length |a ´ b| is identified with a
(normalised) partition function Zn{Zn

1 on an n-
sheeted Riemann manifold Mn. This manifold is
exactly the Riemann surface of the complex func-

tion n

b

z´a
z´b with a, b the branch points. This con-

nectivity of the manifold originates from the struc-
ture of the nth power (leading to n connected
sheets) and the trace (leading to cyclically con-
nected sheets). Then, the problem of computing
this partition function can be mapped to the prob-
lem of computing a correlation function in the com-
plex plane with two BPTF insertions at the branch
points, see Fig.1.

The geometric complexity of the Riemann surface is then encoded into the exchange relations
of the BPTF with other local fields of the theory. These branch point twist fields are twist
fields in the standard sense in QFT, that is, they are symmetry fields associated to an internal
symmetry of the theory, much like the order and disorder fields in the Ising field theory [30–33]
which are associated to Z2 symmetry. The fields T , T̃ are associated also to a discrete symmetry,
namely the two opposite cyclic permutation symmetries σ : i ÞÑ i ` 1 and σ´1 : i ` 1 ÞÑ i
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(i “ 1, . . . , n, n` i ” i) present in the replica theory

T “ Tσ , σ : i ÞÑ i` 1 modn ,

T̃ “ Tσ´1 , σ´1 : i` 1 ÞÑ i modn . (6)

Thus, given a QFT containing a local field φpxq with coordinates x :“ px0,x1q, its replica
version contains n fields φipxq and their equal-time exchange relations with the BPTF and its
hermitian conjugate are as follows:

φipxqT pyq “ T pyqφi`1pxq, y1 ą x1,
φipxqT pyq “ T pyqφipxq, x1 ą y1,

φipxqT̃ pyq “ T̃ pyqφi´1pxq, y1 ą x1,

φipxqT̃ pyq “ T̃ pyqφipxq, x1 ą y1.

(7)

At this stage, it is worth presenting a brief history of the fields T , T̃ . In the context of en-
tanglement, their description as symmetry fields in replica theories, appeared first in [13]. A
connection between entanglement measures and correlation functions of conical fields in CFT
was first proposed in [3]. However, BPTFs were described much earlier in a different context.
They emerged in the study of orbifold CFT, and their conformal dimensions were first obtained
in [34,35]. They are given by

∆n “
c

24

ˆ

n´
1

n

˙

, (8)

and are functions of the central charge c and the replica number n.

3.1 Composite Fields

Returning now to the SREE, we recall that the basic building blocks are the moments Znpαq

(let us assume Up1q symmetry for now). In [11] it was shown that these moments can also be
expressed in terms of correlators of symmetry fields. These symmetry fields should implement
cyclic permutation symmetry and the internal symmetry of the theory simultaneously so they
are still BPTFs but not the fields T , T̃ described in the previous subsection.

The problem of how such fields may be defined is easy to solve in CFT. They must be
fields that are formed by composition of two twist fields, one associated to cyclic permutation
symmetry, that is T , and one associated to the internal symmetry of the theory, which would
vary from theory to theory. Note that composition with local (non twist) fields can also be
considered, as done in [36,37] and this is of interest in the context of the entanglement entropy
of non-unitary QFTs [38,39]. We will call these fields, composite twist fields (CTFs).

It is instructive to present the following definition of a CTF :T ϕ :, following [36]. Let ϕ be
a local field in a CFT, then the CTF in the replica theory can be defined as

:T ϕ :pyq :“ n2∆´1 lim
xÑy

|x´ y|
2∆p1´ 1

nq
n

ÿ

j“1

T pyqϕjpxq , (9)

where ϕjpxq is the copy of field ϕpxq living in replica j, : : represents normal ordering and the
power law, involving the conformal dimension of the field ϕ, denoted by ∆, is obtained using
conformal symmetry. The CTF is then the leading field in the operator product expansion of
T pyq with

ř

j ϕjpxq. The prefactor n2∆´1 ensures conformal normalisation of the two-point

5



function of CTFs. This definition is then extended to more general QFTs (i.e. non conformal)
in the usual way, by seeing the CTF as the off-critical versions of its conformal counterpart (9).
Employing once more conformal arguments, it is possible to show that the conformal dimension
of the CTF is given by [11,36]

∆ϕ
n “ ∆n `

∆

n
. (10)

In the context of symmetry resolution a special choice of the field ϕ is made. Namely, we now
need this field to also be a symmetry field. The nature of the field will depend on the theory.
Here we provide two examples: the case of a continuous Up1q symmetry, as found in the sine-
Gordon model [40], and the case of a discrete Z2 symmetry, as found in the Ising field theory [30].
The first is an interacting integrable massive QFT while the second is a free massive QFT. Here
‘massive’ is understood as non-critical, that is, in both cases there is a mass gap. The use of
CTFs ties up with the Riemann surface picture of Fig. 1 through an argument that was first
presented in [11]. The insertion of the additional twist field ϕ can be seen as introducing an
Aharonov-Bohm flux on one of the Riemann sheets 4. In terms of these fields we have that the
charged moments Znpαq for a connected region of length ℓ can be written as two-point functions
of the CTF and its conjugate. We will see some examples later.

3.1.1 The sine-Gordon Model

The sine-Gordon action is given in terms of a fundamental bosonic field φ and coupling constants
γ, g as:

A “

ż

dxdt

„

1

16π
rpB0φq2 ´ pB1φq2s ´ 2γ cospgφq

ȷ

, (11)

where γ is related to the total kink energy, sometimes called the classical kink mass. The model
has Up1q symmetry, seen by the invariance of A under the shift φ ÞÑ φ ` p2π{gq. Famously,
the model has topological sectors associated with different Up1q charges. Field configurations
in different topological sectors cannot evolve into each other without violating the finite energy
condition. Hence, the conserved topological indices in the theory come from the finite energy
condition and not from a continuous symmetry. At classical level, the solutions to the field
equation interpolate between different vacua associated with those sectors, thus (in some cases)
carrying a topological charge. There are three types of fundamental solutions, known as soliton,
antisoliton and breathers. The latter can be seen as bound states of the former which “breath”
in the sense that they are time-dependent solutions. As we see in Section 6 these classical
solutions are promoted to stable quantum excitations in the quantum model [40,43].

The twist field associated with Up1q symmetry is the simple vertex operator

Vα “ exp

ˆ

iαgφ

2π

˙

, (12)

with conformal dimension ∆ “ pg2α2q{p32π3q. The short-distance limit of the model is a massless
free boson with central charge c “ 1. The exchange relations of this Up1q twist field with

4From the viewpoint of computing entanglement measures employing form factors of CTFs this flux can be
spread over all the the Riemann sheets, as long as it combines to its total value. This idea was employed in [41]
and is represented by Fig. 1 in [42].
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other local fields in the theory are characterised by the semi-locality (or mutual locality) index
eiκα [30, 33] via the equal-time exchange relations

Vαpxqϕκpyq “

"

eiκαϕκpyqVαpxq, y1 ą x1,
ϕκpyqVαpxq, x1 ą y1,

(13)

with κ “ ˘, 0. The fields ϕ˘,0 are associated with the creation of a soliton (`), an antisoliton
p´q or a neutral particle p0q (usually called a breather). The mutual locality factor eiκα and
its physical meaning are in agreement with the intuitive picture presented in [11], where it
is associated with the insertion of the Aharonov-Bohm flux on one of the Riemann sheets.
Consequently, the Up1q CTF denoted as T α

n pxq can be understood formally as : T Vα : pxq in
the sense of (9), and in a replica theory, is characterised by equal-time exchange relations

T α
n pxqOp,ipyq “

#

e
ipα
n Op,i`1pyqT α

n pxq, y1 ą x1,
Op,ipyqT α

n pxq, x1 ą y1,
(14)

with respect to quantum fields Op,i living on the ith replica and possessing Up1q charge p P Z.
Similarly,

T̃ α
n pxqOp,ipyq “

#

e´
ipα
n Op,i´1pyqT̃ α

n pxq, y1 ą x1,

Op,ipyqT̃ α
n pxq, x1 ą y1.

(15)

The choice of the phases ˘α{n is motivated by requiring that the total phase picked up by a
charged particle (associated with a unity of charge) is e˘iα when turning around each of the
branch points.

3.1.2 The Ising Field Theory

The Ising field theory describes a free Majorana fermion ψpxq of mass m with action

A “
1

2π

ż

dxdt
“

ψB̄ψ ` ψ̄Bψ̄ ` imψ̄ψ
‰

, (16)

It is well-known that the Ising field theory has an internal Z2 symmetry. This can be seen from
the invariance of the action under ψ ÞÑ ´ψ. Associated to this symmetry there are two twist
fields: σ, the spin field (order operator), and µ (disorder operator)5. The theory also contains
a free Majorana fermion field ψ so that, in the disordered phase of the theory, the three fields
can be characterised by their mutual equal-time exchange relations [30–33]:

ψpxqσpyq “

"

σpyqψpxq, y1 ą x1,
σpyqψpxq, x1 ą y1,

and ψpxqµpyq “

"

´µpyqψpxq, y1 ą x1,
µpyqψpxq, x1 ą y1.

(17)

In the conformal limit, the fields µ, σ both have dimension ∆ “ 1{16 and the theory can be seen
as the massive perturbation of a massless free fermion with central charge c “ 1{2. In a replica
theory, the Majorana fermion is labelled by a copy index ψjpxq and satisfies the usual exchange

5In this paper we use the conventions of [33], which corresponds to choosing the disordered phase of the model,
where the fields σpµq are odd (even) with respect to the Majorana fermion ψ.
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relations (7) with the BPTF. The leading fields in the operator product expansions of T with
ř

j σj and
ř

j µj , here denoted by T ˘
n respectively, are CTFs satisfying the exchange relations

ψjpxqT ˘
n pyq “

"

˘T ˘
n pyqψj`1pxq, y1 ą x1,
T ˘
n pyqψjpxq, y1 ă x1,

(18)

and

ψjpxqT̃ ˘
n pyq “

"

˘T̃ ˘
n pyqψj´1pxq, y1 ą x1,

T̃ ˘
n pyqψjpxq, y1 ă x1.

(19)

4 A Brief Literature Review

Starting from these basic ideas, symmetry resolved measures have been investigated for many
models. In fact, the idea that we might “resolve” entanglement measures according to some
property already appeared in early works such as [44], where spin resolution is considered. Many
studies of symmetry resolved entanglement measures, starting with the original works [11, 12],
have considered either 1+1D CFTs or critical spin chains because of the specific analytic and
numerical methods that are available in those cases. While [45,46] studied the SREE of massless
free fermions and of excited states of CFT, respectively, [47] considered the effect of boundaries,
and [48,49] studied finite size corrections, also in CFT. Specific CFTs characterised by intricate
mathematical structures and physical applications, such as the Wess-Zumino-Novikov-Witten
model [50], and theories possessing categorical non-invertible symmetries [51] continue to be
intensively studied at present.

The SREE is just one among a large family of entanglement measures, all of which can be
subjected to symmetry resolution. Studies of other measures also abound. For example, [52,53]
studied the symmetry resolved negativity of massless free fermions, while in [54,55] the relative
entropies of CFT were given the symmetry resolved treatment. Likewise for the symmetry
resolved fidelities of gaussian states in [56], the Page curve [57] and the CCNR negativity [58–
60]6. In particular, in cases when the entangling region consists of disconnected parts, it is
useful to compute the so-called multi-charged moments, with potentially distinct charges for
each interval. These have been studied for instance in [61–63] for the massless Dirac field theory
and the compactified free boson, respectively.

Free theories, whether critical or not, provide fertile ground for the study of entanglement
measures. This is because there is a wider range of analytical methods at our disposal, compared
to interacting models. For example, for free fermionic spin chains, one may compute entangle-
ment measures, including symmetry resolved ones, by employing the properties of Toeplitz
determinants, as exploited in [47, 62, 64]. Toeplitz determinants emerge naturally when com-
puting the reduced density matrix of free fermionic systems7. The Dirac free fermion, which is
a free massive QFT with Up1q symmetry, has also been studied in [65–67] employing the form
factor program (see Section 6).

The form factor program is the most successful analytic method for dealing with integrable
1+1D QFT, and can be employed both for interacting and free theories. It is a systematic
approach to computing matrix elements of local and twist fields which can then be used as

6CCNR stands for computable cross-norm or realignment.
7Essentially, the non-vanishing entries of the reduced density matrix are two-point correlators which can be

expressed in terms of Toeplitz determinants [6].
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building blocks for correlation functions. Given the relationship between correlation functions of
BPTFs and CTFs and entanglement measures it is no surprise that the form factor program has
been employed to study entanglement measures in QFT. In the context of symmetry resolution,
one needs to first extend the program to deal with CTFs, a task that was completed in [65].
The form factor equations proposed in that work have subsequently been employed to study the
SREE in the ground state for the sine-Gordon [68] and Potts models [69], as well as for excited
states in free massive fermions and bosons [70, 71], with a subsequent extension to studying
the negativity in free fermion theories [41]. An interesting recent work has used the form
factor technique to investigate massless flows between two CFTs in the context of symmetry
resolution [72]. Form factors are however not the only way to tackle interacting theories. There
are of course numerical methods, which are also employed in many of the papers cited above.
For integrable lattice systems we may also employ the corner transfer matrix approach, which
is particularly well suited to evaluating entanglement measures in the half-infinite line. This
approach has also been employed for symmetry resolved measures in [73].

A further viewpoint on entanglement in QFT is provided by the holographic picture stem-
ming from string theory. It has been known since the pioneering work [74, 75] that there is a
quantitative relationship between the entanglement entropy of a CFT and the geometry of an
associated AdS spacetime. More precisely the entanglement entropy of a region A where a CFT
is defined, is proportional to the area of a “minimal surface” whose boundary is A. Symmetry
resolved measures have also been studied within this holographic setting [76–81].

As mentioned at the beginning of this section, a lot of results for entanglement measures in
general, and symmetry resolved ones in particular, consider lattice models. We have already
mentioned some of these works [12,44,45,47,73,82] when discussing free theories earlier. Addi-
tional examples are found in [83, 84], and in [85–87]. In the latter, there is also an interesting
focus on the role played by different contributions to the total entanglement as seen by equation
(4). It is found that, depending on the symmetry of the system or selection rules (e.g. fixing the
particle number), only a certain contribution to the entanglement entropy will be “operationally
accessible”, that is the number entropy introduced after equation (4).

Having considered different partitions, theories, states and measures, it is also natural to
venture beyond equilibrium states and on to investigating out-of-equilibrium protocols [24–27].
These have been extensively studied for the past 10 years, and there is a vast amount of literature
on the subject (see e.g. the reviews [88–90] and the book [91]). Suffice to say that any ideas
and techniques employed for standard entanglement measures, say, the quasi-particle picture
[28,29], can be applied to studying symmetry resolved measures too. Some examples are found
in [18,56,61,82,87,92–98].

Finally, let us mention studies concerned with other types of theories, that is models that
are neither critical in the standard sense nor integrable. For example, the symmetry resolved
entanglement of quantum spin chains with random couplings has distinct properties, which
are different from but resemble those of CFT, and was studied in [99]. The symmetry resolved
entanglement in many-body localised systems has been studied in [100,101]. It is also possible to
examine topological phases [102–105], topological defects [106] and more general statistics, like
that of anyons [107] through the lens of symmetry resolution. Recently, the SREE of non-local
QFTs has been studied in [108].
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5 Scaling and Equipartition

What are the most salient properties of the SREE? The answer to this question appeared already
in the early works [11, 12] and has been further investigated in many of the publications listed
above. Three main properties were found:

1. In a critical system, the SREE scales logarithmically with the size of the subsystem, just
as the total entropy does.

2. In a critical system, the SREE exhibits the property of equipartition, namely in some limit
at least, its value is independent of the chosen symmetry sector.

3. In a critical system, the SREE exhibits a double-logarithmic correction which contains
information about the scaling dimension of the symmetry field.

All of these properties can be easily shown using standard CFT arguments. In particular, we
may employ the CTFs introduced earlier, together with the information about their scaling
dimension, and the fact that they are primary fields whose correlators are normalised in the
usual way. In order to perform an explicitly computation, we will consider the case of the Up1q

symmetry in sine-Gordon with the definitions given in subsection 3.1.1. We have said earlier
that the charged moments are defined in terms of correlators of these fields. If we are computing
the symmetry resolved entropies for a continuous interval of length ℓ in the ground state, we
can write that

Znpαq “ ε4∆
α
n
nx0|T α

n p0qT̃ α
n pℓq|0yn , (20)

where ∆α
n is the dimension of the CTF and ε is a non-universal short-distance cut-off8, in this

case

∆α
n “

1

24

ˆ

n´
1

n

˙

`
g2α2

4p2πq3n
. (21)

Note that, with this notation, ∆0
n “ ∆n is the dimension of the BPTF and ∆α

1 is the dimension of
the Up1q field (which we called ∆ in the general formula (10)). In a CFT, with the normalisation
(9), we have that the two-point function scales with the distance between fields in the usual way

Znpαq “

´ε

ℓ

¯4∆α
n
, (22)

thus, all the α-dependence comes from the scaling dimension of the composite twist field. In
order to obtain the symmetry resolved partition function, we need to Fourier-transform this
expression with respect to the variable α using the formula (5):

Znpqq “

ż 1
2

´ 1
2

dα

2π

´ε

ℓ

¯4∆α
n
e´2πiαq “

´ε

ℓ

¯4∆0
n

ż 1
2

´ 1
2

dα

2π

´ε

ℓ

¯

g2α2

p2πq3n e´2πiαq . (23)

The integral can be computed exactly. We note as well that pε{ℓq4∆
0
n is nothing but the partition

function Zn (non-symmetry resolved) so that, from this term, we will subsequently recover a

8In spin chains ε is proportional to the lattice spacing. The introduction of the cut-off ε allows for the
comparison between QFT and lattice results. See [13] for an explicit computation in the Ising model where the
exact relationship between the cut-off ε and the lattice spacing was found.
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leading contribution to the SREE that is identical to the full entropy. For ε{ℓ ă 1 we have that
logpℓ{εq ą 0. In that case we can rewrite the integral and compute it exactly to obtain

Znpqq “

´ε

ℓ

¯4∆0
n

ż 1
2

´ 1
2

dα

2π
e´α2 ∆̃

n
log ℓ

ε e´2πiαq

“
1

2π

´ε

ℓ

¯4∆0
n

?
πe

´
π2q2

∆̃
n log ℓ

ε

2

b

∆̃
n log ℓ

ε

¨

˝Erf

¨

˝

∆̃
n log ℓ

ε ´ 2iπq

2

b

∆̃
n log ℓ

ε

˛

‚` Erf

¨

˝

∆̃
n log ℓ

ε ` 2iπq

2

b

∆̃
n log ℓ

ε

˛

‚

˛

‚ ,(24)

where ∆̃ :“ g2{p2πq3 and Erfpxq is the error function. This formula is however a bit hard to
read. It is more common to consider the logpℓ{εq " 1 expansion instead (or, alternatively, to
carry out a saddle point approximation on the integral itself). This approximation was presented
in [11] for the compactified free boson, where a Up1q symmetry is also present with an associated
symmetry field of dimension pα2Kq{p8π2q. Their result, amounts to approximating the sum of
error functions by the value 2 at leading order, giving

Znpqq «
1

2
?
π

´ε

ℓ

¯4∆0
n e

´
π2q2

| ∆̃n log ε
ℓ

|

b

| ∆̃n log ε
ℓ |

. (25)

Computing now the symmetry resolved Rényi entropy as defined by (3), we have that the

leading contribution comes from the term pε{ℓq4∆
0
n , which gives the total Rényi entropy of a

CFT, i.e. pn ` 1q logpℓ{εq{p6nq, and the leading correction comes from the square root term in
the denominator of (25), giving

Snpqq «
n` 1

6n
log

ℓ

ε
´

1

2
log

ˆ

4π∆̃ log
ℓ

ε

˙

`
1

1 ´ n
log

?
n . (26)

We can also compute the limit n Ñ 1 to obtain the symmetry resolved von Neumann entropy

Spqq «
1

3
log

ℓ

ε
´

1

2
log

ˆ

4π∆̃ log
ℓ

ε

˙

´
1

2
. (27)

This formula exhibits all three properties listed at the beginning of this section. We see that the
entropy scales logarithmically. Not only that but at leading order, it scales exactly like the total
entropy of a CFT, as we know from [1–3]. There is however a (negative) double-logarithmic
correction, which incorporates some information about the dimension of the symmetry field
through the parameter ∆̃. It has been noted in several places, including in [68] that this double-
log term is cancelled out by the number entropy contribution when computing the total entropy
through (4). Finally, we observe that there is no dependence on the symmetry charge q so that
we have equipartition of entanglement among symmetry sectors. From the derivation, it is clear
that this equipartition is not an exact result, but only true in the particular limit of a large region
as considered here. Dependence on q is quickly found when considering higher corrections, as
we see from the exact formula (24)9. The dependence on the dimension of the symmetry field

9The breakdown of equipartition at higher orders has been recently discussed for CFTs with underlying non-
invertible symmetries in [51].
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has to also be treated with care, since its meaningfulness relies on the assumption that there are
no additional non-universal constant corrections to the formula (27), or that one knows exactly
how to subtract those.

These results employ explicitly properties of 1+1D CFT, notably the simple scaling of two-
point functions of primary fields which is imposed by conformal invariance. Similarly strong
constrains exist for three and higher-point functions, though these are much less trivial [109].
We may ask how these properties change for a massive QFT, which can be seen as a (massive)
perturbation of CFT [110]. The answer is that, in general, away from criticality, it is much
harder to find exact formulae for correlation functions, unless we are dealing with free theories.
There is however a class of models, namely integrable QFTs (IQFTs), for which there are special
methods that we can use to investigate correlation functions of any fields, including CTFs. The
leading method is the form factor program [13,65,111,112] which we discuss below.

However, we also know since the work [3], with a later proof in [113], that the entanglement
entropy of an interval in a gapped system saturates to a constant value. This value depends
on the mass scale/correlation length and this dependence is identical to that found in CFT,
with the simple replacement of the interval size ℓ by the correlation length ξ. This property
extends to the symmetry resolved entropies, again in the limit of a very large region, where the
dependence on region size drops out.

There is a very simple way to recover this result, which does not require the use of any
specialised techniques, so we will present this derivation before introducing the form factor
program. The derivation is based on the property of clustering of correlators. Clustering means
the factorisation of multi-point functions into products of vacuum expectation values of fields
in local QFT, whenever the distance between fields is very large. In our example it means that
the charged moments (20) in a gapped QFT satisfy

lim
ℓÑ8

ε4∆
α
n
nx0|T α

n p0qT̃ α
n pℓq|0yn “ ε4∆

α
n |nx0|T α

n p0q|0yn|2 . (28)

In 1+1D QFT vacuum expectation values scale as powers of a fundamental mass scale

nx0|T α
n p0q|0yn “ Uα

n m
2∆α

n , (29)

where Uα
n is a constant10, so the charged moments scale as

Znpαq “ |Uα
n |2 pmεq4∆

α
n . (30)

Comparing this last expression with (22) we see that the two expressions are identical up to the
replacement ℓ ÞÑ m´1 9 ξ and the normalisation constant, so that the computation we carried
out above can be performed in exactly the same fashion for massive theories and gives the same
formulae above with logpℓ{εq replaced by logpmεq and an additional dependence on a universal
constant Uα

n .
The conclusion is then that also in massive 1+1D QFT the SREE saturates to a constant

value which depends on the correlation length and, for large regions and large correlation length,
is independent of the charge, that is, there is again equipartition. The form factor technique

10The value of the VEV is operator and model-dependent but it is also universal in the sense that, once the
field and the model are fixed, then its value does not depend on any regulators. If the operator is primary in the
UV limit and its CFT correlators are normalised according to conformal normalisation, that is, their two-point
function is ℓ´4∆α

n as in (22), then Uα
n is entirely fixed. See the computation in [13] of the value of U0

n for the Ising
field theory.
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mentioned above, allows us to obtain corrections to saturation, which incorporate a dependence
on the size of the subsystem, usually leading to exponentially decaying corrections. This kind
of analysis has been performed in various papers [65, 68, 69]. Form factor techniques have also
been employed in the study of the SREE and negativity of excited states of QFT in [41,70,71].
We review the main features of this technique in the next section.

6 Form Factors and Their Applications

Integrable 1+1D QFTs have many special features, which stem from the interplay between low
dimensionality and the presence of infinitely many conservation laws. As a result IQFTs, even
interacting ones, are severely constrained. In particular, their scattering amplitudes and the
matrix elements of local fields, called form factors, can be obtained exactly. Exactly means
non-perturbatively, as solutions to a set of equations. The program dedicated to systematically
solving these equations and testing solutions for consistency is called bootstrap program and has
led to a huge amount of analytical results over many decades, making integrable models some
of the most studied theories in mathematical and theoretical physics. For the purposes of this
review, we are interested in the form factor equations satisfied by BPTFs and CTFs. The former
were first written in [13] and the latter in [65], and both are generalisations of the standard form
factor equations for local fields, which are known since the 70s [111, 112]. We summarise the
main aspects of the program below, largely following the discussion presented in [68].

The form factors (FF) are matrix elements of (semi-) local operators Opxq between the
vacuum state |0y and asymptotic states, here represented by the set of rapidities θi and quantum
numbers γi,

FO
γ1...γk

pθ1, . . . , θkq :“ x0|Op0q|θ1, . . . θkyγ1...γk . (31)

In massive field theories like the sine-Gordon model and the Ising field theory introduced earlier,
the asymptotic states are spanned by multi-particle excitations with energy and momentum
given by Eγpθq “ mγ cosh θ, Pγpθq “ mγ sinh θ, where γ indicates the particle species and θ its
rapidity. In such models, any multi-particle state can be constructed from the vacuum state |0y

as
|θ1, θ2, ..., θkyγ1...γk “ A:

γ1pθ1qA:
γ2pθ2q . . . .A:

γk
pθkq|0y , (32)

where A:s are particle creation operators. In an IQFT with factorised scattering, that is, where
all scattering processes can be factorised into two-particle scattering events, the creation and
annihilation operators A:

γipθq and Aγipθq satisfy the Zamolodchikov-Faddeev (ZF) algebra [114,
115]. In addition, if the theory is non-diagonal, like sine-Gordon, meaning that the incoming
and outgoing particles in a two-body scattering process may be distinct, even if they belong to
the same mass multiplet, then the algebra is

A:
γipθiqA

:
γj pθjq “ S

ηiηj
γiγj pθi ´ θjqA

:
ηj pθjqA

:
ηipθiq ,

AγipθiqAγj pθjq “ S
ηiηj
γiγj pθi ´ θjqAηj pθjqAηipθiq ,

AγipθiqA
:
γj pθjq “ S

ηiηj
γiγj pθj ´ θiqA

:
γj pθjqAγipθiq ` δγi,γj2πδpθi ´ θjq, (33)

where S
ηiηj
γiγj pθi ´ θjq denotes the two-body S-matrix of the theory and summation is understood

on repeated indices. The above discussion is general and valid for any IQFT. In sine-Gordon, the
particle index γi can take the particular values s, s̄ which correspond to the soliton, antisoliton
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and bi with i “ 1, 2 . . . corresponding to their bound states (breathers), on which there will be
a finite number determined by the value of the coupling g introduced in (11). In the Ising field
theory on the other hand, there is a single particle type, so the particle index is redundant.

In the n-copy (replica) IQFT indices are doubled, in the sense that particles are characterized
both by their species (γi, ηi in the formulae below) and their copy number (µi, νi in the formulae
below). The two-body scattering matrix is then generalised to

S
pηi,νiqpηj ,νjq

pγi,µiqpγj ,µjq
pθq “δµi,νiδµj ,νj

#

S
ηiηj
γiγj pθq µi “ µj

δγi,ηiδγj ,ηj µi ‰ µj
(34)

which defines the replica theory as a set of non-interacting copies of the original model.
To make our notations easier we introduce the multi-indices

ai “ pγi, µiq with āi “ pγ̄i, µiq and âi “ pγi, µi ` 1q , (35)

where γ̄i denotes the antiparticle of γi.

6.1 Form Factor Equations for Up1q CTFs

The main input needed to write the form factor equations for CTFs are the exchange properties
of the Up1q CTFs (14), similar to how these were used in [13] to obtain FF equations for the
BPTFs. The result was presented in [65,66]. Consider the case when the underlying symmetry

is Up1q. Then the new FF equations incorporate a Up1q phase e
iα
n in the monodromy properties

corresponding the Aharonov-Bohm flux. Denoting the FFs of T α
n p0q by Fα

a1...ak
pθ1, . . . , θk;nq,

the FF equations can be formulated as

Fα
a pθ;nq “ S

a1
ia

1
i`1

aiai`1 pθi i`1qFα
...ai´1a1

i`1a
1
iai`2...

p. . . θi`1, θi, . . . ;nq, (36)

Fα
a pθ1 ` 2πi, θ2, . . . , θk;nq “ e

iκ1α
n Fα

a2a3...akâ1
pθ2, . . . , θk, θ1;nq, (37)

´i Res
θ1
0“θ0`iπ

Fα
ā0a0apθ1

0, θ0, θ;nq “ Fα
a pθ;nq, (38)

´i Res
θ1
0“θ0`iπ

Fα
ā0â0apθ1

0, θ0, θ;nq “ ´e
iκ0α
n Sa1

â0a
pθ0, θ, kqFα

a1pθ;nq,

´i Res
θ1
0“θ0`iūε

γδ

Fα
pγ,µ0qpδ,µ1

0qapθ1
0, θ0, θ;nq “ δµ0,µ1

0
Γε
γδF

α
pε,µ0qapθ0, θ;nq, (39)

where several short-hand notations have been used: as usual θij “ θi ´ θj , θ :“ θ1, θ2, ..., θk and
a :“ pγ1, µ1qpγ2, µ2q . . . pγk, µkq. The factor in the fourth equation is an abbreviation for

Sa1

â0a
pθ0, θ, kq “ S

c1a1
1

a0a1pθ01qS
c2a1

2
c1a2 pθ02q . . . S

a0a1
k

ck´1akpθ0kq . (40)

Equation (36) is the exchange relation while (37) is the crossing relation. Together they form
what is known as Watson’s equations, which constraint the monodromy of the FFs. Equation
(38) and the equation below it are kinematic residue equations while (39) is the bound state
residue equation. Together, they determine the pole structure of the FFs as well as leading to
recursive discrete equations on the particle number. Equation (39) involves the parameters uεγδ
and Γε

γδ. For the purposes of this review, it is not essential to define those in detail. Suffice it to
say that they are parameters relating to the position of the bound state poles of the S-matrix
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and to value of the associated residue. See [68] for further details and also equation (48) and
the paragraph thereafter.

The CTF is generally spinless and therefore, by Lorenz invariance, the form factors are
functions of rapidity differences only. It means that the variable dependence of the FFs can
be reduced by one. The index κ in the phase factors corresponds the Up1q charge of the
corresponding particle. In the sine-Gordon model, the κ index takes three possible values

κi “

$

’

&

’

%

1, γi “ s,

´1, γi “ s̄,

0, γi “ bj ,

(41)

which means that the non-trivial monodromy does not affect the breather sector of the theory.
Note also that for α “ 0 we recover the equations for the standard BPTF, whose form factors in
the sine-Gordon case were studied in [116,117], and for n “ 1 we have instead the FF equations
of the sine-Gordon Up1q field, whose solutions have also been studied [118–120].

From this point, the solution procedure is standard in the context of the FF program.
We start by obtaining lower-particle FFs, and focusing on a single copy and then use the FF
equations recursively to access higher particle numbers and other replica numbers. The one-
particle FFs when non-vanishing, are rapidity independent and the two-particle ones depend
only on the rapidity difference. Akin to the BPTF, the novel composite field is neutral in
relation to the sine-Gordon Up1q-symmetry, which implies the vanishing of any FFs involving a
different number of solitons and antisolitons. In particular one finds that

Fα
sspθ;nq “ Fα

s̄s̄pθ;nq “ Fα
s̄bk

pθ;nq “ Fα
sbk

pθ;nq “ F
α

s pnq “ Fα
s̄ pnq “ 0 , @ k P Z` . (42)

There are however non-vanishing one-particle and two-particle FFs for all breather combinations.
Under these considerations, Watson’s equations (36), (37) for non-vanishing two-particle

form factors and particles in the same copy can be summarised as

Fα
ss̄pθ;nq “ Sss̄

ss̄pθqFα
s̄sp´θ;nq ` S s̄s

ss̄pθqFα
ss̄p´θ;nq “ eiαFα

s̄sp2πin´ θ;nq, (43)

Fα
s̄spθ;nq “ S s̄s

s̄spθqFα
ss̄p´θ;nq ` Sss̄

s̄spθqFα
s̄sp´θ;nq “ e´iαFα

ss̄p2πin´ θ;nq, (44)

Fα
bibj

pθ;nq “ Sbibj pθqFα
bibj

p´θ;nq “ Fα
bibj

p2πin´ θ;nq for i´ j P 2Z . (45)

The last equality in the top two equations requires the use of the crossing property (the second
of Watson’s equations) n times, leading to the phases e˘iα. These two sets of equations can be
solved by diagonalisation of the soliton-antisoliton sector, as done already for the BPTF in [116].

The kinematic residue equations (38) are

´iRes
θ“iπ

Fα
ss̄pθ;nq “ ´iRes

θ“iπ
Fα
bibi

pθ;nq “ nx0|T α
n |0yn @ i P N . (46)

Finally, the bound state residue equations (39) are

´i Res
θ“iπuc

ss̄

Fα
ss̄pθ;nq “ Γc

ss̄F
α
c pnq, (47)

where c is any particle that is formed as a bound state of s` s̄ for rapidity difference θ “ iπucss̄.
For the breather sector it is again convenient to write the more general equation

´iRes
θ“θ0

Fα
bi,bj ,a

pθ ` iu, θ0 ´ iũ, θ;nq “ Γ
bi`j

bibj
Fα
bi`j ,a

pθ, θ;nq , (48)

15



where a is any particle combination for which the FF is non-vanishing. We recall that u`ũ “ ui`j
ij

and θ “ iπui`j
ij is the pole of the scattering matrix Sbibj pθq corresponding to the formation of

breather bi`j , and u and ũ are related to the poles of Sbjbi`j
pθq and Sbibi`j

pθq, respectively. It is
important to emphasise that the bootstrap equations (36)-(39) or (45)-(47) for the Up1q neutral
breathers are identical to those of the conventional BPTFs, nevertheless the FFs are different
from those of T .

Finally, two-particle FFs with arbitrary replica indices can be easily obtained from the
above through relations which are themselves a consequence of Watson’s equations. They can
be written as

Fα
pγ,jqpη,kqpθ;nq “

#

e´iακη{nFα
ηγp2πipk ´ jq ´ θ;nq if k ą j,

eiακγ{nFα
γηp2πipj ´ kq ` θ;nq otherwise,

(49)

where κγ is zero for neutral breathers. The two-particle FFs of the other field T̃ α
n denoted by

F̃α
a1a2pθ;nq can be simply written as

F̃α
pγ,jqpη,kqpθ;nq “ F´α

pγ,n´jqpη,n´kq
pθ;nq . (50)

Solutions for these form factors were reported in [68]. Even for one and two particles they are
rather involved, given as they are in terms of integral representations, so we will not reproduce
them here, as they are beyond the scope of this review.

6.2 Form Factor Equations for Z2 CTFs

Although the equations (36)-(39) are rather general, they are also specific for Up1q symmetry,
which is a continuous symmetry. There are however many integrable models possessing discrete
symmetries such as Zk for some integer k. For example, the family of Potts models includes
models with different values of k. The simplest non-trivial case is k “ 3, which was studied
in [69]. Another well-known case is the Ising field theory, introduced in subsection 3.1.2. The
Ising model has Z2 symmetry and the FF equations for the CTFs T ˘

n introduced earlier are
much simpler than (36)-(39). Not only is the “symmetry phase” just ˘1 but the S-matrix itself
is also ˘1 depending on whether particles are in the same or distinct copies. For the field T ´

n

the equations where written in [65] but they can be written for both fields as

F˘
a pθ;nq “ Saiai`1pθi i`1qF˘

...ai´1a1
i`1a

1
iai`2...

p. . . θi`1, θi, . . . ;nq, (51)

F˘
a pθ1 ` 2πi, θ2, . . . , θk;nq “ ˘F˘

a2a3...akâ1
pθ2, . . . , θk, θ1;nq, (52)

´i Res
θ1
0“θ0`iπ

F˘
ā0a0apθ1

0, θ0, θ;nq “ F˘
a pθ;nq, (53)

´i Res
θ1
0“θ0`iπ

F˘
ā0â0a

pθ1
0, θ0, θ;nq “ ¯F˘

a1 pθ;nq . (54)

Here, the particle indices are just copy numbers since there is a single particle type, so the
S-matrix is simply

Sabpθq “ p´1qδab . (55)

For the ` sign these are the same equations as for the BPTF T of the Ising model, whose FFs
were studied in various papers [13,121]. However, since the field T `

n still has different conformal
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dimension from T , its FFs are distinct from those of T . They were briefly discussed in [67].
The FFs of T ´

n were obtained in [65], and they have interesting summation properties which
were discussed in [67]. Since they are relatively simple functions, we give here the formula for
the two-particle form factor of two fermions living in the same copy

F´
11pθ;nq “

nx0|T ´
n p0q|0yn sin

π
n

2n sinh
`

iπ´θ
2n

˘

sinh
`

iπ`θ
2n

˘

sinh θ
n

sinh iπ
n

. (56)

We note how the denominator produces the two expected kinematic poles at the values of
rapidities θ “ iπ and θ “ iπp2n´ 1q, while the function sinhpθ{nq ensures that the FF is an odd
function of θ (as required by the exchange property) and picks up a minus sign under crossing.

7 Finite Interval Corrections

The computation of corrections to the “saturation” formulae that are obtained by replacing
ℓ ÞÑ m´1 in (26)-(27) is a mathematically very technical exercise, which employs the full power
of the FF program and the solutions to the equations presented in the previous section. However,
the main ideas are relatively simple and can be summarised here. We refer the reader to the
books [112,122] for a more detailed review of the FF program and its applications to computing
correlators. In the ground state of a massive IQFT with a single-particle spectrum, two-point
functions may be spanned in terms of the absolute values of the FFs above. For a local, spinless
field Opxq the first few terms of such an expansion look like

x0|Op0qO:pxq|0y “ |x0|Op0q|0y|2 `

ż 8

´8

dθ

2π
|F1|2e´mℓ cosh θ

`
1

2

ż 8

´8

dθ1dθ2
p2πq2

|F2pθ1 ´ θ2q|2e´mℓ cosh θ1´mℓ cosh θ2 ` ¨ ¨ ¨ (57)

where m is the mass of the particle, x :“ p0,´iℓq is the space-time position, F1 is the (rapidity-
independent) one-particle FF, F2pθq is the two-particle FF etc. Higher corrections, will include
higher-particle form factors. The expansion is simply obtained by “inserting” a sum over a
complete set of states between the two fields in the correlator. This expansion is usually described
as an “infrared” expansion, meaning that it is rapidly convergent for large ℓm.

Depending on the symmetries present in the theory, it is possible that some of the FFs are
vanishing. For example, in the Ising field theory, the fermion field has a single non-vanishing
FF for one particle, whereas the “energy” field (the mass term in the action (16)), which is
bilinear in the fermions has only a two-particle FF. On the other hand, the twist fields σ and µ
introduced earlier have non-vanishing odd- or even-particle FFs, as a result of Z2 symmetry.

When the one-particle FF is non-vanishing, we see directly that the first ℓ-dependent con-
tribution is a Bessel function K0pmℓq, which is obtained by performing the single integral above

ż 8

´8

dθ

2π
|F1|2e´rm cosh θ “

|F1|2

π
K0pmℓq , (58)

leading to exponentially decaying corrections for large mℓ. Should F1 “ 0 then the first cor-
rection will come from the two-particle FF. Since the FF only depends on rapidity differences,
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it is possible to change variables to θ “ θ1 ´ θ2 and θ̂ “ θ1 ` θ2 and integrate out θ̂ leaving a
contribution

ż 8

´8

dθ

p2πq2
|F2pθq|2K0

ˆ

2mℓ cosh
θ

2

˙

. (59)

For large ℓm this contribution is also exponentially decaying, as are higher particle ones.
Although the case of BPTFs and CTFs is considerably more complicated than this, the

generalisation is straightforward. Let us rewrite the formula above for the field T ´
n we discussed

in the previous section for the Ising field theory

x0|T ´
n p0qT̃ ´

n pxq|0y “ |x0|T ´
n p0q|0y|2 `

n
ÿ

j“1

n
ÿ

k“1

ż 8

´8

dθ

p2πq2
|F´

jkpθ;nq|2K0

ˆ

2mℓ cosh
θ

2

˙

` ¨ ¨ ¨ (60)

The main change is that we now have sums over copy numbers (in the sine-Gordon model
we would also have sums over particle types). For this field, we also have a vanishing one-
particle FF so the first non-trivial correction will come from the two-particle FF. A number
of simplifications are possible: first, all copies are identical so at least one of the sums can be
eliminated and replaced by an overall factor n. Then, the form factor F´

jkpθ;nq can be related

to the FF F´
11pθ;nq by employing identities akin to (49). Calling

C´pℓ;nq :“
x0|T ´

n p0qT̃ ´
n pxq|0y ´ |x0|T ´

n p0q|0y|2

|x0|T ´
n p0q|0y|2

, (61)

the normalised connected correlator, we find that, at two-particle order, it can be written as

C´pℓ;nq :“ n|x0|T ´
n p0q|0y|´2

n´1
ÿ

j“0

ż 8

´8

dθ1dθ2
p2πq2

|F´
11p´θ ` 2πij;nq|2K0

ˆ

2mℓ cosh
θ

2

˙

. (62)

This expression can be easily evaluated numerically, with the FF (56). This evaluation, combined
with the evaluation of the same correlator for the BPTF, allows us to compute the SREEs of
the two symmetry sectors. The calculation is presented in detail in Chapter 6 of [65].

An interesting feature of this type of calculation in the context of entanglement measures
is that in order to computer the (symmetry resolved) entanglement entropies we need to take
the limit n Ñ 1 of all the formulae above. This is non-trivial, given that the whole twist
field construction is based around the notion of an integer number of replicas n. In order to
perform the limit n Ñ 1, expressions such as (62) need to be analytically continued first to n
positive and real. A suitable way to do this was presented in [13] for the BPTF and applies to
CTFs in a similar manner. The idea is to replace the sum in (62) by a contour integral whose
value reproduces the sum, as a sum over residues, plus an additional contribution resulting from
the kinematic poles of the FF. A beautiful feature of this approach is that once the analytic
continuation has been performed, the limit n Ñ 1, gives rise to formulae that contain a δpθq

term. Thanks to this term the integral (62) (or part of it) can be computed exactly and the
exponential corrections obtained in a very simple and universal form. If we call C0pℓ;nq the
connected correlator of the BPTF, the procedure sketched above led to the result

´ lim
nÑ1

B

Bn
C0pℓ;nq “ ´

1

8
K0p2mℓq ` Ope´3mℓq (63)
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whereas, for the normalised connected correlator C´pr;nq a similar computation was carried
out in [65] giving instead

´ lim
nÑ1

B

Bn
C´pℓ;nq “ ´

1

8
K0p2mℓq `

1

4π

e´2mℓ

mℓ
` Oppmℓq´2e´2mℓq . (64)

As we can see, there is one common term proportional to K0p2mℓq in both cases. This term
is highly universal as it results from the pole structure of the FF and not specific details of
the model. For the BPTF the same formula is found for any 1+1D QFT (even non-integrable
ones) if m is the mass of the lightest excitation(s) in the theory [123]11. These formulae can
then be employed to obtain ℓ-dependent corrections to the saturation formulae. These kinds of
computations have been carried out in [65] for the Ising and sinh-Gordon models, both exhibiting
Z2 symmetry, for the Potts model in [69] where Z3 symmetry was considered, for the sine-Gordon
model [68] and for free theories with Up1q symmetry in [66].

8 Beyond the Ground State

So far, we have focused on ground states. In this section, we want to generalise this study to
excited states. Treating these in complete generality would be very difficult since we expect the
SREE to depend on many features of the excitations, including their energy, momentum and
quantum numbers. However, in special cases, there are interesting universal features associated
with the presence of a finite number of excitations within a infinite quantum system.

Let us start by reviewing some of the existing literature. There are by now many works
concerning excited states in low-energy CFT [124,125], critical systems [126], gapped quantum
spin chains [127], and free IQFTs [128–137]. All of these works deal with standard (ie. non
symmetry resolved) measures, nonetheless some useful conclusions can be drawn. On the one
hand, the entanglement entropy of excited states with an infinite number of particles in QFT
or quantum lattices (i.e. for finite-density excited states) is dominated by the thermodynamic
entropy of the corresponding Gibbs state, and satisfies a volume law [138]. On the other hand,
this no longer applies to excited states described by a finite number of excitations. In that
case, what we have instead is a finite “excess entropy”, that is, the entropy is increased by a
finite amount w.r.t. the ground state. This finite amount takes a universal and very simple
form, provided that the ratio of total system size to subsystem size is kept finite, while the
individual sizes are very large. In this limit, the excess entropy depends only on the relative
size of the regions and the particle statistics. In [128, 129] this was proven for free QFTs but
there is evidence, including in those references, that it is much more general, extending also to
interacting and higher dimensional models. As argued in [137], this is related to the fact that the
excess entropy contributions are in essence of a semi-classical nature, therefore highly universal.

Let us consider how these properties generalise to the symmetry-resolved context. Consider
again a bipartite system of total length L and a connected region of length ℓ. Consider also the
scaling limit in which both lengths tend to infinity while keeping the ratio r “ ℓ{L constant.
The system is in a pure state formed of a finite number of excitations, i.e. a zero-density state.
The ratio of the charged moments of an excited state |Ψy and those of the ground state |0y of

11For generic theories, there is a sum of Bessel functions for the different masses, but for large mℓ the lightest
particle still provides the leading contribution
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the theory can be written as

lim
LÑ8

nxΨ|T α
n p0qT̃ α

n prLq|Ψyn

nx0|T α
n p0qT̃ α

n prLq|0yn
“:MΨ

n pr;αq , (65)

and, as the equation suggests, in the infinite volume limit, it is a function of r, α, n and the state.
However, the only state features that play a role in this limit is the number of excitations and
their statistics, as we will see below.

Here we will consider massive IQFTs although similar results have been obtained in CFT [46].
In the former case, whether or not symmetries are present, there arise some technical difficulties
when computing the type of correlators involved in (65). This is so because whenever one
introduces a set of intermediate states to express the correlator as a product of form factors,
δ-function singularities appear if the momenta of the intermediate particles coincide with those
of the particles in the excited state. To avoid this problem, finite volume form factors must
be calculated first, and then the volume must be used as a regulator. But, although a finite
volume form factor program for generic local fields exists [139,140], its extension to twist fields
is still an open problem. Alternatively, a solution was found in [130] for complex free theories.
It is based on the fact that in that case one can diagonalise the permutation symmetry in the
n-copy theory and express the BPTF as a product of simpler Up1q twist fields, whose form
factors are well-known in the literature [112,141,142]. In finite volume the particle momenta are
quantised according to the Bethe-Yang equations, and this plays a crucial role in computations.
Using all of these ideas, the ratio of charged moments (65) has been computed in [70]. For Up1q

symmetry, the formula depends as well as on the parameter α, as implicit in (65). The results
can be summarised as follows:

1. For states of k identical (bosonic) excitations of charge ϵ:

Mkϵ

n pr;αq “

k
ÿ

j“0

rfkj prqsne2πijϵα , (66)

where fkj prq :“ kCj r
jp1´rqk´j and kCj “ k!{rj!pk´jq!s is the binomial coefficient. Notice

that ϵ “ ˘ represent the Up1q charge of the bosons. For generic states comprising s groups
of kϵii identical particles of charge ϵi we will have

M
k
ϵ1
1 ...kϵss

n pr;αq “

s
ź

i“1

M
k
ϵi
i

n pr;αq . (67)

2. For states containing k distinct excitations either bosonic or fermionic we have instead:

M1ϵ1 ...1ϵk
n pr;αq “

k
ź

j“1

“

e2πiϵjαrn ` p1 ´ rqn
‰

. (68)

These results can be derived rather easily if one considers the qubit “picture” for multiparticle
excited states, first employed in [128]. In this picture, the contributions from the excited state
are encoded into a “multi-qubit state” which is built as a combination of states labelled by
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integers j where we identify the qubit state j with the presence of j identical particles in the
entanglement region A i.e.:

|Ψqby “
ÿ

qP
ś

jě1t0,1,...,ju
Nj

d

ź

i

f qiji prq |qy b |q̄y. (69)

The coefficients in the above expansion represent the probability of finding a specific particle
configuration q “ tqi : i “ 1, . . . , Nu in the corresponding entanglement region, and are given
by binomial coefficients (see (66)), which underlie the (un)distinguishability of excitations12.
Notice that |q̄y is the state where the qubits are inverted. For example, the qubit state

|1y :“
?
r|10y `

?
1 ´ r|01y (70)

can be seen as representing a single excitation which is localised in region A with probability
r and in region Ā with probability 1 ´ r. Moreover, if the charge operator associated with the
internal symmetry is Q “ QA b 1Ā ` 1A bQĀ, then

e2πiαQA |Ψqby “ e2πiαQA
ÿ

q

?
pq|qy b |q̄y “

ÿ

q

e2πiαpn`
q ´n´

q q?pq|qy b |q̄y , (71)

where the summation is over the same set q as above and n˘
q is the number of positively/

negatively charged particles in subsystem A for a particular configuration q with probability
pq “

ś

i f
qi
ji

prq. Consequently, the entropy of this qubit state is the Fourier transform of

Trpρnqe
2πiαQAq “

ÿ

q̄1

ÿ

q

e2πiαpn`
q ´n´

q q pnq δq̄,q̄1 , (72)

which for the state (70) gives (66) with k “ 1. In this way, in the scaling limit the charged
moments ratios (66) and (67) equate the charged moments of simple qubit states (72).

Once the ratio (65) is known, the SREE of the excited state is obtained from the Fourier
transform of

ZΨ
n pr;αq “ Z0

npαqMΨ
n pr;αq , (73)

with Z0
npαq :“ ε4∆αxT α

n y2 for 1+1D IQFTs, as introduced earlier. Notice that the ground state
correlator will vary depending on the theory considered. But since for free theories MΨ

n pr;αq

depends on α in a simple manner, it is possible to express the SREE of the excited state fully
in terms of the ground state (see [70] for further details). Notice that, in the qubit picture
(as opposed to QFT) the ground state is trivial and the results (72) are directly the charged
moments of the excited state.

To conclude, we would like to note that in [71] numerical evidence for the validity of the
formulae in this section has been provided for a 1D Fermi gas and a complex harmonic chain.
Interestingly, the former example is a critical theory, suggesting that these results also hold
for massless/gapless models, as shown in [46] for the total entropy. The results have been
extended to interacting models (magnon states) and higher-dimensional theories [71, 131] and
other measures, such as the logarithmic negativity [41]. In general, the same formulae are
found whenever excitations are localised, in the sense that their characteristic length, be it the
correlation length or the De Broglie wavelength, are small compared to subsystem size.

12Considering the bipartite Hilbert space H “ HA b HĀ, where each factor can be related to the Hilbert space
for Nj sets of j indistinguishable qubits (with N “

ř

j Nj).

21



9 Conclusion

In this review article we have presented a summary of some of the main results concerning the
symmetry resolved entanglement entropy of 1+1D QFTs. This is an entanglement measure, that
quantifies the contribution to the total entanglement entropy that is due to separate symmetry
sectors, provided the theory has an internal symmetry. We have revisited the key definitions
and techniques, and presented a literature review.

As we have seen, the relationship between entanglement measures and correlation functions
of symmetry fields plays a major role. Through this relationship it is possible to easily derive
the main properties of the SREE, such as its equipartition in CFT and its saturation in massive
QFT. More detailed information about specific models, system-size dependence etc. can be
gathered by employing the form factor program for twist fields.

The study of symmetry resolved entanglement measures has put the focus on symmetries and
their role in the context of entanglement. This has given rise not only to an enormous amount of
publications, containing results of analytical, numerical and even experimental nature, but also
to a renewed interest in the role of symmetries, their breaking and how entanglement measures
can help us capture information about both. In connection to symmetry breaking, the concept
of entanglement asymmetry has lately emerged [143]. Here the interest lies in quantifying the
extend to which a symmetry is broken and the speed with which it is restored by studying the
evolution of entanglement, particularly in the wake of a symmetry-breaking quantum quench.
Several interesting studies of this quantity have been carried out in the past two years [144–148].

Length constrains have kept us from discussing many interesting results and approaches, one
clear omission being the other symmetry resolved entanglement measures. We hope nonetheless
that our review will be useful to those wanting to learn some introductory facts about this
popular area of research.
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[56] G. Parez, Symmetry-resolved Rényi fidelities and quantum phase transitions, Phys. Rev.
B 106 (2022), no. 23 235101 [2208.09457].

[57] S. Murciano, P. Calabrese and L. Piroli, Symmetry-resolved Page curves, Phys. Rev. D
106 (2022), no. 4 046015 [2206.05083].

[58] C. Yin and Z. Liu, Universal Entanglement and Correlation Measure in
Two-Dimensional Conformal Field Theories, Phys. Rev. Lett. 130 (2023), no. 13 131601
[2211.11952].

[59] C. Berthiere and G. Parez, Reflected entropy and computable cross-norm negativity: Free
theories and symmetry resolution, Phys. Rev. D 108 (2023), no. 5 054508 [2307.11009].

26

http://arXiv.org/abs/1407.3779
http://arXiv.org/abs/1907.02084
http://arXiv.org/abs/2003.04670
http://arXiv.org/abs/2009.08508
http://arXiv.org/abs/2010.10515
http://arXiv.org/abs/2106.15946
http://arXiv.org/abs/2402.06322
http://arXiv.org/abs/1804.00632
http://arXiv.org/abs/2102.10054
http://arXiv.org/abs/2104.03102
http://arXiv.org/abs/2105.08596
http://arXiv.org/abs/2208.09457
http://arXiv.org/abs/2206.05083
http://arXiv.org/abs/2211.11952
http://arXiv.org/abs/2307.11009


[60] A. Bruno, F. Ares, S. Murciano and P. Calabrese, Symmetry resolution of the computable
cross-norm negativity of two disjoint intervals in the massless Dirac field theory, JHEP
02 (2024) 009 [2312.02926].

[61] G. Parez, R. Bonsignori and P. Calabrese, Exact quench dynamics of symmetry resolved
entanglement in a free fermion chain, J. Stat. Mech. 2109 (2021) 093102 [2106.13115].
[Erratum: J.Stat.Mech. 2212, 129901 (2022)].

[62] F. Ares, P. Calabrese, G. Di Giulio and S. Murciano, Multi-charged moments of two
intervals in conformal field theory, JHEP 09 (2022) 051 [2206.01534].

[63] H. Gaur and U. A. Yajnik, Multi-charged moments and symmetry-resolved Rényi entropy
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[65] D. X. Horváth and P. Calabrese, Symmetry resolved entanglement in integrable field
theories via form factor bootstrap, JHEP 11 (2020) 131 [2008.08553].

[66] D. X. Horvath, L. Capizzi and P. Calabrese, U(1) symmetry resolved entanglement in
free 1+1 dimensional field theories via form factor bootstrap, JHEP 05 (2021) 197
[2103.03197].

[67] O. A. Castro-Alvaredo and M. Mazzoni, Two-point functions of composite twist fields in
the Ising field theory, J. Phys. A 56 (2023), no. 12 124001 [2301.01745].

[68] D. X. Horvath, P. Calabrese and O. A. Castro-Alvaredo, Branch Point Twist Field Form
Factors in the sine-Gordon Model II: Composite Twist Fields and Symmetry Resolved
Entanglement, SciPost Phys. 12 (2022), no. 3 088 [2105.13982].
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excitations, Europhysics Letters 135 (2021), no. 6 60001 [2010.13973].

[134] J. Zhang and M. A. Rajabpour, Corrections to universal Rényi entropy in quasiparticle
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