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A B S T R A C T   

The well-known and extensively studied Linear Discriminant Analysis (LDA) can have its performance lowered in 
scenarios where data is not homoscedastic or not Gaussian. That is, the classical assumptions when LDA models 
are built are not applicable, and consequently LDA projections would not be able to extract the needed features to 
explain the intrinsic structure of data and for classes to be separated. As with many real word data sets, data 
obtained using miniature spectrometers can suffer from such drawbacks which would limit the deployment of 
such technology needed for food analysis. The solution presented in the paper is to divide classes into subclasses 
and to use means of sub classes, classes, and data in the suggested between classes scatter metric. Further, 
samples belonging to the same subclass are used to build a measure of within subclass scatterness. Such a so-
lution solves the shortcoming of the classical LDA. The obtained results when using the proposed solution on food 
data and on general machine learning datasets show that the work in this paper compares well to and is very 
competitive with similar sub-class LDA algorithms in the literature. An extension to a Hilbert space is also 
presented; and the kernel version of the presented solution can be fused with its linear counter parts to yield 
improved classification rates.   

1. Introduction 

Chemometrics which is the chemical discipline that uses Machine 
Learning (ML) underpinned by mathematical and statistical methods 
can benefit from the well-known techniques of feature detection, clas-
sification including classification via Discriminating Analysis (DA), 
regression including regression via partial least square (PLSR) and its 
discriminant analysis variant, namely, PLS-Discriminant Analysis (PLS- 
DA), and clustering. Such techniques and algorithms can be used to 
improve the performance of the analysis of chemical data [1], and they 
can be regarded as a set of statistical based estimation processes which 
aim to establish a relationship between one or more dependent response 
variables and one or more independent variables [2–4]. Few of such ML 
techniques are based on feature extraction which underpins a generic 
class of methods for reducing the size of information required to describe 
a relatively large data set whilst at the same time retaining the part 

required to describe such data and classify it with an appropriate level of 
accuracy [2–4]. Feature extraction via DA is a well-researched, studied 
and deployed approach in many applications of ML [3,5–8]. Algorithms 
belonging to such a class exhibit ease of implementation, automatic 
extraction of features and low dimensionality of the processed data, 
good separation and representation of classes [6,9–15]. From their 
classical deployment in face recognition, such algorithms were used 
with success in computer vision, biometrics, spectral data analysis 
[24–27], agriculture and crop analysis [28], fault diagnosis [29], the 
medical field [30] and food authentication [24]. 

Further, their ease of implementation can be seen as a consequence 
of their assumed linearity; although their extension to non-linear algo-
rithms has been well discussed in the open literature [16,17]. They are 
also holistic in their intrinsic nature as all data is considered when 
models are designed and implemented. An underpinning assumption is 
that the data in every class can be joined in one cluster. Data can be 
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divided into classes or groups where a datum shares more similarities 
with points in its neighbourhood than to other data in other groups and 
classes. In other words, points in a particular class can be segregated 
from points in other classes based on latent distributions and as such, 
data of the same class are likely to share the same distribution [14, 
18–21]. And this is a fundamental point in many ML techniques 
including clustering and LDA which turns out also to be their drawback 
as class distributions may not always be homoscedastic in practice [18, 
20,22]. When such an issue can be tackled in clustering using mixture 
models as in Gaussian Mixture Models, the well-known Expect-
ation-Maximization algorithm, and distribution based clustering algo-
rithms [7,12,17,18,23], LDA can benefit from relaxing such constraints 
by using an approach in which a class can be divided into further clusters 
termed subclasses and then redefine an LDA like criterion that incor-
porate the newly obtained information. This may be regarded as an 
attempt to solve problems of nonlinearity and resolve the unimodality 
and homoscedasticity assumptions causing the limitation of LDA [17,18, 
20]. 

1.1. Food quality and analysis 

Food quality establishment and authentication can be based on 
spectral data acquisition and analysis [1,24–26,31]. Such an application 
can be well suited for a linear classifier deployment scenario in which 
classes can be further divided into subclasses. For instance, one may 
investigate a food item spectrum to establish its authenticity; however, 
further divisions can be based on season of production, geographical 
location, (sub-) species, method of production and processing technol-
ogies which is a clear case where subclasses rather than classes would 
come into play. All such analysis can be very useful in the context of the 
detection of and fight against food fraud. While there is a variety of 
different technologies and methods useful for such an analysis including 
spectroscopy (vibrational and fluorescence), genomics & proteomics, 
liquid/gas chromatography & mass spectrometry, isotopic ratios and 
bioinformatics, all and each of such methods has its advantages and 
disadvantages and is capable of making different determinations with 
differing accuracies. Nevertheless, portability, cost, processing time, 
classification rate and size are key requirements for the system to be 
adopted by consumers. Under such circumstances, portable and mini-
aturised spectroscopy is an appropriate technology as it is portable, 
affordable, non-destructive and exhibits short processing times. The 
shortening of the processing time is the obvious consequence of bringing 
the device to the food sample rather than dispatching the sample to a lab 
for analysis [25]; a relative wide deployability can be expected due to the 
availability of miniature spectrometers within the price range that 
render them at the reach of normal citizens [26,32]. Obviously, the last 
two points can signal a shift in the food fraud fight realm where the 
matter can swing from being tackled by professionals in labs to con-
sumers at the forefront in the fight against food fraud and exhibiting 
cost-effective hand-held portable or miniature devices. Such technology 
can identify the unique “fingerprint” in agri-food products and one can 
generate spectral data of a food sample at a quick rate beyond what can 
be managed by labs employing bulky spectrometers, and not needing a 
lengthy training or education. All of that would equate to a major step 
forward in which food quality analysis is on citizens doorstep [25]. The 
technology comes with its own challenges though. One must deal with 
relatively large and easy to acquire amounts of data, the devices reduced 
immunity to ambient and background noise, their relative low accuracy 
rates, and limited wavelength range; all of which would call for aug-
menting miniature spectrometer with machine learning components. 

1.2. Contribution of the paper 

One matter which is not always covered in food analysis papers in the 
field of chemometrics is that data would usually be collected in one 
session; and is then split to training and testing subsets. In this 

manuscript, there is an emphasis on the separation of training data from 
testing data which are acquired during different sessions. That is, a point 
which may be observed in spectral data collected using miniature de-
vices is that such spectrometers are not immune to distortions. Hence, it 
is important to take that matter into consideration; and as such, the 
concept of sub-class is replacing that of class in the classical LDA clas-
sifier. Further, in the ensuing development, the terms ‘session data’ can 
simply be replaced by ‘cluster’ which is commonly used in ML. 

In this paper, a new sub-class based LDA solution is presented. Once 
the pre-clustering is applied, the new approach combines both the dis-
tances of sub-class means to the class means and the class means to the 
data mean at the same time to build a between scatter metric; and at-
tempts to reduce sub-class scatterness by reducing the distance between 
the sub-classes’ samples and the means of their respective sub-classes in 
the LDA feature space. The method is termed Combined Sub-Class LDA 
(CSDA); and it can be further generalised when one builds a scatterness 
metric from the classical LDA between class scatter and the between sub- 
class scatter matrices. Such an extension can be useful and shows the 
flexibility and capability to generalise a sub-class LDA. Such a method is 
termed Balanced Sub-Class LDA (BSDA). A further extension of the 
proposed CSDA LDA to a Hilbert space and the use of the kernel version 
of the presented solution is also shown. Such a kernel-based extension is 
termed KSDA. And as both the linear sub-class and non-linear kernel- 
based version can be appreciated as attempting to solve the somewhat 
almost similar issues of homoscedasticity and non-linearity of data, and 
where the extension to a Hilbert space may be competitive, an ensemble 
of subclass learners can be merged using l0, l1 and l2 regression-based 
representation algorithms to improve the classification rates. The 
remainder of this paper is organised as follows: in section 2, the LDA 
algorithm is revisited, and background and previously published work in 
the field of sub-class LDA is covered. The new solutions are shown in 
section 3. This includes the new linear sub-class and non-linear kernel 
based sub-class LDA algorithms. The new algorithms are tested on food 
and generic ML data in section 4. For testing and analysing the perfor-
mance of the presented algorithms, food data is used for its suitability to 
test the underpinning idea behind the work. As the presented solution 
can find further applications in the generic field of ML, the extensive 
testing includes comparison of performance obtained using generic ML 
datasets of similar sub-class LDA variants available in the research 
literature. 

2. LDA revisited and previous work 

LDA is a well-researched and documented algorithm; mainly due its 
perceived easy implementation and well understood assumptions and 
modelling. This is a matter that stems from the algorithm’s used statis-
tics for modelling purposes. LDA is underpinned by low order statistics 
encompassing mean and (co-) variance; hence avoiding stability issues 
that regression may encounter when using a small number of well 
separated training samples for estimation [2,3,14,16,17,32]. LDA sta-
tistical quantities are estimated from the data used to build the model; 
and the algorithm’s assumptions are straightforward; data adhere to and 
is of a Gaussian distribution and samples within the same class would 
adhere to the same and homoscedastic distribution, and as such are 
generated from multivariate Gaussian distributions of a common 
covariance matrix although exhibiting different means. LDA is a su-
pervised learning technique which yields a projection into a lower 
dimensionality space than the original space in which data is repre-
sented. That is, as with the Principal Component Analysis (PCA), 
dimensionality reduction plays a crucial role in feature selection. This 
can be achieved via the use of a projection matrix Ψ̃ ∈ RF×D where D≪F 
and the D vectors [ψ̃1…ψ̃D] in Ψ̃ are all in RF and are used for mapping 
data from the original feature space RF to a space of a lower dimen-
sionality RD. The projection of data using Ψ̃ can lead to relatively high 
classification rates. Discriminant analysis can be based on the 
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Fisher-Rao’s criterion [3,5,21,22]which is the maximixation of |v
TAv|

|vTBv| ; the 
matricess A and B are positive semi definite. In the remainder of the 
paper, subscripts A and B would be used to refer to matrices used in the 

numerator and denominator parts of |v
TAv|

|vTBv| , respectively. A linear com-
bination of the generalised eigenvectors v in Bv = λAv would best lin-
early classify the data; where λ is the generalised eigenvalue associated 
with. If matrix B is invertible, the matter turns then to be a classical 
eigen value decomposition problem [3,5,21,22]. It is well known that to 
compute the projection matrix Ψ̃, LDA uses a between-class scatter 
matrix termed Sb as a measure of class separability and uses a 
within-class scatter matrix termed Sw as a measure of class compactness. 
The goal of LDA is to find a matrix Ψ̃ such that the measure of the be-
tween class scatter matrix Sb in the new space is maximised and 
simultaneously, the measure of the within-class scatter matrix Sw in the 
new space is minimised: 

Sw =SLDA
B =

1
N

∑C

i=1

∑Ni

j=1

(
xij − mi

)(
xij − mi

)T (1)  

Sb =SLDA
A =

1
N

∑C

i=1
Ni(mi − m)(mi − m)

T
=

∑C

i=1
Pi(mi − m)(mi − m)

T (2)  

Where the total variance is St = Sb + Sw = 1
N
∑N

i=1(xi − m)(xi − m)
T 

which is the well-known covariance matrix used in PCA for reducing the 
dimensionality of data. Parameter N is the total number of samples 
available for training in the set X = {x1, ..xi..,xN} with class member-
ship labels {L1.., Li.., LN}. To indicate class membership of a sample xi, 
any of the labels Li can take one value between 1 and C, and where C is 
the number of classes. In equations (1) and (2), xij is the jth sample of the 
ith class, Ni is the number of samples in class i, Pi = Ni/N is the ith class 
prior, m is the sample-average computed over the N samples available in 
training, and mi is the mean of the samples in class i. The original space 
in which samples xi are represented is RF and ∈ RF×N. 

For maximising a between cluster measure and minimising a within 
cluster measure, LDA can be expressed as an optimisation process as 
follows: 

argmax
Ψ

JLDA(Ψ)= argmax
Ψ

Trace
(
ΨTSLDA

A Ψ
)

Trace
(
ΨTSLDA

B Ψ
) (3) 

The solution Ψ̃ [ψ̃1…ψ̃D] of (3) is the result of the maximization of the 
objective function which may be subject to further constraints imposed 
on the properties of [ψ̃1…ψ̃D]; and t he parameter D is the result of the 
optimisation operation. Hence, once data is projected into the new space 
spanned by the column vectors of Ψ̃, the dimension of any vector x̃i =

Ψ̃Txi ∈ RD is reduced from F as in the original space of data (as xi ∈ RF) to 
D in the new transform space. As such, LDA can be regarded as a map-
ping from the F-dimensional space in which data is represented to a D- 
dimensional space. The upper threshold of D is C-1 which is the highest 
possible rank of Sb. Although, such an upper limit can make computation 
efficient, it may lack classification power as reported in Refs. [16–18,21, 
22,33]. 

2.1. Subclass LDA algorithms 

It is really the classical assumption that LDA can be derived from 
Gaussian distributions of classes of a common covariance matrix and 
with different means which has been blamed in research for the 
method’s shortcomings and sub-optimal projections. Therefore, it can be 
assumed that the sought LDA projections cannot attain a high between 
class variance combined at the same time with a low within class vari-
ance as the algorithm aims for. Further to the non-Gaussianity, LDA may 
not be able to tackle and successfully preserve the data underlying 
complex structure if the assumption of homoscedasticity does not hold. 

That is, data non-homoscedasticity is a practical case encountered in 
many applications which can turn out to be very restrictive for LDA 
deployment [7,9,14,16–18,34]. A strategy for tackling such restrictive-
ness is to resort for probabilistic modelling when representing Gaussian 
distributed subpopulations within a larger population using Gaussian 
mixture models (GMM); and to embed such information which may be 
termed ‘multimodality’ into the LDA optimisation problem. That is, 
GMM is used in an unsupervised learning paradigm in which sub-
populations, sub-classes (or clusters within classes) and modalities are 
learnt, and hence, classes can be modelled as mixtures of Gaussian 
subclasses [7,17,23]. In another approach, one can tackle multimodality 
as a nonlinearity problem which can be solved using kernel-based 
non-linear LDA as in the K-LDA algorithms. In such algorithms [16,17, 
35], a kernel is used to transform data into a Hilbert space where data 
can be linear and class-separable. LDA can then be employed in the new 
Hilbert space for classification, and the algorithm is implemented using 
the so-called kernel trick. The matter can be further improved when 
coupled with clustering which is yet another unsupervised learning 
approach. 

For going beyond the traditional restrictions of LDA, augmenting it 
with a clustering step is yet another appealing extension. With a proper 
clustering step, data can be represented according to its inherent mul-
tiple subclasses structure. The approach departs from the assumption 
that at class level, classes would contain the discriminative information 
needed for classification purposes. Instead, information at sub-class 
level would be used where sub-class homoscedasticity can be expected 
or even attained [10,14,17,18,20–22,34,36–38]. Subclass Discriminant 
Analysis has been proposed as an improvement that would make LDA 
more suitable for real-world data where the unimodality assumption 
does not hold. It is also an approach which can increase the dimension of 
the projected data and as such, may help to solve the small sample size 
problem. Compared with classical LDA, the dimensionality is increased 
by a factor equal to the number of clusters per class. It is also an 
approach which comes with the advantages of relatively short compu-
tation times and classification accuracy as it mainly involves matrices 
manipulation. 

By pre-clustering, one introduces on equations (1) and (2) the pa-
rameters Si and Nij as the number of subclasses in the ith class and 
number of samples in the jth subclass of the ith class, respectively, to 
yield: 

Sws =
1
N

∑c

i=1

∑Si

j=1

∑Nij

k=1

(
xijk − mij

)(
xijk − mij

)T (4)  

Sbs =
1
N

∑c

i=1

∑Si

j=1
Nij

(
mij − m

)(
mij − m

)T
=

∑c

i=1

∑Si

j=1
Pij
(
mij − m

)(
mij − m

)T

(5) 

Parameter k in sample xijk is used to refer to the kth sample in the jth 
subclass of the ith class and mij refers to the mean of the jth subclass of 
the ith class. One can show that the total variance used in PCA is St = Sws 

+ Sbs, with Sbs = Sb +
∑C

i=1
∑Si

j=1Pij
(
mi − mij

)(
mi − mij

)T and Sw = Sws +
∑C

i=1
∑Si

j=1Pij
(
mij − mi

)(
mij − mi

)T. By considering sub-classes and data 
means, the optimisation operation in (3) can be revised to be: 

arg max
Ψ

JMDA(Ψ)= argmax
Ψ

Trace
(
ΨTSMDA

A Ψ
)

Trace
(
ΨTSMDA

B Ψ
) = argmax

Ψ

Trace(ΨTSbsΨ)

Trace(ΨTSwsΨ)

(6) 

The Mixture Discriminant Analysis (MDA) in (6) models classes as 
mixtures as of subclasses and its metrics take account of SMDA

B = Sws and 
SMDA

A = Sbs to build measures of within-subclass scaterness and within 
subclass scaterness, respectively [7,18]. That is, MDA solely employs 
sub-classes. The authors in Refs. [21,22] identified the reason for which 
a generalised eigendecomposition criterion like the Fisher Rao criterion 
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which simultaneously maximises ‖Ψ TAΨ‖ and minimises ‖Ψ TBΨ‖ may 
yield a below par projection. A suggested solution was to pre-cluster the 
data according to the stability criterion defined in Ref. [21] as: 

Θ=
1
r
∑r

i=1

∑i

j=1
cos θij

2 =
1
r
∑r

i=1

∑i

j=1

(
ψT

Ai
ψBj

)2
(7)  

Where r ≤ p, θij is the angle between eigenvectors ψAi
and ψBj 

of matrices 
A of rank p and B assumed to be of rank q, respectively, and with q ≥ p. 
The eigenvectors in matrices ΨA =

[
ψA1

,…,ψAp

]
and ΨB =

[
ψB1

,…,ψBq

]

are ordered by descending order of their corresponding eigenvalues. The 
stability criterion can dictate the number of clusters needed for the 
Fisher Rao criterion to work; and if Θ ∕= 0, the vectors resulting from 

maximising |v
TAv|

|vTBv| do not guarantee the minimisation of the Bayes error 
and can indicate a ‘conflict’ between maximising 
⃦
⃦vTAv

⃦
⃦ and minimising

⃦
⃦vTBv

⃦
⃦ at the same time. That is, the basis 

vectors obtained by the generalised eigenvalue decomposition process 
are not guaranteed to be correct when the smallest angle between the ith 
eigenvector given by the metric to be maximised and the first i eigen-
vectors given by the metric to be minimised is close to zero. To mitigate 
such a conflict, Subclass Discriminant Analysis (SDA) starts by selecting 
the optimal number of subclasses either using the leave-one-out-test 
(LOOT) criterion or iteratively, using a normalised quantity of Θ 
shown in (7) [21]. Then SDA redefines the between scatter metric as 
depending on matrix: 

SSDA
A =Sbsb =

∑c− 1

i=1

∑Si

j=1

∑c

k=i+1

∑Sk

l=1
PijPkl

(
mij − mkl

)(
mij − mkl

)T (8) 

The metric based on matrix SSDA
A (termed Sbsb in Ref. [18]) attempts to 

maximise the distance between the means of subclasses of different 
classes only as in 1

2
∑c

i=1
∑Si

j=1
∑c

k=1

k∕=i

∑Sk
l=1PijPkl

(
mij − mkl

)(
mij − mkl

)T
.

The within class scatterness metric is based on SSDA
A = St to yield SDA’s 

optimisation as follows: 

argmax
Ψ

JSDA(Ψ) = arg max
Ψ

Trace
(
ΨTSSDA

A Ψ
)

Trace
(
ΨTSSDA

B Ψ
)= arg max

Ψ

Trace(ΨTSbsbΨ)

Trace(ΨTStΨ)

(9) 

The Mixture Subclass Discriminant Analysis (MSDA) suggests that 
the optimisation should use SMSDA

A = Sbsb as in (8) & (9), and SMSDA
B should 

either be SWS or SWS + Sbsb. The analysis in Ref. [18] has based its 

argument on the properties of ‖vAv‖2
‖vTBv‖2 

and ‖vTAv‖2
‖vT (A+B)v‖2 

which attain the same 
maximum point and has taken account of the fact that St = Sws+Sbsb+

Sbsw to stipulate that one should aim to optimise:   

which is equivalent to arg max
Ψ

Trace(ΨTSbsbΨ)
Trace(ΨTSwsΨ)

and where Sbsw =

1
2
∑c

i=1
∑Si

j=1
∑Si

k=1PijPik
(
mij − mik

)(
mij − mik

)T is a matrix built using the 
distance between the means of the subclasses within the same class. The 
optimisation in (10) and its equivalent form minimise the Bayes error by 
treating the Gaussian homoscedastic subclasses as the main classes. 
MSDA criterion departs from that of SDA as one should omit considering 

Sbsw and therefore the MSDA and SDA algorithms would attain different 
maxima [18]. 

2.2. Separability-oriented LDA 

The matter of relationships between the various definition of metrics 
can be even further relaxed. In the Separability-oriented Subclass 
Discriminant Analysis (SSDA) set of algorithms, the within-class scat-
terness is shown to include two quantities; that is, local scatterness at 
subclass level termed Ssw1 and global scatterness at class level termed 
Ssw2 [20]. The local scatterness measures the degree to which data in-
stances in a subclass of a class are scattered around the subclass mean 
and is defined as: 

Ssw1 =
∑c

i=1

∑Si

j=1

∑Nij

k=1

(
xijk − mij

)(
xijk − mij

)T (11) 

The global scatterness in the other hand measures the degree to 
which subclass means in a class are scattered around the class mean: 

Ssw2 =
∑C

i=1
Pi

∑Si

j=1

(
mij − mi

)(
mij − mi

)T (12)  

and 

SSSDA
B =Ssw = Ssw1 + Ssw2 (13) 

It is worth pointing out that although Ssw in (13) would define a 
measure of scatterness, it is different from Sws in (4). Further, although 
Ssw2 presents some measure of global scatterness, it departs from the 
term 

∑C
i=1

∑Si
j=1Pij

(
mi − mij

)(
mi − mij

)T which appears in the relation-
ship between Sbs and Sb. As a matter of fact, it favours clustering and 
separability regardless of the introduced sub-classes balance and classes 
subclass membership. This is clear when considering the term Pi instead 
of Pij in (12). Building on this approach, SSDA introduced a measure of 
between class scatterness as: 

SSSDA
A =Ssb =

∑c

i=1
Pi

∑Si

j=1

(
mij − m

)(
mij − m

)T (14) 

As in (12), the term Pi in (14) favours any clustering strategy rather 
than balance in the number of subclusters per class. It is again a matter 
which can be contrasted with (5) where the term Pij is used in the 
definition of Sbs. SSDA comes with three algorithms, namely, SSDA-1, 
SSDA-2 and SSDA-3. 

For the SSDA-1 variant, SSSDA− 1
A = SSSDA

A and SSSDA− 1
B = SLDA

B . Hence 
the optimisation in SSDA-1 is given as: 

argmax
Ψ

JSSDA− 1(Ψ) = arg max
Ψ

Trace
(
ΨTSSSDA

A Ψ
)

Trace
(
ΨTSLDA

B Ψ
) = arg max

Ψ

Trace(ΨTSsbΨ)

Trace(ΨTSwΨ)

(15)  

In SSDA-2, SSSDA
B is used as a within-class scatter matrix and SLDA

A as the 
between-class scatter matrix; the algorithm optimisation is expressed as: 

argmax
Ψ

JMSDA(Ψ) = arg max
Ψ

Trace
(
ΨTSMSDA

A Ψ
)

Trace
(
ΨTSMSDA

B Ψ
)= arg max

Ψ

Trace(ΨTSbsbΨ)

Trace(ΨT(Sbsb + Sws)Ψ)
(10)   
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argmax
Ψ

JSSDA− 2(Ψ) = arg max
Ψ

Trace
(
ΨTSLDA

A Ψ
)

Trace
(
ΨTSSSDA

B Ψ
)= arg max

Ψ

Trace(ΨTSbΨ)

Trace(ΨTSswΨ)

(16)  

And for the third variant of SSDA, the optimisation function is expressed 
as: 

argmax
Ψ

JSSDA− 3(Ψ) = arg max
Ψ

Trace
(
ΨTSSSDA

A Ψ
)

Trace
(
ΨTSLDA

B Ψ
) = arg max

Ψ

Trace(ΨTSsbΨ)

Trace(ΨTSwΨ)

(17) 

For all variants of the SSDA algorithm, a hierarchical agglomerative 
clustering step is carried out first which is then followed by one of the 
optimisation operations in either (15), (16) or (17). 

3. A new sub-class linear data analysis 

In all the LDA like algorithms, some compactness measure is used 
which takes account of individual instances, the mean of the class, and 
the means of sub-classes. In SSDA, the equality Ssw1 = NSws suggests that 
the scatterness of samples belonging to sub-classes around sub-class 
means plays a more important role in the term Ssw than the global 
scatterness of subclass means around the class mean as defined in Ssw2 . 
Further, when classes are balanced and priors are constant, the matrix 
Ssw2 is reduced to 

∑C
i=1

∑Si
j=1Pij

(
mij − mi

)(
mij − mi

)T which is the dif-
ference term in Sw − Sws and Sbs − Sb. This shows some involvement of 

such term in both matrices A and B used in the maximization of |v
TAv|

|vTBv| ; 
hence in between-class and within-class scatterness metrics. For 
instance, it is part of a term that should be maximised if Sbs is adopted as 
between sub-class scatter matrix and at the same time it should be 
minimised if Sw is the adopted as measure of compactness. 

3.1. New combined and Balanced Sub-class LDA algorithms 

In the suggested new sub-class LDA termed Combined Sub-class LDA 
(CSDA), one argues for a regular use of class membership and sub-class 
membership priors instead of favouring any clustering of classes to sub- 
classes regardless of clusters membership. This would allow for a logical 
development with very clear links between all used matrices and the 
work presented in the literature. CSDA adopts a within-subclass 
compactness metric to bring samples of subclasses as close as possible 
to their respective subclass means. Hence, such measure of compactness 
would only use Sws to minimise scatterness as it was also the choice 
selected in MSDA to address a relative shortcoming of the SDA algorithm 
[17]. That is, in MSDA, one omits to involve Sbsw termed intra-subclass 
scatter of means as it encompasses the scatter of means of subclasses 
within the same classes. Its minimisation may lead to the minimisation 
of the Sbs scatter. Building on the use of Sws to minimise scatterness (or 
add compactness), and for maximising data scatterness, the proposed 
CSDA employs: 

SCSDA
A =

∑c

i=1

∑c

j=1

j∕=i

∑Sj

k=1

PiPjk
(
mi − mjk

)(
mi − mjk

)T (18)  

which can be expressed as the scatter of means of subclasses belonging 
to other classes but not within the same class. In fact, (18) excludes the 
term 

∑c
i=1

∑Si
j=1PiPij

(
mi − mij

)(
mi − mij

)T. And with SCSDA
B = Sws, CSDA 

objective function is as follows: 

argmax
Ψ

JCSDA(Ψ) = arg max
Ψ

Trace
(
ΨTSCSDA

A Ψ
)

Trace
(
ΨTSCSDA

B Ψ
) (19)  

In the transformed space, such an optimisation attempts to move means 
of sub-classes as far away as possible from the means of classes except 
the means of the classes encompassing them; and bring the samples of 
sub-classes as close as possible to the means of such sub-classes. 
Furthermore, SCSDA

A can also be expressed as: 

∑c

i=1

∑c

j=1

j∕=i

∑Sj

k=1

PiPjk
(
mi − mjk

)(
mi − mjk

)T
=Sb + Sbsb (20)  

That is, CSDA would include a projection in which there is a combina-
tion of class means being distant from each other; and sub-class means 
being far from each other as well. As in MSDA, (19) and (20) stipulate 
that scatter matrix Sbsw is not involved. An extension of (20) is to employ 
a weighted sum which can be exploited in the proposed Balanced Sub- 
class LDA (BSDA). That is, one can make the contribution of scatter 
matrices Sb and Sbsb depending on weighting scalars α1 and α2 as follows: 

SBSDA
A = α1Sb + α2Sbsb (21) 

Further to adding the proposed solution to the wealth of Sub-lass 
LDA available algorithms, one embeds more flexibility in BSDA as the 
matter of fixing the weight parameters can be addressed during vali-
dation. Hence, in BSDA, one can analyse data to establish whether it is 
better to transform data so that the class means are projected far from 
each other; and this can be useful if the data can be clustered into well- 
defined classes, or to emphasise dividing classes into sub-classes if data 
is not divided into well-defined classes. Furthermore, the weighted sum 
in (21) can also stipulate the involvement of SCSDA

A as it is the sum of the 
two scatter matrices, and their difference Sbsb− Sb =

∑C
i=1

∑Si
j=1Pij

(
mi −

mij
)(

mi − mij
)T. BSDA adopts SBSDA

B = Sws to build a measure of 
compactness, and hence the objective function of the algorithm is as 
follows: 

argmax
Ψ

JBSDA(Ψ) = arg max
Ψ

Trace
(
ΨTSBSDA

A Ψ
)

Trace(ΨTSwsΨ)
(22)  

3.2. A nonlinear extension: kernel CSDA 

A nonlinear extension of CSDA based on kernel functions can solve 
the non-linearity issue of data at subclass level. Without prior knowledge 
the nonlinear feature mapping explicitly, the formulation is based on the 
so-called kernel trick and the use of dot products to map the partitioned 
data into a high- or even infinite-dimensional feature space where the 
data are expected to be linearly separable. The extension is termed 
Kernel CSDA (KSDA). To deal with cases where the data is still non- 
linear at sub-class level, KSDA employs a nonlinear feature mapping ∅ 
to map the samples in the original feature space RF to a Hilbert space H 

defined as: 
{

∅( • ) : RF→H

x→∅(x) and X→∅(X) (23)  

where x ∈ RF is a training sample in data X. The annotation ∅ is used to 
indicate mapping of data or samples in the Hilbert space as x∅ = ∅(x)
and X∅ = ∅(X). However, the dot product can be used instead of using 
mapped samples which may not be feasible due to the high or even the 
infinite dimensionality of H . The dot product in H is equivalent to 
applying the kernel function ϰ in the original space if the kerel used 
satisfies Mercer’s condition [16,17,35]. That is, for two samples x and y 
in RF, one can have: 

ϰ(x, y)=∅(x)T∅(y) (24) 
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The data X is divided into sub-class blocks X =
[
X1,1,X1,2,…,Xij,…,

XC,SC

]
=

[
x1,1,1…x1,1,N1,1 ,x1,2,1…x1,2,N1,2 ,…,xi,j,1…xi,j,Ni,j ,…,xC,SC ,1… 

xC,SC ,NC,Sc

]
where Xij refers to the block of samples in the jth subclass of 

the ith class. The matrices SCSDA
A and SCSDA

B in the Hilbert space H are 
redefined as: 

SKCDA
A =SCSDA

A
∅
=

∑c

i=1

∑c

j=1

j∕=i

∑Sj

k=1
PiPjk

(
mi

∅ − mjk
∅)( mi

∅ − mjk
∅)T (25)  

SKCDA
B = SCSDA

B

∅
=

1
N

∑c

i=1

∑Si

j=1

∑Nij

k=1

(
∅
(
xijk

)
− mij

∅)( ∅
(
xijk

)
− mij

∅)T (26) 

The class means and sub-class means in H are computed as the 
average of the class samples and subclass samples mapped in H , 
respectively: m∅

i = 1
Ni

∑Ni
j=1∅

(
xij
)

and m∅
ij =

1
Nij

∑Nij
k=1∅

(
xijk

)
and where 

the indices i and j refer to the ith class and jth sub-class, respectively, and 
index k refers to a sample’s membership in a subclass. The optimisation 
problem leads to a general eigen decomposition solution which involves 
vectors in Ψ and values in Λ as follows: 

SKCDA
A

∅ Ψ=SKCDA
B ΨΛ∅ (27) 

A solution can be obtained when taking account of the fact that ac-
cording to the Representer’s theorem condition [16,17,35], the sought 
projection matrix can be defined as a linear combination of the training 
samples ∅(X) in H . There exists a coefficient matrix Γ such that: 

Ψ=∅(X)Γ (28) 

hence, 

∅(X)TSKCDA
A ∅ (X)Γ = ∅(X)TS

KCDA
B ∅(X)ΓΛ∅ (29)  

And by terming ∅(X)TSKCDA
A ∅(X) and ∅(X)TSKCDA

B ∅(X) matrices Sϰ
A and 

Sϰ
B respectively, one would have: 

Sϰ
A =

∑C

i=1

∑C

j=1

j∕=i

∑Sj

k=1

pipjk
(
ΚiРi − ΚjkРjk

)(
ΚiРi − ΚjkРjk

)T (30)  

and 

Sϰ
B =

1
N

∑C

i=1

∑Si

j=1

((
Κij

)(
Іij − Pij

)
ΚT

ij

)
(31)  

Іij and Pij are the identity and all-1/Nij 
matrices, respectively, and both of 

a Nij × Nij dimensionality. Further, Ki = ∅T(X)∅(Xi) ∈ RN×Ni and Kij =

∅T(X)∅
(
Xij

)
∈ RN×Nij . The development in (30) and (31) shows that only 

dot products are involved in the calculation of Sϰ
A and Sϰ

B. Hence the 
kernel trick can be used to solve (27) within the general eigende-
composition framework. 

4. Performance and results analysis 

To appreciate the performance of the suggested solution, it is 
deployed in a context where it uses several types of data and is compared 
to similar solutions and works in the literature [17,18,20,21,25,26,39]. 
That is, the modified sub-class LDA presented in this paper can find 
applications in the general field of ML; and is also compared to other 
sub-class LDA algorithms. Such a comparison can be based on general 
ML datasets. Further, for comparison purposes, food-based datasets ac-
quired using miniature spectrometers are used. This includes datasets 

collected by the authors and other sets used in similar works in the 
literature. 

4.1. The data 

For the empirical analysis of machine learning algorithms and to 
compare the performance to those of sub-class LDA variants, datasets 
from the publicly accessible UCI (University of California Irvine) ma-
chine learning repository are used. The UCI data has been widely used 
within the machine learning community for applications, involving 
clustering analysis and labelled data of various attributes, sizes, and 
dimensionalities [40,55]. 

Using miniature spectrometers, the authors collected a further two 
food-based spectral datasets, namely, the Olive Oil Dataset and the 
Apple Dataset. The Olive Oil dataset (OOD) has been prepared by 
increasingly mixing OO with Vegetable Oil (VO) with steps between 5 % 
and 10 % in terms of decreasing OO purity. That is, one begun data 
collection with a 100 % pure OO set of samples from which the purity 
was decreased by adding more VO. The purities of the samples used are 
100 %, 90 %–95 %, 80 %–85 %, 70 %–75 %, 60 %–65 % and 50 %–55 %. 
To simplify the annotations used, those 6 mixtures are referred to as the 
100 %, 90 %, 80 %, 70 %, 60 % and 50 % classes. 

Beyond the class of pure OO (100 % purity), all samples have been 
prepared in the lab where ten data collection sessions have taken place. 
The data collection phase took three weeks; and as it is common in ML, 
sessions are well distinct from each other; and only once a session is 
completed that data collection for a new session would commence. It is 
worth pointing out that over the time it took for the 10 sessions of data 
collection to complete, ambient and background environments changed; 
sessions took place in mornings, afternoons, and early evenings and 
further distortions may include any lighting induced distortions and the 
window blinds were randomly kept open or close. In addition, all ex-
periments have been conducted under ambient room temperature to 
mimic the use of such a device by an ordinary consumer for a relatively 
wide deployment scenario. Oil samples were collected using an STS UV 
portable spectrometer from Ocean Insight Inc covering the range from 
190 nm to 650 nm. In each session, 380 scans would be carried out, 
hence, leading to a dataset of 3800 samples. Each scan yielded 1024 
wavelength intensity pixels per sample. The adopted integration time is 
1 s; and the calibration of the device has been carried out by the 
manufacturer and which was further updated using the manufacturer’s 
calibration. In between the data collection sessions, dark measurements 
were taken to correct for the differences in background lighting. As the 
sensor used has no built-in light source, a 45◦ diffuse reflectance DR- 
probe with an integrated Tungsten Halogen light source has allowed 
for elegant reflectance measurements. The position of the probe and the 
oil surface was kept at 1.5 cm across the measurements. This makes the 
measurement results more reliable and consistent. The spectrometer 
used has an optical resolution of 1.5 nm Full Width Half Maximum 
(FWHM) with a slit size of 25 μm [41,42]. Figs. 1 and 2 show the plot of 
the oil classes and their PCA representations, respectively. The devices 
used for data collection are shown in Fig. 3. 

The Apple Dataset (AD) has been prepared from four types of Apples 
available in a local Tesco supermarket which is part of a British multi-
national groceries and general merchandise retailer. The selected four 
types were Ariane, Braeburn, Golden Delicious and Gala. Except the 
Ariane apples which were cultivated in France, all remaining apples 
originated from Belgium. The spectral data was collected using an STS- 
NIR spectrometer covering the 645–1085 nm range, an integration time 
of 500 ms, a resolution of 1.5 nm, a slit size of 25 μm and a HL-2000 light 
source in the reflection mode [41,42]. Two sessions of data acquisition 
have been completed with a one-day interval between the two sessions. 
Three Apples were selected for each type and cut into four pieces. Ten 
spectral data readings were taken for each piece making 120 reading per 
Apple type. For the four Apple types, 480 spectral data readings have 
been completed per session which completed a dataset of 960 spectral 
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Fig. 1. Plot of oil classes.  

Fig. 2. PCA plot of oil classes.  

Fig. 3. Miniature spectrometers used for data collection [41,42].  
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data belong to four classes. Samples’ dimensionality is 1024. Figs. 4 and 
5 show the plot of the apple classes and their PCA representations, 
respectively. 

Raw data acquired from the STS-UV and NIR portable spectrometers 
is pre-processed before it is passed into further classification steps. The 
pre-processing is based on a combination of mean & deviation normal-
isation, Multiplicative Scatter Correction (MSC) for which the mean and 
standard deviation of the training data are taken into account to MSC- 
correct test data, Savitzky-Golay (SG) filters and Daubechies Wavelet 
filters [1,24,26,27,31,43,44]. 

In the research literature [39], the Cultivar Dataset has been used to 
establish the performance of miniature spectroscopy in discriminating 
the three important cultivars of barley, chickpea and sorghum in the 
Ethiopian agricultural system. The work in Ref. [39] addressed the hy-
pothesis of the suitability of miniature NIR for dry cultivar identifica-
tion; and for that purpose, a Consumer Physics SCIO spectrometer 
covering the range 740–1070 nm has been employed. All grain samples 
from a seasonal harvest were dried before processing and then scanned 
in a similar position. A total of 50 grains per cultivar were used, and 24 
cultivars, 19 cultivars and 10 cultivars of barley, chickpea and sorghum, 
respectively. This yielded 1200 samples of barely, 950 samples of 
chickpea and 500 samples of sorghum. For comparison purposes, the 
authors also used the Milk Dataset in Ref. [25] which is another set of 
data collected using a miniature spectrometer. The milk database in-
cludes 87 full fat and pasteurized retail milk samples collected from 
grocery stores in The Netherlands over a period of 8 weeks; of which 37 

samples of organic milks and the remaining 50 samples are conventional 
non-organic milk samples. All samples have been analysed using a 
Consumer Physics Scio device along with its accessory accessories to 
allow for the submergence of the device in a glass beaker of milk. The 
spectrometer has been used to collect transmission data in the 
740–1070 nm range. Further, calibration with the device white refer-
ence has been carried out after analysis of each set of three samples. 

The major advantage of the four spectral datasets in the context of 
the presented work is that they used a miniature spectroscopy technol-
ogy. The spectrometers used are cost effective and relatively in the price 
range of consumers; and therefore, available to many which makes the 
deployment of the technology even more suitable for citizen science. 
The matter is to investigate the power of such technology and whether 
the pertinent task of food analysis can be carried out by the crowd to 
establish if such food products adhere to regulations. However, in the 
datasets the authors collected, only cross session classification is 
attempted. Subclasses are taken as sessions data which is a very plau-
sible deployment scenario and is a matter not emphasized in research 
papers. It is also a point which coincides with the common practice in 
ML where data belonging to the same session is not used to build models 
and test them at the same time. 

All data used for analysis is summarised in Table 1. Although data-
sets may include continuous feature values, data is solely used for 
classification. When needed, to emphasise the concept of sub-class 
classification, datasets classes can be divided into clusters where a 
cluster is used as a sub-class. This is also the adopted approach with the 

Fig. 4. Average plot of the four Apple types.  

Fig. 5. PCA plot of apple data.  

O. Nibouche et al.                                                                                                                                                                                                                              



Chemometrics and Intelligent Laboratory Systems 250 (2024) 105136

9

apple data as there are only two collection sessions; hence, the classes 
have been further divided into 2 clusters each. Further, all the datasets in 
Table 1 have been divided into training and testing samples with almost 
70 % of samples used for model building and about 30 % of samples 
dedicated to testing. However, this was carried out with the exception of 
OOD and apple data. For olive oil data, the emphasis is clear on the use 
of sessions data rather than clusters. All samples from 9 sessions would 
be used for training and the 10th session’s data used for testing; which is 
then repeated 10 times in a round-robin style. 

4.2. Results analysis 

The first carried out experiment aims at analysing the performance of 
the presented algorithm and compares it to other and similar LDA var-
iants in a generic ML setting for which such algorithms have been 
devised. That is, as part of bringing the matter of food analysis using 
miniature spectrometer to the generic ML field in its broadest sense, the 
suggested solution should also compete with generic and similar solu-
tions devised for a rather different set of machine learning applications, 
purposes, and aim. Hence, the suggested algorithm is compared to open 
research published classifiers in Table 2 on various sets from the UCI 
database. A clear point one can take from such table is that subclass 
LDAs tend to improve the performance of the classical LDA. By creating 
three clusters of each class, LDA do not attain higher rates than the 
subclass LDA algorithms although there are cases where LDA performs 
as good as its subclass variants. The suggested CSDA compares well with 
subclass LDA algorithms in the literature. This is clear in Table 2 where 
CSDA can be compared to the best of all LDA variants in the table in the 
second column from the right (except BSDA) which shows that in the 
context of the presented experiment results, CSDA can yield the better 
rates of all similar algorithms in the table in about 50 % of all cases. 
Furthermore, BSDA has always the tendency of improving the 

performance of CSDA although none of the algorithms in Table 2 is the 
outright best. Nevertheless, in average, BSDA would be the top per-
forming algorithm. 

Building up on such results, OOD was used to gauge the performance 
of the suggested algorithm. The scenario here is to use 9 sets of data to 
build a model and the tenth set which has not been used in modelling as a 
test set. The process is repeated 10 times in a round-robin style so that all 
data can be used for testing, which is a plausible deployment scenario is 
which relatively large amounts of data can be available mainly due to the 
ease of use of the technology and the large community of citizens who 
would be the technology users. The performance of such classifiers in 
Table 2 and throughout the remaining sections of the manuscript is 
gauged in terms of accuracy. As with Table 2, the LDA variant algorithms 
in Table 3 have been implemented by the authors who also used Matlab 
implementations of SVM, KNN and PLS-DA. Only the performance of such 
algorithms is shown in this paper within the limits of the presented 
analysis. Such table shows that the suggested CSDA is quite competitive 
with similar algorithms in the literature. Its performance can be improved 
using BSDA in average, although only slightly in the context of the 
experiment and results exhibited in Table 3. In the authors’ imple-
mentation of SVM, a Gaussian kernel was used; PLS-DA uses 16 LVs and 
KNN is taking 9 neighbours into consideration to make a classification 
decision. Such values and parameters yielded the highest performance 
these 3 classifiers could attain to the extent of the authors’ analysis. The 
matter is further detailed in Table 4 which shows the result of the 3 best 
performing algorithms in Table 3. The performance of CSDA is compared 
to SSDA-1 on the 10 sets; and in average, they have attained similar rates. 
To underline the flexibility of using subclasses in LDA, BSDA is shown to 
attain a higher rate when 0.1(Sbsb− Sb) is added to SCSDA

A which is referred 
to as BSDA -0.1 in Table 4. A further tuning of the parameters in (12) is 
shown as the maximum rates attained by BSDA. However, this is only a 
slight improvement in average over CSDA and BSDA-0.1. 

Table 1 
Description of data used for analysis.  

Dataset Description Samples in 
Dataset 

Classes Num. 
Clusters 

Num.of Samples for Training & 
Testing 

Breast Tissue Impedance measurements for classification 106 6 3 74 & 32 
Ecoli Protein localisation data with both continuous and binary features for 

classification 
332 5 3 229 & 98 

Forest Types Remote sensing data for classification 523 4 3 366 & 157 
Ionosphere Radar data of continuous values for classification 351 2 3 246 & 105 
Parkinsons Biomedical data with continuous features for classification 195 2 3 137 & 58 
QSAR-biodeg Chemometrics data for classification 1055 2 3 739 & 316 
SPECTF 

heart 
Tomography images for binary classification 267 2 3 187 & 80 

WDBC biomedical images of continuous variables for classification 569 2 3 398 & 171 
RWQ Physiochemical and sensory data 1599 6 3 1119 & 480 
Milk Spectral data for classification 87 2 2 61 & 26 
Barley Spectral data for classification 1200 24 2 840 & 360 
ChickPeas Spectral data for classification 950 19 2 665 & 285 
Olive Oil Discrete spectral data 3800 6 10 3420 & 380 
Apple Discrete spectral data 960 4 2 480 & 480  

Table 2 
LDA variants performance on various UCI subsets.   

LDA MDA SDA MSDA SSDA-1 SSDA-2 SSDA-3 CSDA Max. LDA variants BSDA 

Breast Tissue 71.43 57.14 47.62 66.67 66.67 66.67 66.67 71.43 71.43 80.95 
Ecoli 93.94 87.88 90.91 90.91 93.94 90.91 90.91 90.91 93.94 93.94 
Forest Types 88.46 92.31 88.46 86.54 90.38 90.38 90.38 94.23 94.23 96.15 
Ionosphere 91.43 94.29 85.71 94.29 91.43 91.43 100 97.14 100 100 
Parkinsons 94.74 89.47 94.74 94.74 94.74 84.21 84.21 94.74 94.74 94.74 
QSAR-biodeg 88.57 86.67 89.52 87.62 88.57 88.57 87.62 87.62 89.52 88.57 
SPECTF heart 76.92 80.77 80.77 69.23 80.77 80.77 80.77 80.77 84.62 80.77 
WDBC 97.35 98.23 98.23 99.12 96.46 99.12 97.35 99.12 99.12 99.12 
RWQ 60.19 59.56 59.56 59.25 58.93 62.07 59.87 62.07 62.07 63.01 
average 84.78 82.92 81.72 83.15 84.65 83.79 84.2 86.45 87.74 88.58  
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Further to the results obtained using miniature spectroscopy data, 
the performance is also gauged on the milk database. Two clusters per 
class are used to create subclasses which yielded the results in in Table 5; 
and CSDA exhibits better results when compared to similar algorithms in 
the literature. Interesting however is to compare the performance of the 
algorithms in Table 5 with similar work in the literature where a mini-
ature spectroscopy technology was used. For instance, the authors in 
Ref. [45] reported an accuracy of 73 % when distinguishing organic 
from non-organic milk with external validation on NIR spectral data. 
With PLS-DA and cross validation, the accuracy reported in Ref. [25] is 
89 %. That is, the result shown in Table 5 go some way in confirming the 
findings in Refs. [25,45] that a reasonable classification rate can be 
attained using miniature spectrometers although remaining inferior to 
the performance obtained using benchtop spectrometers in dis-
tinguishing organic from non-organic milk application. Table 6 further 
shows the improvements introduced by using subclass LDA classifica-
tion, the improved performance of both CSDA and BSDA, and the results 
of using classifiers fusion. Albeit simple fusion rules have been used 
including minimum (MIN), sum (SUM) and Dempster Shafer Theorem 
(DST) based fusion [46], the results have outperformed a tunned BSDA. 
The classifiers involved in fusion at score level are SVM, LDA and KNN. It 
is also worth pointing out that other fusion rules failed to yield better 
classification rates that what is reported in Table 6 and have as such 
been omitted. The authors also omitted various combination of classi-
fiers including tree based classifiers, as they did not improve the re-
ported results in Table 6. That is, although a careful fusion can improve 
the results, this has not been a consistent occurrence, and a subclass LDA 
classification remains a very competitive alternative. 

Taking this analysis further, the authors have also gauged the per-
formance of the proposed classifier when combined with regression 

based representations as in the sparse, regularised and collaborative 
representations in Refs. [47–53]: 

ρ̂ = arg min
ρ

‖ρ‖1 s.t. ‖Aρ − y‖2 ≤ ε (32)  

ρ̂ = arg min
ρ

‖Aρ − y‖2
2 + λ‖ρ‖1 (33)  

ρ̂ = arg min
ρ

‖Aρ − y‖2
2 + λ‖ρ‖2

2 (34) 

Such representations may be able to solve the misalignment or pose 
changes distortions in image classification, and plane transformation, 
and can show some robustness when dealing with signal corruption 
[47]. In Refs. [51,54], it is shown that when the aim is to recover or 
approximate a query sample from a limited number of observations as a 
linear combination of measurements of the same class, one can attain an 
improved classification rate and a low representation error. Moreover, 
the ensuing representation can further improve classification results 
when combined with supervised and unsupervised classification-based 
projections, and even when random projections are employed, which 
are subsequently followed by regression-based representations in the 
transform domain. The results exhibited in Tables 6–8 follow such 
approach; and the used regression-based representations are shown in 
equations (32)–(34). 

The sought representation ρ̂ in (32) is sparse and is an optimisation 
attempt to reduce its l0 norm which simply measures the sparseness of 
the sought solution. That is, the sparse representation-based classifica-
tion (SRC) regression computes the size of the support of the signal 
which is the number of its nonzero entries. Such optimisation can be 
formulated as an l1 minimisation subject to quadratic constraint as in 
(32) which is a convex minimisation problem. The annotation followed 
when equation (32) is used in the remainder of the paper is classifier+ l0 
to indicate that the projection takes place first then is followed by the 
regression-based representation. Equation (34) seeks the classical solu-
tion of a Collaborative Representation based Classification (CRC) with 
an l2 regularisation term and an ensuing solution given as 
ρ̂ =

(
XXT + λI

)− 1XTy. The representation in (33) uses an l1 regular-
isation term; hence when used in conjuncture with a classifier the 
annotation classifier+ l1 is used. Similarly, the annotation classifier+ l2 
indicates that the CRC representation is used once data is projected in 
the transform domain. Further, in (32), (33) and (34), the parameter λ is 
a tuning parameter, y is the query sample, X is a matrix containing the 
training sample and acts as a code dictionary, and ε is an arbitrarily very 
small quantity which considers noise, hence the representation error and 
the sparsity of the representation ρ̂. Tables 6–8 exhibit the results of 
using the kernel classifiers introduced in this paper, KCDA. The tables 

Table 3 
Performance of the proposed algorithm on the OOD.   

LDA MDA SDA MSDA SSDA-1 SSDA-2 SSDA-3 CSDA BSDA SVM KNN PLS-DA 

Avg 82.39 83.92 83.13 50.63 85.05 73.61 48.92 85.32 85.84 79.16 67.55 67.55  

Table 4 
Performance of SSDA-1, CSDA and BSDA.   

SSDA- 
1 

CSDA BSDA -0.1 Max. of CSDA & BSDA -0.1 BSDA 

Set-1 96.32 93.42 92.37 93.42 96.05 
Set-2 67.11 64.47 68.16 68.16 68.16 
Set-3 86.84 84.21 90.53 90.53 90.53 
Set-4 71.05 67.89 72.63 72.63 72.63 
Set-5 82.63 91.05 83.95 91.05 91.05 
Set-6 90.79 90.26 90.79 90.79 92.11 
Set-7 93.95 95.79 94.47 95.79 95.79 
Set-8 84.21 86.58 85 86.58 87.37 
Set-9 91.32 93.95 91.58 93.95 95 
Set-10 86.32 85.53 88.95 88.95 88.95 
Average 85.05 85.32 85.84 87.19 87.76  

Table 5 
Performance of the algorithms in establishing the organic feature of milk.  

Classifier LDA MDA SDA MSDA SSDA-1 SSDA-2 SSDA-3 CSDA 

Performance 73.38 75.54 74.77 72.46 73.85 75.54 73.38 77.08  

Table 6 
Performance of the algorithms on the cultivar database in [39].   

LDA MDA SDA MSDA SSDA-1 SSDA-2 SSDA-3 CSDA BSDA [39] SVM KNN PLSDA SUM MIN DST 

Barley 85 85 85.83 86.67 88.33 86.67 86.67 85 87.5 86.9 85.83 76.67 60.83 89.17 90 89.17 
Chickpeas 94.74 93.68 94.74 95.79 92.63 94.74 90.53 94.74 97.89 94.7 90.53 87.37 77.89 92.63 91.58 93.68  
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only show the best results from a larger analysis using the AD where 
among the classical kernels, exponential kernels have not exceeded the 
performance attained by the polynomial kernels used. The polynomial 
kernel of degree deg can be indicated by the annotation -ddeg in such 
tables which also exhibit the performance of the classifiers when com-
bined with one of the representations in (32)–(34). In most classification 
cases in Table 7, a better performance is obtained when a low poly-
nomial degree kernel is used with the quadratic kernel attaining the best 
performance in Table 7 and where a regression based representation can 
only achieve competitive results. That is, in Table 7, KCDA-d2 is slightly 
better than CSDA and KCDA-d2+ l1 with the latter classifier attaining 
competitive but not better results than the linear classifier. The other 
point one can take from Tables 7 and is that when KCDA-d2 is combined 
with any of the regression-based representations, it persistently tends to 
do better than any of the classifiers in the table when combined with the 
same regression-based representation which really underlines the per-
formance of a kernel-based sub class LDA. The matte can also be shown 
in Table 8 with a combination of KCDA and CRC representation edging 
slightly better than the linear CSDA in terms of classification perfor-
mance. Taking the investigation further and looking deeper into the 
matter of using regression-based representations, a comparison of the 
results of fusion of multiple classifiers is shown in Table 9. Of the fusion 
techniques employed by the authors, only the results of the Weighted 
Majority Voting (WMV) and DST are reported. The weights associated 
with the WMV rule are the classification rates of the individual classi-
fiers involved. Other fusion techniques have not yielded competitive res 
[55]ults when compared with DST and WMV; and that includes the 
simple fusion rules used in Table 6. Further, the analysis extended to 
include a polynomial kernel of up to degree 5 only; and as in the analysis 
in Tables 6 and 7, exponential kernels attained lower performance and 
have been omitted from Table 9. 

Compared to the performance of the CSDA in Table 8, a combination 
of CSDA and 4 KCDAs combined with a CRC representation using a WMV 
rule can attain better results than CSDA in the extent of the experiment 

carried out using the AD. That is, the kernelization of the proposed sub- 
class LDA has yielded competitive results in Tables 6 and 7; and is edging 
with over a margin of 2 % better than CSDA in the experiments of 
Table 9. This shows a relatively good improvement to the extent of the 
experiments in Tables 6–8. 

Nevertheless, regression based representations when combined with 
classifiers did not achieve an overall improvement in classification 
performance comparable to the success enjoyed in face and palmprint 
recognition in Refs. [49,51,54]. Furthermore, sub-class classification 
may have by its own merit lessened the impact of non-linearity by 
dividing data into clusters in which samples share the same statistical 
attributes. Moreover, in the literature, kernelization and classical ker-
nels used have been reported to not always guarantee improvement of 
results [17]. That is, if samples are grouped in clusters, the kernelization 
that traditionally has been used to solve non-linearity may not yield 
improvements when globally applied. Rather, a multi-kernel approach 
may be more useful as one is not certain of the data non-linearity at-
tributes and whether clustering would take account of such attributes. 
That is, to the extent of the experiments carried out, the results in 
Table 9 would favour the use of multiple kernels with fusion techniques. 

5. Conclusions 

Food quality analysis using miniature spectrometers augurs a new 
citizens’ realm where the war against food fraud may enlist ordinary 
citizens in the forefront of the fight instead of having them as mere 
victims. This has been made possible because of technology miniaturi-
zation, its cost effectiveness, ease of use and short processing time. The 
technology however may not yield top shelf performance, and coupled 
with the amount of data that it may generate due mainly to its possible 
wide deployment, the matter would lend itself very nicely to being a 
machine learning application. That is, the addressed aim in the paper is 
to bring food analysis under the general umbrella of ML and to tackle it 
in a pure data driven approach. The authors have collected data in 

Table 8 
KCDA and CSDA results on the apple dataset with session S2 used for testing.  

CSDA KCDA-d2 KCDA-d3 KCDA-d4 KCDA-d5 

94.17 71.04 83.96 88.33 75.21 
CSDA+ l0 KCDA-d2+ l0 KCDA-d3+ l0 KCDA-d4+ l0 KCDA-d5+ lo 

86.46 86.45 85.83 90.42 87.08 
CSDA+ l1 KCDA-d2+ l1 KCDA-d3+ l1 KCDA-d4+ l1 KCDA-d5+ l1 

91.46 74.17 85.21 89.79 82.71 
CSDA+ l2 KCDA-d2+ l2 KCDA-d3+ l2 KCDA-d4+ l2 KCDA-d5+ l2 

93.75 85.63 93.13 94.38 86.25  

Table 9 
Combination with five polynomial kernels (up to d5; CSDA uses kernel d1).  

DST + l0 d1-5 DST + l1 d1-5 DST + l2 d1-5 WMV + l0 d1-5 WMV + l1 d1-5 WMV + l2 d1-5 
93.13 90.63 93.13 92.71 91.25 95.83 
DST + l0 d1,3,4 DST + l1 d1,3,4 DST + l2 d1,3,4 WMV + l0 d1,3,4 WMV + l1 d1,3,4 WMV + l2 d1,3,4 
93.96 94.17 94.58 93.54 90.62 93.75 
DST + l0 d1,2,4 DST + l1 d1,2,4 DST + l2 d1,2,4 WMV + l0 d1,2,4 WMV + l1 d1,2,4 WMV + l2 d1,2,4 
94.58 89.38 95.0 91.67 92.29 96.67  

Table 7 
KCDA and CSDA results on the apple dataset with session S1 used for testing.  

CSDA KCDA-d2 KCDA-d3 KCDA-d4 KCDA-d5 

85.83 86.04 80.21 65.63 68.75 
CSDA+ l0 KCDA-d2+ l0 KCDA-d3+ l0 KCDA-d4+ l0 KCDA-d5+ l0 

77.08 81.04 70.42 42.5 56.04 
CSDA+ l1 KCDA-d2+ l1 KCDA-d3+ l1 KCDA-d4+ l1 KCDA-d5+ l1 

76.67 85.63 77.29 50.63 65 
CSDA+ l2 KCDA-d2+ l2 KCDA-d3+ l2 KCDA-d4+ l2 KCDA-d5+ l2 

79.58 82.29 81.25 70 71.67  
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multiple sessions and attempted to mimic data collection exercises as 
they may be carried out by ordinary users who would not have a 
particular training to appreciate the spectroscopy technology 
complexity. Further, as it is common in ML, models built using collected 
data would be tested using samples collected in different sessions. 
Although it is common in ML, this matter is deemed necessary to 
establish the capabilities of miniature devices in a real-world scenario 
which is a matter usually overlooked in research papers. It is within this 
context that the paper introduces a new sub-class LDA for spectral based 
data analysis. The choice is well justified by the fact that samples 
collected in different sessions may exhibit different statistical features, 
as such forming subclasses within the same class. The proposed classifier 
takes account of the distances between class averages and subclass av-
erages to build a measure of scatterness and attempts to minimise the 
distance between samples in a subclass cluster and its average. The 
suggested subclass LDA achieves competitive or better results than 
traditional ML algorithms and similar subclass classifiers when applied 
on general ML datasets. This clearly demonstrates the benefit of using 
the adopted approach which is a point that confirms what has already 
been reported in the literature, and the merit of the suggested algorithm 
over similar solutions. The matter has been demonstrated in olive oil 
data collected in multiple sessions which is the exact point for which the 
suggested algorithm was devised. Further, the subclass classification 
approach exhibits more flexibility in classification than similar ML 
methods when it comes to using clusters, which is a matter that has been 
clearly shown in the relatively extensive set of conducted experiments 
and in which the authors’ algorithm has improved the results. It is also a 
flexibility in which the scatterness metric can include both the distance 
of class averages to data average and the distance of subclass averages to 
class averages. A further extension shown in the paper is the kernel 
version of the suggested algorithm. For a detailed analysis, the authors 
have also deployed regression-based representations for their reported 
ability to classify distorted data. Although the kernel-based algorithm 
has shown high competitiveness with the linear classifier, the clear 
improvement in results could only be achieved when multiple kernels 
were used. This may suggest that subclass classification may be 
addressing data nonlinearity as a multimodal data distribution; that 
nonlinearity may be related to models’ degeneration and only becomes 
obvious when multiple data collection sessions are used. The general 
assumption is that spectrometers, food samples and spectral samples 
collection may be affected by background and ambient conditions. 
Hence, inter-session classification may be exhibiting some data nonlin-
earity which otherwise would be almost linear per collection session. 
This may explain why not a single classical and globally applied kernel 
can achieve overall improvement. 

CRediT authorship contribution statement 

Omar Nibouche: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Investigation, Methodology, Supervision, Valida-
tion, Visualization, Writing – original draft, Writing – review & editing. 
Fayas Asharindavida: Data curation, Software, Validation, Visualiza-
tion. Hui Wang: Data curation, Formal analysis, Funding acquisition, 
Supervision. Jordan Vincent: Data curation, Methodology, Validation. 
Jun Liu: Formal analysis, Funding acquisition, Methodology, Project 
administration, Supervision. Saskia van Ruth: Conceptualization, Data 
curation, Visualization. Paul Maguire: Conceptualization, Data cura-
tion, Formal analysis, Methodology. Enayet Rahman: Conceptualiza-
tion, Data curation, Investigation, Methodology. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper  

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests 

Omar Nibouche reports equipment, drugs, or supplies was provided 
by Ulster University. Omar Nibouche reports a relationship with Ulster 
University that includes: employment. 

Data availability 

Data will be made available on request. 

References 

[1] R. Tauler, B. Walczak, Steven Brown, in: R.T.B.W. Steven Brown (Ed.), 
Comprehensive Chemometrics: Chemical and Biochemical Data Analysis, second 
ed., Elsevier, Oxford, 2020. 

[2] R. Duda, P. Hart, D. Stork, Pattern Classification, second ed., Wiley, 2000. 
[3] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 

Cambridge, MA, 2013. 
[4] G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John 

Wiley & Sons, 2004. 
[5] R. Fisher, The statistical utilization of multiple measurements, Annals of Eugenics 8 

(1938) 376–386. 
[6] Y.A. Ghassabeh, F. Rudzicz, H.A. Moghaddam, Fast incremental lda feature 

extraction, Pattern Recogn. 48 (2015) 1999–2012. 
[7] T. Hastie, R. Tibshirani, Discriminant analysis by Gaussian mixtures, J. Roy. Stat. 

Soc. B (1996) 155–176. 
[8] W. Song, H. Wang, U. Power, E. Rahman, J. Barabas, J. Huang, J. McLaughlin, 

C. Nugent, P. Maguire, Classification of respiratory syncytial virus and sendai virus 
using portable near-infrared spectroscopy and chemometrics, IEEE Sensor. J. 
(2022). 

[9] D. Chu, L.-Z. Liao, M.P. Ng, X. Wang, Incremental linear discriminant analysis: a 
fast algorithm and comparisons, IEEE Transact. Neural Networks Learn. Syst. 26 
(11) (Nov. 2015) 2716–2735. 

[10] K. Chumachenko, J. Raitoharju, M. Gabbouj, A. Losifidis, Incremental fast subclass 
discriminant analysis, in: 2020 IEEE International Conference on Image Processing 
(ICIP), 2020. 

[11] I. Vranckx, J. Raymaekers, B. De Ketelaere, P.J. Rousseeuw, M. Hubert, Real-time 
discriminant analysis in the presence of label and measurement noise, Chemometr. 
Intell. Lab. Syst. 208 (2021). 

[12] H. Wan, Cluster-Based Supervised Classification, Ulster University, UK, 2020. PhD 
Thesis. 

[13] H. Wan, G. Guo, H. Wang, X. Wei, A New Linear Discriminant Analysis Method to 
Address the Over-reducing Problem, Springer International Publishing, 2015. 

[14] K. Chumachenko, A. Losifidis, M. Gabbouj, Robust fast subclass discriminant 
analysis, in: 28th European Signal Processing Conference (EUSIPCO), 2020. 

[15] W. Song, H. Wang, P. Maguire, O. Nibouche, Local Partial Least Square classifier in 
high dimensionality classification, Neurocomputing 234 (2017) 126–136. 

[16] B. Chen, L. Yuan, H. Liu, Z. Bao, Kernel subclass discriminant analysis, 
Neurocomputing 71 (2007) 455–458. 

[17] N. Gkalelis, V. Mezaris, I. Kompatsiaris, T. Stathaki, Mixture subclass discriminant 
analysis link to restricted Gaussian model and other generalizations, IEEE Transact. 
Neural Networks Learn. Syst. 24 (1) (Jan. 2013) 8–21. 

[18] N. Gkalelis, V. Mezaris, I. Kompatsiaris, Mixture subclass discriminant analysis, 
IEEE Signal Process. Lett. 18 (5) (May 2011) 319–322. 

[19] A. Maronidis, A. Tefas, I. Pitas, Subclass graph embedding and a marginal Fisher 
analysis paradigm, Pattern Recogn. 48 (2015) 4024–4035. 

[20] H. Wan, H. Wang, G. Guo, X. Wei, Separability-oriented subclass discriminant 
analysis, IEEE Trans. Pattern Anal. Mach. Intell. 40 (2) (Feb. 2018) 409–422. 

[21] M. Zhu, A.M. Martinez, Subclass discriminant analysis, IEEE Trans. Pattern Anal. 
Mach. Intell. 28 (8) (Aug. 2006) 1274–1286. 

[22] M. Martinez, M. Zhu, Where are linear feature extraction methods applicable? IEEE 
Trans. Pattern Anal. Mach. Intell. 27 (12) (Dec. 2005) 1934–1944. 

[23] H. Wan, H. Wang, B. Scotney, J. Liu, A novel Gaussian mixture model for 
classification, in: 2019 IEEE International Conference on Systems, Man and 
Cybernetics (SMC), 2019. 

[24] M. Esteki, Z. Shahsavari, J. Simal-Gandara, Use of spectroscopic methods in 
combination with linear discriminant analysis for authentication of food products, 
Food Control 91 (2018) 100–112. 

[25] S. van Ruth, N. Liu, How organic is organic milk? Can we have a quick check? NIR 
News 30 (2) (2019) 18–21. 

[26] J. Yan, L. van Stuijvenberg, S.M. van Ruth, Handheld near-infrared spectroscopy 
for distinction of extra virgin olive oil from other olive oil grades substantiated by 
compositional data, Eur. J. Lipid Sci. Technol. 121 (12) (2019). 

[27] J. Riu, G. Gorla, B. Giussani, Miniaturized near-infrared instruments in dairy 
products or dairy industry: first steps in a long-distance race? NIR News 32 (2021) 
17–19. 

[28] R.H. Furlanetto, T. Moriwaki, R. Falcioni, M. Pattaro, A. Vollmann, A.C. Sturion 
Junior, W.C. Antunes, M.R. Nanni, Hyperspectral reflectance imaging to classify 
lettuce varieties by optimum selected wavelengths and linear discriminant 
analysis, Remote Sens. Appl.: Society and Environment 20 (2020). 

[29] Y. Zhou, S. Yan, Y. Ren, S. Liu, Rolling bearing fault diagnosis using transient- 
extracting transform and linear discriminant analysis, Measurement 178 (2021). 

O. Nibouche et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0169-7439(24)00076-5/sref1
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref1
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref1
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref2
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref3
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref3
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref4
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref4
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref5
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref5
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref6
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref6
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref7
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref7
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref8
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref8
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref8
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref8
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref9
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref9
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref9
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref10
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref10
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref10
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref11
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref11
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref11
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref12
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref12
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref13
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref13
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref14
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref14
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref15
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref15
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref16
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref16
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref17
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref17
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref17
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref18
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref18
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref19
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref19
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref20
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref20
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref21
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref21
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref22
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref22
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref23
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref23
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref23
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref24
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref24
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref24
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref25
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref25
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref26
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref26
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref26
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref27
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref27
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref27
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref28
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref28
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref28
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref28
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref29
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref29


Chemometrics and Intelligent Laboratory Systems 250 (2024) 105136

13

[30] W. Lin, Q. Gao, M. Du, W. Chen, T. Tong, Multiclass diagnosis of stages of 
Alzheimer’s disease using linear discriminant analysis scoring for multimodal data, 
Comput. Biol. Med. 134 (2021). 

[31] W. Song, H. Wang, P. Maguire, O. Nibouche, Nearest clusters based partial least 
squares discriminant analysis for the classification of spectral data, Anal. Chim. 
Acta 1009 (7 June 2018) 27–38. 

[32] C.H. Li, B. Kuo, C. Lin, LDA-based clustering algorithm and its application to an 
unsupervised feature extraction, IEEE Trans. Fuzzy Syst. 19 (1) (2011) 152–163. 

[33] K. Chumachenko, J. Raitoharju, A. Iosifidis, M. Gabbouj, Speed-up and multi-view 
extensions to subclass discriminant analysis, Pattern Recogn. (2021). 

[34] S.W. Kim, A pre-clustering technique for optimizing subclass discriminant analysis, 
Pattern Recogn. Lett. 31 (6) (2010) 462–468. 

[35] G. Anouar, F. BaudAT, Generalized discriminant analysis using a kernel approach, 
Neural Comput. 12 (10) (2000) 2385–2404. Neural Comput. 

[36] S.W. Kim, R. Duin, On using a pre-clustering technique to optimize LDA-based 
classifiers for appearance-based face recognition, in: L. Rueda, D. Mery, J. Kittler 
(Eds.), Lecture Notes in Computer Science, Progress in Pattern Recognition, Image 
Analysis and Applications. CIARP, 4756, Springer, Berlin, Heidelberg, 2007, 2007. 

[37] Y. Pang, S. Wang and Y. Yuan, "Learning regularized LDA by clustering," IEEE 
Transact. Neural Networks Learn. Syst., vol. 25, no. 12, pp. 2191-2201, 201. 

[38] H. Park, J. Choo, B.L. Drake, K. Jinwoo, Linear discriminant analysis for data with 
subcluster, in: 19th International Conference on Pattern Recognition, Tampa, 
2008. 

[39] F. Kosmowski, T. Worku, Evaluation of a miniaturized NIR spectrometer for 
cultivar identification: the case of barley, chickpea and sorghum in Ethiopia, PLoS 
One (2018). 

[40] S. Chang, Y. Shihong, L. Qi, Clustering characteristics of UCI dataset, in: 39th 
Chinese Control Conference, Shenyang, 2020. 

[41] Integrated Light Source Reflection/Backscatter Probes," Ocean Insight, [Online]. 
Available: https://www.oceaninsight.com/products/fibers-and-probes/probes/ref 
lectionbackscatter-probes/integrated-light-source-reflectionbackscatter-probes/. 
[Accessed 23 January. 2023]. 

[42] Microspectrometers," Ocean Insight, [Online]. Available: https://www.oceaninsigh 
t.com/products/spectrometers/microspectrometer/. [Accessed 23 January. 2023]. 

[43] M.R. Rana, M. Babor, A.A. Sabuz, Traceability of sweeteners in soy yogurt using 
linear discriminant analysis of physicochemical and sensory parameters, Journal of 
Agriculture and Food Research 5 (2021). 

[44] J. Müller-Maatsch, S.M. van Ruth, Handheld devices for food authentication and 
their applications: a review, Foods 10 (12) (2021). 

[45] N. Liu, H. Parra, A. Pustjens, K. Hettinga, P. Mongondry, S.v. Ruth, Evaluation of 
portable near-infrared spectroscopy for organic milk authentication, Talanta 184 
(2018) 128–135. 

[46] K. Zhao, L. Li, Z. Chen, R. Sun, G. Yuan, J. Li, A survey: optimization and 
applications of evidence fusion algorithm based on Dempster–Shafer theory, Appl. 
Soft Comput. 124 (2022). 

[47] Q.D. Zhan, M. Yang, X. Feng, Sparse representation or collaborative representation: 
which helps face recognition?, in: IEEE International Conference on Computer 
Vision (ICCV’11)., Barcelona, Spain, 2011. 

[48] E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal 
reconstruction from highly incomplete frequency information, IEEE Trans. Inf. 
Theor. 2 (52) (2006) 489–509. 

[49] J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, Robust face recognition via sparse 
representation, IEEE Trans. Pattern Anal. Mach. Intell. 2 (31) (2009) 210–227. 

[50] I. Rida, S. Al-Maadeed, A. Mahmood, A. Bouridane, S. Bakshi, Palmprint 
identification using an ensemble of sparse representation, IEEE Access 6 (2018) 
3241–3248. 

[51] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, S. Yan, Sparse representation for 
computer vision and pattern recognition, Proc. IEEE 6 (98) (2010) 1031–1044. 

[52] J. Xu, W. An, L. Zhang, D. Zhang, Sparse, collaborative, or nonnegative 
representation: which helps pattern classification? Pattern Recogn. 88 (2019) 
679–688. 

[53] S. J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, "An interior-point method 
for large-scale ℓ1-regularized least squares," IEEE Journal of Selected Topics in 
Signal Processing, vol. vol. 1, no. no. 4, pp. pp. 606-617, Dec. 200. 

[54] O. Nibouche, J. Jiang and P. Trundle, "Analysis of performance of palmprint 
matching with enforced sparsity," Digit. Signal Process., vol. Volume 22, no. Issue 
2, pp. Pages 348-355, 2012. 

[55] UC Irvine Machine Learning Repository," [Online]. Available: https://archive.ics. 
uci.edu/datasets. [Accessed 15 March. 2024]. 

O. Nibouche et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0169-7439(24)00076-5/sref30
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref30
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref30
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref31
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref31
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref31
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref32
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref32
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref33
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref33
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref34
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref34
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref35
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref35
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref36
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref36
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref36
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref36
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref38
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref38
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref38
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref39
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref39
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref39
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref40
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref40
https://www.oceaninsight.com/products/fibers-and-probes/probes/reflectionbackscatter-probes/integrated-light-source-reflectionbackscatter-probes/
https://www.oceaninsight.com/products/fibers-and-probes/probes/reflectionbackscatter-probes/integrated-light-source-reflectionbackscatter-probes/
https://www.oceaninsight.com/products/spectrometers/microspectrometer/
https://www.oceaninsight.com/products/spectrometers/microspectrometer/
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref43
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref43
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref43
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref44
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref44
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref45
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref45
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref45
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref46
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref46
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref46
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref47
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref47
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref47
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref48
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref48
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref48
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref49
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref49
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref50
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref50
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref50
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref51
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref51
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref52
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref52
http://refhub.elsevier.com/S0169-7439(24)00076-5/sref52
https://archive.ics.uci.edu/datasets
https://archive.ics.uci.edu/datasets

	A new sub-class linear discriminant for miniature spectrometer based food analysis
	1 Introduction
	1.1 Food quality and analysis
	1.2 Contribution of the paper

	2 LDA revisited and previous work
	2.1 Subclass LDA algorithms
	2.2 Separability-oriented LDA

	3 A new sub-class linear data analysis
	3.1 New combined and Balanced Sub-class LDA algorithms
	3.2 A nonlinear extension: kernel CSDA

	4 Performance and results analysis
	4.1 The data
	4.2 Results analysis

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


