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a b s t r a c t

This paper proposes panel nowcasting methods to obtain timely predictions of CO2
emissions and energy consumption growth across all U.S. states. This is crucial, not least
because of the increasing role of sub-national carbon abatement policies but also due to
the very delayed publication of the data. Since the state-level CO2 data are constructed
from energy consumption data, we propose a new panel bridge equation method. We
use a mixed frequency set-up where economic data are first used to predict energy
consumption growth. This is then used to predict CO2 emissions growth while allowing
for cross-sectional dependence across states using estimated factors. We evaluate the
models’ performance using an out-of-sample forecasting study. We find that nowcasts
improve when incorporating timely data like electricity consumption relative to a simple
benchmark. These gains are sizeable in many states, even around two years before the
data are eventually released. In predicting CO2 emissions growth, nowcast accuracy gains
are also notable well before the data release, especially after the current year’s energy
consumption data are used in making the prediction.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The growing climate emergency has rapidly expanded
he need for policies on abating CO2 emissions due to
ossil fuel energy production and consumption. The im-
ortance of using environmental variables in economic
odelling is now well accepted since the seminal DICE
odel of Nordhaus (1992). This has led to significant

ecent debate amongst economic policymakers on track-
ng the social cost of carbon (Rennert et al., 2021) and
he widespread use of environment-economic models by

✩ The views in this paper are those of the authors and not of any
affiliated institution. All data are available in the public domain.
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international institutions such as the OECD and the United
Nations.1 In turn, this has placed increasing importance
on the ability to forecast and monitor both short-term and
long-term energy consumption and CO2 emissions. Our
focus will be on near-term prediction, or ‘‘nowcasting’’
of these environmental variables, which has only recently
received attention by Bennedsen, Hillebrand, and Koop-
man (2021) in the context of nowcasting national U.S. CO2
emissions.

In this paper, we propose new models for jointly now-
casting multiple regions’ energy consumption and CO2
emissions, specifically for states in the U.S., which has not
yet been studied in the existing literature. This improves

1 See: https://www.oecd.org/environment/indicators-modelling-outl
ooks/modelling.htm and https://www.unep.org/explore-topics/green-e
conomy/what-we-do/economic-and-trade-policy/green-economy-mode
lling [Last accessed: 01/09/2022]
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pon studies which look only at the national context by
llowing a more granular overview of regional environ-
ental degradation. The focus on sub-national variables

s important for several reasons. Firstly, there is growing
vidence that sub-national efforts to reduce emissions can
ccelerate the achievement of national abatement targets
see Hultman et al., 2020 and references therein). Sec-
ndly, the discussion of local-level environmental action
as gained a stage in the largest climate meetings, such
s the dedicated ‘‘Cities, Regions and the Built Environment’’
ay at COP26. Finally, there are already many sub-national
nvironmental initiatives in the U.S., where around half
f all U.S. states currently have greenhouse gas emissions
argets,2 and more than ten states which participate in
he Regional Greenhouse Gas Initiative (RGGI), a market-
ased program to reduce emissions. For these reasons,
olicymakers must have access to up-to-date information
egarding regional CO2 emissions and energy consump-
ion. However, it is very challenging to monitor the move-
ents in these variables in real time as the data are only
vailable annually and with very long publication lags. Ex-
sting academic studies have not addressed this challenge.

This paper aims to fill this gap in the literature by
roviding a novel nowcasting methodology for U.S. state-
evel energy consumption and CO2 emissions growth. This
llows us to obtain timely predictions of these variables
efore the data are published. This builds on existing aca-
emic studies in several ways. Firstly, our study is unique
n nowcasting state-level energy consumption and CO2
missions. In contrast, only the recent study of Bennedsen
t al. (2021) looks at nowcasting national CO2 emis-
ions and not at the state level. Secondly, our paper
rovides a novel application of recently-emerging panel
ata nowcasting methods, typically used only for pre-
icting macroeconomic variables like real GDP (Fosten &
reenaway-McGrevy, 2022) and not environmental vari-
bles. More broadly, panel data nowcasting is a relatively
ew and increasing field (Babii, Ball, Ghysels, & Striaukas,
020; Koop, McIntyre, & Mitchell, 2020; Larson & Sinclair,
022) relative to the long history of time series nowcast-
ng (see the surveys of Banbura, Giannone, Modugno, &
eichlin, 2013; Bok, Caratelli, Giannone, Sbordone, & Tam-
alotti, 2018). Finally, our paper differs from traditional
owcasting studies of real GDP, where publication lags
ay be only one or two months. In our setting, there is
n even stronger motivation for nowcasting due to the an-
ual frequency and the abnormally large publication lags
n the U.S. state-level energy consumption and emissions
ata. The CO2 data are only available two years after the
nd of the relevant year, while energy consumption data
ave a delay of around a year and a half. These publication
ags are much longer than is typical in existing studies and
equire methods capable of nowcasting and backcasting.

The first contribution of the paper is to propose a
anel data nowcasting methodology for state-level energy
onsumption and CO2 emissions growth. Motivated by
he fact that the emissions data are calculated directly
rom energy consumption data, we propose a two-step

2 See: https://www.c2es.org/content/state-climate-policy/ [Last ac-
cessed: 29/03/2022]
21
bridge equation approach adapted to the case of panel
data. Using higher frequency quarterly and monthly eco-
nomic activity data, we first use a mixed-frequency panel
MIDAS model to obtain nowcasts of annual state-level
energy consumption growth. This model is adapted from
the mixed frequency approach of Ghysels (2016), which
we extend from the time series to the panel data con-
text, and the model’s predictions can be updated every
time new information arrives. We then employ a panel
bridge equation approach to transform the nowcasts of
energy consumption growth into nowcasts of CO2 emis-
sions growth. We use a multi-factor error structure to
allow for cross-sectional dependence across states in the
style of Chudik and Pesaran (2015). Our panel bridge
equation model is similar to the well-known time se-
ries bridge equation approach (see, for example Baffigi,
Golinelli, & Parigi, 2004; Foroni & Marcellino, 2014; Schu-
macher, 2016) with the difference that we extend this to
allow the modelling of panel data, which is an improve-
ment in contexts where regional data are available. The
cross-sectional dependence structure we use is similar
to the recent panel nowcasting approach of Fosten and
Nandi (2023), which in this paper we adapt to the case of
bridge equation models.

The paper’s second contribution is the empirical part,
where we perform a detailed pseudo-out-of-sample fore-
casting study using our models to predict energy con-
sumption and CO2 emissions growth over a period of
history. We mimic the release schedule of the variables
in real time and make multiple nowcasts and backcasts
for every period under consideration. This allows us to
assess how the performance of these methods changes as
we add new information into the nowcasting model, as is
commonly done in empirical nowcasting studies (see, for
instance, Banbura et al., 2013; Bok et al., 2018; Giannone,
Reichlin, & Small, 2008). We use monthly electricity sales
growth or quarterly real personal income growth for the
predictions of energy consumption growth. Since these
economic series are at a higher frequency and have a
much lower publication lag, they are highly appropriate
for regularly updating nowcasts and backcasts. We finally
use the bridge equation method to feed in these energy
consumption predictions and arrive at predictions of CO2
emissions growth.

We make several noteworthy findings. We find that
the predictions of energy consumption growth improve
on average across states when current economic data are
used for nowcasting and backcasting, relative to a naïve
benchmark. Monthly electricity sales data are particularly
successful, more so than real personal income growth. We
also find particularly sizeable gains in several individual
states, which we assess by looking at the across-state
distribution of the gain in the predictive accuracy of our
model relative to the benchmark. Given the increased
timeliness of the predictor variables, we see gains in
predictive accuracy occurring over a year ahead of the re-
lease of the energy consumption data. These results carry
over to our bridge equation predictions of CO2 emissions
growth. We find that the energy consumption nowcasts
using electricity sales data provide nowcast gains for CO2
emissions relative to a simple benchmark model. The
gains are, again, sizeable in some states, and the biggest
gains occur when we wait until the backcast period and

https://www.c2es.org/content/state-climate-policy/
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dd in the current year’s observed energy consumption
ata. This means we can provide accurate predictions
any months before the release of the data by the statis-

ical authorities, and we use a much simpler methodology
han that used in constructing the data. We find addi-
ional but marginal gain from factors estimated to pick
p common correlated effects in the CO2 bridge equation
ethod. We also provide robustness checks, such as using
er capita energy consumption and emissions growth as
arget variables.

Our empirical study builds on an increasing body of
mpirical work in nowcasting. While only the study men-
ioned above of Bennedsen et al. (2021) looks at now-
asting environmental variables, many studies have used
owcasting for macroeconomic monitoring. The major-
ty of studies look at nowcasting real GDP and have
one so in a variety of different contexts: developed
conomies (Anesti, Galvao, & Miranda-Agrippino, 2022;
ok et al., 2018), emerging economies (Bragoli & Fos-
en, 2018; Dahlhaus, Guénette, & Vasishtha, 2017), global
DP (Ferrara & Marsilli, 2019) and so on. Nowcasting
as also been applied to several other macroeconomic
eries such as the GDP components (Fosten & Gutknecht,
020), inflation (Knotek & Zaman, 2017; Modugno, 2013)
nd unemployment claims (Larson & Sinclair, 2022). Our
aper helps to shift this focus from macroeconomic to
nvironmental nowcasting, which we believe will be a
ruitful area of future research.

The rest of the paper is organised as follows. Sec-
ion 2 describes the data sources used in the study. Sec-
ion 3 describes the models we propose, and Section 4
etails the pseudo-out-of-sample methodology we use in
valuating these models. Section 5 discusses the results
f the pseudo-out-of-sample experiment, and Section 6
oncludes the paper. The Supplementary Material houses
dditional sets of results not included in the main text.

. Data

.1. CO2 emissions

State-level CO2 emissions data are available from the
.S. Energy Information Administration (EIA).3 The data
re available on an annual basis with observations from
980 onwards. The data cover the CO2 emissions from
irect fuel use across various commercial, industrial, res-
dential and transportation sectors. We focus on the total
missions by state, but we will also consider per-capita
O2 emissions as this has been the target variable of other
tudies (Bennedsen et al., 2021). Of crucial importance to
his study is that the publication lag for the CO2 emissions
ata is very large, around two years and three months af-
er the end of the reference year. For instance, the data for
018 were released at the beginning of March 2021. This
ag is considerably larger than other types of state-level
ata, such as the economic variables mentioned below.
his lack of timeliness will mean that both nowcasting
nd backcasting are appropriate.

3 See: https://www.eia.gov/environment/emissions/state/ [Last ac-
cessed: 11/11/2021]
22
In producing the data, the EIA estimates state-level
CO2 emissions based on underlying energy consumption
data from the State Energy Data System (SEDS).4 Knowing
this aspect of the data construction is what motivates the
use of a bridge equation where total state-level CO2 emis-
ions data are directly linked to total state-level energy
onsumption data.5 We note that this approach will be
ike an approximation to the more disaggregated way in
hich the EIA computes the state-level CO2 data. To be
ore precise, according to the EIA’s methodology docu-
entation,6 the conversion to CO2 emissions from energy
onsumption is first made at a very granular level by
uel type and sector, using different emissions factors
nd proportions of fuel used in fuel combustion. After
onversion, the total CO2 emissions are summed up from
he disaggregates. An alternative approach to ours would
e a bottom-up approach to mimic the EIA’s calculation
y nowcasting the disaggregate energy consumption se-
ies, converting them, and aggregating them afterwards.
owever, we do not pursue this approach as it would
ntail a large amount of additional nowcast uncertainty:
i) the nowcast errors from a large number of individual
isaggregates summed up to get the total, (ii) the errors
rom predicting the emissions factors which are them-
elves estimated and would require nowcasting, (iii) some
stimation of the proportions of each fuel type that is used
n combustion, which the EIA based on various sources.
e prefer a direct top-level approach, much like GDP
owcasters target the aggregate GDP series and not the
ery granular disaggregated output series, which are also
vailable. One notable exception is Higgins (2014), which
roposes a bottom-up approach for GDP nowcasting in
he GDPNow methodology at the Federal Reserve Bank of
tlanta. Whether this type of approach can be useful in
ur context is something we leave for future study.

.2. Energy consumption

The data for state-level aggregate energy consump-
ion (‘‘EC’’ hereafter) are also available annually. The data
re available from the SEDS mentioned above, also pro-
uced by the EIA. The annual time series for each state is
vailable from 1960 onwards. As with CO2 emissions, we
ill consider the raw and per-capita EC in our analysis.
egarding the timeliness of the data, although the data
requency is the same as that of CO2 emissions, the SEDS
ata are published more timely. Here, the publication lag
s around one year and six months, roughly nine months
uicker than for the CO2 data. For instance, the data for
019 were published at the end of June 2021. Although
he data are more timely, if we wish to use the current
ear’s EC in predicting CO2 emissions, this would con-
titute a backcast, not a nowcast. To obtain nowcasts of
C and therefore CO2 emissions, we require data that are
vailable more timely, such as the economic indicators
utlined next.

4 See: https://www.eia.gov/state/seds/ [Last accessed: 11/11/2021]
5 This is instead of modelling CO2 emissions directly as a function of,

say, economic variables. We tried this latter approach in our empirical
investigations but found it performs worse than modelling using energy
consumption.
6 See: https://www.eia.gov/environment/emissions/state/pdf/statem

ethod.pdf [Last accessed: 31/08/22]

https://www.eia.gov/environment/emissions/state/
https://www.eia.gov/state/seds/
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf


J. Fosten and S. Nandi International Journal of Forecasting 41 (2025) 20–30

2

i
l
s
t
t
a
t
i
m
d
w
f

c
h
a
w
e
l
s
c
t
t
o
m
m
a

u
l
u
a
s
p
C
W
a
i
m
m
f
W
t
t
t
o

.3. Economic indicators

Since the aim is to produce state-level EC nowcasts,
t is natural to use state-level economic indicators. With
imited available state-level indicators, we will present re-
ults using two different predictors: electricity consump-
ion (as measured by sales of electricity to ultimate cus-
omers) and real personal income (PI).7 The former is
vailable from the EIA while the latter is available from
he Bureau of Economic Analysis (BEA).8 The electric-
ty consumption data are available for all states at the
onthly frequency with data starting in 1990. The PI
ata are available quarterly from 1950 onwards, which
e deflate by the GDP deflator for the U.S. to obtain real

igures.
Two factors make these series appropriate for now-

asting EC and, therefore, CO2 emissions. Firstly, their
igher frequency makes them much timelier than the
nnual data, especially in the case of electricity sales
here monthly observations are available. Secondly, for
lectricity sales and PI, the publication lag is relatively
ow, which means that quite early in the year, we already
tart to observe relevant data points for nowcasting. In the
ase of electricity sales, we observe a month’s data around
wo months after the end of the relevant month. For PI,
he publication lag is around three months after the end
f the reference quarter. This implies that already in the
iddle of the nowcast year, we have data on the first four
onths of electricity sales and the first quarter of PI data
vailable for making predictions of EC for that same year.
Expanding on the economic predictor variables we

se is difficult due to the limited availability of state-
evel data. In previous versions of the paper, we also
sed state-level real GDP data alongside PI, but this had
much shorter history of data available. Other studies

uch as Bennedsen et al. (2021) note that the industrial
roduction (IP) index is useful in nowcasting national
O2, but unfortunately, IP data are not available by state.
e also experimented with other economic indices such

s the Federal Reserve Bank of Philadelphia’s State Co-
ncident Indexes.9 However these indices, available at a
onthly level and constructed using a dynamic factor
odel on four state-level employment type series, did not

are well in our analysis and were ultimately discarded.
eekly state-level economic conditions are also available

hrough Baumeister et al. (2022). We do not consider
hese here as they are not available for as long a history as
he PI data and cause issues in the econometric modelling
f an annual-to-weekly frequency mix.

7 Other studies using state-level electricity consumption in the
context of economic activity in various countries include Baumeister,
Leiva-León, and Sims (2022), Furukawa, Hisano, Minoura, and Yagi
(2022), Lehmann and Möhrle (2022).
8 See: https://www.eia.gov/electricity/data/state/ [Last accessed:

16/08/23] and https://www.bea.gov/data/income-saving/personal-
income-by-state [Last accessed: 12/02/2022]
9 See: https://www.philadelphiafed.org/surveys-and-data/regional-

economic-analysis/state-coincident-indexes
23
3. Panel MIDAS and bridge equation methodology

In this section, we describe the models we use to
predict the annual growth of EC and subsequently of CO2
emissions growth.10 As mentioned above, the CO2 data
are released in March over two years after the reference
year, whereas the EC data are published in June each year,
a year and a half after the reference year. The economic
data are available in a more timely fashion. Our approach
is, therefore, to use a bridge equation to compute predic-
tions of CO2 emissions growth for the target year by first
obtaining predictions of EC using economic indicators.
Therefore, while CO2 emissions are the ‘target’ variable of
the bridge equation, we also obtain timely predictions of
EC, which is of separate interest in itself.

We differ from the prevalent bridge equation mod-
els (see Foroni & Marcellino, 2014; Schumacher, 2016,
and the references therein) in several important ways.
Firstly, we use a panel data set-up instead of a time-series
approach common in economic nowcasting. Secondly, the
EC variable we predict in the first step is unavailable at
a higher frequency but has lesser publication lags than
our final target variable, CO2 emissions. Lastly, we do not
restrict ourselves to AR models for predicting EC as is
typical of economic bridge equation set-ups. Instead, we
use panel data models and incorporate mixed frequencies
for higher-frequency monthly electricity sales or quarterly
PI growth.

3.1. Panel MIDAS model for energy consumption

We now describe the panel model for nowcasting EC
growth using economic data. We adopt the notation that
there are T annual observations on the target variable,
and there are N states available in the panel. Since there
are differences in the frequencies of the economic data
(monthly for electricity sales and quarterly for PI), we will
first write down the model for the annual-to-monthly fre-
quency mix and then the annual-to-quarterly frequency
mix.

Mixed frequency model with monthly data
We start by writing down the model which predicts

EC using the available autoregressive lags on the day v of
the nowcast period as well as the available monthly lags
of the economic indicator:

ci,t = α
(m)
vi + φ(m)

v ci,t−dv + β (m)′
v x(m)

i,t− kv
12

+ u(m)
v,i,t (1)

where t denotes the annual time index and ci,t is a generic
notation indicating the annual growth rate in EC. In the
main results, this is simply the percentage change in ac-
tual EC for state i in year t , in other words, the growth rate

10 We focus on the growth rates of these series as is standard in
the macroeconomic nowcasting literature when analysing trending unit
root processes. Since there is little existing evidence on unit roots in
the state-level EC and CO2 emissions data, we performed a battery
of panel unit root tests (the Levin, Lin, and Chu (2002) (LLC) test,
the Im, Pesaran, and Shin (2003) test (IPS), and the Choi (2001) test). As
expected, these tests confirm non-stationarity in levels and stationarity
in growth rates. We do not present the results in the text for brevity.

https://www.eia.gov/electricity/data/state/
https://www.bea.gov/data/income-saving/personal-income-by-state
https://www.bea.gov/data/income-saving/personal-income-by-state
https://www.philadelphiafed.org/surveys-and-data/regional-economic-analysis/state-coincident-indexes
https://www.philadelphiafed.org/surveys-and-data/regional-economic-analysis/state-coincident-indexes
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f ECi,t . Alternatively, we also explore the results where
i,t is the growth rate of per capita consumption, in other
ords, the growth rate of ECi,t

popi,t
, where popi,t is the state

population.
This model is a panel version of the unrestricted MI-

DAS (UMIDAS) model. It can be estimated by panel least
squares to obtain conditional mean predictions for each
individual (see Foroni, Marcellino, & Schumacher, 2015;
Schumacher, 2016). We denote

xi,t− kv
12

=
(
xi,t−kv/12, xi,t−(kv−1)/12, ... xi,t−(kv−11)/12

)′

as the stacked skip-sampled electricity sales growth, in-
serted into the model with a monthly lag of kv at nowcast
date v. Note that a lag of one month is denoted in an-
nual terms as t −

1
12 . In Eq. (1), the slope coefficient

β (m)
v is a vector of length twelve, corresponding to the

stacked skip-sampled process xi,t− kv
12
. We note that the

superscript m is used for the parameters and error term in
the equation to distinguish this from the quarterly mixed
frequency model below.

The lag structure of the model in Eq. (1) takes account
of the ragged edge problem in the following way. De-
noting v to be the date of prediction, we define dv as
the available lag of ci,t at the time of prediction based
on its publication lag. Similarly, kv is used to denote the
available monthly lag of xi,t used in the model at time
. As we change the nowcast date v, the available lags
f each variable may change, and the model lag struc-
ure is updated to accommodate new information. Since
he model variables change on each date, v, the model
arameters and the error term are also indexed by v. In
ontrast, the superscript m denotes the monthly model to
ifferentiate from the quarterly model below. To give an
xample, in nowcasting year t , if v is the start of year t (in
ther words, January 1st of year t), based on the data flow
escribed in the Data section above, the model would use
i,t−3 and xi,t−3/12 (monthly data to October of the previ-
us calendar year). At the end of January, the model would
hange in light of the electricity sales data release to in-
lude xi,t−2/12 (data to November), and so on, with lags of
and x being sequentially updated as v changes. The full

details of the updating procedure will be described later
when we introduce the pseudo-out-of-sample set-up.

Mixed frequency model with quarterly data
We now re-state Eq. (1) in the context of the quarterly

frequency of the PI data. The modification is to clarify the
notation and time indices:

ci,t = α
(q)
vi + φ(q)

v ci,t−dv + β (q)′
v x(q)

i,t− qv
4

+ u(q)
v,i,t (2)

where

x(q)
i,t− qv

4
=

(
xi,t−qv/4, xi,t−(qv−1)/4, xi,t−(qv−2)/4, xi,t−(qv−3)/4

)′

denotes the stacked skip-sampled PI growth which is in-
serted into the model with a quarterly lag of qv at nowcast
date v.11 Here, a lag of one quarter is denoted in annual

11 We also experimented with empirical results where we first
aggregated the monthly electricity sales data to the quarterly frequency
and used Eq. (2) instead of Eq. (1). However, the results were not
substantially different, so we left the monthly model to include the
data at the original frequency.
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terms as t −
1
4 . In Eq. (2), the slope coefficient β (q)

v is a
vector of length four, and the superscripts are changed to
q to distinguish them from the model above. The nowcast
updating works the same as for Eq. (1) above. When we
change the nowcast date, v, we update the lag structure
to incorporate any newly available annual data for c and
quarterly data for x.

The main difference between Eqs. (1) and (2) is that the
dimension is higher in the monthly skip-sampled UMIDAS
model. In principle, one could guard against parameter
proliferation by introducing a lag weighting function with
fewer parameters as in standard MIDAS models, for in-
stance, using exponential Almon lags. However, our em-
pirical results below show that the monthly model works
well, so we are unconcerned with this issue.

Eqs. (1) and (2) are panel versions of the ARX model
(AR with an exogenous regressor), and we refer to these
as the ARX model subsequently. We will also use a naïve
benchmark method to compare with the predictions from
the panel ARX model. For this benchmark, we will use a
simple historic mean prediction using all available data
at the time of making the nowcast.12 Next, we use the EC
predictions from the panel ARX to predict CO2 emissions
growth.

3.2. Bridge equation for CO2 emissions

Here, we describe the main nowcasting bridge equa-
tion for CO2 emissions growth, where we plug in the
predictions for EC obtained from the previous Eqs. (1) or
(2). Define ĉv,i,t generically as the predicted value of ci,t
for state i in year t on date v of the nowcast period. The
main equation is a panel bridge equation model with a
multi-factor error structure:

ei,t = θvi + ρvei,t−gv + δv ĉv,i,t + λv ft + εv,i,t (3)

where we define emissions growth, ei,t , which either rep-
resents the growth of CO2,i,t , the CO2 emissions in state
i in year t , or the growth of per-capita emissions Ei,t =
CO2,i,t
popi,t

. In a similar way to before, the autoregressive lags
included in the model depend on the publication lag,
which at prediction time v is denoted by gv . As above, the
parameters and error term in Eq. (3) also depend on v as
the model variables change with v.

The variable ft denotes unknown factors with load-
ings λv , common across all states and used to model the
cross-sectional dependence in the error terms. To esti-
mate these factors, in a similar way to Chudik and Pesaran
(2015), they are also assumed to influence the ĉv,i,t in the
following way:

ĉv,i,t = ζvi + κvei,t−gv + Γv ft + ϵv,i,t (4)

We note that Eqs. (3) and (4) assume away heterogeneity
(across i) in the factor loadings λ and Γ , which was
permitted in the original paper of Chudik and Pesaran
(2015). This is partly because pooling coefficients is often

12 In the previous version of the paper, we also considered using an
autoregressive benchmark, but the results are qualitatively similar.
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referable to heterogeneous coefficients in panel forecast-
ng (Wang, Zhang, & Paap, 2019) and also because our
elatively small number of annual time periods makes
t less desirable to add coefficient heterogeneity. Thus,
he common factors ft could also be considered time
ixed-effects (see Pesaran, 2016, Ch. 31, p. 833).

Eqs. (3) and (4) jointly create a set-up that can be
stimated through the Common Correlated Effects (CCE)
ethod. Since the original method of Chudik and Pesaran

2015) was not designed to be used for forecasting, we use
he lagged common correlated effects (LCCE) approach
eveloped in Fosten and Nandi (2023), which ensures that
nly the available lags of the predictor variables are used
n estimating the factors. In this way, the final predic-
ion equation replaces the unknown factors in Eq. (3) as
ollows:

i,t = θvi + ρvei,t−gv + δv ĉv,i,t +

pT∑
l=0

γ ′

vlzv,i,t−l

+ εv,i,t + Op(N−
1
2 ) (5)

here zv,i,t are the factor estimates used to pick up CCE
n the errors, and pT is a lag truncation parameter. The
actor estimates are obtained by taking a state-weighted
verage of the vector zv,i,t = [ei,t−gv , ĉv,i,t ]

′. Chudik and
esaran (2015) and Fosten and Nandi (2023) discuss the
quivalence of least squares estimation of Eq. (5) and
he system of Eqs. (3) and (4). We, therefore, use panel
east squares estimation of Eq. (5) in our out-of-sample
orecasting exercise.

We will compare the results with those from a sim-
le panel ARX model, where we simply estimate Eq. (3)
ithout the factors ft . This will allow us to observe any
ffects of allowing cross-sectional dependence. As a naïve
enchmark, in the same way as above, we will use the
istoric mean using the data available at the time of
aking the nowcast.

. Pseudo out-of-sample set-up

We perform pseudo-out-of-sample experiments for
owcasting annual EC and CO2 emissions growth across
he N = 51 individual states including the District of
olumbia. We start our out-of-sample nowcasts in 2009
nd finish in 2018. As is common in the nowcasting
iterature (dating back to Giannone et al., 2008), we will
se a calendar to make multiple nowcast and backcast
pdates at different dates, v, for every year in the out-
f-sample evaluation period. We do this to replicate the
agged edge in the data using a calendar of releases as
hey would have occurred in real time.13 This allows us to
ee how the nowcasts and backcasts behave, on average,
s we add more information as it becomes available. For
very data release, we take into account the new lag of
ata available, adjust the model lag structure as detailed
bove, re-estimate the models and obtain first the EC
redictions and then the CO2 predictions from the bridge

13 We note that, due to the lack of available past vintages of the EC
and CO2 data, we are not able to perform a fully real time analysis as
in Sinclair and Stekler (2013) and, more recently, Anesti et al. (2022)
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equation in (5). Once we have finished making nowcasts
and backcasts of a given year, we move on to the next
year by expanding the information set as in the recursive
out-of-sample scheme of West (1996).

To be more specific on the nowcast updating proce-
dure, we will start by making a nowcast at the begin-
ning of the reference year at the end of January. Moving
through the nowcast year, we update the predictions
every month and continue into the backcast period until
all relevant data have been released. The full data flow can
be seen in Table 1, which gives an example of the calendar
for predicting the year 2021 and the data available at
each prediction date. Throughout the nowcast year, a new
observation of electricity sales is added every month, and
a new quarterly observation of PI data is added every
three months in March, June, September and December.
The annual data for past years of EC and CO2 (specifically
2019 and 2018) are added in June and March, respec-
tively. Moving into the backcast period, we continue to
add monthly electricity data until the end of February
when all data up to December of the target year are
available, and we add PI data until the last quarter is
released in March (in other words, we do not use ‘‘future’’
data when making nowcasts). In June of the first backcast
year, the previous year’s EC data are released, so we stop
making predictions of EC (indicated by the horizontal
line in Table 1). This gives a total of 18 months in the
prediction period for EC. When it comes to making the
CO2 predictions, we have the same number of predictions
ade as in the case of EC, but there are two additional
pdates: in March of the second backcast year, when the
irst lag of CO2 data is released, and in June when the
urrent year’s EC data is released. In other words, the last
ridge equation nowcast we make of CO2 will replace the
redicted EC with its actual realised value. There will be
total of 30 months in the prediction period for CO2,

lthough there are many months towards the end of the
ackcast period with no new data updates.
We therefore have multiple nowcasts and backcasts

ade for each target year for a total of nine years from
009 to 2018. To compare the accuracy of the predic-
ions from the various competing methods, we will use
he average root mean squared forecast error (RMSFE) as
he criterion.14 This will be the square root of the time-
veraged squared prediction errors, averaged across all
tates i = 1, . . . .,N . The RMSFE will be tracked across
ultiple nowcast dates, v, and is defined as follows, de-
oting that T is the last year in the sample and we have
out-of-sample predictions made:

MSFEv =
1
N

N∑
i=1

√1
P

T∑
t=T−P+1

ε̂2
v,i,t (6)

where ε̂v,i,t generically stands for the prediction error of
a model on nowcast date v for state i and year t .

We will also analyse the RMSFE for each state, where
we do not average over the states. In other words, we take

14 We also tried a weighted RMSFE with different weights by state,
but the results were qualitatively very similar. We discuss this later in
the results section.
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Table 1
Nowcast calendar and latest available data, example for 2021.

Calendar date (v) Latest available data

EC CO2 PI ELEC

Nowcast 1 2021:M1 2018 2017 2020:Q3 2020:M11
2 2021:M2 2018 2017 2020:Q3 2020:M12
3 2021:M3 2018 2018 2020:Q4 2021:M1
4 2021:M4 2018 2018 2020:Q4 2021:M2
5 2021:M5 2018 2018 2020:Q4 2021:M3
6 2021:M6 2019 2018 2021:Q1 2021:M4
7 2021:M7 2019 2018 2021:Q1 2021:M5
8 2021:M8 2019 2018 2021:Q1 2021:M6
9 2021:M9 2019 2018 2020:Q2 2021:M7
10 2021:M10 2019 2018 2020:Q2 2021:M8
11 2021:M11 2019 2018 2020:Q2 2021:M9
12 2021:M12 2019 2018 2020:Q3 2021:M10

Backcast 13 2022:M1 2019 2018 2020:Q3 2021:M11
14 2022:M2 2019 2018 2020:Q3 2021:M12
15 2022:M3 2019 2019 2020:Q4
16 2022:M4 2019 2019
17 2022:M5 2019 2019
18 2022:M6 2020 2019

19 2022:M7 2020 2019
20 2022:M8 2020 2019
21 2022:M9 2020 2019
22 2022:M10 2020 2019
23 2022:M11 2020 2019
24 2022:M12 2020 2019
25 2023:M1 2020 2019
26 2023:M2 2020 2019
27 2023:M3 2020 2020
28 2023:M4 2020 2020
29 2023:M5 2020 2020
30 2023:M6 2021 2020

Notes: For each calendar month (v) from 2021:M1 through 2023:M6, this table displays the last available year of data
for EC and CO2 , the last available quarter of data for PI and the last available month for ELEC. The horizontal line after
release 18 denotes the point at which we stop predicting EC.
he RMSFE for state i on nowcast date v as:

MSFEvi =

√1
P

T∑
t=T−P+1

ε̂2
v,i,t (7)

However, these results should only be treated as indica-
tive since they are based on a small time series sample
size, and we will treat these with some caution.

5. Results

This section discusses the results of the pseudo-out-
of-sample experiment described in the previous section.
We first discuss the accuracy of the EC predictions before
turning to the accuracy of the bridge equation method
results for CO2 emissions. In both cases, we present accu-
racy in terms of a national average and then provide some
state-level analysis. We present results only for the origi-
nal EC and CO2 growth series, with the per-capita growth
being reported in the Supplementary Material.15 The find-
ings are very similar between the main and per-capita
results.

15 In arriving at the per-capita figures for the quarterly PI series, the
population is assumed to remain constant for all four quarters of any
year and is equal to the annual number.
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5.1. Energy consumption results

Fig. 1 displays the average RMSFE across states at
different nowcast release points according to the release
schedule in Table 1. In all figures, the RMSFEs have been
normalised by the RMSFE of the benchmark in the first
nowcast period so that any figures lower than 1 are gains
relative to the benchmark in the first period. These results
show that, on average, across all states, the RMSFE of
the ARX model falls when incorporating new information,
both for electricity sales and PI. In the case of quarterly PI
data (‘‘ARX.PI’’), we see a steady fall in RMSFE until the
end of the nowcast year (M12:Y1), when the first three-
quarters of data have already been released. This fall
corresponds to an improvement of 10% over the bench-
mark model. However, the results when using monthly
electricity sales (‘‘ARX.ELEC’’) are even more promising.
By the middle of the nowcast year (M6:Y1), the model
provides around a 15% improvement over the benchmark
model. Once all of the nowcast year’s data have been
released at the beginning of the backcast period (M1:Y2),
the gain is around 20%. This indicates that timely elec-
tricity sales information is useful in nowcasting state-level
EC. We also note that the RMSFE profiles generally decline
as we add information, which adds to the evidence for
nowcast monotonicity observed in aggregate national-
level studies (Fosten & Gutknecht, 2020; Giannone et al.,
2008).
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Fig. 1. Average RMSFE Across States - Energy Consumption.
Notes: ARX.ELEC/ARX.PI: ARX model with electricity sales/PI data, respectively. BM: historic mean benchmark for EC. The benchmark normalises
the RMSFE figures at the first release date. Therefore, any points below 1 indicate that the RMSFE is lower than that of the benchmark in the first

nowcast period.
While the average RMSFE results across states already
show a reasonable improvement over the benchmark af-
ter economic data have been released, we see much more
substantial improvements in our method when we dig
into the state-level information. To summarise the re-
sults across states, Table 2 presents the quantiles of the
state-specific RMSFEs for the ARX model relative to the
benchmark model for the two predictors considered. In
general, the table confirms what is seen in Fig. 1, and we
see that using economic data consistently improves over
the benchmark in virtually all cases and that the relative
RMSFE is falling as new information is added. Moreover,
focussing on the electricity sales results in Table 2, by the
end of the nowcast year, we see that the ARX model has
gains of almost 25% relative to the benchmark at the lower
quartile, and gains of almost 40% at the 10th percentile.
This shows that there are states in which the gains from
our method are especially large.

To dig even further into the state-level results, Section
A.1 of the Supplementary Material presents the RMSFE
results for every state (as in Fig. 1), with the states ordered
from largest to smallest in terms of their 2018 CO2 emis-
sions. From these plots, we see that our method indeed
provides big gains in some very large emitting states,
such as Florida, California and Pennsylvania, which all see
improvements of 20%–30% relative to the benchmark. The
gain is less notable in others, such as Texas. These results
should, of course, be treated with an element of caution as
the state-level RMSFEs are calculated on a small number
of observations. In contrast, the national average results
have the benefit of pooling information across states. This
means that in some cases, large differences in relative
RMSFEs across models can be driven by only a handful
of observations.
27
As one further check regarding the state-level results,
we also re-computed the equally-weighted average RMSFE
results from Fig. 1 to instead use a weighted average of
the RMSFEs:

WRMSFEv =
1
N

N∑
i=1

ωi

√1
P

T∑
t=T−P+1

ε̂2
v,i,t (8)

with the weights ωi calculated according to the 2018 state
CO2 emissions levels. The results, displayed in Appendix
B of the Supplementary Material, are incredibly similar to
those of the unweighted average in Fig. 1, which shows
that we do not miss any ‘‘large state’’ effect when we use
the unweighted average.

In summary of the EC results, we find that releases of
current economic data, especially electricity sales, yield
improvements in predicting the growth rates of EC. The
average improvement is of the order of 15%–20% relative
to the benchmark model and can be even more sizeable
when we dig into the individual state-level results. We
already find good accuracy gains in the middle of the
nowcast year, especially as we move towards the backcast
period, as all of the monthly data have been released. This
occurs well over a year in advance of the release of the
EC data, so we can make huge timeliness gains using our
nowcasting framework.

5.2. CO2 emissions results

Now that we have the predictions of EC for the target
year, we can proceed to predict the CO2 emissions growth
rate using the bridge equation model in Eq. (3). Fig. 2
displays the results of the bridge equation method based
on EC nowcasts from electricity sales or PI relative to the
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able 2
istribution of relative RMSFE across states - energy consumption.
Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.9062 0.9414 0.9779 1.0107 1.0494
2 M2:Y1 0.9062 0.9414 0.9779 1.0107 1.0494
3 M3:Y1 0.8461 0.9140 0.9508 0.9946 1.0552
4 M4:Y1 0.8461 0.9140 0.9508 0.9946 1.0552
5 M5:Y1 0.8461 0.9140 0.9508 0.9946 1.0552

6 M6:Y1 0.8204 0.8893 0.9561 0.9909 1.0408
7 M7:Y1 0.8204 0.8893 0.9561 0.9909 1.0408
8 M8:Y1 0.8204 0.8893 0.9561 0.9909 1.0408
9 M9:Y1 0.7707 0.8767 0.9246 0.9834 1.0307
10 M10:Y1 0.7707 0.8767 0.9246 0.9834 1.0307

11 M11:Y1 0.7707 0.8767 0.9246 0.9834 1.0307
12 M12:Y1 0.7502 0.8631 0.9058 0.9575 1.0384
13 M1:Y2 0.7502 0.8631 0.9058 0.9575 1.0384
14 M2:Y2 0.7502 0.8631 0.9058 0.9575 1.0384
15 M3:Y2 0.7841 0.8837 0.9479 0.9859 1.0308

16 M4:Y2 0.7841 0.8837 0.9479 0.9859 1.0308
17 M5:Y2 0.7841 0.8837 0.9479 0.9859 1.0308
18 M6:Y2 0.7956 0.8820 0.9568 0.9918 1.0247

(a) Predictor - PI

Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.7793 0.8690 0.9614 0.9990 1.0285
2 M2:Y1 0.8093 0.9100 0.9776 1.0236 1.0433
3 M3:Y1 0.7920 0.8672 0.9295 0.9892 1.0117
4 M4:Y1 0.7502 0.8398 0.9139 0.9671 0.9988
5 M5:Y1 0.7563 0.8258 0.9030 0.9638 0.9930

6 M6:Y1 0.7509 0.7941 0.8468 0.9350 0.9933
7 M7:Y1 0.7646 0.8003 0.8613 0.9265 0.9738
8 M8:Y1 0.6952 0.7849 0.8482 0.9216 0.9954
9 M9:Y1 0.6756 0.7651 0.8462 0.9477 1.0160
10 M10:Y1 0.6469 0.7663 0.8573 0.9299 1.0235

11 M11:Y1 0.6537 0.7494 0.8364 0.9426 1.0185
12 M12:Y1 0.6460 0.7620 0.8462 0.9504 0.9961
13 M1:Y2 0.6357 0.7393 0.8290 0.9235 1.0206
14 M2:Y2 0.6449 0.7489 0.8166 0.9342 1.0275
15 M3:Y2 0.6449 0.7489 0.8166 0.9342 1.0275

16 M4:Y2 0.6449 0.7489 0.8166 0.9342 1.0275
17 M5:Y2 0.6449 0.7489 0.8166 0.9342 1.0275
18 M6:Y2 0.6605 0.7327 0.8355 0.9426 0.9906

(b) Predictor - Electricity Sales

Notes: The numbers represent the quantiles of the distribution of
relative RMSFE across states, where we take the RMSFE of the ARX
model relative to the benchmark. Figures lower than 1 indicate that
the RMSFE of the ARX model was lower than that of the benchmark
for all states below the relevant quantile.

historic mean benchmark. In predicting CO2 emissions,
the more traditional economic indicator PI can barely beat
the benchmark model in the nowcast periods. On the
other hand, the use of electricity sales can improve over
the benchmark by 10%–15% once we reach the end of
the nowcast period, which is over two years before the
publication of the CO2 data. We note that the addition
of factors in the bridge equation model (displayed with
dashed lines) can yield some minor improvements in
the EC.ELEC model in the nowcast period, but these are
somewhat marginal.

In addition to these gains from using the timely eco-
nomic data, another striking finding is the very sharp drop
of almost 75% at the final release date when we incorpo-
rate the actual observed EC data into the bridge equation
28
Table 3
Distribution of relative RMSFE across states - CO2 .
Release Period 10% 25% 50% 75% 90%
1 M1:Y1 0.9635 0.9904 1.0206 1.0441 1.1002
2 M2:Y1 0.9635 0.9904 1.0206 1.0441 1.1002
3 M3:Y1 0.9459 0.9746 1.0134 1.0478 1.0990
4 M4:Y1 0.9459 0.9746 1.0134 1.0478 1.0990
5 M5:Y1 0.9459 0.9746 1.0134 1.0478 1.0990
6 M6:Y1 0.9234 0.9578 1.0077 1.0395 1.0761
7 M7:Y1 0.9234 0.9578 1.0077 1.0395 1.0761
8 M8:Y1 0.9234 0.9578 1.0077 1.0395 1.0761
9 M9:Y1 0.8990 0.9406 0.9835 1.0186 1.0542
10 M10:Y1 0.8990 0.9406 0.9835 1.0186 1.0542
11 M11:Y1 0.8990 0.9406 0.9835 1.0186 1.0542
12 M12:Y1 0.8807 0.9298 0.9622 1.0021 1.0249
13 M1:Y2 0.8807 0.9298 0.9622 1.0021 1.0249
14 M2:Y2 0.8807 0.9298 0.9622 1.0021 1.0249
15 M3:Y2 0.8871 0.9753 1.0021 1.0276 1.0435
16 M4:Y2 0.8871 0.9753 1.0021 1.0276 1.0435
17 M5:Y2 0.8871 0.9753 1.0021 1.0276 1.0435
18 M6:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
19 M7:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
20 M8:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
21 M9:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
22 M10:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
23 M11:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
24 M12:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
25 M1:Y3 0.8804 0.9775 1.0062 1.0318 1.0397
26 M2:Y3 0.8804 0.9775 1.0062 1.0318 1.0397
27 M3:Y3 0.9005 0.9733 1.0049 1.0289 1.0521
28 M4:Y3 0.9005 0.9733 1.0049 1.0289 1.0521
29 M5:Y3 0.9005 0.9733 1.0049 1.0289 1.0521
30 M6:Y3 0.1741 0.2109 0.2755 0.3230 0.3955

(a) Predictor - PI

Release Period 10% 25% 50% 75% 90%
1 M1:Y1 0.8993 0.9476 0.9756 1.0120 1.0390
2 M2:Y1 0.9283 0.9579 0.9999 1.0225 1.0578
3 M3:Y1 0.8966 0.9295 0.9659 1.0005 1.0269
4 M4:Y1 0.8705 0.9091 0.9429 0.9952 1.0228
5 M5:Y1 0.8529 0.9067 0.9335 0.9776 1.0056
6 M6:Y1 0.8364 0.8616 0.9048 0.9417 0.9814
7 M7:Y1 0.8278 0.8784 0.9052 0.9504 1.0345
8 M8:Y1 0.8038 0.8401 0.9109 0.9541 0.9925
9 M9:Y1 0.7960 0.8312 0.9135 0.9504 0.9972
10 M10:Y1 0.7588 0.8255 0.9033 0.9546 1.0178
11 M11:Y1 0.7378 0.8047 0.8975 0.9609 1.0083
12 M12:Y1 0.7538 0.8156 0.8991 0.9676 1.0035
13 M1:Y2 0.7501 0.8020 0.8780 0.9536 1.0191
14 M2:Y2 0.7403 0.8064 0.8754 0.9546 1.0237
15 M3:Y2 0.7439 0.8002 0.8816 0.9549 1.0111
16 M4:Y2 0.7439 0.8002 0.8816 0.9549 1.0111
17 M5:Y2 0.7439 0.8002 0.8816 0.9549 1.0111
18 M6:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
19 M7:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
20 M8:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
21 M9:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
22 M10:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
23 M11:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
24 M12:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
25 M1:Y3 0.7518 0.8087 0.8770 0.9598 1.0521
26 M2:Y3 0.7518 0.8087 0.8770 0.9598 1.0521
27 M3:Y3 0.7583 0.8086 0.8772 0.9665 1.0717
28 M4:Y3 0.7583 0.8086 0.8772 0.9665 1.0717
29 M5:Y3 0.7583 0.8086 0.8772 0.9665 1.0717
30 M6:Y3 0.1836 0.2141 0.2769 0.3192 0.3963

(b) Predictor - Electricity Sales Emissions

Notes: The numbers represent the quantiles of the distribution of relative
RMSFE across states, where we take the RMSFE of the bridge equation
model relative to the benchmark. Figures lower than 1 indicate that the
RMSFE of the bridge equation model was lower than that of the benchmark
for all of the states below the relevant quantile. Results are presented for
different methods of computing the EC forecasts (PI and electricity sales)
without factors.

model. This makes sense as the CO2 data are derived
from energy consumption. However, it is noteworthy that
we can generate good predictions many months before
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Fig. 2. Average RMSFE Across States - CO2 Emissions.
Notes: Dashed lines indicate that factors were used in the CO2 model. EC.ELEC/EC.PI: bridge equation predictions for CO2 , electricity sales/PI model
for EC. BM: historic mean benchmark for CO2 . The RMSFE is normalised on the benchmark in the first nowcast period as in previous figures.
the CO2 data are released, even when using a simple
panel data regression model, which is far simpler than the
methodology used to construct the actual CO2 data.

We also look into the state-level findings as we did be-
fore in the case of EC. Table 3 presents the relative RMSFE
distributions across states for the EC.ELEC and EC.PI mod-
els considered in Fig. 2 without factors. Here, we see that
the gains from our method relative to the benchmark are
as high as 25% at the 10th percentile in the electricity
sales bridge equation model (Table 3) and around 20%
for the lower quartile. We also see that, although PI does
not provide much average gain in RMSFE, it can still give
over 10% gains in selected states. The sudden drop in
average RMSFE on the current year’s EC data release is
also mirrored in these quantile results at nowcast point
30. The charts for individual states, displayed in Section
A.2 of the Supplementary Material, again show large gains
in big CO2 emitting states like Florida and Pennsylvania.

5.3. Further results

We also explored the robustness of these empirical
results to a number of additional checks, the results of
which we display in the Supplementary Material. Firstly,
we re-ran all results of the paper using the per capita EC
and CO2 data, motivated by the use of per capita figures
in Bennedsen et al. (2021). The results in Appendix C
demonstrate very little difference from those reported in
the main text, indicating that the same results hold if we
use the per capita or level figures when computing the
growth rates. Secondly, we performed an additional set of
results to explore the robustness of the sample split used
in generating the out-of-sample predictions. In Figure 9
in Appendix D, the evaluation sample 2001–2018 is used
29
instead of that of 2009–2018 in Fig. 2. The results are very
similar, showing that the findings are stable over time. We
also explored the idea of nowcasting CO2 directly instead
of through the EC bridging variable. Figure 10 shows that
the results are worse when using PI data and similar when
using electricity sales data. However, this direct model
cannot pick up the large drop in RMSFE we see at the end
of the sample on the release of the EC data. In previous
versions of the paper, we also tried other versions of
these models, including using combinations of multiple
variables and switching to different variables like the
Federal Reserve Bank of Philadelphia’s state coincident
index. However, none of these additional checks could
outperform the best model using electricity sales data.

6. Conclusion

This paper has proposed methods for obtaining timely
predictions of U.S. state-level EC and CO2 emissions gro-
wth. Motivated by the long publication lags for these vari-
ables, we use more timely economic data flow to make
nowcasts and backcasts. Our contribution is a first step
in making real time predictions of sub-national variables
related to environmental degradation. We have moved
the focus of existing panel nowcasting studies away from
the classic GDP and macroeconomic nowcasting setting.

Our empirical study produces historic out-of-sample
nowcasts of state-level EC growth and CO2 emissions
growth, from which we draw the following conclusions.
Firstly, we conclude that using timely economic data can
give important improvements over a naïve benchmark
in predicting EC growth. Especially using electricity sales
data, our methods deliver gains on average across states
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nd large gains in certain individual states. These predic-
ive gains can occur almost two years before the EC data
re released. We also find that these predictions of EC
re useful in bridge equation predictions of CO2 emissions
rowth. Here, we see improvements in the CO2 nowcasts
s we add monthly electricity sales data. We find that a
ery accurate prediction can be made by waiting until the
elease of the current year’s EC data. This occurs many
onths before the statistical authority releases the data
nd uses a far simpler method.
There is still much more work to be done on state-level

nergy and CO2 nowcasting. With the ‘big data’ revolution
ncreasing the granularity of available data, seeing our
ethod perform with a more complete dataset would
e useful. An interesting example would be to assess
hether firm-level emissions data can be aggregated in
timely fashion to predict state-level emissions. Another

nteresting avenue to explore is whether state-level now-
asts can be aggregated to form accurate nowcasts of
he national series. Conversely, exploring in more de-
ail whether national aggregates can further improve the
tate-level nowcasts would be interesting.
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