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Abstract

This paper proposes a test to determine whether ‘big data’ nowcasting methods, which have become

an important tool to many public and private institutions, are monotonically improving as new

information becomes available. The test is the first to formalise existing evaluation procedures from

the nowcasting literature. We place particular emphasis on models involving estimated factors, since

factor-based methods are a leading case in the high-dimensional empirical nowcasting literature,

although our test is still applicable to small-dimensional set-ups like bridge equations and MIDAS

models. Our approach extends a recent methodology for testing many moment inequalities to the

case of nowcast monotonicity testing, which allows the number of inequalities to grow with the

sample size. We provide results showing the conditions under which both parameter estimation

error and factor estimation error can be accommodated in this high dimensional setting when

using the pseudo out-of-sample approach. The finite sample performance of our test is illustrated

using a wide range of Monte Carlo simulations, and we conclude with an empirical application of

nowcasting U.S. real gross domestic product (GDP) growth and five GDP sub-components. Our

test results confirm monotonicity for all but one sub-component (government spending), suggesting

that the factor-augmented model may be misspecified for this GDP constituent.
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1 Introduction

Nowcasting methods have been introduced as a way to provide timely predictions of the current state

of the economy. This is important as key policy variables such as GDP are typically published at a

low frequency and with a significant publication lag. These methods address important irregularities

of macroeconomic datasets, specifically the problems of mixed frequency predictors and the so-called

‘ragged edge’ problem of the staggered release of data series by different statistical agencies. One of

the most desirable features of nowcasting methods is that they can be used to revise predictions of the

target variable multiple times per quarter, as soon as any new piece of information becomes available.

However, while there has been a significant body of literature devoted to developing new nowcasting

methods, there has been very little work on how to formally assess their performance.

Recent empirical nowcasting studies indicate that the evaluative criteria of nowcast methods have

moved in a different direction to the traditional forecast evaluation testing literature which dates back

to Diebold and Mariano (1995) and West (1996). Since a major advantage of nowcasting methods

is to use big data in making very timely predictions of the economy, as noted in Bańbura et al.

(2013), it is not as relevant to assess whether a nowcasting method is capable of outperforming

näıve benchmarks like autoregressions, or surveys of professional forecasters, which potentially only

produce one prediction per quarter. As such, it has become common for nowcasters to check whether

nowcasts based on a particular method are monotonically improving as new information is added,

using statistics like mean squared forecast error (MSFE). Nowcast monotonicity has been used as an

evaluative criterion at policy-making institutions such as the Atlanta Fed and in empirical papers

dating back to Giannone et al. (2008) and many more recently (see for example Bańbura et al., 2013,

Aastveit et al., 2014, Luciani and Ricci, 2014, Marcellino et al., 2016, Knotek and Zaman, 2017,

Bragoli and Fosten, 2018).

Nowcast monotonicity is also an interesting evaluative criterion as it has links to the literature

on forecaster rationality. In the context of long-horizon forecasting, Patton and Timmermann (2012)

demonstrate that if forecasters are rational and employ a correct model specification, and in the

absence of measurement error, then MSFE declines with the forecast horizon. In the nowcasting

context, this would imply that MSFE decreases when more information is added and the nowcast

horizon shrinks up until the publication date of the target variable. By providing a test for nowcast

monotonicity the results may thus be interpreted as a check for correct nowcast model specification.

Alternatively, if the test is used to evaluate externally-made predictions taken from institutional

nowcasters, the test can take on the interpretation as a test for ‘nowcaster rationality’.
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In this paper, we provide a formal and robust test for nowcast monotonicity based on the many

moment inequalities procedure of Chernozhukov et al. (2014). Our test is the first rigorous procedure

to assess nowcast performance, and can be used in very general settings. This improves upon the

majority of the aforementioned empirical studies, such as Marcellino et al. (2016), which simply use

graphical evidence of declining nowcast MSFE and do not formally test for monotonicity. It also

improves on some existing papers that do test for monotonicity, such as Bańbura et al. (2013) who

apply the test of Patton and Timmermann (2012), which are only set up to deal with a small number

of moment inequalities. Our paper, instead, allows for high-dimensional sets of moment inequalities

driven by the recent interest in ‘big data’ nowcasting methods.

Relative to the existing econometric literature of forecast evaluation testing, our paper provides

several new contributions: our first and main contribution is that we allow for the possibility that the

number of nowcasts per quarter, S, grows to infinity (S → ∞) and therefore so does the number of

moment inequalities. That is, while our method is still applicable in finite-dimensional nowcast model

approaches such as bridge equations (Schumacher, 2016) or MIDAS models (Clements and Galvão,

2008, 2009) where the number of moment comparisons is typically small (relative to the sample size),

it additionally accommodates big data approaches such as the use of factor models which have become

widely used for nowcasting (Bańbura et al., 2013, Foroni and Marcellino, 2014, Bańbura and Modugno,

2014 and others). Specifically, we extend the many moment inequalities framework of Chernozhukov

et al. (2014), originally geared towards microeconomic applications, to the case of nowcasting. In

doing so, we focus on the case of factor-based nowcasting methods as the issue of factor estimation in

nowcast evaluation is of separate econometric interest.

A second contribution of the paper is that we consider the issue of parameter as well as factor

estimation error. We deal with parameter estimation error resulting from the use of the pseudo out-of-

sample approach of West (1996), and derive rate conditions under which it does not affect the validity

of critical values from the high-dimensional moment inequality testing procedure of Chernozhukov

et al. (2014). More specifically, we find that, in allowing for S →∞, there is a cost to pay through a

stronger rate condition relative to papers such as White (2000). Likewise, we provide the conditions

required for using factor-augmented models of Stock and Watson (2002a,b) and Bai and Ng (2006) in

this nowcast monotonicity test, with the factors estimated by Principal Components Analysis (PCA),

after solving the issue of the ‘ragged edge’. This is important as existing papers on the estimation

of dynamic factor models with missing observations, such as the Kalman filtering approach of Doz

et al. (2011), have focused on the properties of the factor estimates themselves and give no guidance
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in our nowcast evaluation context. In a similar way to the case of parameter estimation error, we find

that the rates of Bai and Ng (2006) have to be tightened in order for factor estimation error not to

contribute asymptotically to the critical values of the test.

Finally, we investigate the performance of our test in finite samples through an extensive range of

Monte Carlo simulations. These allow for non-monotonicity to occur from different forms of model mis-

specification and investigate sensitivity to parameter and factor estimation error, as well as varying the

number of moment inequalities and out-of-sample splits. Our findings suggest that our test performs

well across different scenarios, even in the presence of estimation error. We then apply our test to

nowcasting the aggregate GDP growth rate in the United States, as well as five GDP subcomponents,

using a data specification similar to that of Bańbura and Modugno (2014). As a preview of the

results, our test confirms that there is no statistical evidence of non-monotonicity in the aggregate

GDP growth rate. This is in line with previous studies such as Bańbura et al. (2013), which use

a different factor estimation procedure and time period, and seems to indicate that the finding of

monotonicity is robust. On the other hand, in the government spending sub-component of GDP

our test finds significant violations of monotonicity. This suggests that a different model should be

employed for nowcasting government spending. The results are very robust to different data spans,

dataset configurations and estimation schemes.

The rest of the paper is organised as follows. Section 2 describes the nowcast monotonicity set-up

of the paper, and provides details of the factor-augmented model set-up we consider in the theoretical

results. Section 3 contains an introduction to the the test statistic, defines the bootstrap critical values

and states their formal validity. Section 4 provides the Monte Carlo simulation settings and results.

Section 5 gives the empirical application of the test. Finally, Section 6 concludes the paper. There

is also a separate document of Supplementary Material which details the proofs of the results of the

paper and provides additional Monte Carlo and empirical results not presented in the main text.

2 Set-up

2.1 Testing Nowcast Monotonicity

The objective is to evaluate nowcasts of a low-frequency target variable, yt, with T observations at

quarterly periods t = 1, ..., T . Since data for yt is not published until after the end of quarter t, we

make a set of S nowcasts at intervals i = 1, ..., S, starting at the beginning of quarter t and ending

when yt is published. This is achieved using a large set of N candidate predictors Xjt, for j = 1, ..., N ,

4
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which are observed at a higher frequency than yt. As an example, Xjt are taken to be monthly

predictors which are observed at 3T monthly periods t = 1/3, 2/3, 1, ..., T − 1/3, T . The extension to

higher frequencies is straightforward.

The S different nowcasting horizons are brought about by tracking the arrival of new information

in real-time, or the ‘data flow’ as termed by Bańbura et al. (2013). Assuming that the observations

Xjt are released sequentially in the order of their j variable index and then in the order of their t time

index, the timeline of data releases appears as in Figure 1.

Figure 1: Graphical Illustration of the Data Flow

Month 1 Month 2 Month 3

X1,t− 2
3
. . . XN,t− 2

3
X1,t− 1

3
. . . XN,t− 1

3
X1,t . . . XN,t yt

1 . . . N N + 1 . . . 2N 2N + 1 . . . 3N

Quarter t

S = 3N nowcasts

Nowcast Horizon i:

Data Release:

Several comments are useful here. Firstly, this example simplifies the set-up without loss of gen-

erality so that yt is released at the end of quarter t, whereas in the empirical application we see, for

instance, that U.S. GDP data for quarter t are, in practice, released some way into quarter t + 1.

Secondly, as we move from i = 1 through i = S, the nowcast horizon shrinks as we approach the fixed

publication date of yt. This is a slightly different set-up to forecasting studies where the forecast origin

is held fixed and the horizon is increased into the future. Finally, it can be seen that the so-called

“ragged edge” occurs in the middle of this timeline, where the data are available for some months of

the first few variables but are not available for the remainder.

In the above example, the monthly set-up gives rise to a total number of S = 3N different nowcasts

per quarter. This number of nowcasts can be made arbitrarily large by increasing the number of

variables, N . This is particularly relevant for recent “big data” approaches to nowcasting which often

allow N → ∞. The value of S can also be very large when daily predictors are used, or even higher

frequency financial series. On the other hand, S could be relatively small if the nowcaster chooses

to use one monthly predictor and make S = 3 nowcasts per quarter. Additionally, some empirical
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nowcasting papers choose a small number of cut-off dates (such as the end of each month) and make

only S = 3 nowcasts based on models which aggregate all of the available data for the previous month.

In this paper, we wish to allow for any of these scenarios, and will therefore allow a framework where

S →∞.

We define Ωt−1+i/S for i = 1, ..., S as the collection of data releases at a point i during quarter

t, which culminates with Ωt at the end of quarter t where i = S and all of the quarter’s data points

have been released. This information set corresponds to all data releases on the left of a given point in

the timeline in Figure 1. Then at each point i the nowcaster makes a nowcast based on the available

data at point i and an (mi× 1) vector of parameters θi. We denote this nowcast, which is usually the

conditional mean E
[
yt|Ωt−1+i/S ; θi

]
, by yi,t (θi) in the following.

Given the motivation in the introduction, the central hypothesis of interest is whether nowcast

performance is monotonically improving as we move through the quarter, approaching the publication

date of the target variable. Given some loss function L(.), whose properties will be discussed in Section

3.2 below, we are interested in knowing whether the nowcast error loss at a point i+ k is lower than

some earlier point i. The null hypothesis is formed of S(S−1)/2 moment inequalities for each pairwise

comparison of nowcast points i+ k and i:

H0 : E [L(yt − yi+k,t(θi+k))− L(yt − yi,t(θi))] ≤ 0 for all i = 1, ..., S − 1; k = 1, . . . , S − i (1)

versus:

H1 : E [L(yt − yi+k,t(θi+k))− L(yt − yi,t(θi))] > 0 for some i = 1, ..., S − 1; k = 1, . . . , S − i

The null hypothesis is violated when at least one point later in the prediction period has larger loss

than some earlier horizon.

Relative to papers such as Patton and Timmermann (2012) for testing forecast monotonicity, we

consider all possible S(S − 1)/2 pairwise moment inequalities for the test, rather than just adjacent

inequalities, in order to detect any violation of H0. Note that, by doing so, even in empirical appli-

cations where the number of nowcast points is relatively small, S(S − 1)/2 can be very large which

further motivates a high-dimensional set-up. We leave the functions L(.) and yi,t (θi) to be very gen-

eral in order to incorporate the vast majority of commonly used nowcasting methods, though it is

very typical that the MSFE loss function L(x) = x2 is used for nowcast evaluation. For yi,t (θi), as

mentioned in the introduction, we can easily incorporate different methods operating with a ‘small’
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or a ‘large’ number of regressors.

Since the population parameters θi+k and θi are unknown, we obtain estimates for the set of

moment conditions in H0 using a pseudo out-of-sample nowcasting experiment as in West (1996).

We split the sample of time series observations, T , into samples of size R and P . At each of the P

quarterly out-of-sample periods t = R + 1, ..., T , we make i = 1, ..., S different nowcasts of yt. We

start out estimating the parameters with the first R observations, and then for each t and i, we use an

expanding window of observations using the information set {Ωs−1+i/S}ts=1, known as the recursive

scheme. We focus on the recursive rather than the rolling scheme (where the estimation window is

fixed at length R), though the extension of our theoretical results to the latter is straightforward. The

focus on the recursive scheme is partly as it is widely used in empirical studies and partly as we use

factor models which are known to be quite robust to structural instabilities, with the latter being one

of the main reasons for using the rolling scheme (Clark and McCracken, 2009).

We take the ragged edge at point i into account, and use only the information available at point i

to estimate θ̂it. Therefore, in comparing horizons i and i+k, we use sequences of parameter estimates

{θ̂it}Tt=R+1 and {θ̂i+k,t}Tt=R+1. This gives rise to a sample analogue of the moment conditions considered

in H0:

1

P

T∑
t=R+1

[
L(yt − yi+k,t(θ̂i+k,t))− L(yt − yi,t(θ̂it))

]
for i = 1, ..., S − 1; k = 1, . . . , S − i, (2)

which we will use in Section 3 below for our test statistic.

2.2 Nowcasting with Factor-Augmented Models

In forming the nowcast loss differentials defined above, of particular interest is when we make nowcasts

of the target variable yt using the factor augmented model of Stock and Watson (2002a,b) and Bai and

Ng (2006), adapted to the case of nowcasting. The simplest version is the unrestricted factor-MIDAS

model used by Kim and Swanson (2017) amongst others:

yt = γ′Wt + β′0Ft + β′1Ft−1/3 + β′2Ft−2/3 + εt t = 1, 2, ..., T (3)

This is a quarterly regression model of yt on Wt, which is is a set of ‘must-have regressors’ such as a

constant and lags of yt, and monthly lags of Ft, the r unobserved factors based on the monthly static

factor model:

Xt = ΛFt + ut t = 1/3, 2/3, 1, ..., T − 2/3, T − 1/3, T (4)
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where Xt is an N×1 vector of observed variables, Λ is an N×r matrix of factor loadings, Ft is an r×1

vector of unknown factors and ut is an N × 1 vector of idiosyncratic disturbances. Note that for the

theoretical results of the paper we treat the number of factors, r, as known whereas in practice this

can be consistently estimated by the information criteria of Bai and Ng (2002) and others. We also

abstract from structural breaks in these models, as is common in the forecast evaluation literature.

In the empirical application we explore the results using data spans guided by factor loading break

dates, which can be determined using methods such as Breitung and Eickmeier (2011) and Corradi

and Swanson (2014).

We make out-of-sample nowcasts for quarters t = R + 1, ..., T and nowcast points i = 1, ..., S by

repeatedly estimating the factors by PCA in expanding monthly windows from observation 1/3 until

the end of the quarter t, at the various nowcast points i. This proceeds in three stages.

In the first stage, we take account of the “ragged-edge” which occurs at the end of the recursive

window estimation sample. Specifically, at points t = R+ 1, ..., T , we use a 3t×N window of monthly

observations in the matrix X(t) = [X1/3, X2/3, ..., Xt]
′, where the ragged edge only occurs in the last

3 monthly observations of each window. For example, if i ≤ N , then only information is available for

month 1 of quarter t up to variable i, and no other information is available for the rest of the quarter.

In that case, the panel is unbalanced and we cannot directly apply PCA to estimate the factors. We

therefore make predictions of the missing observations up to month t and variable N which gives a

recursive data matrix:

X̂(i,t)

3t×N
=



X1,1/3 . . . . . . . . . . . . XN,1/3

...
...

X1,t−2/3 . . . Xi,t−2/3 X̂i+1,t−2/3 . . . X̂N,t−2/3

X̂1,t−1/3 . . . X̂i,t−1/3 X̂i+1,t−1/3 . . . X̂N,t−1/3

X̂1t . . . X̂it X̂i+1,t . . . X̂Nt


for t = R+ 1, ..., T ; i ≤ N (5)

with typical element {X̂(i,t)
j : t = R + 1, ..., T ; j = 1/3, 2/3, 1, ..., t − 2/3, t − 1/3, t; i = 1, ..., S}.

Analogously, when N < i ≤ 2N , the predicted observations only appear in the second-to-last and

last row of X̂(i,t), and when i > 2N they only appear in the last row. This data matrix differs from

the out-of-sample factor estimation approaches of Gonçalves et al. (2017) and Fosten (2016) due to

these predicted observations in the last three rows to solve the ragged edge. There have been different

suggestions of how to balance the panel in the literature. Stock and Watson (2002b) suggest to use an
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EM algorithm to fill in missing observations. A state space approach was suggested by Bańbura and

Modugno (2014) using the Kalman filtering method of Doz et al. (2011). Other alternatives include

using interpolations to predict missing observations before using PCA (Kim and Swanson, 2017) and

vertical alignment (Altissimo et al., 2010).

In the second stage, we estimate the factors by PCA on the data matrix in Equation (5). For

every out-of-sample window t = R+1, ..., T and every nowcast point i = 1, ..., S the PCA optimisation

problem is:

(
F̂ (i,t)

3t×r
, Λ̂(i,t)

N×r

)
= arg min

Λ,F

{
1

3tN
tr
(
X̂(i,t) − F (t)Λ′

)(
X̂(i,t) − F (t)Λ′

)′}
(6)

subject to the normalizations that F (t)′F (t)/3t = Ir for all t and that Λ′Λ/N is diagonal, where

F (t) = [F1/3, ..., Ft]
′ is a 3t× r recursive matrix of monthly factors in each quarter t, in an analogous

way to X(t). The solution is to set F̂ (i,t) as the r eigenvectors corresponding to the r largest eigenvalues

of the 3t× 3t covariance matrix X̂(i,t)X̂(i,t)′/3tN . These eigenvalues are denoted by the r× r diagonal

matrix V̂ (i,t) for each i and t. Then since F̂ (i,t)′F̂ (i,t)/3t = Ir under the normalisation for the factors,

we obtain a simple expression for the estimated loadings, Λ̂(i,t) = X̂(i,t)′F̂ (i,t)/3t. The difference to

existing papers on factor estimation is the additional dependence of the estimated factors and loadings

on i, the nowcast point.

The final stage is to make the nowcast. For this we obtain OLS estimates using recursive regressions

of yt onto Wt and the estimated factors {F̂ (i,t)
j : t = R + 1, ..., T ; j = 1/3, 2/3, ..., t; i = 1, ..., S}. For

unrestricted factor-MIDAS model as in Equation (3), the estimated factors are skip-sampled from

the monthly frequency and inserted into the regression in a quarterly fashion. In other words, F̂
(i,t)
t

contains periods j = 1, 2, . . . , t, while F̂
(i,t)
t−1/3 contains observations on the second month of every

quarter (periods j = 2/3, 5/3, . . . , t−1/3) and F̂
(i,t)
t−2/3 on the first month (periods j = 1/3, 4/3, . . . , t−

2/3). Then, collecting F̂
(i,t)

t = (F̂
(i,t)
t , F̂

(i,t)
t−1/3, F̂

(i,t)
t−2/3)′ and β̂it = (β̂′0it, β̂

′
1it, β̂

′
2it)
′, the nowcasts are

written:

yi,t

(
F̂

(i,t)

t , β̂it, γ̂it

)
= γ̂′itWt + β̂′0itF̂

(i,t)
t + β̂′1itF̂

(i,t)
t−1/3 + β̂′2itF̂

(i,t)
t−2/3 (7)

for t = R+ 1, ..., T and i = 1, ..., S. These nowcasts are then used directly in Equation (2) to calculate

the loss differential series.

Note that, in the absence of measurement error, if we have correctly specified the model for the

data generating process, we expect the null hypothesis of monotonicity to hold. Heuristically this is

so because, as i grows towards S and we add more and more information, the predictions used to
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solve the ragged edge in X̂(i,t) are increasingly replaced with actual observations. This implies that

the effect of the factors being contaminated with ragged edge predictions vanishes throughout the

prediction period, meaning that measures like MSFE are expected to decline as we move towards the

end of the nowcast period.

3 Test Statistic and Critical Values

3.1 Test Statistic

To test the null hypothesis H0 in Equation (1) we use a statistic which is based on the empirical

moment inequalities introduced in Equation (2). That is, the test statistic is chosen to be a max

statistic of the following form:

U∗ = max
i,k∈CS

1√
P

T∑
t=R+1

[
L(yt − yi+k,t(θ̂i+k,t))− L(yt − yi,t(θ̂it))

]
, (8)

where the max could be taken over different sets of moment inequality comparisons, for example the

set of all possible S(S − 1)/2 pairwise comparisons CS = {i, k : i = 1, . . . , S − 1, k = 1, . . . , S − i}, or

the set of only adjacent comparisons CS = {i, k : i = 1, . . . , S − 1, k = i + 1}. The null hypothesis of

monotonicity, H0, in Equation (1) is then rejected if U∗ > c(α) with c(α) denoting a corresponding

critical value at significance level α. Rejection of the null implies that there is at least one point later

in the quarter which has significantly larger nowcast error loss than at some earlier horizon.

Before describing how to construct the critical values, there is a remark to be made with respect to

the set of moment inequalities to be used. Note that in order to apply the results of Chernozhukov et al.

(2014) formally we need that for every given i and k combination, the variance of L(yt−yi+k,t(θi+k))−

L(yt − yi,t(θi)), i.e. v2
i+k,i ≡ Var (L(yt − yi+k,t(θi+k))− L(yt − yi,t(θi))), is bounded away from zero

(a consequence of Assumption SM2 in the Supplementary Material). If we use the factor-based

approach of the previous section and re-estimate on every data release, the factors estimated using

adjacent releases differ only by the new data point on a single variable out of the total set of N

variables. Therefore in the limit as N → ∞, adjacent horizons’ factors become perfectly correlated

and L(yt − yi+1,t(θi+1))− L(yt − yi,t(θi)) = 0 almost surely for every t, which implies that v2
i+k,i = 0.

If N is very large, a possible solution to this problem is to drop a subset of moment inequalities

which are close together, by bounding the release horizons sufficiently far apart by some fraction of

N . This can be done in such a way that v2
i+k,i is not equal to zero. We use this general approach

to prevent v2
i+k,i = 0 in comparing i to i + k by setting k to be at least equal to some deterministic
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sequence which we call kcS . That is, for some S > 1, let:

kcS = min
{
k ∈ {1, . . . , S − i} : v2

i+k,i > c > 0 ∀i = 1, ..., S − 1
}

(9)

Intuitively, kcS is the smallest integer k for which the variance v2
i+k,i is larger than some constant c for

any i. Note that this still implies that we make use of every data release in the out-of-sample nowcasting

experiment, but merely drop some of the pairwise comparisons of these quantities in forming the test

statistic. A regularity condition (see below) then rules out the occurrence of pathological cases of

non-monotonicity, which may arise by ignoring the horizons between i+ kcS and i.

Finally, we point out that, while v2
i+k,i = 0 might be a theoretical concern in the limit, our

simulation results as well as our empirical application support the view that this spacing is of minor

practical relevance in finite sample settings. Indeed, even in the limit, v2
i+k,i = 0 is typically also not

an issue at all if the factors are re-estimated only on a fixed number of calendar dates such as the end

of each month, as described above.

3.2 Critical Values

Before we introduce the critical values for our test and establish their formal validity, we introduce

the shorthands ∆Lt(θi+k, θi) = L(yt − yi+k,t(θi+k)) − L(yt − yi,t(θi)) and ∆Lt(θ̂i+k,t, θ̂it) = L(yt −

yi+k,t(θ̂i+k,t))− L(yt − yi,t(θ̂it)) for any i = 1, . . . , S − 1 and k = 1, . . . , S − i combination. Moreover,

let κ denote the cardinality of CS , i.e. κ ≡ |CS |.

In order to establish critical values for the statistic in (8) such that the test has asymptotic

size α ∈ (0, 1), we adopt the approach to testing many moment inequalities recently introduced by

Chernozhukov et al. (2014). This procedure does not refer to the asymptotic distribution of the test

statistic, but relies on finite sample approximations of the (unknown) asymptotic distribution of the

test statistic under H0 through the use of the Block Multiplier Bootstrap (BMB) procedure. That

is, Chernozhukov et al. (2014) show that, under certain regularity conditions, the distribution of

maxi,k∈CS
1√
P

∑T
t=R+1

(
∆Lt(θi+k, θi)−E

[
∆Lt(θi+k, θi)

])
, the statistic evaluated at the true (θ′i, θ

′
i+k)

′

and re-centered by E
[
∆Lt(θi+k, θi)

]
, can be approximated directly by that of max1≤l≤κ Yl with Y =

(Y1, . . . , Yκ)′, a centered normal random vector of dimension κ (recall that κ denotes the cardinality

of the set CS) with covariance matrix E
[
Y Y ′

]
, in Kolmogorov distance. This approximation holds

for a given sample size T (and other fixed parameter values) up to some bound C ′P−c
′
, where c′ and

C ′ are constants which exclusively depend on some unique constants c1, C1, and c2 (see below for a

definition). Since the covariance structure of max1≤l≤κ Yl is unknown, a similar approximation with
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max1≤l≤κ Yl can also be established for the BMB bootstrap statistic described in the following. Our

theoretical results in Theorem 1 below then suggest that the actual test statistic, which under H0

satisfies:

U∗ = max
i,k∈CS

1√
P

T∑
t=R+1

∆Lt(θ̂i+k,t, θ̂it) ≤ max
i,k∈CS

1√
P

T∑
t=R+1

(
∆Lt(θ̂i+k,t, θ̂it)− E

[
∆Lt(θi+k, θi)

])

can indeed be approximated by maxi,k∈CS
1√
P

∑T
t=R+1

(
∆Lt(θi+k, θi) − E

[
∆Lt(θi+k, θi)

])
. In other

words, Theorem 1 below establishes that parameter and factor estimation error in the test as well

as in the bootstrap statistic can be bounded by C1P
−c2 , where the bound holds again for fixed

values of T , κ, and the other parameters. This suggests that both, the approximation error with the

max of a Gaussian process as well as the factor and parameter estimation error, become negligible

asymptotically as P −→∞.

Paralleling Chernozhukov et al. (2014), we apply the ‘small’ and ‘large’ blocks technique widely

attributed to the paper of Bernstein (1927). That is, let qP > rP denote the ‘large’ and ‘small’ blocks

respectively and assume that qP +rP < P/2. In analogy to their paper, define I1 = {R+1, . . . , R+qP },

J1 = {R+qP+1, . . . , R+qP+rP }, . . ., ImP = {R+(mP−1)(qP+rP )+1, . . . , R+(mP−1)(qP+rP )+qP },

JmP = {R+(mP−1)(qP+rP )+qP+1, . . . , R+mP (qP+rP )}, and JmP +1 = {R+mP (qP+rP )+1, . . . , T}.

Thus m ≡ mP defines the number of blocks as the integer part of m = P/(qP + rP ) and so (qP + rP )

characterizes an independent block.

The algorithm of the block multiplier bootstrap is now as follows:

1. Generate standard normal random variables ε1, . . . , εm independent of the data {∆Lt(θ̂i+k,t, θ̂it)}Tt=R+1.

2. Retaining only the large blocks Ih, h = 1, . . . ,mP , construct the BMB statistic:

WBMB ≡ max
i,k∈CS

(
1

√
mP qP

mP∑
h=1

εh
∑
j∈Ih

(
∆Lj(θ̂i+k,j , θ̂i,j)−

1

P

T∑
t=R+1

∆Lt(θ̂i+k,t, θ̂i,t)

))
.

3. Calculate cBMB(α) as the conditional (1− α) quantile of WBMB given {∆Lt(θ̂i+k,t, θ̂it)}Tt=R+1.

The above algorithm has been designed for a fixed large block-small block combination, and size as

well as power of the test may be sensitive to the actual choice. As standard selection methods of the

block size for dependent data such as Bühlmann and Künsch (1999) or Hall et al. (1995) have not

yet been extended to high-dimensional data, in the Supplementary Material we propose an ad-hoc

nested bootstrap procedure suggested by Zhang and Cheng (2014) to estimate the optimal small-large
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block combination. Without claiming optimality of any kind, this choice can then subsequently be

employed to perform the moment inequality test of interest on the original sample. The proposed

method appears to perform well in Monte Carlo and empirical settings.

For the regularity conditions outlined below, let c, c′, C, and C ′ denote generic positive constants

that may vary throughout the rest of the paper and that are assumed to depend exclusively on

0 < c1 ≤ C1 < ∞ and on 0 < c2 < 1/4. Also, define the k-th mixing coefficient for β-mixing data

{∆Lt(·)}Tt=1 as:

bτ = bτ ({∆Lt(·)}Tt=1) = max
1≤d≤T−k

β(σ(∆L1(·), . . . ,∆Ld(·)), σ(∆Ld+τ (·), . . . ,∆LT (·)), 1 ≤ τ ≤ T − 1,

where σ(∆Lt(·), t ∈ T ) with T ⊂ {1, . . . , T} is the sigma field generated by ∆Lt(·), t ∈ T . We impose

the following regularity conditions:

Assumption 1. For every i, k ∈ CS, the data {∆Lt(θi+k, θi)}Tt=1 is strictly stationary (across t) and

β-mixing where the size of the τ − th mixing coefficient is determined in Assumption 4 below.

Assumption 2. Assume that:

E

[
max
i,k∈CS

∣∣∣∣∣∆Lt(θi+k, θi)− E
[
∆Lt(θi+k, θi)

]∣∣∣∣∣
s]
< C1 1 ≤ s ≤ 4.

as well as:

E
[
‖∇F∆Lt(θi+k, θi)‖4drP

]
< C and E

[
‖∇β∆Lt(θi+k, θi)‖4drP

]
< C,

for all t = 1, . . . , T and i, k ∈ CS, where drP is again defined in Assumption 4 below.

Assumption 3. For every t = 1, . . . , T , and i, k ∈ CS, in an open neighbourhood of θi+k and θi, the

function ∆Lt(θi+k, θi) is measurable and continuously differentiable with respect to all elements of θi

and θi+k with probability one.

Assumption 4. Let R,P,N −→ ∞ as T −→ ∞ and assume that there exists a sequence ζP1 −→ 0

as P −→ ∞. Recalling c2 defined above, we impose the following conditions: let P/R
1
2 −→ ∞ and

P/N = O(1), and assume that

C ′max

{
P 1+c2

R
,
P

1
2

+c2

N

}
≤ ζp1 ≤

C1

P c2
.

Moreover, assume that the block sizes satisfy qP = o(P ), rP = o(qP ) as P −→ ∞. The mix-
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ing coefficient brP and the block sizes rP and qP together with the number of blocks mP satisfy

max{mP brP , (rP /qP ) log2 κ} ≤ C1P
−c2 and qPC log

5
2 (κP ) ≤ C1P

1
2
−c2, where brP = o

(
r
−2drP /(drP−1)

P

)
and drP > 1.

Assumption 5. For some c defined before, the sequence kc1S defined in (9) exists for every S = 1, 2, . . .,

and for every i,

Pr

({
max

1≤t≤T,k<kc1S
∆Lt(θi+k, θi) > 0

}
∩
{

max
1≤t≤T,k≥kc1S

∆Lt(θi+k, θi) ≤ 0
})
−→ 0

as S, T −→∞.

Assumption 1 characterizes the time dependence in the data, while Assumption 2 requires the ex-

istence and finiteness of certain moment expressions. Note that the moment conditions in Assumption

2 involve the loss function, and thus the set of admissible nowcast error distributions which satisfy

Assumption 2 will in fact depend on the actual loss function employed. We point out, however, that

when nowcast errors are for instance normally distributed with finite mean and variance for every

i = 1, . . . , S, then the moment conditions in the first part of Assumption 2 are satisfied for commonly-

used loss functions such as the symmetric squared error loss or the asymmetric linear exponential

(Linex) loss. Assumption 3 on the other hand requires differentiability of ∆Lt(θi+k, θi), which rules

out loss functions such as mean absolute deviation loss, but could, in principle, be weakened along

the lines of McCracken (2000). Assumption 4 modifies the asymptotics as in West (1996) with new

rates due to our nowcasting set-up. By using big-data approaches allowing the number of moment

inequalities, κ = κ(N), to grow to infinity with the number of variables N and with the sample size

split into T = R + P , this assumption governs the interplay of these three sequences. Also noting

that with calendar release dates linked to the number of variables, meaning κ will at most be of order

O(N2), the first part of Assumption 4 requires R to grow slower than P 2, but faster than P 1+2c2 ,

where 0 < c2 < 1/4. This is slightly stricter than P/R → 0, the requirement imposed by West

(1996) to ignore parameter estimation error asymptotically, and, when c2 = 1
8 for instance, allows for

R ∈ (cP
5
4 , CP 2). Similarly, we allow the number of variables N to grow as fast as P , but require that

(P
1
2

+2c2/N) −→ 0, a condition which is again slightly stricter than the out-of-sample analogue of Bai

and Ng (2006) who require
√
P/N → 0 to eliminate factor estimation error asymptotically. This tight-

ening of the growth rates may be viewed as the ‘price to pay’ to let the number of moment inequalities

grow with the sample size. For instance, if again c2 = 1
8 , we can allow for N ∈ (cP

3
4 , CP ), which in

turn implies that N/T −→ 0. The second part of Assumption 4 determines the rate of the small (rP )
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and large block (qP ) sizes, respectively, and sets the mixing size to be of order −2drP /(drP − 1). It

postulates that the rate of the large block size qP is at most of order P
1
2
−c2 (if c2 = 1

8 : qp < CP
3
8 ),

while rP in this case may only grow up to rate P
1
2
−2c2 (if c2 = 1

8 : rp < CP
1
4 ). Finally, note that

the mixing condition is slightly weaker than in West (1996) who imposes a mixing coefficient of size

−3d/(d−1) and thus allows for less time dependence in the data. Finally, Assumption 5 rules out that,

as S and T grow to infinity, any violations of monotonicity remain undetected by spacing moment

comparisons kc1S periods apart from each other. This ensures that the null hypothesis H0 remains

unaffected in the limit by using this spacing.

Before we state the main theoretical result, we point out that there are two additional assumptions

in the Supplementary Material, Assumptions SM1 and SM2, which are required for the statement in

Theorem 1 below. More specifically, Assumption SM1 contains rather standard factor model regularity

conditions adapted to the recursive parameter estimation case, many of which are similar or even

identical to Gonçalves et al. (2017). By contrast, Assumption SM2 is needed to formally relax a

bounded support assumption made by Chernozhukov et al. (2014) for the case of dependent data for

illustrative purposes. However, these are not presented here due to their long and mainly technical

nature. The following Theorem establishes the validity of the bootstrap critical values using the BMB

procedure:

Theorem 1. Recall the definition of the constants and assume that Assumptions 1, 2, 3, 4, 5 hold,

as well as SM1 and SM2 from the Supplementary Material. Then, there exist positive constants c, C

such that under H0:

Pr

(
U∗ > cBMB(α)

)
≤ α+ CP−c, (10)

where cBMB(α) is the corresponding critical value at level α from the Block Multiplier Bootstrap

procedure described before. If E [∆Lt(θi+k, θi)] = 0 for all i, k ∈ CS, then:

∣∣∣∣∣Pr

(
U∗ > cBMB(α)

)
− α

∣∣∣∣∣ ≤ CP−c. (11)

Theorem 1 yields critical values for U∗ in such a way that the test has asymptotic size α ∈ (0, 1).

Note however that the bounds in Theorem 1 are non-asymptotic in the sense that the bound CP−c

holds for a fixed value of P and κ (and the fixed parameters). The second part of Theorem 1, namely

Equation (11), shows that when all moment inequalities are binding, the asymptotic size of the test

coincides with the nominal size α.
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3.3 Critical Values with Moment Inequality Selection

When the number of non-binding and thus uninformative moment inequalities with E [∆Lt(θi+k, θi)] <

0 is large, one-step critical values described in the previous section may become too conservative. A

possible solution to this problem is the application of moment selection procedures which do not

consider inequalities in the calculation of the critical values that are unlikely to be binding, i.e. in-

equalities whose estimated counterpart lies below a certain threshold value. This selection procedure

is similar in spirit to the Superior Predictive Ability test of Hansen (2005), which overcomes potential

conservativeness of White (2000)’s reality check test for comparing a (finite) number of forecast models

by ignoring irrelevant models in the construction of the limiting distribution.

For the moment selection, we adopt a two-step method proposed by Chernozhukov et al. (2014)

for the Multiplier Bootstrap to the BMB used in that paper. Let 0 < βP < α/2 be some constant

which may depend on the out-of-sample size P . Then let cBMB(βP ) analogously denote the one-step

critical values calculated using the procedure above, for size βP rather than α. Finally denote the

moment inequality selection set ĴBMB as:

ĴBMB =

{
i, k ∈ CS :

1√
P

T∑
t=R+1

Lt(θ̂i+k,t, θ̂i,t) > −2cBMB(βP )

}
.

Then the two-step critical values with moment inequality selection, which we denote cBMB,2S(α), can

be calculated using the following procedure:

1. Generate standard normal random variables ε1, . . . , εm independent of the data {Lt(θ̂i+k,t, θ̂i,t)}Tt=R+1.

2. Construct the BMB statistic W
ĴBMB

as:


max

i,k∈ĴBMB

(
1√

mP qP

∑mP

h=1 εh
∑

j∈Ih

(
∆Lj(θ̂i+k,j , θ̂i,j)− 1

P

T∑
t=R+1

∆Lt(θ̂i+k,t, θ̂i,t)

))
if ĴBMB not empty

0 if ĴBMB empty

3. Calculate cBMB,2S(α) as the conditional (1−α+2βP ) quantile ofW
ĴBMB

given {Lt(θ̂i+k,t, θ̂i,t)}Tt=R+1.

Given this two-step procedure for the computation of critical values, the following result establishes

their theoretical validity:

Theorem 2. Recall the definition of the constants and suppose that the assumptions of Theorem 1

hold. Moreover, suppose that sup
P≥1

βP < α/2 and log(1/βP ) ≤ C1 logP , where βP was defined above.
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Then, there exist positive constants c and C depending only on c1 and C1 such that under H0:

Pr

(
U∗ > cBMB,2S(α)

)
≤ α+ CP−c, (12)

where cBMB,2S(α) is the corresponding critical value at level α from the two-step Block Multiplier

Bootstrap procedure with moment selection described before. If E [∆Lt(θi+k, θi)] = 0 for all i, k ∈ CS,

then:

Pr

(
U∗ > cBMB,2S(α)

)
≤ α− 3βP − CP−c, (13)

so that, if in addition βP ≤ C1P
−c1, then

∣∣∣Pr
(
U∗ > cBMB,2S(α)

)
− α

∣∣∣ ≤ CP−c.
Similar to Theorem 1, results are sub-divided into two parts: the first part of Theorem 2 addresses

the case where only some inequalities are binding, while the second part considers the case when all

moments are zero, in other words E [∆Lt(θi+k, θi)] = 0 for all 1 ≤ l ≤ κ. As expected, the possibility

of dropping some inequalities from the set of moment restrictions used for the computation of critical

values when they are actually informative, leads to an additional error of order 3βP . This error,

however, becomes negligible when βP ≤ C1P
−c1 and the same convergence rate as in Theorem 1 is

obtained.

4 Monte Carlo

In this section we investigate the finite sample properties of the test statistic in Equation (8). Of

particular interest is the performance of the test across different sample sizes, with different specifi-

cations of parameter and factor estimation. We therefore propose two set-ups: the first specifies yt

to be a function of a small set of non-factor regressors. This allows us to assess the performance of

the test in a lower-dimensional set-up more similar to the MIDAS and bridge equation approaches,

and also allows us to shut down the factor estimation component of the results. The second set-up

has both parameter and factor estimation which allows us to investigate the test in high dimensions

with factor estimation error. We will check sensitivity to the in-sample and out-of-sample splits, R

and P also when the test is constructed using different sets of moment inequalities: the full set of

S(S− 1)/2 inequalities, the restricted set using spacings of width kcS described in Section 3.1, and the

adjacent-only inequalities version akin to the ∆e test of Patton and Timmermann (2012).
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4.1 Set-up 1: Parameter Estimation Only

In the first Monte Carlo set-up, yt is a function of a vector of S non-factor variables Zt = [Z1t, ..., ZSt]
′:

yt = γ′Zt + εt (14)

for t = 1, ..., T where Zit ∼ i.i.d.N (0, σ2
Z) and εt ∼ i.i.d.N (0, σ2

ε). The variables in Zt are, for

simplicity, taken to be at the same frequency as yt but released at staggered intervals in the order

1, ..., S in a similar way as depicted in Figure 1. We assume that the nowcaster makes nowcasts at

each of these points i = 1, ..., S using a misspecified one-variable model which only uses variable i,

namely:

yt = γ̃iZit + εit i = 1, ..., S (15)

The nowcasting model in Equation (15), which omits all but one of the S variables in the true

DGP for yt, gives a MSFEi at points i = 1, ..., S of MSFEi = σ2
ε +
∑

j 6=i γ
2
j σ

2
Z . We can therefore vary

the relative magnitudes of the sequence of parameter values γ1, ..., γS in order to generate different

scenarios according to the null and alternative hypotheses.

In order to simulate the least favourable case under the null, where the inequalities in the null

hypothesis in Equation (1) all hold with equality, we use the parameterisation:

DGPZ-N: γi = 1 for all i = 1, ..., S

which gives equal MSFEi for each i. Under the alternative hypothesis we use the parametersations:

DGPZ-A1: γi = 1 for i = bS/2c and γi = 0 for i 6= bS/2c

DGPZ-A2: γi =
√

exp(−i) for all i = 1, ..., S

These give two different types of violations of monotonicity similar to existing studies in the

monotonicity testing literature such as Ghosal et al. (2000). Specifically, in DGPZ-A1 there is a one-

off spike in the γi coefficients around the (integer part of) point S/2 which causes a drop down and

immediate jump up in the MSFEi profile. In DGPZ-A2 the γi coefficients decline as i increases,

which implies that MSFEi is smoothly increasing across the whole profile.

For the various DGP parameters and sample sizes, we use a number of variables S ∈ {5, 10} which

allows us to assess the performance of the test in a relatively small-dimensional case. For the all-

inequalities version of the test this still yields a total of S(S − 1)/2 ∈ {10, 45} moment inequalities,
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although we will compare the performance to the adjacent-only version which uses only S− 1 ∈ {4, 9}

inequalities. We let σ2
Z = 1 and therefore set σ2

ε =
∑S

i=1 γ
2
i which fixes the signal-to-noise ratio

in Equation (14) to be 1:1. The nowcaster uses recursive OLS to estimate the models described in

Equation (15). We let the total sample size be T ∈ {200, 300} and for the sample split T = R+P we

use ratios P/R ∈ {1/2, 2} to allow cases where R < P and P > R, and so R and P vary between 67

and 200.

For the bootstrap, we considered a grid of values for the small and large blocks equal to rP ∈

{0, 1, 2} and qP ∈ {4, 5, 6, 7, 8}, though we only display some of these combinations for brevity. We

make use of the warp speed bootstrap of Giacomini et al. (2013) which allows us to make just B = 1

bootstrap draw over M = 999 Monte Carlo replications and reduce the computational complexity of

the problem.

4.2 Set-up 2: Parameter and Factor Estimation

In this next set-up we simulate both the factor model and factor-augmented model in Section 2 to

give both parameter and factor estimation in the out-of-sample estimation approach. The quarterly

factor-augmented regression model is a simplified version of Equation (3):

yt = β′0Ft + β′1Ft−1/3 + β′2Ft−2/3 + εt (16)

for quarters t = 1, 2, ..., T which has no additional regressors Wt. The monthly factor model has 3T

observations on the N × 1 vector of variables Xt which is exactly as in Equation (4). As above, the

variables Xjt are released at distinct times in the order j = 1, ..., N , yielding S = 3N nowcasts per

quarter. The set-up is interesting relative to existing simulations such as Gonçalves et al. (2017) which

do not allow for the ragged edge or consider multiple updates of factor estimates.

The nowcaster forms nowcasts on each data release through the three months of each quarter. The

factors are estimated by recursive PCA after solving the ragged edge using an AR(1) interpolation. The

estimated factors are then used in the second-stage where recursive OLS is used to estimate the nowcast

model, exactly as described in Section 2.2. We take a simple specification of the data generating

processes in Equations (16) and (4) where the idiosyncratic errors are uit ∼ i.i.d.N (0, σ2
u), there is a

single factor r = 1 which follows the AR(1) process Ft = ρFFt−1 + vt where vt ∼ i.i.d.N (0, 1 − ρ2
F )

so that the unconditional variance of the factors is fixed at unity. We let the factor loadings be the

non-stochastic vector Λ = 1N×1 and finally the factor-augmented model errors are εt ∼ i.i.d.N (0, σ2
ε).

In the results which follow, we do not present simulations under the null. As mentioned in Section
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2.2, a correct nowcast model specification in this set-up leads to a strictly declining MSFE profile as

the contamination to the factors due to the ragged edge interpolation vanishes throughout the period

as we add information from i = 1 to i = S. Thus, this downward-sloping MSFE is in the interior of

the null space (with E[∆Lt(.)] < 0 rather than the least favourable case where E[∆Lt(.)] = 0) and we

therefore expect the rejection rates to be close to zero under this specification. We confirmed this by

running results for the case where (β0, β1, β2) = (0.25, 0.25, 0.25) which are available from the authors

on request.

In order to simulate under the alternative, as above we assume the nowcaster repeatedly mis-

specifies the model for the true DGP in Equation (16). Again, they use a single-variable version of

the model which in this case uses only the factor dated in the current month:

yt = β̃′2Ft−2/3 + ε1t i ≤ N (17)

yt = β̃′1Ft−1/3 + ε2t N + 1 ≤ i ≤ 2N (18)

yt = β̃′0Ft + ε3t 2N + 1 ≤ i ≤ 3N (19)

Ignoring the effect of the ragged edge interpolation, the monthly MSFEm for m = 1, 2, 3 are equal

to MSFE1 = (β2
0 + β2

1)σ2
F + σ2

ε , MSFE2 = (β2
0 + β2

2)σ2
F + σ2

ε and MSFE3 = (β2
1 + β2

2)σ2
F + σ2

ε .

Therefore monotonicity is violated either when β2 > β1 or β1 > β0 (or both). We therefore consider

two different parameterisations for the alternative with differing magnitudes of non-monotonicity:

DGPF-A1: (β0, β1, β2) = (0, 0.5, 1.5)

DGPF-A2: (β0, β1, β2) = (0, 0.5, 3).

For the various DGP parameters and sample sizes, we let σ2
u = 1 and ρF = 0.5 in the factor model.

For the nowcast model errors we let σ2
ε = (β2

0 +β2
1 +β2

2) which fixes the signal-to-noise ratio in Equation

(16) to be 1:1. The same quarterly sample sizes T ∈ {200, 300} are used, noting that this gives monthly

sample sizes 3T ∈ {600, 900} for Xt. The same sample splits for R and P are maintained from the

previous section. For the number of variables in Xt, we consider N ∈ {10, 20}. This gives a large

number of S ∈ {30, 60} nowcasts per quarter, which in turn yields a maximum number of moment

inequalities of S(S − 1)/2 ∈ {435, 1770}. Since there may be the issue of highly correlated factor

estimates, as outlined in Equation (9) we will check the performance of the all-inequalities version of

the test with that of moment inequality spacings of kcS = 5 (further combinations are considered in

the Supplementary Material).
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We note that, although N = 10 is at the lower bound of the number of series used in empirical factor

nowcasting studies, this will allow us to explore the performance of the test under factor estimation

error. The simulations of Gonçalves et al. (2017) show that the size and power of their test do not

vary significantly with N , even if it is as low as 10. In our case we may expect more variation over N

because it implies large differences in the number of inequalities.

4.3 Results

Table 1 displays the one-sided rejection rates for the set-up without factor estimation error (DGPZ-N,

DGPZ-A1 and DGPZ-A2) for a nominal size of 5%. The results are displayed for the block choices

rP ∈ {0, 1, 2} and qP ∈ {4, 5} and for the all-inequalities and adjacent-only versions of the test. The

results show that the test has good size properties for the least favourable case under the null. For

the all-inequalities version of the test, rejection rates tend to be close to the nominal size of 5%, in

many cases between 4% and 6%. We see that the test becomes more conservative as the number of

inequalities increases, though this is of similar magnitude to the results of Zhang and Cheng (2014),

who consider a similar set-up.

In terms of the power, we also see that the test has good performance. For DGPZ-A1, for the

all-inequalities version on the left of Table 1 we see power above 90% everywhere for the T = 200

case, increasing to unity as T increases to T = 300. For DGPZ-A2 the power is slightly lower at

around 70% when P = 67 but this improves significantly with increases in the sample size. However,

we find some more worrying results when using the adjacent-only inequalities test similar to the ∆e

test of Patton and Timmermann (2012). Looking at the right hand side of Table 1, although the size

properties seem reasonable, we see that the power of this version of the test is substantially lower for

DGPZ-A2 which exhibits smoothly upwards-sloping violation of monotonicity.

In general, we conclude that the test works well in this set-up with a small number of non-factor

predictors. We also suggest that it is preferable to use the full set of moment inequalities (and not

only the adjacent ones), particularly as the results of Theorem 1 allow this to be large relative to the

sample size. We now turn our attention to the second case with factor predictors.

In the presence of factor estimates, the results in Table 2 show that the test retains good power

properties. The rejection rates are above 80% in all cases for both DGPF-A1 and DGPF-A2 where

the quarterly sample size is T = 200 and rise to unity when T = 300. In analysing the effect of

parameter and factor estimation error on the results, considering the case where T = 200 in the top

half of Table 2, we are interested in what happens as (R,P ) switches from (133, 67) to (67, 133). We
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see that the power of the test under DGPF-A1 and DGPF-A2 improves significantly as we move from

the (R,P ) = (133, 67) to the (R,P ) = (67, 133) case. This indicates that, although R is required to

be large relative to P for estimation error to be irrelevant asymptotically, in finite samples it appears

that increases in power come from the increase in the number of out-of-sample points, P , in spite of

larger estimation error.

Table 2 shows that the results do not change markedly when comparing the all-inequalities version

of the test to those with spacings kcS = 5. This indicates that this may not be a serious issue in

practical applications. In the Supplementary Material, we provide a wide range of further simulations

which explore this in more detail, including an alternative set-up where monotonicity is violated when

the nowcaster has a horizon-specific prediction bias.

5 Empirical Application

In this section we will present the results of our monotonicity test in nowcasting the United States

aggregate real GDP growth rate, and the growth rate of five GDP subcomponents. This builds on the

literature of nowcasting the individual components of GDP, studies of which are less common than the

large volume of empirical studies on nowcasting aggregate real GDP. Some examples include Baffigi

et al. (2004) who take a bottom-up approach to nowcasting aggregate GDP, and Antoĺın Dı́az et al.

(2017) who nowcast real consumption separately to aggregate GDP. We find this to be an important

exercise as nowcasting the GDP sub-components to some extent mimics the way that the Bureau

of Economic Analysis (BEA) constructs the first estimates of aggregate GDP, as mentioned in the

Working Paper for the Atlanta Fed’s GDPNow model, see Higgins (2014).

5.1 Description of Data and Nowcasting Method

The quarterly real GDP variable and its five sub-components (consumption, investment, government

expenditure, exports and imports) was accessed from the Haver Analytics database USECON. For

the monthly variables, we select a dataset of N = 62 predictors from the FRED-MD database, all

transformed to stationary using the transformations recommended by McCracken and Ng (2016). A

full description of these variables, along with information regarding their publication lag, can be found

in the Supplementary Material. The variables were selected to be similar to the “medium” case of

Bańbura and Modugno (2014) who show that factors estimated from the largest form of the Stock

and Watson-type dataset, like FRED-MD, tend to perform worse than smaller datasets in nowcasting

GDP as they contain too many price and financial series. Our database mostly contains data on
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production, surveys, employment, prices and housing series. This dataset is somewhat larger than

many existing factor model nowcasting studies for the U.S. such as Antoĺın Dı́az et al. (2017).

Regarding the timeliness of the data flow, the first release of the target GDP series occurs just

under a month after the end of the reference quarter, for example Q1 is released near the end of April.

The most timely monthly data is the consumer sentiment index which the only variable to be released

before the end of the observation month. This is shortly followed by the financial series which are

available without lag as they are aggregated from daily data. Employment data are also very timely,

whereas industrial production, housing and loans variables are released some weeks after the end of

the observation month.

This information is used to generate a calendar of releases which determines the sequence of

nowcasts we use to predict each quarter’s GDP growth. Starting from the first day of the quarter

and finishing around 118 days later when GDP is released, we consider every unique release of data.

This includes cases where data are released at different times in the same day, such is the case with

the retail sales and industrial production variables. Counting up the distinct releases in the 3 months

of the nowcast period and the 28 days of the backcast period before GDP is released gives a total of

S = 53 different nowcast updates per quarter.

We use data on all months and quarters between 1978Q2 and 2016Q1, which is the common

available sample for all variables. This gives a total of T = 152 quarterly observations and 3T = 456

monthly observations. We use the recursive out-of-sample method described in Section 2.2 with

different splits of R and P , namely (R,P ) ∈ {(101, 51), (87, 65), (76, 76), (65, 87), (51, 101)} which

correspond to ratios of P/R ∈ {1/2, 3/4, 1, 4/3, 2}.

At every prediction point t = R + 1, ..., T and at every nowcast point i = 1, ..., S, in the first step

we solve the ragged edge problem using a simple AR(1) interpolation as in Kim and Swanson (2017).

We then estimate the factors by PCA as in Equation (6). We estimate the number of factors r using

the ICp2 information criterion of Bai and Ng (2002) based on the first window of data for the case

P/R = 1 and fix this number throughout the out-of-sample experiment. This results in r = 4 factors

which is between the r = 8 factors found by McCracken and Ng (2016) on the full set of N = 134

FRED-MD variables, and r = 1 used in the small-scale factor model of Antoĺın Dı́az et al. (2017).

We make nowcasts using the quarterly regression model:

yt = µ+ ρyt−1 + β′0Ft + β′1Ft−1/3 + β′2Ft−2/3 + εt (20)

which is equivalent to Equation (3) with Wt = [1, yt−1]′, so the must-have regressors Wt are just a
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constant and a lag of yt. Since the lagged quarter of GDP is not available in the first 28 days of the

nowcast period, as with the monthly variables we solve the ragged edge by substituting yt−1 with the

prediction from an AR(1) model until the data point is released.

In generating the sets of moment inequalities for our test, we measure nowcast error losses using

MSFE. We first consider using the full set of all S(S− 1)/2 pairwise moment inequalities, which gives

a high-dimensional set-up with κ = 1378. As in the Monte Carlo section, we will compare our results

to the adjacent-only version of the test, similar to the ∆e test of Patton and Timmermann (2012), and

the version with inequality spacing of kcS = 5 (we checked the results for kcS ∈ {1, 2} which were very

similar and therefore omitted). We determine the block lengths using the optimal procedure outlined

in the Supplementary Material and generate B = 399 bootstrap draws.

We also ran other configurations to explore the robustness of the empirical results and assess how

the test performs. Firstly, the rolling estimation scheme is used in place of the recursive scheme. Next,

we consider a reduced dataset of N = 9, similar to the “small” case of Bańbura and Modugno (2014),

to observe any differences resulting from dataset composition. We also explore grouping data releases

together into days (not updating nowcasts within the day) and also in sets of 10 days, rather than

using each unique release timing. We next explore the sensitivity to the date span used by providing

results with a post-1984 sample, motivated by evidence such as Breitung and Eickmeier (2011) who

find a break in the factor loadings in around 1984, attributed to the ‘Great Moderation’. Finally, we

check the results when the asymmetric Linex loss function is used instead of squared error loss.

5.2 Results

The graphs in Figure 2 depict the evolution of MSFE for the aggregate real GDP growth variable and

the five GDP sub-components, for the scenario where (R,P ) = (76, 76). Upon graphical inspection

of the results, the top-left panel of Figure 2 shows that the nowcasts for aggregate real GDP growth

improve throughout the period, with the quarterly MSFE dropping from 0.35% to below 0.25% before

flattening in the backcast period.

For consumption, investment, exports and imports the MSFE profiles are also clearly downwards-

sloping. In some cases there are jumps such as for exports at i = 13 when the previous quarter’s

exports data is released, and for investment at i = 16 when a group of employment-related series

are released simultaneously. However in all of these series, including aggregate GDP, there are some

minor violations of monotonicity with small segments of rising MSFE. Our test is able to determine

whether or not these deviations from monotonicity are statistically significant or are merely features
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Figure 2: MSFE by Nowcast Horizon for the Sample with (R,P ) = (76, 76)
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and forecasting model.

caused by small-sample heterogeneity in the data.

The most striking feature is that of the government spending component, where MSFE is increasing

throughout most of the prediction period, from 0.5% to more than 0.65%. Since this increase seems

to be sizeable, we expect our test to reject the null hypothesis of monotonicity.

We now turn to the results of our test, which can formally detect whether these MSFE profiles are

monotonically declining rather than simply relying only on the graphical evidence in Figure 2. The

results are displayed in Table 3, where the first two sets of columns use our test with the full set of

inequalities and then with spacing kcS = 5. The last set of columns uses the adjacent-only comparisons

as in the ∆e test of Patton and Timmermann (2012).

The first thing to note is that the results of our test appear to be very stable, both across the

various (R,P ) combinations and also as we move from the full set of moment inequalities to the spacing

kcS = 5. For the headline aggregate GDP series, the test finds no evidence of non-monotonicity with

p-values around 0.7 in these versions of the test. This finding mirrors the result of Bańbura et al.

(2013), though using a different method for estimating the factors for the nowcasting model, and

over a different in-sample and out-of-sample period. This suggests that factor-based methods are
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able to generate monotonically improving nowcasts of U.S. real GDP growth irrespective of the factor

estimation method or data span. The results for consumption, investment, imports and exports are

very similar to the result for aggregate GDP, with large p-values as expected.

In the case of government spending the first two versions of the test find significant evidence of

non-monotonicity with many rejections at the 5% level, with the exception of the smallest sample size

with P = 51. This finding shows that our test is able to reject in scenarios where there are clear

violations of monotonicity. It is interesting to note that the adjacent-only version of the test, however,

does not reject the null at the 5% significance level in any configuration. This aligns with the results

of the Monte Carlo simulations where very low power was detected for upward-sloping MSFE profiles.

Finally, we also find that our results are robust when switching to the rolling estimation scheme and

when reducing the dataset to N = 9. These results, all of which can be found in the Supplementary

Material, show even stronger rejection of the null in the government spending component with many

at the 1% significance level. The adjacent-only version of the test still fails to reject the null across

almost every configuration. The findings are also very similar when we only make S = 12 nowcasts

per quarter by updating the nowcasts every 10 days, even though the maximum number of moment

inequalities drops to κ = 66. The idea of using the post-1984 sample motivated by possible structural

breaks in the factor loadings also has very minimal bearing on the results. Lastly, even when the

nowcaster has asymmetric Linex loss with aversion to negative prediction errors, they come to the

same conclusion regarding nowcast monotonicity.

6 Conclusion

This paper proposes a test to formally assess the performance of ‘big data’ nowcasting methods.

In particular, we focus on models involving estimated factors which have become a leading case in

the high-dimensional empirical nowcasting literature, though the test can readily deal with small-

dimensional set-ups like bridge equations and MIDAS models. The test uses moment inequalities

to evaluate the monotonicity of metrics for nowcast accuracy such as MSFE. Our method differs

from previous forecast accuracy tests not only in being able to accommodate this high-dimensional

nowcasting setting, but also because our interest is in evaluating the nowcasts of a single method at

various points in a quarter, rather than comparing two or more models at a single fixed point.

The main contribution of this paper is in extending the methodology of Chernozhukov et al. (2014)

for testing many moment inequalities to the case of nowcast monotonicity testing, which allows the

number of inequalities to grow with the sample size. We also show that their moment selection pro-
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cedure to rule out non-binding inequalities remains applicable in our context. We then provide the

conditions under which both parameter estimation error and factor estimation error are asymptot-

ically negligible in this high dimensional setting when using the pseudo out-of-sample approach of

West (1996). We derive conditions required for using factor-augmented models of Stock and Watson

(2002a,b) and Bai and Ng (2006) in this nowcast monotonicity test, with the factors estimated by

Principal Components Analysis (PCA), after solving the issue of the ‘ragged edge’.

We illustrate the finite sample performance of our test through Monte Carlo simulations, and

provide an in-depth empirical application to nowcasting the growth rate of U.S. aggregate real GDP,

and the growth rate of five GDP subcomponents. Our test confirms that there is no statistical

evidence of non-monotonicity in the MSFE of aggregate GDP growth as more information is added

throughout the nowcast period. However, the test does pick up violations of monotonicity in the

government spending component of GDP. This result suggests that the factor-augmented model may

be misspecified for nowcasting government spending, and that alternative models should be considered.
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Antoĺın Dı́az, J., T. Drechsel, and I. Petrella (2017). Tracking the Slowdown in Long-Run GDP
Growth. The Review of Economics and Statistics 99 (2), 343–356.

Baffigi, A., R. Golinelli, and G. Parigi (2004). Bridge Models to Forecast the Euro Area GDP.
International Journal of Forecasting 20 (3), 447–460.

Bai, J. and S. Ng (2002). Determining the Number of Factors in Approximate Factor Models. Econo-
metrica 70 (1), 191–221.

Bai, J. and S. Ng (2006). Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-
Augmented Regressions. Econometrica 74 (4), 1133–1150.
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Gonçalves, S., M. W. McCracken, and B. Perron (2017). Tests of Equal Accuracy for Nested Models
with Estimated Factors. Journal of Econometrics 198 (2), 231–252.

Hall, P., J. Horowitz, and B. Jing (1995). On Blocking Rules For the Bootstrap with Dependent Data.
Biometrika 82, 561–574.

Hansen, P. R. (2005). A Test for Superior Predictive Ability. Journal of Business & Economic
Statistics 23 (4), 365–380.

Higgins, P. C. (2014). GDPNow: A Model for GDP ‘Nowcasting’. FRB Atlanta Working Paper
2014-7 .

Kim, H. H. and N. R. Swanson (2017). Methods for Backcasting, Nowcasting and Forecasting Using
Factor-MIDAS: With An Application To Korean GDP. Journal of Forecasting (forthcoming).

Knotek, E. S. and S. Zaman (2017). Nowcasting US Headline and Core Inflation. Journal of Money,
Credit and Banking 49 (5), 931–968.

31

Electronic copy available at: https://ssrn.com/abstract=2815794



Luciani, M. and L. Ricci (2014). Nowcasting Norway. International Journal of Central Banking 10 (4),
215–248.

Marcellino, M., M. Porqueddu, and F. Venditti (2016). Short-Term GDP Forecasting With a Mixed-
Frequency Dynamic Factor Model With Stochastic Volatility. Journal of Business & Economic
Statistics 34 (1), 118–127.

McCracken, M. and S. Ng (2016). FRED-MD: A Monthly Database for Macroeconomic Research.
Journal of Business & Economic Statistics Economic Statisics 34 (4), 574—-589.

McCracken, M. W. (2000). Robust Out-of-sample Inference. Journal of Econometrics 99 (2), 195–223.

Patton, A. J. and A. Timmermann (2012). Forecast Rationality Tests Based on Multi-horizon Bounds.
Journal of Business & Economic Statistics 30 (1), 1–17.

Schumacher, C. (2016). A Comparison of MIDAS and Bridge Equations. International Journal of
Forecasting 32 (2), 257–270.

Stock, J. H. and M. W. Watson (2002a). Forecasting Using Principal Components from a Large
Number of Predictors. Journal of the American Statistical Association 97 (460), 1167–1179.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic Forecasting Using Diffusion Indexes. Journal
of Business and Economic Statistics 20 (2), 147–162.

West, K. D. (1996). Asymptotic Inference about Predictive Ability. Econometrica 64 (5), 1067–1084.

White, H. (2000). A Reality Check for Data Snooping. Econometrica 68 (5), 1097–1126.

Zhang, X. and G. Cheng (2014). Bootstrapping High Dimensional Time Series. Working paper,
University of Missouri-Columbia.

32

Electronic copy available at: https://ssrn.com/abstract=2815794


	Introduction
	Set-up
	Testing Nowcast Monotonicity
	Nowcasting with Factor-Augmented Models 

	Test Statistic and Critical Values
	Test Statistic
	Critical Values
	Critical Values with Moment Inequality Selection

	Monte Carlo
	Set-up 1: Parameter Estimation Only
	Set-up 2: Parameter and Factor Estimation
	Results

	Empirical Application
	Description of Data and Nowcasting Method
	Results

	Conclusion

