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Abstract

This paper looks at the short-to-medium run impact of economic activity on CO2 emissions in

the United States, shifting the existing focus away from the long-run Environmental Kuznets

Curve (EKC). Our novel methodological approach combines discrete wavelet transforms with

dynamic factor models. This allows us to (i) estimate economic and emissions cycles at different

frequencies, and (ii) let economic activity be estimated from many different economic variables,

rather than focussing on a small number as in existing studies. From our results, one might

at first conclude that emissions are not linked to economic activity in the short-run. However,

when looking at the cycles uncovered at timescales of length one to three years, we see that

there are indeed strong linkages. Policymakers therefore cannot be exclusively long-termist when

evaluating the impact of economic policy on the environment.
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1 Introduction

Are emissions only related to economic activity in the long run, or does interaction also take place

in the the short-to-medium run? There has been extensive research into the existence of a long run

relationship between emissions and economic variables and its shape; the so-called “Environmental

Kuznets Curve” (EKC). The exclusive focus of the literature on the long run rather than the short-

to-medium run, however, may not be entirely justified. With economic and environmental policy

becoming more balanced in their importance to politicians and policymakers, it makes sense to

study the emissions-economy linkage in phases shorter than electoral cycles. This is particularly

relevant in the United States where topics like climate change can have a notable presence in

presidential campaigns. Furthermore, the global rise in policy instruments such as emissions trading

schemes use economic incentives to control emissions over short time spans. In the U.S. this has

been seen through policies such as the Regional Greenhouse Gas Initiative. This paper therefore

shifts the focus away from the EKC-type literature to re-focus attention on the short-to-medium

run interplay between the economy and the environment.

In order to tackle this issue, we propose a novel methodological approach which combines

the use of dynamic factor models with maximum overlap discrete wavelet transforms (MODWT)

in analysing the growth rates of CO2 emissions and a large dataset of economic variables. The

MODWT allows us to decompose a time series into several ‘timescales’ which represent changes

taking place over different cycle frequencies ranging from low to high, in other words in shorter

phases than the ‘long run’. Discrete wavelet transforms and related timescale decompositions

have only recently been adopted in financial economics by studies looking at asset returns and

macroeconomic variables and uncertainty, for example Ortu et al. (2013), Gencay and Signori

(2015) and Xyngis (2017).

Dynamic factor models, on the other hand, have become widely used in modelling large macroe-

conomic datasets (recent examples include McCracken and Ng, 2016; Antolin Diaz et al., 2017;

Fosten and Gutknecht, 2019; see Stock and Watson, 2016, for a survey). This approach estimates

the factors which are common to a large number of series and can be implemented using Principal

Components Analysis as suggested by Stock and Watson (2002a,b), Bai and Ng (2002) and Bai

(2003). To the best of our knowledge, neither of these methodologies alone has been applied to the
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issue of the emissions-environment nexus, and the combination of the two methods is something

which is of separate interest in itself. Our approach brings about several improvements in this

literature.

The first main advantage of our approach is that the use of the “big data” factor model method-

ology allows us to analyse how a large number of different proxies for economic activity affect the

environment. This is a substantial improvement over existing EKC studies which use standard

regression techniques relying on the choice of a small selection of economic indicators.1 The benefit

of our paper is that we can first estimate the latent economic drivers which underpin several series

like production, employment, consumer sentiment and so on, and see how these relate to emissions.

The majority of previous studies only use a single series related to output such as GDP, see Al-

Mulali et al. (2015) for an extensive survey. Other proxies have also been considered for economic

activity: fuel prices (Balaguer and Cantavella, 2016), foreign direct investment (Lau et al., 2014),

trade (Jebli et al., 2016) and transport (Pablo-Romero et al., 2017). The only paper to address this

multiplicity of predictors is Auffhammer and Steinhauser (2012) who use data-snooping methods to

select from a massive universe of different EKC specifications. The approach we take in our study

will remove any reliance of the results on the choice of a particular variable to proxy economic

activity.

The second advantage of our study is the use of the MODWT. In conjunction with the use of

monthly data on the growth rates of CO2 emissions and macroeconomic variables, this allows us

to uncover short-to-medium run relationships.2 We can therefore assess whether there are cycles

in CO2 emissions over frequencies ranging from one month to several years, and whether these

link to economic cycles. This contrasts to a large proportion of existing EKC-type studies dating

all the way back to the seminal works of Selden and Song (1994), Grossman and Krueger (1995)

and Holtz-Eakin and Selden (1995), which use annual data on emissions across different countries.

While these studies are important from the perspective of how economic development affects the

1This is particularly relevant in the case of time series studies using cointegration techniques, as these methods
usually require the number of variables in the cointegrating vector to be small.

2The reason we focus on CO2 in this paper is because its availability at the monthly frequency allows us to answer
the research question regarding short-to-medium frequency cycles. For example, data on SO2 emissions are only
available at an annual level from the U.S. Energy Information Administration. This would not yield a sufficient
sample to perform our analysis, nor would it allow us to make conclusions about the linkages between emissions and
economic activity at frequencies as high as one month.
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environment, they are not able to uncover short-to-medium run features in this relationship.3

In our preliminary results, we present the estimates of economic and emissions cycles over

different timescales. We check the external validity of our methodology by examining the correlation

between our decompositions of economic activity with widely-used business cycle-type measures for

the U.S. Our measures display high correlation with several indices such as the Federal Reserve

Economic Data (FRED) Leading Index, when the timescale is greater than one or two years. Since

there are no widely-used indices of emissions cycles to the best of our knowledge, our timescale

decompositions of CO2 emissions are of standalone interest.

Our main results look at the relationship between the economic and emissions cycle variables

and uncover several important findings. For total CO2 emissions derived from energy consump-

tion,4 a simple baseline specification detects no short-run linkage between emissions and economic

activity at the highest frequency of one month. This is because any short-to-medium term trends

are masked at the noisy monthly frequency; a sentiment discussed in Bandi et al. (2019). On this

evidence alone, we might be tempted to conclude that emissions are not linked to economic activity

over short phases. However, when we increase the timescales to medium-run cycles of around one

to three years, we find that a relationship indeed does exist. This indicates that the trends which

are uncovered by filtering at a lower frequency than one month do show a significant impact of eco-

nomic conditions on emissions, and so the conclusions change when using an appropriate timescale

decomposition. We also find that very similar results hold for three disaggregated components

of energy CO2 emissions, namely: coal, natural gas and petroleum. However, when looking at

further disaggregation, we find that many small components such as CO2 emissions from kerosene

consumption are not linked to economic activity in any significant way at any timescale.

We conduct a variety of detailed additional checks to determine the robustness of our results.

Firstly, we check for polynomial nonlinearity in our baseline specification, motivated by (but not

derived from) the idea of the EKC in levels. The use of nonlinear functions of the principal

components has been explored in predicting macroeconomic variables by Bai and Ng (2008, 2009)

However, our main findings do not alter qualitatively when adding in these additional nonlinear

3A small number of EKC-type studies have used monthly time series, such as Burnett et al. (2013). Even higher
frequency CO2 data have been observed in very localised areas in studies such as Hood et al. (1999).

4As discussed in the Data section, while some studies have identified issues with using emissions derived from
energy consumption, such as simultaneity bias in regressions involving energy variables on the right-hand side, in our
study we do not have this issue and are justified in using these series which are available at the monthly frequency.
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terms. We also find our results to be relatively robust to changes in sample split, and to the choice

of wavelet filter used in performing the MODWT.

The remainder of this paper is organized as follows. Section 2 introduces the new methodology.

Section 3 describes the data source, and gives details and charts of the variables used. Section 4

provides the results of the baseline version of the methodology. Section 5 runs sets of additional

robustness checks. Finally, Section 6 concludes the paper.

2 Methodology

We wish to explore the short-to-medium run dynamics between emissions, Et, and an N × 1 vector

of economic variables, Xt, both of which are taken to be non-stationary unit root processes in

levels. For the growth rates of these variables, we define the lower case et = ln(Et) − ln(Et−1) to

be emissions growth, and xt = ln(Xt) − ln(Xt−1) as the growth of the economic series.5 We have

a total of T monthly observations on the variables et and xt.

We assume that the economic variables exhibit a factor structure as in Stock and Watson

(2002a,b), and can be well-explained by a low-dimensional set of r common factors, ft, as follows:

xt = Λf t + ut (1)

for t = 1, ..., T , where Λ is an N × r matrix of factor loadings and ut is an N × 1 vector of

idiosyncratic disturbances. In principle, the number of economic predictors, N , is allowed to be

large relative to the sample size. Since both Λ and ft are unknown, Stock and Watson (2002a,b)

suggest to estimate them by Principal Components Analysis (PCA) by minimising the sum of

squared residuals in Equation (1). The factor estimates, denoted f̂t, are extracted by setting the

T × r matrix f̂ as the r eigenvectors corresponding to the r largest eigenvalues of the T ×T matrix

xx′/NT , where x is the T ×N matrix collecting all observations xt.
6

Having estimated the economic factors, the emissions-economy relationship is explored through-

5A full description of the economic series we consider is given in the Data section.
6The variables in xt are standardised to have mean 0 and variance 1.
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out this paper based on the short-run regression model:

et = α+ β′f̂ t + vt (2)

for t = 1, ..., T . This is known as the “factor-augmented model” as in Stock and Watson (2002a,b)

and Bai and Ng (2006), in the sense that the factors are first estimated and then plugged in to a

second-stage model with emissions, et, as the dependent variable. We start out with this simple

specification, but we will expand the set of regressors included Equation (2) in subsequent robust-

ness checks. To the best of our knowledge this is the first paper to use factor-augmented approaches

in modelling emissions. The intuition is that the factors capture the bulk of co-movements in the

economy, which are used to explain CO2 emissions; something which reduces the reliance of ex-

isting studies on the selection of particular economic variables to capture the emissions-economy

relationship.

While Equation (2) gives the short-run relationship bewteen emissions and the economy, the

primary interest of this paper is to determine the nature of this relationship as we move towards

the medium-run by decomposing the series to different timescale components. The aim is to have a

multiresolution analysis (MRA) of the T×1 time series e and the T×r matrix f̂ , which decomposes

the original monthly series into J different time scales plus a ‘smooth’ term. The intuition behind

this decomposition is that the first J series represent the changes in the original time series taking

place over lower and lower frequencies, and the smooth term picks up the long term movement.

This is done in such a way that the J + 1 components sum up to the original time series as follows:

e =
J∑

j=1

e(j) + S(J)
e (3)

and

f̂ =

J∑
j=1

f̂ (j) + S
(J)

f̂
(4)

where the terms e(j) and f̂ (j) are known as the jth level details for j = 1, ..., J whereas S
(J)
e and

S
(J)

f̂
are the Jth level smooths. At this stage we would additionally note that MRA of factors which

have been estimated along the lines of Stock and Watson (2002a,b) is something which we have
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not seen in the literature and therefore is of separate econometric interest to applied researchers.7

Each of the components of the MRA is obtained using the MODWT. For a very detailed

description of this procedure, the reader is referred to Percival and Walden (2000) and Gencay

and Signori (2015) but we provide a brief description here. The MODWT of e is a set of J + 1

time series [W
(1)
e , ...,W

(J)
e ,V

(J)
e ]. The time series W

(j)
e gives the MODWT wavelet coefficients for

changes which take place on a scale 2j−1 (so with monthly data, for j = 3, this denotes changes

which take place over 22 = 4 months and so on). V
(J)
e contains the MODWT scaling coefficients

for changes taking place on a scale J . These are respectively calculated from the original series as

W
(j)
e = W(j)

e e and V
(J)
e = V(J)e e where W(j)

e and V(J)e are T × T matrices. The calculation of the

MODWT wavelet and scaling coefficients require us to specify wavelet and scaling filters, which are

in turn used to calculate W
(j)
e , V

(J)
e , W(j)

e and V(J)e by filtering the original series, e. The simplest

and most commonly applied filter is the Haar filter, though the Daubechies family of filters is also

often used. Our analysis will mostly be based on the Haar filter but we will check the robustness

of our results to this choice.

To complete the description, the components of the MRA from Equations (3) and (4) can be

computed from the MODWT. The jth level detail for e is defined as e(j) =W(j)′W
(j)
e where W

(j)
e

and the Jth level smooth is S
(J)
e = V(J)′V(J)

e .

Using this, we can now describe the finalized timescale-specific baseline regression model which

will form the foundation of the analysis in the remainder of this paper. Based on the factor-

augmented model in Equation (2), we make the following adjustment to relate emissions to the the

economy at each separate timescale:

e
(j)
t = α(j) + β(j)′f̂

(j)
t + v

(j)
t for j = 1, ..., J (5)

The intuition behind using this equation is that it may help us to uncover relationships which

exist between emissions and the economy at different timescales, which may not be present when

analysing the relationship between the original monthly growth rate series. In the field of financial

economics, several recent papers such as Ortu et al. (2013), Xyngis (2017), Kang et al. (2017)

7The paper by Rua (2011) does look at applying wavelet decompositions to factor models, but their approach first
decomposes the original xt series before estimating the factors. We do not use this approach here as the statistical
properties of such a procedure have not yet been researched. On the other hand, the statistical properties of f̂t are
already well known and so the MRA can be directly applied.

7



and Bandi et al. (2019) have established that asset returns relate to macroeconomic variables and

uncertainty only at lower frequencies and not at high frequencies.

3 Data

The carbon emissions data we use are taken from the U.S. Energy Information Administration

(EIA) Monthly Energy Review, which contains monthly carbon dioxide emissions from energy

consumption.8 We consider different possible dependent variables for the emissions variable e
(j)
t

in Equation (5). These series, listed in Table 1, contain monthly observations from January 1973

to December 2018 and include the CO2 emissions by source, broken down by the consumption

of coal, natural gas and petroleum. The emissions from consumption of petroleum are further

broken down into 10 subcomponents. CO2 emissions derived from energy consumption are used

by many previous empirical studies (see Soytas et al., 2007, Soytas and Sari, 2009 and Halicioglu,

2009 for some recent examples). These data are particularly useful in the current paper as they

are available at the monthly level which allows us to look at the short-to-medium run behaviour of

emissions. One potential drawback of using emissions from energy consumption, noted by Burnett

et al. (2013), is if the principal interest is in determining the relationship between emissions and

energy use, which can suffer from simultaneity issues. This is not the purpose of our paper, and so

these series are appropriate for our analysis.

Figure 1 displays the time series for total energy CO2 emissions (CO2-TOT) over the full sample

period. Total emissions in levels are non-stationary as discussed in the literature and will be used in

growth rates by log-differencing for the analysis as mentioned in the previous section.9 While there

is generally an upwards trend in total energy CO2 emissions throughout the 1980s and 1990s, from

the end of the 2000s emissions begin to decline. This can be explained by plotting the individual

components, where Figure 2 below reveals that petroleum-based emissions (CO2-PET) account for

the largest proportion of the total energy CO2 emissions and Figure 5 displayed in the Appendix

shows that these emissions experienced a sharp drop in the late 2000s. This has become known as

the “U.S. Petroleum Consumption Surprise” and has various explanations, mostly attributed to a

8Available at: https://www.eia.gov/totalenergy/data/monthly/ [Last accessed: 03/04/19].
9The non-stationarity of emissions was confirmed by running tests including the standard Augmented Dickey-

Fuller unit root test and the Zivot and Andrews (1992) test which allows for a structural break. The test results are
not presented here and are available from the author on request.
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Table 1: CO2 Emissions and Economic Variable Descriptions and Short Codes

Code CO2 Emissions from Energy Consumption

CO2-COAL Coal, Including Coal Coke Net Imports
CO2-GAS Natural Gas, Excluding Supplemental Gaseous Fuels
CO2-AVI Aviation Gasoline
CO2-DIST Distillate Fuel Oil, Excluding Biodiesel
CO2-HCL Hydrocarbon Gas Liquids
CO2-JET Jet Fuel
CO2-KER Kerosene
CO2-LUB Lubricants
CO2-MOT Motor Gasoline, Excluding Ethanol
CO2-PETC Petroleum Coke
CO2-RES Residual Fuel Oil
CO2-OTH Other Petroleum Products
CO2-PET Petroleum, Excluding Biofuels
CO2-TOT Total Energy CO2 Emissions

Code Economic Variables

IP Industrial Production Index (INDPRO)
RS Capacity Utilization: Manufacturing (CUMFNS)
AUTO Motor Vehicle Retail Sales (DAUTOSAAR)
UNEM Civilian Unemployment Rate (UNRATE)
BP Building Permits (PERMIT)
HS Housing Starts (HOUST)
EMP Employment (PAYEMS)
CSI Uni. Michigan: Consumer Sentiment (UMCSENT)
PPI Producer Price Index (WPSFD49207)
CPI Consumer Price Index (CPALTT01USM661S)

Notes: The codes in parentheses for the economic variables are the
FRED Economic Data identifier codes.

drop in vehicle miles travelled in the transportation sector.10 Emissions due to coal consumption

have fallen to below their 1980s level.

The emissions series displayed here have been seasonally adjusted using the X-13 ARIMA adjust-

ment of the U.S Census Bureau.11 It is important to note that, although the wavelet methodology

we employ is capable of filtering out seasonal patterns, we must seasonally adjust CO2 emissions

first because many of the economic variables we consider are not available in non-seasonally ad-

justed form. We therefore avoid looking for relationships between variables with differing seasonal

patterns.

10For example, see the report “Explaining the U.S. Petroleum Consumption Surprise” by the Executive Office
of the President. https://www.weforum.org/agenda/2015/07/the-surprising-decline-in-us-petroleum-consumption/
[Last accessed: 13/01/17]

11This is performed in the statistical computing software R, as are all of the main results in this paper.
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Figure 1: Total CO2 Emissions 1978-2018 (seasonally adjusted using X13-ARIMA)
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Figure 2: CO2 Emissions by Source, Total from 1978-2018
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Notes: The height of the bars represents the sum of (seasonally-adjusted) emissions of
each component over monthly time periods from April 1978 to December 2018. Note that
CO2-TOT (black) is the sum of CO2-COAL, CO2-GAS and CO2-PET (dark grey), whereas
CO2-PET is the sum of all other components (lighter grey).

The set of N = 10 economic variables we use are chosen to match existing studies which employ

small-scale factor models, such as Banbura et al. (2013), Bańbura and Modugno (2014) and Antolin

Diaz et al. (2017). These variables are also listed in Table 1, and are mostly real series related
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to production, construction, employment and consumer sentiment. All data are readily available

from the St. Louis Federal Reserve Economic Data (FRED).12 While we do not envisage a “story”

linking each of these variables separately with emissions, we include these variables as they are often

used to estimate the factors underpinning economic activity. These data are also at the monthly

frequency, and the common data span of all of the variables is from April 1978 to December 2018.

We therefore use this sample of T = 489 observations as the common sample with CO2 emissions

in all of our analysis. As with emissions, since all of these variables are I(1) unit root processes,

we transform them to stationarity by log-differencing to give the monthly growth rate.

While our factor-based methods are capable of dealing with much larger datasets than this,

for example the Stock and Watson dataset which contains over a hundred series, studies such as

Antolin Diaz et al. (2017) find that the series in Table 1 pick up the bulk of movements in the real

economy with only a single factor. We therefore do not explore adding in the remaining Stock and

Watson variables and set r = 1 in this small-scale dataset.

4 Results

We first derive the MRA decompositions from Equations (3) and (4) for the CO2 emissions series

and the single estimated factor. The decompositions are taken for a maximum of J = 6 scales,

which corresponds to changes which occur over a period of 32 months; in other words just under 3

years. Figures 3 and 4 display the MRA for total energy CO2 emissions and the factor respectively

(the MRA for the coal, gas and petroleum series and further disaggregates can be found in an

Online Appendix). These decompositions are based on the MODWT using the Haar filter.

From these figures it is clear that movements in both emissions and economic factors are some-

what noisy when looking at the shortest timescale, j = 1. It is only when we look at scales from

around j = 4, which depict changes over timescales of 8 months or more, do we start to observe

cyclical behaviour in the two series. This can be seen in the decomposition of the economic factor

in Figure 4, where the economic crisis of 2007-08 becomes more visually apparent at the lower

frequencies. As a further note, since the wavelet decomposition is linked to cumulation of the

higher-frequency growth rates, it is evident that there is therefore much higher persistence in the

12Available at: https://fred.stlouisfed.org/ [Last accessed: 29/03/19].

11



Figure 3: MRA for Total Energy CO2 Emissions, with Autocorrelation Plots
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Notes: The MRA is based on the MODWT using the Haar wavelet filter.

series toward the j = 6 scale, as can be seen from the autocorrelation plots. However, in spite of

the increased persistence the resulting series are still stationary.

It is difficult to provide a measure of external validity for the constructed series for CO2 emis-

sions in Figure 3 as we are not aware of any similar indices which aim to measure emissions cycles.

However, there are several widely-used economic activity indices for the U.S. which we could use to
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Figure 4: MRA for the Single Factor, with Autocorrelation Plots
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compare with the different timescale decompositions in Figure 4. Table 2 shows the correlation of

each of the timescales of the estimated factor displayed in Figure 4 with four different economic ac-

tivity indicators. These activity indicators are: the FRED Leading Index, the Philadephia (Philly)

Federal Reserve General Activity Index, and two versions of the Chicago Fed National Activity

Index (NAI).
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Table 2: Correlation of Estimated Factor at Different Timescales with Economic Activity Indices

Factor Estimate by Scale (j)

f̂ (1) f̂ (2) f̂ (3) f̂ (4) f̂ (5) f̂ (6)

FRED Leading Index 0.048 0.104 0.328 0.532 0.673 0.732
Philly Fed General Activity Index 0.040 0.084 0.354 0.522 0.645 0.577
Chicago Fed National Activity Index 0.445 0.396 0.500 0.632 0.700 0.618
Chicago Fed National Activity Index MA3 0.091 0.129 0.437 0.672 0.787 0.705

The results in Table 2 show that at a frequency from j = 1 (one month) to j = 3 (four months),

the decomposed factor estimate has a low correlation with these measures of business cycle economic

activity, with the exception of the original version of the Chicago Fed NAI. This is perhaps to be

expected as the Chicago Fed themselves note that the original NAI is a noisy measure of cycles

and that their MA3 version, which takes a 3-period moving average of the NAI, “tracks economic

expansions and contractions” better than the original index.13 We see that the highest correlation

of the factors with the different economic activity indices occurs at either j = 5 or j = 6, which

corresponds to timescale decompositions with frequencies between two and three years.

To assess the relationship between cycles of economic activity and emissions, Table 3 displays the

results of the baseline linear regression model specified in Equation (5) across timescales j = 1, ..., 6

for total energy emissions and its three main components (coal, gas and petroleum). This version

of the equation does not include any additional regressors, which will be included later on in the

paper. The regression results for the smaller subcomponents of CO2 emissions from petroleum can

be found in the Online Appendix.

The results for total energy CO2 emissions, at the bottom of Table 3, reveal some rather

interesting findings. For the first three scales, j = 1, ..., 3, we see no evidence of a meaningful

relationship between emissions and the factor, with R2 lower than 2% in each case. This indicates

that the noise inherent of these series at the first timescales induces the conclusion that short-run

economic and emissions cycles are not linked in a significant way. A similarly low R2 has also been

detected at the first timescales in the finance studies cited above (Xyngis, 2017; Bandi et al., 2019).

However, the R2 is far larger when the series are decomposed to the lower frequencies j = 4, 5, 6

denoting cycles of length between one and three years. Predictive power peaks at j = 5 where more

13See the Background Information to the NAI: https://www.chicagofed.org/∼/media/publications/cfnai
/background/cfnai-background-pdf.pdf [Last accessed: 01/11/17]
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Table 3: Regression Results by Timescale - Baseline Specification

Scale

1 2 3 4 5 6

β(j) 0.300 0.242 0.572 1.216 1.017 0.582
CO2-COAL t-Stat [0.553] [0.438] [1.666] [3.332] [3.413] [0.845]

R2 0.001 0.001 0.014 0.182 0.321 0.280

β(j) -1.053 0.698 0.218 0.351 0.580 0.221
CO2-GAS t-Stat [-0.884] [0.922] [0.339] [0.855] [2.664] [0.967]

R2 0.007 0.003 0.001 0.014 0.264 0.165

β(j) 0.117 -0.554 0.451 0.301 0.408 0.472
CO2-PET t-Stat [0.251] [-1.580] [1.328] [1.121] [3.367] [2.365]

R2 0.000 0.011 0.029 0.065 0.362 0.439

β(j) -0.134 -0.004 0.407 0.608 0.629 0.443
CO2-TOT t-Stat [-0.286] [-0.010] [1.130] [2.966] [5.998] [1.537]

R2 0.000 0.000 0.016 0.179 0.525 0.690

Notes: This table presents the Ordinary Least Squares (OLS) estimate of the
slope coefficient from Equation (5) for each timescale, along with corresponding
t-statistic and coefficient of determination (R2). The t-statistics are calculated
using Newey-West HAC robust standard errors with a lag length truncation of
2j − 1.

than 50% of the variation in e
(5)
t is explained by the factor f̂

(5)
t , which is highly significant according

to the t-statistic calculated using the Newey and West (1987) HAC robust standard errors. Overall

this indicates that a meaningful relationship between CO2 emissions can be uncovered when the

one-to-three year medium-run trends are extracted using an appropriate timescale decomposition.

This finding in the context of the emissions-economy relationship is related to the idea of Bandi

et al. (2019) who state that “hard-to-detect predictability over short horizons is generally viewed as

the result of a low signal-to-noise problem... The aggregation [...] over longer horizons, however,

operates as a signal extraction process uncovering predictability.” (p.120).

The results for the subcomponents of energy CO2 emissions for coal, gas and petroleum yield

similar insights to that of total CO2 energy emissions. In all cases, predictive power of the estimated

economic factor is at its highest for timescale j = 5 which neatly aligns with the finding for total

CO2 emissions, although the 4th-scale β coefficient has similar statistical significance to the 5th in

the case of coal CO2 emissions.

When digging down into the further disaggregated components, the table in the Online Ap-

pendix shows that, while this result is similar in some of the components, for emissions from
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kerosene, hydrocarbon gas liquids, motor gasoline, coke, residual fuel oil and other petroleum prod-

ucts, there is no statistically significant relationship with economic activity at any timescale. In

the smaller noisy components like kerosene, it makes sense that economic variables do not predict

emissions growth, whereas for motor gasoline emissions the story is perhaps more one of inelasticity

of car travel with respect to economic conditions.14

5 Robustness Checks

5.1 Nonlinearity

The linearity of factor-augmented models has been relaxed in a number of papers, most notably

Ludvigson and Ng (2007), Bai and Ng (2008) and Bai and Ng (2009). They suggest various

approaches to incorporate nonlinearity which can potentially improve predictions of the target

variable if we believe they are related in some way to the volatility of the predictors. In the context

of emissions, it may be plausible to think that the volatility of economic activity is related to energy

CO2 emissions if regularly speeding up and slowing down industrial production (or other aggregate

economic activity) is more energy intensive than a stable industrial production schedule.

The simplest specification considered in the aforementioned papers is to augment Equation (2)

with further polynomial terms in the estimated factors. Here we extend the ideas of Bai and Ng

(2008, 2009) to our scale-dependent context of Equation (5) by writing an expanded model as:

e
(j)
t = α(j) + β

(j)′
1 f̂

(j)
t + β

(j)′
2 (f̂

(j)
t )2 + β

(j)′
3 (f̂

(j)
t )3 + v

(j)
t for j = 1, ..., J (6)

While this looks like an Environmental Kuznets Curve, because we have directly specified this

equation in the polynomials of factors estimated on growth rates, we do not make any claim that

this is linked to the long-run Kuznets Curve in levels. Note that the assumption of a Kuznets curve

in levels of emissions uses polynomials of I(1) variables which may not themselves be I(1). Here

we simply take the stationary I(0) emissions growth and estimated factor and form quadratic and

cubic terms which are still stationary, thereby avoiding the issue of mixing the orders of integration.

Table 4 presents the regression results for the same series as in Table 3. We can see that

14The majority of past studies estimate U.S. price elasticties of automobile demand to be close to zero, see Dong
et al. (2012) for a survey of several findings.
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Table 4: Regression Results by Timescale - Nonlinear Specification

Scale (j)

1 2 3 4 5 6

Linear β
(j)
1 0.165 -0.488 0.403 1.076 1.048 0.918
t-Stat [0.189] [-0.696] [0.741] [2.328] [1.773] [1.056]

CO2-COAL Square β
(j)
2 0.898 0.844 -0.121 1.453 0.602 0.116
t-Stat [2.027] [0.612] [-0.239] [0.874] [0.366] [0.066]

Cubic β
(j)
3 0.399 9.458 1.199 2.619 0.302 -9.420
t-Stat [0.230] [2.155] [0.638] [0.841] [0.065] [-0.508]
R2 0.003 0.009 0.016 0.193 0.328 0.335

Linear β
(j)
1 -1.835 -0.959 -0.324 0.724 0.632 0.276
t-Stat [-1.531] [-1.073] [-0.384] [1.136] [1.689] [0.957]

CO2-GAS Square β
(j)
2 0.837 2.362 1.454 -1.623 -0.013 -0.567
t-Stat [0.847] [0.934] [2.040] [-1.433] [-0.020] [-0.351]

Cubic β
(j)
3 2.879 21.652 5.111 -4.749 -0.599 -2.619
t-Stat [0.735] [3.026] [1.729] [-1.493] [-0.208] [-0.424]
R2 0.012 0.025 0.011 0.030 0.265 0.177

Linear β
(j)
1 -0.199 -0.779 0.243 0.504 0.355 0.555
t-Stat [-0.301] [-1.808] [0.662] [1.594] [1.917] [2.238]

CO2-PET Square β
(j)
2 -0.459 -1.167 1.302 -0.085 0.266 -1.553
t-Stat [-1.079] [-1.130] [2.839] [-0.131] [0.964] [-0.889]

Cubic β
(j)
3 1.267 2.377 2.468 -1.790 0.877 -5.219
t-Stat [1.056] [0.922] [2.139] [-1.165] [0.771] [-0.594]
R2 0.003 0.018 0.057 0.093 0.369 0.489

Linear β
(j)
1 -0.560 -0.690 0.086 0.686 0.608 0.593
t-Stat [-0.900] [-1.366] [0.204] [2.377] [3.215] [1.783]

CO2-TOT Square β
(j)
2 0.173 0.145 0.901 0.124 0.294 -0.817
t-Stat [0.408] [0.135] [2.278] [0.173] [0.650] [-0.871]

Cubic β
(j)
3 1.605 8.648 3.052 -0.532 0.544 -5.819
t-Stat [1.145] [2.512] [2.144] [-0.322] [0.375] [-0.889]
R2 0.004 0.015 0.033 0.184 0.529 0.737

Notes: This table presents the Ordinary Least Squares (OLS) estimate of the three slope coef-
ficients from Equation (6) for each timescale, along with corresponding t-statistic and coefficient
of determination (R2). The t-statistics are calculated using Newey-West HAC robust standard
errors with a lag length truncation of 2j − 1.

the results do not change significantly from the baseline specification. In all cases, the highest

explanatory power in terms of R2 comes at the larger timescales. The results for total energy CO2

emissions (CO2-TOT) are quite robust to inclusion of the nonlinear terms, which are insignificant

in almost all cases (except in some with very low R2). This indicates that the baseline linear

timescale specification of Equation (5) seems to be appropriate. The results for the coal, gas and

petroleum components are also qualitatively similar to those of Table 3 where we can see that the
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non-linear terms are not significant.

5.2 Structural Breaks

In previous sections we alluded to the fact that structural change has taken place in the composition

and trends of U.S. energy consumption and therefore so too in the CO2 emissions from energy

consumption. For example, the U.S. Petroleum Consumption Surprise in the 2000s caused an

unexpected decline in total CO2 emissions. There has also been a declining importance of coal

over the last few decades although, as shown in Figure 6 in the Appendix, the proportional change

relative to gas and petroleum was not large until the most recent periods. In light of these points,

even though we work in stationary growth rates and not levels of emissions, there may still be reason

to analyse the short-to-medium run behaviour of emissions over different historic sub-periods.

In the context of factor models for macroeconomic series, there has been a significant amount of

research on structural breaks in the factor loadings. Papers such as Stock and Watson (2009) and

Breitung and Eickmeier (2011) suggest that a large structural break occurred in the loadings in

around 1984, corresponding to the date identified as the “Great Moderation”. Since the majority of

our sample is post-1984 this is unlikely to have affected the results in the earlier section. However, it

makes sense to analyse sub-samples post-1984 for a structural break analysis. We therefore present

results splitting the sample into two sections of 16 years: 1986-2002 and 2002-2018. This yields

two sub-samples with T = 192 observations over which to check our results.15

Table 5 presents the results of the regression in Equation (5) over the two different subsamples.

The results reveal that the relationship between total energy CO2 emissions and the economic

factor is qualitatively rather robust across the two subsamples. In both of the two sub-samples we

see predictive power peaking after timescale j = 5, with little predictive power in small timescales.

One small difference relative to the results in Table 3 is that the largest R2 for CO2-TOT appears

in scale j = 6 rather than j = 5 though this does not alter the overall message in the results. The

findings in the other subcomponents also show some similar small differences (such as in CO2-PET

where the R2 also peaks at scale j = 6). Overall, the linkage between emissions and the economy

15We also conducted a more granular sub-sample analysis by splitting the data into 5 sections of 8 years: 1978-1986,
1986-1994, 1994-2002, 2002-2010 and 2010-2018. However, since this gave only T = 96 observations we felt this to be
too low to present, and the instability seen in the results may have been due to the small sample size. The results
are available upon request to those interested.
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Table 5: Regression Results by Timescale - Subsamples 1986-2002 and 2002-2018

Scale (j)

1 2 3 4 5 6

β(j) 0.142 -0.124 0.782 0.969 1.016 0.611
1986-2002 t-Stat [0.468] [-0.170] [3.018] [3.483] [10.761] [2.344]

CO2-COAL R2 0.000 0.000 0.081 0.306 0.704 0.442
β(j) -1.226 -0.501 0.306 1.413 0.948 0.287

2002-2018 t-Stat [-2.652] [-0.838] [0.621] [4.767] [4.567] [1.994]
R2 0.035 0.004 0.005 0.534 0.684 0.667

β(j) -1.050 0.939 1.155 0.574 0.907 0.363
1986-2002 t-Stat [-0.784] [0.841] [2.069] [1.251] [4.556] [0.962]

CO2-GAS R2 0.007 0.008 0.036 0.038 0.557 0.223
β(j) -1.781 0.038 -0.545 0.458 0.460 0.061

2002-2018 t-Stat [-1.826] [0.029] [-0.630] [1.114] [3.013] [0.256]
R2 0.021 0.000 0.007 0.048 0.332 0.030

β(j) -0.441 -1.535 1.017 0.533 0.446 0.782
1986-2002 t-Stat [-1.571] [-1.926] [4.312] [1.909] [3.156] [4.784]

CO2-PET R2 0.003 0.068 0.136 0.154 0.376 0.617
β(j) 1.170 0.862 -0.420 0.152 0.420 0.426

2002-2018 t-Stat [2.444] [2.920] [-1.333] [0.868] [3.132] [3.133]
R2 0.038 0.031 0.037 0.029 0.496 0.738

β(j) -0.287 -0.497 0.942 0.650 0.704 0.628
1986-2002 t-Stat [-0.645] [-0.664] [5.718] [3.315] [11.334] [3.533]

CO2-TOT R2 0.002 0.008 0.154 0.309 0.805 0.863
β(j) -0.364 0.428 -0.165 0.675 0.610 0.296

2002-2018 t-Stat [-0.985] [0.753] [-0.351] [2.889] [3.314] [3.639]
R2 0.004 0.004 0.003 0.323 0.662 0.876

Notes: This table presents the Ordinary Least Squares (OLS) estimate of the slope coefficient
from Equation (5) over different subsamples for each timescale, along with corresponding
t-statistic and coefficient of determination (R2). The t-statistics are calculated using Newey-
West HAC robust standard errors with a lag length truncation of 2j − 1.

at larger timescales (and not small scales) is unaffected by splitting up the sample.

5.3 Choice of Wavelet Filter

In all of the preceding analysis, we have derived the MRA for all series using the MODWT based

on the Haar wavelet filter, which is the simplest of a large number of families of wavelet filters. In

this section we will check the sensitivity of our results by changing the wavelet filter to one with a

larger width, namely the so-called D(4) filter; the fourth member of the class of discrete Daubechies

wavelets (see Percival and Walden, 2000, for a complete description of these wavelet filters).

Figures 7 and 8 in the Appendix show the graphs of the MRA components e
(j)
t and f̂

(j)
t from

using the D(4) wavelet filter along with the associated autocorrelation plots, in a similar way
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to Figures 3 and 4, above, for the Haar filter. From a graphical inspection it can be seen that

the results are virtually identical to that of the Haar filter, but that there is a higher degree of

smoothness from the D(4) filter. This is particularly noticeable in the j = 6 case for total energy

CO2 emissions.

Table 6: Regression Results by Timescale - Daubechies D(4) Wavelet Filter

Scale (j)

1 2 3 4 5 6

β(j) 0.309 0.378 0.423 1.218 1.014 0.663
CO2-COAL t-Stat [0.534] [0.653] [0.935] [2.984] [2.784] [0.582]

R2 0.001 0.002 0.007 0.190 0.312 0.378

β(j) -1.179 0.938 0.281 0.414 0.658 0.202
CO2-GAS t-Stat [-0.943] [1.157] [0.399] [0.857] [1.526] [0.537]

R2 0.009 0.006 0.002 0.020 0.340 0.195

β(j) 0.106 -0.676 0.526 0.300 0.404 0.430
CO2-PET t-Stat [0.221] [-1.875] [1.401] [0.879] [2.267] [1.969]

R2 0.000 0.016 0.040 0.064 0.372 0.449

β(j) -0.152 0.035 0.395 0.626 0.644 0.442
CO2-TOT t-Stat [-0.314] [0.082] [0.925] [2.518] [3.628] [0.628]

R2 0.001 0.000 0.014 0.198 0.522 0.735

Notes: This table presents the Ordinary Least Squares (OLS) estimate of the
slope coefficient from Equation (5) for each timescale, along with corresponding t-
statistic and coefficient of determination (R2). The wavelet filter has been changed
to that of the D(4) filter. The t-statistics are calculated using Newey-West HAC
robust standard errors with a lag length truncation of 2j − 1.

Table 6 confirms that the results are very insensitive to the choice of the wavelet filter, with

little qualitative change in the estimates of the regression in Equation (5) relative to those using

the Haar filter. The sign and significance of the coefficients are very similar to those in Table 3.

The R2 has risen in many of the regressions which is probably due to the slightly higher smoothness

and therefore persistence of the series. We also ran results using the D(8) filter which were very

similar and therefore not repeated here.

6 Conclusion

This paper has moved the debate away from the long-run relationship between economic activity

and emissions which has become saturated in the EKC literature. Instead, we look at this problem

from a short-to-medium run perspective. We propose a novel econometric methodology which allows
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us to look at emissions and the economy over different cycle frequencies. This method also allows

the number of economic proxies to be large by using a “big data” factor model technique, where the

principal component is taken from all series before being decomposed to different timescales. Our

approach reduces the reliance of the existing empirical literature on the specific choice of economic

proxies.

In the results of the paper we firstly analyse the patterns found in the constructed series for

economic activity and emissions at different timescales. We notice that the economic activity

variable has high correlation with existing indices of U.S. economic activity such as the FRED

Leading Index. Given that our decomposition of the economic variables are strongly linked to the

business cycle, we are therefore confident that the equivalent decompositions for CO2 emissions are

a good measure of emissions cycles.

The main results focus on the link between emissions and the economy at different cycle fre-

quencies. The key conclusion we draw is that, when looking at movements in CO2 emissions and

economic activity at a frequency of one-month changes, it appears that there is no significant rela-

tionship as both series tend to be noisy at this frequency. However, when applying the timescale

decomposition at lower frequencies of around one to three years, the cycles in both emissions and

economic activity are indeed significantly interlinked. The consequence of this result is that the

linkage between the environment and economic activity may be masked by not using an appropri-

ate filter. This means that short-to-medium run environmental damages still arise from increases

in economic activity and should not be ignored by policymakers and the public. Since we find a

meaningful relationship at timescales shorter than electoral cycles, it seems that politicians should

plan their economic policy not just in the context of their financial implications, but also in terms

of environmental impact.
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7 Appendix

Figure 5: CO2 Emissions by Source from 1978-2018
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Figure 6: CO2 Emission Composition over Time
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Figure 7: MRA for Total Energy CO2 Emissions, D(4) Wavelet Filter
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Figure 8: MRA for the Single Factor, D(4) Wavelet Filter
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