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Feedback Control over Noisy Channels:
Characterization of a General Equilibrium

Touraj Soleymani, John S. Baras, Sandra Hirche, and Karl H. Johansson

Abstract—In this article, we study an energy-regulation
trade-off that delineates the fundamental performance
bound of a feedback control system over a noisy channel
in an unreliable communication regime. The channel and
the process are modeled by an additive white Gaussian
noise channel with fading and a partially observable Gauss-
Markov process, respectively. Moreover, the feedback con-
trol loop is constructed by designing an encoder with a
scheduler and a decoder with a controller. The scheduler
and the controller are the decision makers deciding about
the transmit power and the control input at each time,
respectively. Associated with the energy-regulation trade-
off, we characterize an equilibrium at which neither the
scheduler nor the controller has a unilateral incentive to
deviate from its policy. We argue that this equilibrium is
a general one as it attains global optimality without any
restrictions on the information structure or the policy struc-
ture, despite the presence of signaling and dual effects.

Index Terms— communication channels, energy-
regulation trade-off, feedback control, global optimality,
packet loss, power adaptation, stochastic processes.

I. INTRODUCTION

W
IRELESS COMMUNICATION can provide an effec-

tive solution for feedback control systems [1]. Exploit-

ing the unique characteristics of wireless communication, one

can realize unprecedented wireless control systems in which

sensors are connected to actuators via wireless channels. Such

control systems are envisioned to have abundant applications

in automotive, automation, healthcare, and space exploration.

Nevertheless, wireless channels, which are to close the feed-

back control loops in these systems, are highly subject to noise.

A direct consequence of the channel noise in real-time tasks1

is packet loss2, which severely degrades the performance of

the underlying control system or even yields instability. To

decrease the packet error rate, for any fixed rate, bandwidth,

and modulation, the transmit power needs to increase. This in

turn raises the energy consumption of the transmitter, which
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80333 Munich, Germany (hirche@tum.de). (Corresponding author:
T. Soleymani.)

1This implies that block codes or message retransmissions that cause delays
more than a threshold are prohibited. Note that reliable communication in the
capacity limit is attained when delay can be arbitrarily large.

2In the context of our study, a packet (or equivalently a message) is defined
as a unit of bits corresponding to sensory information about the state of
the process under control at each time. Moreover, packet loss refers to the
phenomenon where one of these bits is detected erroneously.

is often afflicted with a constrained energy budget. Therefore,

minimizing the cost of communication and minimizing the

cost of control become conflicting objectives. Such a dilemma

motivates us in the present article to study an energy-regulation

trade-off that delineates the fundamental performance bound

of a feedback control system over a noisy channel in an

unreliable communication regime.

A. Related Work

Previous research has already recognized the severe effects

of packet loss on stability. Majority of works have considered

independent and identically distributed (i.i.d.) erasure chan-

nels [2]–[7]. In a seminal work, Sinopoli et al. [2] studied

mean-square stability of Kalman filtering over an i.i.d. erasure

channel, and proved that there exists a critical point for the

packet error rate above which the expected estimation error

covariance is unbounded. Later, Schenato et al. [3] extended

this work to optimal control, and showed that there exists

a separation between estimation and control when packet

acknowledgment is available. Moreover, several works have

employed Gilbert-Elliott channels to capture the temporal cor-

relation of wireless channels [8]–[11]. Notably, Wu et al. [8]

addressed stability of Kalman filtering over a Gilbert-Elliott

channel, and proved that there exists a critical region defined

by the recovery and failure rates outside which the expected

prediction error covariance is unbounded. The corresponding

optimal control problem was addressed by Mo et al. [9] where

they showed that the separation principle still holds when

packet acknowledgment is available. Eventually, a number

of works have employed fading channels in order to take

into account the time variation of the strengths of wireless

channels [12]–[14]. In particular, Quevedo et al. [12] inves-

tigated stability of Kalman filtering over a fading channel

with correlated gains, and established a sufficient condition

that ensures the exponential boundedness of the expected

estimation error covariance. Besides, Elia [13] studied the

stabilization problem in the robust mean-square stability sense

over a fading channel by modeling the fading as stochastic

model uncertainty, and designed a controller with the largest

stability margin.

Power adaptation for energy efficient transmission of sen-

sory information over noisy channels in estimation and control

tasks has also been addressed in the literature, and vari-

ous schedulers have been designed3 [15]–[21]. In particu-

3Throughout our study, schedulers and controllers refer to the entities that
decide about transmit powers and control inputs, respectively. The former are
also known as transmission power controllers in the literature.



2

lar, Leong et al. [15] studied the estimation of a Gauss-

Markov process over a fading channel, and derived the op-

timal scheduling policy that minimizes the estimation outage

probability subject to a constraint on the average total power.

Quevedo et al. [16] investigated the estimation of a Gauss-

Markov process over a fading channel, and derived the optimal

scheduling policy that minimizes the average total power

subject to a stability condition ensuring that the expected

estimation error covariance is exponentially bounded. Later,

Nourian et al. [17] and Li et al. [18] extended the above works,

and obtained the optimal scheduling policy that minimizes

the trace of the average expected estimation error covariance

subject to an energy harvesting constraint. The fact is that

the adopted scheduling policies in [15]–[18] depend on the

estimation error covariances, and not on the outputs of the

process. In contrast, scheduling policies that depend on the

outputs of the process can obviously take advantage of all

available sensory information. These policies, which are of

interest to our study, have been considered in [19]–[21]. More

specifically, Ren et al. [19] studied the estimation of a first-

order Gauss-Markov process over a fading channel based

on the common information approach, and proved that the

optimal scheduling policy is deterministic symmetric and the

optimal estimator is linear. Chakravorty and Mahajan [20]

found a similar structural result for the estimation of a first-

order autoregressive process with symmetric noise over a

channel modeled by a finite-state Markov chain. In addition,

Gatsis et al. [21] addressed the control of a first-order Gauss-

Markov process over a fading channel by restricting the

information structure such that a separation between estima-

tion and control is achieved, and showed that the optimal

scheduling policy is deterministic and the optimal control

policy is certainty equivalent.

B. Contributions and Outline

In this article, we study the energy-regulation trade-off

without restricting the information structure or the policy

structure. We model the channel and the process by an additive

white Gaussian noise channel with fading and a partially

observable Gauss-Markov process, respectively. The goal we

seek in the energy-regulation trade-off, which is in general

an intractable problem, is to find an optimal policy profile

consisting of a scheduling policy and a control policy. Our

study is different from that in [21] where the information

structure is restricted, or from those in [15]–[18] where the

policy structure is confined. It is also unlike the studies in [19],

[20] where the results are restricted to first-order processes

with no feedback control. In our study, the outputs of the

process are subject to noise, and both the scheduler and the

controller need to infer the state of the process. This model

generalizes the model used in [19]–[21] where the scheduler

observes the exact value of the state of the process. As a result,

in contrast to the above studies, three types of estimation

discrepancies can be considered here: the discrepancy between

the state of the process and the state estimate at the scheduler,

the discrepancy between the state of the process and the state

estimate at the controller, and that between the state estimates

at the scheduler and the controller.

AWGN Channel

with Channel Encoder and Channel Decoder

Channel

Decoder

Channel

Encoder

1 Step

Delay

Fig. 1: Communication over an additive white Gaussian noise

channel with fading. The input ak is transmitted over the

channel, and the output bk is reconstructed.

POGM Process

with Sensor and Actuator

Output

Transform
Input

Transform

State

Transition

1 Step

Delay

Fig. 2: Control of a partially observable Gauss-Markov pro-

cess. The output yk is observed, and the input uk is applied

to the process.

Our main contributions, in summary, are as follows. We

characterize an equilibrium in the energy-regulation trade-

off at which neither the scheduler nor the controller has

a unilateral incentive to deviate from its policy. We argue

that this equilibrium is a general one as it attains global

optimality without any restrictions on the information structure

or the policy structure, despite the presence of signaling4 and

dual effects. We show that at our equilibrium the scheduling

policy is a deterministic symmetric policy and the control

policy is a certainty-equivalent policy. As we will see, such

structural attributes dramatically reduce the complexity of the

design. Finally, we discuss the computational aspects of our

equilibrium, and propose an approximation procedure for syn-

thesizing a suboptimal scheduling policy with a probabilistic

upper bound on its performance. Our analysis in this study

is based on backward induction for dynamic games with

asymmetric information (see e.g., [22]), and on the symmetric

decreasing rearrangement of asymmetric measurable functions

(see e.g., [23]).

The remainder of the article is organized in the following

way. We introduce the models of the channel and the process,

and formulate the energy-regulation trade-off in Section II.

Then, we characterize an equilibrium in Section III, and

4Signaling here refers to the process of exchanging implicit information
via actions.
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prove its global optimality in Section IV. We discuss the

computational aspects of the equilibrium and propose an ap-

proximation procedure in Section V, and provide a numerical

example in Section VI. Finally, we make concluding remarks

in Section VII.

C. Preliminaries

In the sequel, the sets of real numbers and non-negative

integers are denoted by R and N, respectively. For x, y ∈ N

and x ≤ y, the set N[x,y] denotes {z ∈ N|x ≤ z ≤ y}.

The sequence of vectors x0, . . . , xk is represented by xk . The

symmetric decreasing rearrangement of a Borel measurable

function f(x) vanishing at infinity is represented by f∗(x).
The tail function of the standard Gaussian distribution is

defined as Q(x) = 1√
2π

∫∞
x

e−y2/2 dy. The indicator function

of a subset A of a set X is denoted by 1A : X → {0, 1}.

The probability measure of a random variable x is concisely

represented by P(x), its probability density or probability mass

function by p(x), and its expected value and covariance by

E[x] and cov[x], respectively.

Let (Ω,F ,P) be a probability space, and x be an integrable

random variable defined on this space. We will use conditional

expectations of the form E[x|y, γ], where y and γ are random

variables such that the latter takes on values in {0, 1} and that

σ(y, γ) ⊆ F . By the Radon-Nikodym theorem and the Doob-

Dynkin lemma, z = E[x|y, γ] satisfying E[(x − z)1G ] = 0
for every G ∈ σ(y, γ) exists, and can be represented by a

measurable function φ(y, γ). Accordingly, given a realization

of γ, conditional expectations E[x|y, γ = 0] and E[x|y, γ = 1]
also exist, and can be represented by φ(y, γ = 0) and φ(y, γ =
1), respectively.

We will adopt stochastic kernels to represent decision poli-

cies. Let (X ,BX ) and (Y,BY) be two measurable spaces. A

Borel measurable stochastic kernel P : BY × X → [0, 1] is

a mapping such that A 7→ P(A|x) is a probability measure

on (Y,BY) for any x ∈ X , and x 7→ P(A|x) is a Borel

measurable function for any A ∈ BY .

Besides, we will use two different notions of optimality. For

a given team game with two decision makers, let γ1 ∈ G1 and

γ2 ∈ G2 be the decision policies of the decision makers, where

G1 and G2 are the sets of admissible policies, and L(γ1, γ2)
be the associated loss function. A policy profile (γ1⋆, γ2⋆)
represents a Nash equilibrium if

L(γ1⋆, γ2⋆) ≤ L(γ1, γ2⋆), for all γ1 ∈ G1,

L(γ1⋆, γ2⋆) ≤ L(γ1⋆, γ2), for all γ2 ∈ G2.

However, a policy profile (γ1⋆, γ2⋆) is a globally optimal

solution if

L(γ1⋆, γ2⋆) ≤ L(γ1, γ2), for all γ1 ∈ G1, γ2 ∈ G2.

Clearly, a globally optimal solution is necessarily a Nash

equilibrium, but the converse need not hold.

II. ENERGY-REGULATION TRADE-OFF

Consider an additive white Gaussian noise (AWGN) channel

with fading with the discrete-time input-output relation

rk =
√
gksk + nk, (1)

POGM

Process

Sensor

Actuator

E
n

co
d

e
r

D
e

co
d

e
r

AWGN

Channel

Fig. 3: Feedback control over a noisy channel. The channel is

additive white Gaussian noise with fading, and the process is

partially observable Gauss-Markov. The encoder consists of a

filter, a scheduler, and a channel encoder. The decoder consists

of a channel decoder, a filter, and a controller.

for k ∈ N[0,N ], where rk is the channel output, gk ≥ 0 is the

channel gain, sk is the channel input, nk is a white Gaussian

noise with zero mean and power spectral density N0, and N is

a finite time horizon. The channel gain gk is a random variable

representing the effects of path loss, shadowing, and multipath,

which can change at each time with or without correlation over

time according to any probability distribution satisfying the

Markov property. The bit sequence corresponding to a message

ak is modulated by the encoder into the carrier signal, and

is transmitted over the channel. The signal is then detected

by the decoder, and the message bk is reconstructed after

one step delay (see Fig. 1). It is assumed that the channel

is block fading, that the channel gain gk is known at both

the decoder and the encoder before transmission at time k
given a feedback channel, and that the quantization error is

negligible. For our purpose, we focus on uncoded square

M-ary quadrature amplitude modulation (MQAM) signaling5

with M ∈ {4, 16, 64, . . .} for which the packet error rate at

time k is determined exactly as

perk = 1−
(

1− c0Q
(

√

c1Ek/N0

))2L/b

, (2)

with parameters c0 = 2(1 − 2−b/2), c1 = 3b/(2b − 1), and

b = log2 M , where perk ∈ C = [0, 1 − 2−L] is the packet

error rate, Ek is the received average energy per bit, and L is

the packet length in bits. The MQAM signaling is desirable for

its high spectral efficiency. However, given a mapping between

the packet error rate and the received average energy per bit,

any other signaling with or without coding can be adopted.

Then, from (1) and (2), we can obtain the required transmit

power at time k for a given packet error rate as

pk = N0R
c1gk

(

Q−1
(

1
c0

− 1
c0
(1− perk)

b/2L
))2

, (3)

where pk is the transmit power, R is the communication rate,

and we used the fact that Ek = gkpk/R. Note that the function

in (3) is decreasing in terms of perk, and that there exists a

transmit power prk at each time k for which perk = ǫ, where

5Signaling here refers to the process of mapping digital sequences to
signals.
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ǫ is a negligible probability. In addition, from the definition

of perk, we can model packet loss according to a random

variable γk such that γk = 1 if the message ak is successfully

received after one time step and γk = 0 otherwise, and that

the probability of γk = 0 is perk. Therefore, we have

bk+1 =

{

ak, if γk = 1,
∅, otherwise,

(4)

for k ∈ N[0,N ] with b0 = ∅. Note that γk for all k ∈ N[0,N ] are

conditionally independent given all the previous and current

channel gains and transmit powers. It is assumed that the

acknowledgment of a message that is successfully received

at time k is available at the encoder at the same time via the

feedback channel.

Now, consider a partially observable Gauss-Markov

(POGM) process with the discrete-time state and output equa-

tions

xk+1 = Akxk +Bkuk + wk, (5)

yk = Ckxk + vk, (6)

for k ∈ N[0,N ] with initial condition x0, where xk ∈ R
n

is the state of the process, Ak ∈ R
n×n is the state matrix,

Bk ∈ R
n×m is the input matrix, uk ∈ R

m is the control

input, wk ∈ R
n is a Gaussian white noise with zero mean and

covariance Wk ≻ 0, yk ∈ R
p is the output of the process,

Ck ∈ R
p×n is the output matrix, and vk ∈ R

p is a Gaussian

white noise with zero mean and covariance Vk ≻ 0. The output

yk is observed by a sensor, and the input uk is applied to the

process by an actuator (see Fig. 2). It is assumed that x0 is a

Gaussian vector with mean m0 and covariance M0, and that

x0, wk, and vk are mutually independent for all k ∈ N[0,N ].

The sensor is connected to the actuator via the channel.

Fig. 3 illustrates a schematic view of the system of interest

in which the encoder consists of a filter, a scheduler, and

a channel encoder, and the decoder consists of a channel

decoder, a filter, and a controller. In this system, the scheduler

and the controller are the decision makers deciding about the

transmit power and the control input at each time, respectively.

The filters should be required since the process is partially

observable. The message that is transmitted to the controller

at time k, i.e., ak, is the minimum mean-square-error (MMSE)

state estimate at the scheduler at time k. This state estimate

condenses all the previous and current outputs of the process

into a single message. This implies that from the MMSE

perspective the controller is able to develop a state estimate

upon the receipt of a message that would be the same if it

had all the previous outputs of the process, which is in fact

the best possible case. Finally, the location of the controller in

the system is nominal. The case in which the controller and

the actuator are connected via another channel can essentially

be converted to the case in which those are collocated [24].

The reason is that the information that would be transmitted

from the controller to the actuator should be processed again

at the actuator, and from the data-processing inequality (see

e.g., [25]), it is always better to process the transmitted MMSE

state estimate directly at the actuator. Hence, the two channels

can in effect be modeled by a single channel.

The decision variables of the scheduler and the controller

at time k are perk
6 and uk, respectively. These decisions are

decided based on the causal information sets of the scheduler

and the controller, which are expressed by

Is
k =

{

yt, bt, gt, pert′ , γt′ , ut′

∣

∣

∣
t ∈ N[0,k], t

′ ∈ N[0,k−1]

}

,

Ic
k =

{

bt, gt, γt′ , ut′

∣

∣

∣
t ∈ N[0,k], t

′ ∈ N[0,k−1]

}

,

respectively. Clearly, Ic
k ⊂ Is

k . We say that a policy profile

(π, µ) consisting of a scheduling policy π and a control

policy µ is admissible if π = {P(γk|Is
k)}Nk=0 and µ =

{P(uk|Ic
k)}Nk=0, where P(γk|Is

k) and P(uk|Ic
k) are Borel mea-

surable stochastic kernels. We represent the set of admissible

policy profiles by P × M, where P and M are the sets of

admissible scheduling policies and admissible control policies,

respectively. For the system described above, we are interested

in an energy-regulation trade-off that is cast as an optimization

problem with the loss function

χ(π, µ) := (1 − λ)E(π, µ) + λJ(π, µ), (7)

over the space of admissible policy profiles (π, µ) ∈ P ×M,

given a trade-off multiplier λ ∈ (0, 1), and for

E(π, µ) := 1
N+1 E

[

∑N
k=0 ℓkpk

]

, (8)

J(π, µ) := 1
N+1 E

[

∑N+1
k=0 xT

kQkxk +
∑N

k=0 u
T
kRkuk

]

, (9)

where ℓk ≥ 0 is a weighting coefficient, and Qk � 0 and

Rk ≻ 0 are weighting matrices.

Remark 1: The energy-regulation trade-off, which is for-

mulated based on the weighted sum approach (see e.g., [26]),

is a trade-off between two objective functions. The objective

function in (8) penalizes the transmit power per packet, while

the objective function in (9) penalizes the state deviation and

the control effort. Note that the associated optimization prob-

lem is in general an intractable problem due to a non-classical

information structure, a signaling effect, and a dual effect of

the control. These issues prohibit the direct application of

the traditional methods in stochastic optimal control. Despite

these difficulties, in the subsequent sections, we develop a new

method for the characterization of a solution (π⋆, µ⋆) to this

problem. Although the problem we study is over a finite time

horizon, the extension of our results to an infinite time horizon

is straightforward provided the channel gain has a stationary

distribution and the process is time-invariant, controllable, and

observable.

III. EXISTENCE OF AN EQUILIBRIUM

Certainly, the main technical obstacle to the characterization

of any solution in the energy-regulation trade-off is that the

design of the stochastic kernels P(γk|Is
k) and P(uk|Ic

k) is in

general intertwined with the structures of the conditional dis-

tributions P(xk|Is
k) and P(xk|Ic

k). Our goal in the following

is to overcome this obstacle by investigating a separation in

the design of these stochastic kernels. Let x̌k and x̂k, unless

otherwise stated, denote the MMSE state estimates7 at the

6Note that according to (3), given gk and perk , one can find pk .
7We recall that given an information set Ik at time k, the MMSE state

estimate at time k is achieved by E[xk|Ik].
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scheduler and the controller, respectively. Accordingly, we

define

ěk := xk − x̌k, (10)

êk := xk − x̂k, (11)

ẽk := x̌k − x̂k, (12)

where ěk is the estimation error from the perspective of the

scheduler, êk is the estimation error from the perspective of

the controller, and ẽk is the estimation mismatch. The main

result of this section is given by the next theorem, which

characterizes a Nash equilibrium in the energy-regulation

trade-off at which a separation in the design is guaranteed. The

proof relies on backward induction for dynamic games with

asymmetric information. For the statement of the theorem,

we need the following lemma related to the dynamics of the

conditional means and the conditional covariances, and the

subsequent definition of two value functions with respect to

the information sets.

Lemma 1: The conditional mean x̌k = E[xk|Is
k] and the

conditional covariance Yk = cov[xk|Is
k] satisfy

x̌k+1 = mk+1 +Kk+1

(

yk+1 − Ck+1mk+1), (13)

mk+1 = Akx̌k +Bkuk, (14)

Yk+1 =
(

M−1
k+1 + CT

k+1V
−1
k+1Ck+1

)−1
, (15)

Mk+1 = AkYkA
T
k +Wk, (16)

for k ∈ N[0,N ] with initial conditions x̌0 = m0 + K0(y0 −
C0m0) and Y0 = (M−1

0 + CT
0 V

−1
0 C0)

−1, where Kk =
YkC

T
k V

−1
k , mk = E[xk|Is

k−1], and Mk = cov[xk|Is
k−1].

In addition, the conditional mean x̂k = E[xk|Ic
k] and the

conditional covariance Pk = cov[xk|Ic
k] satisfy

x̂k+1 = Akx̂k +Bkuk + γkAkẽk + (1− γk)ık, (17)

Pk+1 = AkPkA
T
k +Wk

− γkAk(Pk − Yk)A
T
k − (1− γk)Ξk,

(18)

for k ∈ N[0,N ] with initial conditions x̂0 = m0 and P0 =
M0, where ık = Ak E[êk|Ic

k, γk = 0] and Ξk = Ak(Pk −
cov[xk|Ic

k, γk = 0])AT
k .

The proof of Lemma 1 is in Appendix A.

Definition 1 (Value functions): Let Sk � 0 be a matrix

satisfying the algebraic Riccati equation

Sk = Qk +AT
k Sk+1Ak −AT

k Sk+1Bk

× (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak,

(19)

for k ∈ N[0,N ] with initial condition SN+1 = QN+1 and with

the exception of Sk = 0 for k /∈ N[0,N+1]. The value functions

V s
k (Is

k) and V c
k (Ic

k) are defined as

V s
k (Is

k) := min
π∈P:µ=µ⋆

E

[

∑N
t=k θtpt + ςt+1

∣

∣

∣
Is
k

]

, (20)

V c
k (Ic

k) := min
µ∈M:π=π⋆

E
[

∑N
t=k θt−1pt−1 + ςt

∣

∣

∣
Ic
k

]

, (21)

for k ∈ N[0,N ] given a policy profile (π⋆, µ⋆) where

θk := ℓk(1− λ)/λ,

ςk :=
(

uk + (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Akxk

)T

× (BT
k Sk+1Bk +Rk)

×
(

uk + (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Akxk

)

,

for k ∈ N[0,N ] with the exception of θk := 0 and ςk := 0 for

k /∈ N[0,N ].

Theorem 1: There exists at least one Nash equilibrium

(π⋆, µ⋆) in the energy-regulation trade-off such that the

scheduling policy π⋆ is a deterministic symmetric policy with

respect to ẽk determined by

per⋆k = argmin
per

k
∈C

{

perk
(

ẽTkA
T
k Γk+1Akẽk + ̺k

)

+ θkN0R
c1gk

(

Q−1
(

1
c0

− 1
c0
(1 − perk)

b/2L
))2}

,

(22)

where Γk = AT
k Sk+1Bk(B

T
k Sk+1Bk+Rk)

−1BT
k Sk+1Ak and

̺k = E[V s
k+1(Is

k+1)|Is
k, γk = 0] − E[V s

k+1(Is
k+1)|Is

k, γk =
1], and the control policy µ⋆ is a certainty-equivalent policy

determined by

u⋆
k = −(BT

k Sk+1Bk +Rk)
−1BT

k Sk+1Akx̂k, (23)

where x̂k is the MMSE state estimate at the controller satis-

fying x̂k+1 = Akx̂k + Bkuk + γkAk ẽk for k ∈ N[0,N ] with

initial condition x̂0 = m0.

The proof of Theorem 1 is in Appendix B.

Remark 2: Note that contrary to the conditional distribu-

tion P(xk|Is
k), the conditional distribution P(xk|Ic

k) is non-

Gaussian and is influenced by the signaling effect. According

to Lemma 1, the existence of the signaling residuals ık and

Ξk in (17) and (18) implies that the controller might be able

to decrease its uncertainty even when a packet loss occurs.

However, the fact that at the equilibrium (π⋆, µ⋆) characterized

in Theorem 1 the MMSE state estimate x̂k satisfies (17) with

ık = 0 asserts that the controller’s inference about the state

of the process when a packet loss occurs has no contribution

from the MMSE perspective. This is an important property as

it consequently leads to a linear structure for the filter at the

controller, to a separation in the design of the scheduler and the

controller, and to the neutrality of the control (see e.g., [27]).

It is also interesting to note that at the equilibrium (π⋆, µ⋆)
the transmission of the MMSE state estimate x̌k becomes

equivalent to the transmission of the estimation mismatch

ẽk or the innovation νk := yk − Ck E[xk|Is
k−1] because

ẽk = x̌k − x̂k = Kkνk when γk−1 = 1.

IV. GLOBAL OPTIMALITY OF THE EQUILIBRIUM

Although Theorem 1 proves the existence of a Nash equi-

librium, due to non-convexity, there might exist other Nash

equilibria with better performance in the energy-regulation

trade-off. Unfortunately, there is no direct way to the charac-

terization of all these equilibria (if any). However, this is not

required for our purpose if we could show that the equilibrium

(π⋆, µ⋆) was globally optimal. The main result of this section
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is provided by the next theorem, which in fact proves that this

equilibrium is dominant in the set of admissible policy profiles.

The proof relies on the symmetric decreasing rearrangement

of asymmetric measurable functions.

Theorem 2: The Nash equilibrium (π⋆, µ⋆) characterized

in Theorem 1 associated with the energy-regulation trade-off

is globally optimal.

The proof of Theorem 2 is in Appendix C.

Remark 3: The global optimality result in Theorem 2 is

important as it guarantees that there exist no other equilibria

in the energy-regulation trade-off that can outperform the

equilibrium (π⋆, µ⋆) for any given λ. Note that the result

does not rule out the possibility of existence of other equi-

libria with equal performance. However, even in that case,

the equilibrium (π⋆, µ⋆) is preferable because as mentioned

above it possesses unique structural attributes that dramatically

reduce the complexity of the design. We should emphasize that

the energy-regulation trade-off studied in this article can be

reduced to a rate-regulation trade-off when perk is restricted

to take values only in {0, 1}. In such a problem, which we

have studied in [28], [29], instead of the energy the packet

rate is penalized, and the scheduler’s decision at each time is

to transmit a message or not to transmit. Hence, our result here

generalizes the result in [28], [29], where we found an optimal

policy profile consisting of a symmetric threshold triggering

policy and a certainty-equivalent control policy.

V. COMPUTATION AND APPROXIMATION

In this section, we look at the computational aspects of

the equilibrium (π⋆, µ⋆). From Theorem 1, we see that there

are some variables in the design of the optimal policies that

can be computed offline, and some that must be computed

online at the scheduler and/or the controller. In particular, the

optimal control policy µ⋆ can readily be computed based on

the algebraic Riccati equation (19) and on the following linear

recursive equation:

x̂k+1 = Akx̂k +Bkuk + γkAkẽk,

for k ∈ N[0,N ] with initial condition x̂0 = m0. In addition, the

optimal scheduling policy π⋆ can be computed with arbitrary

accuracy by solving recursively and backward in time the

following optimality equation:

V s
k (ẽk, gk) = min

per
k
∈C

{

θkpk(perk, gk) + perk ẽ
T
kA

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

+ perk E
[

V s
k+1(ẽk+1, gk+1)

∣

∣ẽk, gk, γk = 0
]

+ (1− perk)E
[

V s
k+1(ẽk+1, gk+1)

∣

∣ẽk, gk, γk = 1
]

}

,

for k ∈ N[0,N ] with initial condition V s
N+1(ẽN+1, gN+1) = 0

in conjunction with the probability distribution of the channel

gain, and with the following linear recursive equation:

ẽk+1 = (1 − γk)Ak ẽk +Kk+1νk+1,

for k ∈ N[0,N ] with initial condition ẽ0 = K0ν0, where νk
is a Gaussian white noise with zero mean and covariance
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Fig. 4: The energy-regulation trade-off curve in feedback

control over a noisy channel. The area above the trade-off

curve represents the achievable region.

Nk = CkMkC
T
k + Vk . Let (ẽk, gk) and perk be discretized

in grids with dn+1
1 and d2 points, respectively, and the asso-

ciated expected value be obtained based on a weighted sum

of d3 samples. The complexity of this computation is then

O(Ndn+1
1 d2d3). Note that the associated computational re-

quirements can be overwhelming especially when n increases.

In practice, one might be interested in a suboptimal scheduling

policy with cheaper computation. The following proposition

synthesizes such a policy with a probabilistic upper bound on

its performance.

Proposition 1: Let π+ be a scheduling policy given by

per+k = argmin
per

k
∈C

{

perk ẽ
T
kA

T
k Γk+1Akẽk

+ θkN0R
c1gk

(

Q−1
(

1
c0

− 1
c0
(1− perk)

b/2L
))2}

.

(24)

Then, the loss χ(π+, µ⋆) is upper bounded by

χ̆ := 1−λ
N+1

∑N−1
k=0 ℓkp

r
k +

λ
N+1

{

mT
0 S0m0

+ tr(SN+1MN+1) +
∑N

k=0 tr
(

QkYk)

+
∑N

k=0 tr
(

Sk+1Kk(CkMkC
T
k + Vk)K

T
k

)

}

,

(25)

with probability (1− ǫ)N .

The proof of Proposition 1 is in Appendix D.

VI. NUMERICAL EXAMPLE

In this section, we provide a simple example to demonstrate

the energy-regulation trade-off curve. In our example, we

choose the parameters of the channel, the process, and the

loss function as follows: the data rate R = 4 Kbps, noise

power spectral density N0 = −120 dB, modulation order

M = 16, packet size L = 128 bits, state coefficient Ak = 1.1,

input coefficient Bk = 1, output coefficient Ck = 1, process

noise variance Wk = 3, output noise variance Vk = 1 for

k ∈ N[0,N ], mean and variance of the initial condition m0 = 0
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and M0 = 1, weighting coefficients QN+1 = 1, ℓk = 1,

Qk = 1, and Rk = 0.1 for k ∈ N[0,N ], and time horizon

N = 100. In addition, we express the fading by the combined

path loss and shadowing model

gk =
(

4πfd0

c

)−2 (
d
d0

)−β

10αk/10,

for k ∈ N[0,N ], where f = 2.4 GHz is the carrier frequency,

d0 = 1 m is the reference distance, c = 3 × 105 km/s

is the speed of light, d = 20 m is the transmitter-receiver

relative distance, β = 3 is the path loss exponent, and αk is

a Gaussian shadowing variable with zero mean and variance

5 dB. For this system, the energy-regulation trade-off curve

was computed numerically using different values of the trade-

off multiplier λ ∈ (0, 1), and is depicted in Fig. 4. As

specified, the area above the trade-off curve represents the

achievable region. Note that the performance of any policy

profile should be assessed with respect to the trade-off curve,

and that there exists no policy profile with performance outside

the achievable region.

VII. CONCLUSION

In this article, we studied an energy-regulation trade-off that

can express the fundamental performance bound of a feedback

control system over a noisy channel in an unreliable commu-

nication regime. The central focus was on the characterization

of an equilibrium at which the filter at the controller becomes

linear, the design of the scheduler and the controller becomes

separated, and the control becomes neutral. We proved that this

equilibrium, which is composed of a deterministic symmetric

scheduling policy and a certainty-equivalent control policy,

cannot be outperformed by any other equilibria. This result

can be interpreted as another manifestation of symmetry and

certainty equivalence in the design of a class of stochastic

systems with components that are widely used for modeling

of physical phenomena in communication and control. We

propose that future research should be undertaken on the

extension of our study to wireless control systems with other

models of the channel and the process. It would of course

be interesting to see if any equilibria resemble to the one

characterized here exist in other classes of systems.
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APPENDIX A

PROOF OF LEMMA 1

Proof: For the first part of the claim, it is easy to

verify that, given the information set of the scheduler Is
k, the

conditional mean x̌k and the conditional covariance Yk satisfy

the standard Kalman filter equations (see e.g., [30]).

Moreover, for the second part of the claim, given the

information set of the controller Ic
k and from the state equation

(5), we can obtain the propagation equations as

x̂k+1 = Ak E[xk|Ic
k+1] +Bkuk, (26)

Pk+1 = Ak cov[xk|Ic
k+1]A

T
k +Wk. (27)

By definition, γk at each time can be either one or zero. If

γk = 1, the controller receives x̌k at time k + 1. In this case,

we have

p(xk|Ic
k+1) = p(xk|Ic

k, bk+1 = x̌k, gk+1, γk = 1, uk)

= p(xk|x̌k, Yk)

= p(xk|Is
k),

where we used the fact that {x̌k, Yk} is statistically equivalent

to Is
k . Hence, we obtain E[xk|Ic

k+1] = x̌k and cov[xk|Ic
k+1] =

Yk. However, if γk = 0, the controller receives nothing at time

k + 1. In this case, we have

p(xk|Ic
k+1) = p(xk|Ic

k, bk+1 = ∅, gk+1, γk = 0, uk)

= p(xk|Ic
k, γk = 0)

=
p(γk = 0|Ic

k, xk) p(xk|Ic
k)

p(γk = 0|Ic
k)

.

Note that for any admissible scheduling policy π, it is possible

to calculate p(γk = 0|Ic
k, xk) and p(γk = 0|Ic

k). Let us define

x̂′
k := E[xk|Ic

k, γk = 0]− x̂k and P ′
k := Pk − cov[xk|Ic

k, γk =
0]. As a result, for any value of γk, we can obtain the update

equations as

E[xk|Ic
k+1] = x̂k + γk(x̌k − x̂k) + (1− γk)x̂

′
k, (28)

cov[xk|Ic
k+1] = Pk − γk(Pk − Yk)− (1− γk)P

′
k. (29)

Finally, we obtain the result by substituting (28) and (29)

in (26) and (27), respectively, and by defining the signaling

residuals ık := Akx̂
′
k and Ξk := AkP

′
kA

T
k .

APPENDIX B
PROOF OF THEOREM 1

Proof: Applying few operations on the state equation (5)

and the algebraic Riccati equation (19), we see that

xT
k+1Sk+1xk+1 = (Akxk +Bkuk + wk)

T

× Sk+1(Akxk +Bkuk + wk),

xT
k Skxk = xT

k

(

Qk +AT
k Sk+1Ak

− LT
k (B

T
k Sk+1Bk +Rk)Lk

)

xk,

xT
N+1SN+1xN+1 − xT

0 S0x0

=
∑N

k=0 x
T
k+1Sk+1xk+1 −

∑N
k=0 x

T
k Skxk.
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Let us now define the loss function χ′(π, µ) as

χ′(π, µ) := E
[

∑N
k=0

{

θkpk(perk, gk)

+
(

uk + (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Akxk

)T

×
(

BT
k Sk+1Bk +Rk

)

×
(

uk + (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Akxk

)

}]

.

Using the above identities, it is easy to see that χ′(π, µ) is

equivalent to χ(π, µ) in the sense that it yields the same

optimal policies. Hence, it suffices to show that the policy

profile (π⋆, µ⋆) satisfies

χ′(π⋆, µ⋆) ≤ χ′(π, µ⋆), for all π ∈ P ,

χ′(π⋆, µ⋆) ≤ χ′(π⋆, µ), for all µ ∈ M.

Incorporating the control policy µ⋆ in the loss function

χ′(π, µ) when x̂k satisfies x̂k+1 = Akx̂k + Bkuk + γkAkẽk
for k ∈ N[0,N ] with initial condition x̂0 = m0, we find

χ′(π, µ⋆) = E
[

∑N
k=0

{

θkpk(perk, gk)

+ êTkL
T
k (B

T
k Sk+1Bk +Rk)Lkêk

}]

,

where Lk = (BT
k Sk+1Bk + Rk)

−1BT
k Sk+1Ak. Pertaining to

χ′(π, µ⋆), we can write the value function V s
k (Is

k) as

V s
k (Is

k) = min
P(γk|Is

k
)
E
[

θkpk(perk, gk)

+ êTk+1Γk+1êk+1 + V s
k+1(Is

k+1)
∣

∣

∣
Is
k

]

,

for k ∈ N[0,N ] with initial condition V s
N+1(Is

N+1) = 0. We

need to check that the solution of the above minimization is the

scheduling policy π⋆. Moreover, incorporating the scheduling

policy π⋆ in the loss function χ′(π, µ) when x̂k satisfies

x̂k+1 = Akx̂k +Bkuk + γkAkẽk + (1− γk)ık for k ∈ N[0,N ]

with initial condition x̂0 = m0, we find

χ′(π⋆, µ) = E
[

∑N
k=0

{

θkpk(ẽk, gk)

+ (uk + Lkxk)
TΛk(uk + Lkxk)

}]

,

where Λk = BT
k Sk+1Bk + Rk. Pertaining to χ′(π⋆, µ), we

can write the value function V c
k (Ic

k) as

V c
k (Ic

k) = min
P(uk|Ic

k
)
E
[

θk−1pk−1(ẽk−1, gk−1)

+ (uk + Lkxk)
TΛk(uk + Lkxk) + V c

k+1(Ic
k+1)

∣

∣

∣
Ic
k

]

,

for k ∈ N[0,N ] with initial condition V c
N+1(Ic

N+1) = 0. We

need to check that the solution of the above minimization is

the control policy µ⋆.

First, we prove by induction that V s
k (Is

k) depends on ẽk and

gk, and is symmetric with respect to ẽk. The claim is satisfied

for time N +1. We assume that the claim holds at time k+1.

Given the dynamics of x̂k in this case, we observe that êk and

ẽk should satisfy

êk+1 = Akêk − γkAkẽk + wk, (30)

ẽk+1 = (1− γk)Ak ẽk +Kk+1νk+1, (31)

for k ∈ N[0,N ] with initial conditions ê0 = x0 − m0 and

ẽ0 = K0ν0, where νk is a Gaussian white noise with zero

mean and covariance Nk = CkMkC
T
k + Vk. It follows that

E
[

êTk+1Γk+1êk+1

∣

∣

∣
Is
k

]

= E
per

k

[

perk ẽ
T
kA

T
k Γk+1Ak ẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

]

,

where we used (30) and the facts that E[êk|Is
k] = ẽk,

cov[êk|Is
k] = Yk, and wk is independent of êk. Moreover,

applying the law of total expectation, we find

E
[

V s
k+1(Is

k+1)
∣

∣

∣
Is
k

]

= E
per

k

[

perk E[V
s
k+1(Is

k+1)|Is
k, γk = 0]

+ (1− perk)E[V
s
k+1(Is

k+1)|Is
k, γk = 1]

]

.

Note that E[V s
k+1|Is

k, γk = 0] and E[V s
k+1|Is

k, γk = 1] are

independent of perk. Accordingly, we deduce that

V s
k (Is

k) = min
per

k
∈C

{

θkpk(perk, gk) + perk ẽ
T
kA

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

+ perk E[V
s
k+1(Is

k+1)|Is
k , γk = 0]

+ (1− perk)E[V
s
k+1(Is

k+1)|Is
k, γk = 1]

}

,

for k ∈ N[0,N ], where Yk and Wk are independent of perk.

Hence, the minimizer is obtained as

per⋆k = argmin
per

k
∈C

{

θkpk(perk, gk)

+ perk
(

ẽTkA
T
k Γk+1Akẽk + ̺k

)

}

,

where ̺k = E[V s
k+1(Is

k+1)|Is
k , γk = 0] −

E[V s
k+1(Is

k+1)|Is
k, γk = 1]. In addition, we can write

E
[

V s
k+1(ẽk+1, gk+1)

∣

∣

∣
Is
k, γk

]

= E

[

V s
k+1

(

(1− γk)Ak ẽk +Kk+1νk+1, gk+1

)

∣

∣

∣
Is
k, γk

]

= E
[

V s
k+1

(

− (1− γk)Akẽk −Kk+1νk+1, gk+1

)

∣

∣

∣
Is
k, γk

]

= E
[

V s
k+1

(

− (1− γk)Akẽk +Kk+1νk+1, gk+1

)

∣

∣

∣
Is
k, γk

]

,

where the first equality comes from (31), the second equality

from the hypothesis assumption, and the last equality from the

properties of νk. Therefore, E[V s
k+1(Is

k+1)|Is
k, γk] is symmet-

ric with respect to ẽk. This implies that per⋆k is also symmetric

with respect to ẽk. In addition, note that gk+1 depends only

on gk. Hence, we conclude that V s
k (Is

k) depends on ẽk and

gk, and is symmetric with respect to ẽk. This completes the

first part of the proof.
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Now, we prove by induction that V c
k (Ic

k) is independent of

uk−1. The claim is satisfied for time N + 1. We assume that

the claim holds at time k + 1. Given the dynamics of x̂k in

this case, we observe that êk and ẽk should satisfy

êk+1 = Akêk − γkAkẽk + wk − (1− γk)ık, (32)

ẽk+1 = (1− γk)Akẽk +Kk+1νk+1 − (1− γk)ık, (33)

for k ∈ N[0,N ] with initial conditions ê0 = x0 − m0 and

ẽ0 = K0ν0, where ık = E[êk|Ic
k, γk = 0]. Since γk under π⋆

is a function of ẽk, we recursively infer from (32) and (33)

that êk and ẽk are independent of the control inputs. Moreover,

using the identity xk = x̂k + êk, we find

E
[

(uk + Lkxk)
TΛk(uk + Lkxk)

∣

∣

∣
Ic
k

]

= E
uk

[

tr(ΓkPk) + (uk + Lkx̂k)
TΛk(uk + Lkx̂k)

]

,

where we used the facts that E[x̂k|Ic
k] = x̂k and E[êk|Ic

k] = 0.

Accordingly, we deduce that

V c
k (Ic

k) = min
uk∈Rm

{

θk−1 E[pk−1(ẽk−1, gk−1)|Ic
k]

+ tr(ΓkPk) + (uk + Lkx̂k)
TΛk

× (uk + Lkx̂k) + E[V c
k+1(Ic

k+1)|Ic
k]
}

,

for k ∈ N[0,N ], where pk−1(ẽk−1, gk−1) and Pk = cov[êk|Ic
k]

are independent of the control inputs because ẽk−1 and êk
are independent of the control inputs, respectively. Hence, the

minimizer is obtained as u⋆
k = −Lkx̂k , and we conclude that

V c
k (Ic

k) is independent of uk−1. We now proceed with the

proof by showing that the signaling residual ık = 0 for all

k ∈ N[0,N ]. Note that ê0 and ẽ0 are Gaussian vectors with

zero mean. We assume that ıt = 0 for all t ∈ N[0,k−1]. For

any value of ık, we have

p(ẽk|Ic
k, γk = 0) ∝ p(γk = 0|ẽk, Ic

k) p(ẽk|Ic
k). (34)

By the hypothesis assumption and using the scheduling policy

π⋆, we see that p(ẽk|Ic
k) and p(γk = 0|ẽk, Ic

k) are symmetric

with respect to ẽk. Hence, p(ẽk|Ic
k, γk = 0) is also symmetric

with respect to ẽk. This implies that E[ẽk|Ic
k, γk = 0] = 0.

Note that we can write

E
[

êk

∣

∣

∣
Ic
k, γk

]

= E
[

E[êk|Is
k, γk]

∣

∣

∣
Ic
k, γk

]

= E
[

E[êk|Is
k]
∣

∣

∣
Ic
k, γk

]

= E
[

ẽk

∣

∣

∣
Ic
k, γk

]

,

where the first equality comes from the tower property of the

conditional expectations and the second equality from the fact

that γk is a function of Is
k . Therefore,

ık = Ak E
[

êk

∣

∣

∣
Ic
k, γk = 0

]

= 0.

This completes the second part of the proof, and establishes

that (π⋆, µ⋆) is a Nash equilibrium.

APPENDIX C

PROOF OF THEOREM 2

We shall need the following technical lemmas for the proof.

For the proofs of these lemmas, see e.g., [31] and [32].

Lemma 2 (Hardy-Littlewood inequality): Let f and g be

non-negative functions defined on R
n that vanish at infinity.

Then,

∫

Rn f(x)g(x)dx ≤
∫

Rn f∗(x)g∗(x)dx. (35)

Lemma 3: Let B(r) ⊆ R
n be a ball of radius r centered

at the origin, and f and g be non-negative functions defined

on R
n that vanish at infinity and satisfy

∫

B(r) f
∗(x)dx ≤

∫

B(r) g
∗(x)dx, (36)

for all r ≥ 0. Then,

∫

B(r)
h(x)f∗(x)dx ≤

∫

B(r)
h(x)g∗(x)dx, (37)

for all r ≥ 0 and any symmetric non-increasing function h.

We now present the proof of Theorem 2.

Proof: Without loss of generality, assume that m0 = 0.

For m0 6= 0, one can use a simple transformation, and find

the same result. To prove global optimality of the equilibrium

(π⋆, µ⋆), we need to show that

χ(π⋆, µ⋆) ≤ χ(π, µ) for all π ∈ P , µ ∈ M.

Let (πo, µo) denote a globally optimal policy profile. In the

light of Theorem 1, this policy profile indeed exists.

First, we will show that, given the control policy µo, we can

find an innovation-based scheduling policy σ that is equivalent

to πo. From the definition of νk, we have yk = νk+Ekx̌k−1+
Fkuk−1, where Ek and Fk are matrices of proper dimensions.

By Lemma 1, we have x̌k = Gkνk +Hkuk−1, where Gk and

Hk are matrices of proper dimensions. Besides, from (4), we

know that bk depends on x̌k−1 and γk−1. As a result, it is

possible to write

pπo(γk|Is
k) = pπo(γk|νk,γk−1,uk−1,gk),

pµo(uk|Ic
k) = pµo(uk|νk−1,γk−1,uk−1,gk).

Accordingly, any realizations of γk and uk can be ex-

pressed as γk = γk
(

ηk;νk,γk−1,uk−1,gk

)

and uk =
uk

(

ζk;νk−1,γk−1,uk−1,gk

)

, where ηk and ζk represent

random variables, independent of any other variables, that

are used in the generation of the realizations of γk and

uk, respectively. Therefore, it is possible to recursively con-

struct pσ(γk|νk,γk−1, ζk−1,gk) such that it is equivalent to

pπo(γk|Is
k). This establishes that χ(σ, µo) = χ(πo, µo). Note

that although the scheduling policy σ is constructed associated

with the control policy µo, it depends only on νk, γk−1, ζk−1,

and gk at each time k ∈ N[0,N ].

Now, given the scheduling policy σ, we will find an optimal

control policy ξ, and prove that ξ is certainty equivalent. Recall

that, by Lemma 1, êk and ẽk in general satisfy

êk+1 = Akêk − γkAkẽk + wk − (1− γk)ık,

ẽk+1 = (1− γk)Akẽk +Kk+1νk+1 − (1− γk)ık,
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for k ∈ N[0,N ] with initial conditions ê0 = x0 and ẽ0 = K0ν0,

where ık = Ak E[êk|Ic
k, γk = 0]. It is easy to see that êk and

ẽk are independent of the control inputs under σ. Then, by

a similar argument used in the proof of Theorem 1, one can

show that the value function V c
k (Ic

k) under σ should satisfy

V c
k (Ic

k) = min
uk∈Rm

{

θk−1 E[pk−1(perk−1, gk−1)|Ic
k]

+ tr(ΓkPk) + (uk + Lkx̂k)
TΛk

× (uk + Lkx̂k) + E[V c
k+1(Ic

k+1)|Ic
k]
}

,

for k ∈ N[0,N ] with initial condition V c
N+1(Ic

N+1) = 0, where

pk−1(perk−1, gk−1) and Pk = cov[êk|Ic
k] are independent of

the control inputs, and that the minimizer is obtained as u⋆
k =

−Lkx̂k. This establishes that χ(σ, ξ) ≤ χ(σ, µo).
Next, we will show that χ(ω, ξ) ≤ χ(σ, ξ), where ω is

a special type of σ that is symmetric. Let N be the set on

which νk is defined, B(r) be a ball of radius r centered at the

origin and of proper dimension, and ν̄k = Tkνk ∈ N for a

given Tk. For any fixed ζk−1 and gk
8, we construct ω with

pω(ν̄k|γk = 0) as a radially symmetric function such that the

following conditions are satisfied:
∫

Nk pω(γk = 0|νk,γk−1 = 0) sk(νk)dνk

=
∫

Nk pσ(γk = 0|νk,γk−1 = 0) qk(νk)dνk,
(38)

∫

Nk pk
(

pω(γk = 0|νk,γk−1 = 0)
)

sk(νk)dνk

≤
∫

Nk pk
(

pσ(γk = 0|νk,γk−1 = 0)
)

qk(νk)dνk,
(39)

∫

B(r)

(

pω(γk = 0|ν̄k,γk−1 = 0) sk(ν̄k)
)∗
dν̄k

≥
∫

B(r)

(

pσ(γk = 0|ν̄k,γk−1 = 0) qk(ν̄k)
)∗
dν̄k,

(40)

for k ∈ N[0,N ] and all r ≥ 0, where sk( . ) := pω( . |γk−1 = 0)
and qk( . ) := pσ( . |γk−1 = 0). Observe that

sk+1(νk+1) =
1
cω

p(νk+1)

× pω(γk = 0|νk,γk−1 = 0) sk(νk),

qk+1(νk+1) =
1
cσ

p(νk+1)

× pσ(γk = 0|νk,γk−1 = 0) qk(νk),

for k ∈ N[0,N ], where cω = pω(γk = 0|γk−1 = 0) and

cσ = pσ(γk = 0|γk−1 = 0) with initial conditions s0(ν0) =
q0(ν0) = p(ν0). We can write

pσ(γk = 0|γk−1 = 0)

=
∫

Nk pσ(γk = 0|νk,γk−1 = 0) pσ(νk|γk−1 = 0)dνk

=
∫

Nk pω(γk = 0|νk,γk−1 = 0) pω(νk|γk−1 = 0)dνk

= pω(γk = 0|γk−1 = 0),

where the second equality is by (38). Hence, cσ = cω. In

addition, note that sk+1(ν̄k+1) and pσ(γk = 0|ν̄k,γk−1 =

8For brevity, hereafter we omit the dependency on ζk−1
and gk .

0) qk(ν̄k) can be obtained based on sk+1(νk+1) and

qk+1(νk+1), respectively.

To make use of the above construction, we shall introduce

an equivalent loss function. It is possible to write

χ′(σ, ξ) =
∑N

k=0 E
[

θkpk(perk) + êTk Γkêk

]

=
∑N

k=0 E
[

θkpk(perk) + E[êTk Γkêk|Is
k]
]

=
∑N

k=0 E
[

θkpk(perk) + ẽTk Γkẽk + tr(ΓkYk)
]

,

where in the second equality we used the tower property of

conditional expectations. As stated in the proof of Theorem 1,

χ′(σ, ξ) is equivalent to χ(σ, ξ). Let us define the loss function

ΥM
σ (ẽ0) as

ΥM
σ (ẽ0) :=

∑M
k=0 Eσ

[

θkpk(perk) + ẽTk Γkẽk

]

,

for M ∈ N[0,N ]. Since Yk is independent of σ, it is enough to

prove that ΥM
ω (ẽ0) ≤ ΥM

σ (ẽ0) for any M ∈ {0, . . . , N} and

for any Gaussian vector ẽ0.

Note that ẽ0 = K0ν0 under both σ and ω. Moreover, we

have

Eσ

[

p0(per0)
]

=
∫

N p0
(

pσ(γ0 = 0|ν0)
)

p(ν0)dν0

≥
∫

N p0
(

pω(γ0 = 0|ν0)
)

p(ν0)dν0

= Eω

[

p0(per0)
]

,

where the inequality is by (39). Hence, the claim holds for

the time horizon 0. We assume that it also holds for all the

time horizons from 1 to M − 1. Applying the law of total

probability, we see that

pσ(γ0 = 1) + pσ(γt = 0)

+
∑t

k=1 pσ(γk−1 = 0, γk = 1) = 1,

for any t ∈ N[0,N ]. Using the above identities, we can obtain

ΥM
σ (ẽ0) =

∑M
k=0

{

θk pσ(γk−1 = 0)Eσ[pk(perk)|γk−1 = 0]

+ pσ(γk−1 = 0)Eσ[ẽ
T
k Γkẽk|γk−1 = 0]

+ pσ(γk−1 = 0, γk = 1)

× Eσ[Υ
k+1,M
σ (ẽk+1)|γk−1 = 0, γk = 1]

}

,

where the cost-to-go is given by

Υk,M
σ (ẽk) =

∑M
t=k Eσ

[

θtpt(pert) + ẽTt Γtẽt

]

,

for M ∈ N[0,N ]. In the following, we will compare the prob-

ability coefficients, the transmit power terms, the estimation

mismatch terms, and the cost-to-go terms in the above loss

function, which are under σ, with those under ω.

Since cσ = cω, we have pσ(γk−1 = 0) = pω(γk−1 =
0) and pσ(γk−1 = 0, γk = 1) = pω(γk−1 = 0, γk = 1).
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Hence, all the probability coefficients remain the same under

ω. Moreover, for the transmit power terms, we get

Eσ

[

pk(perk)
∣

∣

∣
γk−1 = 0

]

=
∫

Nk pk
(

pσ(γk = 0|νk,γk−1 = 0)
)

qk(νk)dνk

≥
∫

Nk pk
(

pω(γk = 0|νk,γk−1 = 0)
)

sk(νk)dνk

= Eω

[

pk(perk)
∣

∣

∣
γk−1 = 0

]

,

where the inequality is by (39). We proceed with the proof

for the estimation mismatch terms by first showing that the

signaling residual ık = 0 for all k ∈ N[0,N ] under ω. We

assume that ıt = 0 for all t ∈ N[0,k−1]. Let τk denote the time

elapsed since the last successful delivery when we are at time

k. By Lemma 1, we can express ık as

ık = Ak Eω

[

∑τk
t=0 Dk−tνk−t

∣

∣

∣
γk−τk = 0, . . . , γk = 0

]

= Ak

∑τk
t=0 Dk−t Eω

[

νk−t

∣

∣

∣
γk−τk = 0, . . . , γk = 0

]

,

where Dk−t is a matrix depending on At′ for t′ ∈ N[k−t,k−1]

and Kk−t. As pω(νk|γk = 0) has zero mean, we deduce

that pω(νk−τk , . . . , νk|γk−τk = 0, . . . , γk = 0) has also zero

mean. This implies that ık = 0 for all k ∈ N[0,N ] under

ω. Hence, given γk−1 = 0, we find that ẽk = Zkνk−1 +
Kkνk + ck under σ, and that ẽk = Zkνk−1 + Kkνk under

ω for a suitable matrix Zk and a suitable vector ck both

independent of νk. Let us now use the decomposition Γk =
LT
kUkU

T
k Lk, choose Tk−1 = UT

k LkZk, and define functions

fσ(ν̄k−1, νk) := (ν̄k−1 + UT
k Lkck)

T (ν̄k−1 + UT
k Lkck) +

νTk K
T
k ΓkKkνk, fω(ν̄k−1, νk) := ν̄Tk−1ν̄k−1 + νTk K

T
k ΓkKkνk,

gσ(.) := z−minz{z, fσ(.)}, and gω(.) := z−minz{z, fω(.)}.

Clearly, for any fixed z, gσ(ν̄k−1, νk) and gω(ν̄k−1, νk) vanish

at infinity. It follows that

Eσ

[

ẽTk Γkẽk

∣

∣

∣
γk−1 = 0

]

=
∫

N 2 fσ(ν̄k−1, νk)

× pσ(ν̄k−1|γk−1 = 0) p(νk)dν̄k−1dνk.

In addition, we can write
∫

N gσ(ν̄k−1, νk)

× pσ(γk−1 = 0|ν̄k−1,γk−2 = 0) qk−1(ν̄k−1)dν̄k−1

≤
∫

N g∗σ(ν̄k−1, νk)

×
(

pσ(γk−1 = 0|ν̄k−1,γk−2 = 0) qk−1(ν̄k−1)
)∗
dν̄k−1

=
∫

N gω(ν̄k−1, νk)

×
(

pσ(γk−1 = 0|ν̄k−1,γk−2 = 0) qk−1(ν̄k−1)
)∗
dν̄k−1

≤
∫

N gω(ν̄k−1, νk)

× pω(γk−1 = 0|ν̄k−1,γk−2 = 0) sk−1(ν̄k−1)dν̄k−1,

where in the first inequality we used the Hardy-Littlewood

inequality with respect to ν̄k−1, in the equality the fact that

g∗σ(ν̄k−1, νk) = gω(ν̄k−1, νk), and in the second inequality

Lemma 3 and (40). This implies that
∫

N minz{z, fσ(ν̄k−1, νk)} pσ(ν̄k−1|γk−1 = 0)dν̄k−1

≥
∫

N minz{z, fω(ν̄k−1, νk)} pω(ν̄k−1|γk−1 = 0)dν̄k−1.

Taking z to infinity, we conclude that
∫

N fσ(ν̄k−1, νk) pσ(ν̄k−1|γk−1 = 0)dν̄k−1

≥
∫

N fω(ν̄k−1, νk) pω(ν̄k−1|γk−1 = 0)dν̄k−1.

Furthermore, for the cost-to-go terms, we find

Eσ

[

Υk+1,M
σ (ẽk+1)

∣

∣

∣
γk−1 = 0, γk = 1

]

=
∫

Nk+1 Υ
k+1,M
σ (ẽk+1)

× pσ(νk+1|γk−1 = 0, γk = 1)dνk+1.

Note that ẽk+1 = Kk+1νk+1 under both σ and ω when γk = 1.

Let ῩM
σ (ẽ0) denote a loss function that is structurally similar

to ΥM
σ (ẽ0) but with different parameter values. Clearly, if

ΥM
σ (ẽ0) ≥ ΥM

ω (ẽ0), then ῩM
σ (ẽ0) ≥ ῩM

ω (ẽ0). We can write
∫

Nk+1 Υ
k+1,M
σ (Kk+1νk+1)

× pσ(νk+1|γk−1 = 0, γk = 1)dνk+1

=
∫

N ῩM−k−1
σ (Kk+1νk+1) p(νk+1)dνk+1

≥
∫

N ῩM−k−1
ω (Kk+1νk+1) p(νk+1)dνk+1

=
∫

Nk+1 Υ
k+1,M
ω (Kk+1νk+1)

× pω(νk+1|γk−1 = 0, γk = 1)dνk+1,

where in the equalities we used the facts that ῩM−k−1
σ (ẽ)

can be defined such that it is equal to Υk+1,M
σ (ẽ) for any

Gaussian vector ẽ, and that νk+1 is independent of γk, and the

Fubini’s theorem; and in the inequality we used the hypothesis

ΥM−k−1
σ (ẽ) ≥ ΥM−k−1

ω (ẽ) for any Gaussian vector ẽ. This

establishes that ΥM
ω (ẽ0) ≤ ΥM

σ (ẽ0) and χ(ω, ξ) ≤ χ(σ, ξ).
Finally, we will conclude that the equilibrium χ(π⋆, µ⋆) is

globally optimal. Note that by a similar argument used in the

proof of Theorem 1, one can show that the value function

V s
k (Is

k) under ξ in conjunction with ık = 0 for k ∈ N[0,N ]

should satisfy

V s
k (Is

k) = min
per

k
∈C

{

θkpk(perk, gk) + perk ẽ
T
kA

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

+ perk E[V
s
k+1(Is

k+1)|Is
k, γk = 0]

+ (1 − perk)E[V
s
k+1(Is

k+1)|Is
k, γk = 1]

}

,

for k ∈ N[0,N ] with initial condition V s
N+1(Is

N+1) =
0, and that the minimizer is obtained as per⋆k =
argminper

k
∈C{θkpk(perk, gk)+perk(ẽ

T
kA

T
k Γk+1Akẽk+̺k)}.

This establishes that χ(π⋆, µ⋆) ≤ χ(ω, ξ), and hence com-

pletes the proof.
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APPENDIX D

PROOF OF PROPOSITION 1

Proof: Let π̆ be a scheduling policy with pk = prk for k ∈
N[0,N−1], for which perk = ǫ, and with pN = 0. In addition,

let π+ be a scheduling policy that is obtained according to

(22) in Theorem 1 except that ̺k is now substituted with a

new function based on π̆, i.e., ˘̺k = E[V π̆
k+1(Is

k+1)|Is
k, γk =

0]− E[V π̆
k+1(Is

k+1)|Is
k, γk = 1], where V π̆

k (Is
k) is the cost-to-

go associated with χ(π̆, µ⋆). We shall prove that

χ(π+, µ⋆) ≤ χ(π̆, µ⋆).

To do so, it suffices to show V π+

k (Is
k) ≤ V π̆

k (Is
k), where

V π+

k (Is
k) is the cost-to-go associated with χ(π+, µ⋆). Note

that V π+

N+1(Is
N+1) = V π̆

N+1(Is
N+1) = 0. We assume that the

claim holds for k + 1. We can write

E
[

θkpk
(

pπ+(γk = 0|Is
k), gk

)

+ êTk+1Γk+1êk+1 + V π+

k+1(Is
k+1)

∣

∣

∣
Is
k

]

≤ E
[

θkpk
(

pπ+(γk = 0|Is
k), gk

)

+ êTk+1Γk+1êk+1 + V π̆
k+1(Is

k+1)
∣

∣

∣
Is
k

]

≤ E
[

θkpk
(

pπ̆(γk = 0|Is
k), gk

)

+ êTk+1Γk+1êk+1 + V π̆
k+1(Is

k+1)
∣

∣

∣
Is
k

]

,

where the first inequality comes from the induction hypothesis

and the second inequality from the definition of the suboptimal

policy π+. This implies that V π+

k (Is
k) ≤ V π̆

k (Is
k).

Note that, under π̆, γk = 1 for all k ∈ N[0,N−1] with

probability (1 − ǫ)N . In that condition, it is easy to verify

that χ(π̆, µ⋆) = χ̆ (see e.g., [33]), and that êt satisfies

êt+1 = Atět + wt,

for t ∈ N[k+1,N−1]. The latter implies that êt for all t ∈
N[k+2,N ] are independent of γk. Hence, we get ˘̺k = 0, and

this completes the proof.
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Journal of Inequalities and Applications, vol. 2000, no. 4, pp. 309–320,
2000.

[32] A. Alvino, P. L. Lions, and G. Trombetti, “Comparison results for
elliptic and parabolic equations via symmetrization: a new approach,”
Differential and Integral equations, vol. 4, no. 1, pp. 25–50, 1991.
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