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Abstract

Different notions of fairness and discrimination have been extensively discussed in the ma-

chine learning, operations research, and insurance pricing literatures. As not all fairness criteria

can be concurrently satisfied, metrics are needed that allow assessing the materiality of discrim-

inatory effects and the trade-offs between various criteria. Methods from sensitivity analysis

have been deployed for the measurement of demographic unfairness, that is, the statistical de-

pendence of risk predictions on protected attributes. We produce a sensitivity-based measure

for the distinct phenomenon of proxy discrimination, referring to the implicit inference of pro-

tected attributes from other covariates. For this, we first define a set of admissible prices that

avoid proxy discrimination. Then, the measure is defined as the normalised L2-distance of a

price from the closest element in that set. We use arguments from variance-based sensitivity

analysis, to attribute the proxy discrimination measure to individual (or subsets of) covariates

and investigate how properties of the data generating process are reflected in those metrics. Fur-

thermore, we build on the global (i.e., portfolio-wide) measures of demographic unfairness and

proxy discrimination to propose local (i.e., instance- or policyholder-specific) measures, which

allow a fine-grained understanding of discriminatory effects. Finally, we apply the methods de-

veloped in the paper to a real-world insurance dataset, where ethnicity is a protected variable.

We observe substantial proxy-discriminatory effects for one ethnic group and identify the key

variables driving this.
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1 Introduction

Questions of fairness and discrimination have become central to the machine learning literature

(Barocas & Selbst, 2016; Mehrabi et al., 2021) and its applications. Increasingly, the wider opera-

tional research literature is building fairness considerations into problems as diverse as organ alloca-

tion (Bertsimas et al., 2013), efficiency measurement (Radovanović et al., 2022), hiring (Komiyama

& Noda, 2024), and stress testing (Glasserman & Li, 2024). In particular, in applications such as

credit scoring (Kozodoi et al., 2022; Hurlin et al., 2024) or insurance pricing (Lindholm et al., 2022;

Frees & Huang, 2023), the risk of financial exclusion for particular demographic groups has a high

societal salience. Furthermore, questions of fairness are intrinsically linked to questions of model

interpretability, since the latter can be a pre-requisite for effectively identifying and addressing the

former (De Bock et al., 2024; Kraus et al., 2024).

A variety of criteria have been formulated, which model predictions should satisfy in order to

be considered fair (indicatively, Barocas & Selbst, 2016; Mehrabi et al., 2021; Charpentier, 2024).

On the one hand, group fairness criteria interrogate the statistical relationship between responses,

predictions, and protected attributes such as gender or ethnicity; these criteria are typically for-

mulated via (conditional) independence statements. On the other hand, individual fairness criteria

focus on whether individuals with similar risk profiles are treated similarly, e.g., are quoted compa-

rable insurance prices. Here different fairness criteria arise from different notions of similarity and

information restrictions. Hence, while group fairness criteria consider the outcome of a prediction

algorithm, individual fairness notions revolve more around the way that these predictions are gen-

erated. Furthermore, as part of the rich literature on fairness and discrimination, an understanding

has developed that such criteria are not necessarily consistent with each other and can even be

mutually exclusive (Kleinberg et al., 2016; Lindholm et al., 2024). Consequently, the need emerges

to construct metrics for different forms of discrimination and unfairness: one does not just need to

know whether such phenomena take place as part of a prediction/decision process, but also whether

the effects are material enough to justify concern and eventual (e.g., regulatory) action. Further-

more, the potential incompatibility of different fairness notions means that one cannot require for

all of them to hold at the same time. This creates the need to monitor many aspects of possible

unfairness and measure the respective trade-offs, including those arising from any adjustments to

model predictions.

Here we develop measures for two distinct phenomena, demographic unfairness and proxy dis-

crimination, with a clear emphasis on the latter. While our application context is insurance pricing,

the measures are more broadly applicable to settings such as, e.g., credit scoring. Demographic un-

fairness relates to violations of demographic parity, that is, the requirement that prices are statis-

tically independent of policyholders’ protected attributes. While the deployment of this particular

group fairness notion in insurance has been criticised (Lindholm et al., 2024), we consider it for two

reasons: first, because it is easy to explain and politically salient, therefore a potential source of

reputational risk for insurers (e.g., Cook et al., 2022); and second because it helps with introduc-
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ing the construction of the measures we are using. The notion of proxy discrimination builds on

the understanding that some policyholder attributes, like gender or ethnicity, should not be used

to calculate the price for individual policyholders, as this would constitute direct discrimination.

Based on that premise, it is additionally desirable to avoid the effective proxying of protected at-

tributes by other variables (e.g., car engine size, postal code) that are correlated to them. Several

conceptualisations of proxy discrimination exist (Prince & Schwarcz, 2019; Tschantz, 2022), with

the causal structure of covariates often taking centre stage (Araiza Iturria et al., 2024; Côté et al.,

2024). Here we take a view of proxy discrimination as a form of omitted variable bias, which is not

contingent on assumptions of causality, but focuses on the indirect inference of protected attributes

from other covariates, in the sense of Lindholm et al. (2022, 2023, 2024).

The measures of discrimination we develop are based on methods from Global Sensitivity Anal-

ysis, originating in the work of Sobol’ (2001) and having been deeply studied by a variety of authors

(e.g., Saltelli et al., 2008, 2010; Borgonovo & Plischke, 2016; Fissler & Pesenti, 2023). Sensitivity

analysis is deployed to provide insight into complex computational models, evaluate the relative

importance of model inputs and identify model vulnerabilities; for applications specifically to insur-

ance risk portfolios and insurance regulation, see respectively Rabitti & Borgonovo (2020); Vallarino

et al. (2024) and Borgonovo et al. (2024). The variable importance metrics used in sensitivity anal-

ysis can thus be suitable tools for evaluating the direct and indirect impact of protected attributes

on insurance prices. This is already recognised in the work of Bénesse et al. (2024) who provide

sensitivity-based measures for a variety of fairness criteria, though, to our knowledge, applications

of sensitivity analysis to the problem of measuring proxy discrimination are currently lacking in the

literature (a brief relevant discussion is found in Hiabu et al. (2023)).

In Section 2 we formally introduce the ideas of demographic unfairness and proxy discrimination,

using the paradigm of insurance pricing in the exposition. Specifically, in Sections 2.3 and 2.4 we

define, respectively, measures of demographic unfairness and proxy discrimination and discuss their

properties. The former is already found in Bénesse et al. (2024) and we only deal with it briefly.

The measure of proxy discrimination is new and addresses the challenging task of quantifying a

phenomenon related to the way prices are calculated from observable quantities. The measure

is based on the distance between any given price and the closest element in a set of prices that

avoid proxy discrimination. This set of admissible prices arises as a convex combination of the

discrimination-free prices in Lindholm et al. (2022) and constant prices that do not depend on

any policyholder characteristics. This idea is operationalised through a constrained regression

of the price on best-estimate prices, calculated using different scenarios regarding the value of a

protected attribute. The measure of proxy discrimination takes values between 0 and 1 for an

insurance portfolio and can be evaluated for any system of prices, without reference to how these

were calculated. As a result it lends itself to empirical evaluation and price auditing.

While a global measure of proxy discrimination for a portfolio is useful, it is also necessary to

understand which covariates are the sources for such discrimination. In Section 2.5, we discuss how

to attribute the measure of proxy discrimination to covariates. Given that the measure is a result
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of an L2-projection, this can be achieved by a simple adaptation of the variance-based Sobol’ and

total sensitivity indices (Saltelli et al., 2008).

In Section 3.1, we discuss properties of the underlying data generating process and explain

how the sensitivity measures respond to such properties. Subsequently, in Sections 3.2 and 3.3

we introduce, respectively, local measures of demographic unfairness and proxy discrimination.

These measures are evaluated for individual policies and allow a more fine-grained understanding

and visualisation of the way in which discriminatory effects may arise in a portfolio. The local

measures are given by the price of a policy minus a benchmark price that is free of the particular

type of unfairness considered. For the case of demographic unfairness, the benchmark price comes

from an Output Optimal Transport transformation of the portfolio’s prices (Lindholm et al., 2024;

Charpentier, 2024). For the case of proxy discrimination, the benchmark is given by the closest

element in the set of prices that avoid proxy discrimination.

In Section 4, we apply the measures developed to a real-world motor insurance dataset, where

ethnicity is the protected characteristic. Attribution of the proxy discrimination metric to covariates

helps with identifying the key drivers of discriminatory effects. The use of local measures and the

consideration of global metrics on sub-portfolios give a more granular view, with specific groups (e.g.

younger drivers of one particular ethnicity) seen to be more heavily affected by proxy discrimination.

The application shows how the metrics introduced in this paper can be applied in practice and

provide insights into the potentially discriminatory effects of algorithmic decisions.

Brief conclusions are stated in Section 5. Some additional technical details are given as appen-

dices in the Supplementary materials.

2 Measures of proxy discrimination and demographic unfairness

2.1 Setup and notation

We work on a probability space (Ω,F ,P), with P being the real-world probability measure. On that

space we consider the random vector (Y,X, D). The random variable Y represents a quantity to

be predicted based on covariates (X, D). Of these, X is a vector of non-protected covariates (non-

discriminatory characteristics), while D reflects a protected attribute (discriminatory or sensitive

characteristic). From now on, we will refer specifically to an insurance pricing context, where Y

is a loss or loss frequency, while (X, D) capture policyholder characteristics. The variability of

(X, D) under P represents heterogeneity in the population of policyholders, while the variability of

Y conditional on {X = x, D = d} reflects loss uncertainty for a policyholder with known features

(x, d). We will assume throughout that D is discrete, taking values in the finite set D. Elements of

D can be thought of as representing different demographic groups, e.g., by ethnicity and/or gender.

Throughout, for a generic random variable Z, we represent its distribution function by P(z);

the conditional distribution of Z given W = w is denoted accordingly by P(z|w). In the case of

absolutely continuous random variables Z, probability density functions are given by dP(z)/dz. In
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the case of discrete Z we have probability weights P(z) = P(Z = z) > 0.

2.2 Pricing functions and discriminatory effects

We define the best-estimate price as

µ(x, d) := E[Y | X = x, D = d], (1)

such that µ(x, d) is the optimal (in L2-norm) prediction of the loss Y for a policyholder with features

(x, d). Best-estimate prices have discriminatory effects because of their direct dependence on pro-

tected characteristics D. The most straightforward way of correcting for such direct discrimination,

is to calculate insurance prices without including the information D as a covariate for prediction of

Y . The resulting conditional expectation based only on non-protected characteristics X is termed

the unawareness price and is defined by

µ(x) := E[Y | X = x]. (2)

Nonetheless, the unawareness price may still have discriminatory effects, arising from the potential

dependence between the random vectors X and D. Such dependence need not have a causal source,

but just be a feature of a particular portfolio structure of insurance policies, e.g., when female and

male policyholders have different age distributions.

Out of many different notions of unfairness or discrimination we focus on two complementary

perspectives on the impact of the dependence of protected attributes and non-protected covariates.

First, given such dependence it will generally hold that µ(X) is also dependent on D. This means

that insurance prices may vary across demographic groups, such that for some d ̸= d′, d, d′ ∈ D,

we have that E[µ(X) | D = d] ̸= E[µ(X) | D = d′]. For short, we call such insurance prices

demographically unfair. Second, removing D from the set of covariates does not imply that these

are not used indirectly in pricing. A concern is that, if D can be partially predicted from X, it is

possible that insurance prices, derived with the aim of maximising predictive accuracy, implicitly

use X to infer D. In fact, by observing that we can write unawareness prices as

µ(x) =
∑
d∈D

µ(x, d)P(d | x), (3)

it becomes clear that unawareness prices do indeed rely on implicit inference of D from X, via

the conditional probability P(d | x) used in averaging over best-estimates (if there is dependence

between D and X). We say that prices utilising such inference of protected characteristics are

subject to proxy discrimination.

2.3 Measuring demographic unfairness

We now put the previous ideas on a more formal footing, which applies to a general pricing functional

X 7→ π(X). We start with the well-known idea of demographic parity.
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Definition 1. The pricing functional X 7→ π(X) satisfies demographic parity with respect to

P(X, D), if the random variable π(X) is independent of D under P. If π violates demographic

parity, we say that it is demographically unfair.

Note that independence of X and D is a sufficient but not a necessary condition for demographic

parity. Furthermore, establishing that a pricing functional π is demographically unfair does not nec-

essarily mean that the resulting impact is substantial. To understand the materiality of unfairness,

one can visualise the changes in (empirical estimates of) the conditional density of π(X)|D = d

across demographic groups d ∈ D. Sometimes though, a global numerical metric is useful. We now

present such a metric, following Bénesse et al. (2024) who apply ideas from sensitivity analysis to

evaluate various concepts of algorithmic (un)fairness.

Definition 2. The demographic unfairness metric UF is defined as

UF(π) =
Var(E[π(X) | D])

Var(π(X))
, (4)

with the convention that if Var(π(X)) = 0, then UF(π) = 0.

The rationale for the construction (4) is well established in the different context of Global

Sensitivity Analysis and the metric is known as a Sobol’ Index (e.g. Sobol’, 2001; Saltelli et al.,

2008). Noting that Var(π(X)) = Var(E[π(X) | D]) + E[Var(π(X) | D)], the numerator in (4)

represents the amount of variation in π(X) attributable to the protected variable D.

The following easily derived properties are stated without proof.

Proposition 1. The unfairness metric UF satisfies the following properties.

i) 0 ≤ UF(π) ≤ 1. Furthermore, for all a, b ∈ R it holds that UF(a + bπ) = UF(π).

ii) If π satisfies demographic parity with respect to P(X, D), then UF(π) = 0.

iii) If σ(π(X)) ⊆ σ(D), i.e., π(X) is D-measurable, then UF(π) = 1.

Example 1. Let D ∈ {0, 1}, X ∼ U(0, 1) and P(D = 1|X) = E[D | X] = X. This implies

P(D = 1) = 1
2 . Assume that the best-estimate price is

µ(X,D) =
1

2
+ X + D,

which includes a fixed cost. In this model there is the potential for demographic unfairness, since

(X,D) are dependent. The unawareness price equals

µ(X) = E
[

1

2
+ X + D

∣∣∣∣ X

]
=

1

2
+ 2X.

Straightforward calculations lead to

E[µ(X) | D = 0] =
1

2
+ 2E[X | D = 0] =

1

2
+

2

3
,

E[µ(X) | D = 1] =
1

2
+ 2E[X | D = 1] =

1

2
+

4

3
.
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It then follows that Var(E[X | D]) = 1/36. Hence, if the unawareness price is used, the average

premium for D = 0 is different compared to D = 1. Consequently demographic unfairness arises.

We can quantify this effect via the UF metric:

UF =
Var(E[1/2 + 2X | D])

Var(1/2 + 2X)
=

Var(E[X | D])

Var(X)
=

1

3
> 0.

■

2.4 Defining and quantifying proxy discrimination

We now turn our attention to the measurement of proxy discrimination. Here the situation is

different, compared to unfairness. Recall that the best-estimate prices µ(X, D) are not used, as

they would give rise to direct discrimination and some other pricing functional π(X) must be used

instead. Effectively this corresponds to merging rating classes with the same non-protected profile

{X = x} but different protected characteristics {D = d}. Hence, one can calculate the price in

each of those new classes as a weighted average over d of the corresponding costs µ(x, d). Thus,

pricing relates to reallocating the claims costs µ(x, d), following the removal of the explanatory

effect of D. To avoid proxy discrimination – unlike the situation of unawareness prices (3) – the

selected weights used should not depend on x.

To address this issue, Lindholm et al. (2022) suggest the pricing formula

h∗(X) =
∑
d∈D

µ(X, d)P∗(d), (5)

for some distribution P∗(d) on D. Here, we build on Lindholm et al. (2022), to construct an

expanded set of admissible pricing functionals that we consider to be free from proxy discrimination.

We accept that a constant price π(X) ≡ π that does not depend on the covariates X cannot proxy-

discriminate, as it does not discriminate between policyholders in any sense. Consequently, we

would not like to exclude convex combinations of the form (1 − α)π + αh∗(X), α ∈ [0, 1], from

the admissible set of prices. Hence, we both allow for an additive constant offset and also that the

weights vd := αP∗(d) that are applied on the best-estimate prices µ(X, d) may sum to less than 1.

Proxy discrimination is now defined with the above arguments in mind. Define the set V :=

{v ∈ [0, 1]|D| :
∑

d∈D vd ≤ 1}.

Definition 3. The pricing functional X 7→ π(X) avoids proxy discrimination with respect to

µ(X, D), if for P-almost every X we can write

π(X) = c +
∑
d∈D

µ(X, d)vd, (6)

for some c ∈ R and v ∈ V that do not depend on X. If π does not have that structure, we say that

it is proxy-discriminatory.

Following Definition 3, we can now define a measure of proxy discrimination.
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Definition 4. The proxy discrimination metric PD is defined as

PD(π) =
minc∈R, v∈V E

[(
π(X) − c−

∑
d∈D µ(X, d)vd

)2]
Var(π(X))

, (7)

with the convention that if Var(π(X)) = 0, then PD(π) = 0.

The metric PD quantifies the extent to which a pricing functional cannot be expressed as a

weighted average of best-estimate cost terms µ(x, d), allowing also for a fixed cost term. Note that

the presence of the intercept c, even with the constraints on v, ensures that any solution (c∗,v∗)

of the regression problem (7), satisfies E
[
π(X) − c∗ −

∑
d∈D µ(X, d)v∗d

]
= 0. We note that even

though c∗,v∗ need not be unique, the quantity c∗ +
∑

d∈D µ(X, d)v∗d is. Hence, we can explicitly

solve for c and express (7) as

PD(π) =
Var

(
π(X) −

∑
d∈D µ(X, d)v∗d

)
Var(π(X))

, (8)

with PD(π) reflecting the residual variance for the constrained regression of π(X) on µ(X, d), d ∈
D.

The quantity π∗(X) := c∗ +
∑

d∈D µ(X, d)v∗d is the closest element to π(X) in the set of prices

that are free from proxy discrimination. We do not specifically suggest π∗(X) as a suitable price

correction for π(X), given that the optimal (c∗,v∗) generally depends on the joint distribution of

(X, D). This would violate the requirements on avoiding proxy discrimination, as formulated by

Lindholm et al. (2024).

Again, simple properties of the metric can be stated.

Proposition 2. The proxy discrimination metric PD satisfies the following properties.

i) 0 ≤ PD(π) ≤ 1. Furthermore, for all a ∈ R, b ∈ R+ it holds that PD(a + bπ) = PD(π).

ii) If π avoids proxy discrimination with respect to µ(X, D), then PD(π) = 0.

iii) If π(X) is uncorrelated with µ(X, d) for all d ∈ D, then PD(µ) = 1.

Proof. Parts i) and ii) are immediate.

For iii), uncorrelatedness implies that in the regression (7) we have v∗d = 0 for all d ∈ D and

c∗ = E[π(X)]. Consequently minc∈R, v∈V E
[(
π(X) − c−

∑
d∈D µ(X, d)vd

)2]
= Var(π(X)).

Parts i)-ii) of Proposition 2 show that PD is an interpretable metric for proxy discrimination,

while part iii) describes a situation where proxy discrimination is maximal: the insurance prices are

not at all explained by claim costs and, thus, any discrimination they achieve between policyholders

must be undesirable.

In the definition of the proxy discrimination metric (7) we constrained the weights v to be less

than one. The reason for this is that higher weights on terms µ(X, d) may also produce proxying

effects, as the next example shows.
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Example 2. We continue with the simple model of Example 1. In that model we expect the

unawareness price to be subject to proxy discrimination, as (X,D) are dependent and the best-

estimate prices are sensitive in D. Let us evaluate the numerator of (7), for π(X) = µ(X) = 1
2 +2X.

We have that

µ(X) − c−
∑

d∈{0,1}

µ(X, d)vd = (2 − v0 − v1)X − c− 1

2
(v0 + 3v1 − 1).

Since c can be chosen to remove the bias for any choices of v0, v1, we have that

E

µ(X) − c∗ −
∑

d∈{0,1}

µ(X, d)v∗d

2 = (2 − v∗0 − v∗1)2 Var(X).

From this it is clear that the minimum is achieved by v∗0 + v∗1 = 1. Hence, the proxy discrimination

metric (7) becomes

PD(µ) =
Var(X)

Var(1/2 + 2X)
=

1

4
.

We now consider the alternative price π(X) = 3X, noting that it agrees on average with the

unawareness price, i.e., E[µ(X)] = E[π(X)] = 3/2. This price penalises further policyholders with

X close to 1, which we know are more likely to satisfy D = 1. Hence, we expect the price to proxy-

discriminate even more than µ(X); moreover this will be in a gratuitous way, as the increased level

of proxy discrimination does not benefit prediction accuracy. Let us now calculate PD(π). Using

similar arguments as above, it follows that E
[(

π(X) − c∗ −
∑

d∈{0,1} µ(X, d)v∗d

)2]
= Var(2X).

Then,

PD(π) =
Var(2X)

Var(3X)
=

4

9
>

1

4
= PD(µ),

such that the increase in the degree of proxy discrimination is reflected in our metric.

Finally, any price that is free of proxy discrimination according to Definition 3 will, for some

c ∈ R, v ∈ V, take the form

µ∗(X) = c + v0µ(X, 0) + v1µ(X, 1) = c +
1

2
(v0 + 3v1) + (v0 + v1)X.

This allows for different choices of prices that avoid proxy discrimination. For example

µ∗
1(X) := 1 + X (for v0 + v1 = 1) or µ∗

2(X) :=
5

4
+

1

2
X (for v0 + v1 = 1/2),

where E[µ∗
1(X)] = E[µ∗

2(X)] = E[µ(X)]. For the price µ∗
2(X) by choosing v0 + v1 < 1 we have a

decreased sensitivity to claim costs and we compensate by a higher flat premium part c.

■

2.5 Attribution of proxy discrimination to individual covariates

Given the measurement of proxy discrimination by (7), a next question of interest is which (subsets

of) covariates – elements of X – are mostly responsible. Here we draw again from literature on
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Global Sensitivity Analysis (e.g. Saltelli et al., 2008). Let the dimension of X be q and S ⊆
{1, . . . , q} =: Q a set of indices, such that XS is the corresponding sub-vector of X. Analogously,

denote Sc = Q \ S, and XSc , such that X = (XS ,XSc).

Noting the form (8), we can attribute the variance in the numerator to the subset S of covariates,

by conditioning on sub-vectors. Following Definition 4, denote the regression residual by

Λ(π,X) := π(X) − c∗ −
∑
d∈D

µ(X, d)v∗d. (9)

We now define two metrics that reflect the contribution of (a subset of) covariates to proxy dis-

crimination.

Definition 5. For the proxy discrimination metric PD of (7) and Λ(π,X) as in (9), we define the

contribution of the sub-vector XS , S ⊆ Q to proxy discrimination by the two metrics,

PDS(π) =
Var(E[Λ(π,X) | XS ])

Var(π(X))
, (10)

P̃DS(π) =
Var(Λ(π,X)) − Var(E[Λ(π,X) | XSc ])

Var(π(X))
. (11)

When S = {i}, we write PDi(π), P̃Di(π).

The metric PDS is thus understood as the sensitivity of the residual Λ(π,X) to the subset of

covariates XS , reflecting the amount of variability in Λ(π,X) driven by XS . The metric P̃DS

reflects the expected reduction in the variance of Λ(π,X) achieved by averaging out XS . When

S = {i}, then PDi is identified by a (rescaled) Sobol’ Index (or first-order sensitivity), while P̃Di is

known as a total sensitivity (Saltelli et al., 2008). A difference to standard sensitivity measures is

that here we are normalising with Var(π(X)) – rather than Var(Λ(π,X)) – to maintain the direct

connection with the global PD metric (7) (note that this suppresses the scale of PDS , P̃DS).

The metrics introduced in Definition 5 have the following properties, which we state without

proof.

Proposition 3. The metrics PDS , and P̃DS satisfy the following properties.

i) 0 ≤ PDS(π), P̃DS(π) ≤ PD(π).

ii) a) If XS ⊥⊥ Λ(π,X), then PDS(π) = 0.

b) If Λ(π,X) is XS-measurable, then PDT (π) = PD(π) for all S ⊆ T ⊆ Q.

iii) a) If Λ(π,X) is XSc-measurable, then P̃DT (π) = 0, for all T ⊆ S.

b) If XSc ⊥⊥ Λ(π,X), then P̃DS(π) = PD(π).

iv) If there are functions g, h such that Λ(π,X) = g(XS) + h(XSc) and XS ⊥⊥ XSc, then

PDS(π) + PDSc(π) = PD(π) and P̃DS(π) + P̃DSc(π) = PD(π).
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Part i) of Proposition 3 is a natural condition for stating that the metrics PDS(π), P̃DS(π)

reflect contributions to the overall proxy discrimination PD(π). Parts ii) and iii) give conditions

for the metrics taking their extremal values. The conditions are complementary, using different

independence or measurability assumptions to reflect irrelevance or full relevance of XS . Finally,

part iv) gives strong conditions for being able to additively decompose the proxy discrimination

metric PD(π). If an additive decomposition is required, methods such as the Shapley value can be

used; for a detailed discussion see the Supplementary materials. We resume the discussion of the

properties of PDS , P̃DS(π) in Section 3.1.

3 Structural properties, price adjustments, and local measures

3.1 Structural properties

The ideas of demographic unfairness and proxy discrimination discussed in Section 2 related to

the statistical properties and construction of pricing functionals π. Here we associate such prop-

erties with structural properties of the data generating process, that is, with features of the joint

distribution P(Y,X, D). First, we define a number of such properties.

Definition 6 (Structural properties).

P1 X ⊥⊥ D (independence)

P2 Y ⊥⊥ D | X (X-sufficiency)

P3 µ(X, D) = µ(X) (weak X-sufficiency)

P4 σ(X) ⊆ σ(D) (X-irrelevance)

P5 Y ⊥⊥ X | D (D-sufficiency)

P6 µ(X, D) = µ(D) (weak D-sufficiency)

The formulation of properties P1-P6 is not reliant on any assumed causal relation between

Y, X and D. Nonetheless, one can formulate Directed Acyclical Graphs (DAG) representing

causal relations such that, e.g. properties P2 or P5 are satisfied – for causal perspectives on proxy

discrimination see Tschantz (2022); Araiza Iturria et al. (2024); Côté et al. (2024).

In the light of Definitions 1, 2, 3, 4, the relationships summarised in Proposition 4, below, hold.

These show the implications of structural properties P1-P6 for the metrics UF and PD, for either a

general price π(X) or, more specifically, the unawareness price µ(X). As the properties P1-P6 are

formulated with respect to the data generating process rather than arbitrary pricing functionals,

they are strong and only give rise to sufficient conditions.
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Proposition 4.

i) If P1 holds, any pricing functional π(X) satisfies demographic parity and UF(π) = 0.

ii) If any of P1, P2 or P3 hold, the unawareness price µ(X) avoids proxy discrimination and

PD(µ) = 0.

iii) If P4 holds, any pricing functional π(X) is demographically unfair and UF(π) = 1, except if

π(X) ≡ π, a constant.

iv) If any of P4, P5 or P6 hold, any pricing functional π(X) is proxy discriminatory and PD(π) =

1, except if π(X) ≡ π, a constant.

Proof. Part i) follows from P1 =⇒ π(X) ⊥⊥ D. For part ii) note from (3), that P1 =⇒ P(D =

d|x) = P(D = d), from which PD(µ) = 0 follows. Finally, P2 =⇒ P3. Then the regression in

Definition 4 reduces to minc,v E
[
(µ(X) − c− µ(X)

∑
d vd)2

]
= 0.

Part iii) is immediate. For part iv) note that either of P4 or P5 implies P6. The implication

from P6 is a special case of minc,v E
[
(π(X) − c−

∑
d µ(d)vd)2

]
= Var(π(X)).

Proposition 4, parts i)-ii), gives conditions for avoiding demographic unfairness or proxy dis-

crimination; in ii) limiting to the case of unawareness prices. Demographic fairness relates to the

joint law of the pricing functional π and the response Y , hence the strong requirement P1 arises as

a natural sufficient condition. Property P2 means that Y depends on D only via X. Hence mea-

surement of non-protected characteristics X eliminates any benefit to predictions from collecting

protected characteristics D. This in turn implies P3, which means that the best-estimate prices are

insensitive in D. Hence, if we restrict to unawareness prices, these conditions guarantee the absence

of proxy discrimination. Conversely, parts iii)-iv) of Proposition 4 give conditions for maximal lev-

els of demographic unfairness and proxy discrimination. Here, properties P4-P6, in different ways,

mean that knowing X in addition to D adds no new information useful for predicting the claims

Y .

We now turn our attention to the way that structural properties of the data generating process

impact on the sensitivity of the PD measure to covariate sub-vectors XS . In Proposition 5 below, we

deal with the common case of unawareness prices, providing dependence scenarios, under which the

contributions of sub-vectors of X are either zero or equal to the total level of proxy discrimination

PD(µ). These scenarios hence represent cases of full relevance of XS and irrelevance of XSc with

respect to the alternative metrics PDS and P̃DS .

Proposition 5. i) Assume that XSc ⊥⊥ (Y,D) | XS . Then, for the unawareness price π(X) =

µ(X) the following hold.

a) PDS(µ) = PD(µ) and P̃DSc(µ) = 0.

b) If additionally XSc ⊥⊥ XS , then it it also holds that P̃DS(µ) = PD(µ) and PDSc(µ) = 0.
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ii) Let the best-estimate price take the form µ(X, D) = g(X) + h(D) and assume that

Cov(g(X), h(D)) ≥ 0 and XSc ⊥⊥ D | XS . Then, for the unawareness price π(X) = µ(X)

the following hold.

a) PDS(µ) = PD(µ) and P̃DSc(µ) = 0.

b) If additionally XSc ⊥⊥ XS , then it also holds that P̃DS(µ) = PD(µ) and PDSc(µ) = 0.

Proof. i) a) We have that P(D = d | X) = P(D = d | XS) by the conditional independence

assumption and also µ(X, D) = E[Y | XS , D] =: µ(XS , D). Consequently, noting (3), we

have that

µ(X) =
∑
d∈D

µ(XS , d)P(D = d | XS) =⇒ Λ(µ,X) =
∑
d∈D

µ(XS , d) (P(D = d | XS) − v∗d)−c∗.

As the last expression is XS-measurable, it holds that E [Λ(µ,X) | XS ] = Λ(µ,X). Hence,

PDS(µ) =
Var(Λ(µ,X))

Var(π(X))
= PD(µ), P̃DSc(π) =

Var(Λ(π,X)) − Var(E[Λ(π,X) | XS ])

Var(π(X))
= 0.

b) Here it is sufficient to show that E[Λ(µ,X) | XSc ] is a constant. It has already been shown

that Λ(µ,X) is XS-measurable; hence the result follows from XSc ⊥⊥ XS .

ii) a) The unawareness price will take the form µ(X) = g(X) + E[h(D) | X]. We consider the

quantity to be minimised in the numerator of the PD measure. From the specific form of

the best-estimate and unawareness prices we have:

µ(X) − E[µ(X)] −
∑
d∈D

vd (µ(X, d) − E[µ(X, d)])

=

(
1 −

∑
d∈D

vd

)
(g(X) − E[g(X)]) + E[h(D) | X] − E[h(D)].

Consequently, we can just let v :=
∑

d∈D vd ∈ [0, 1] and optimise over that. By checking

the Karush-Kuhn-Tucker conditions (calculations not documented here), we find that the

condition Cov(g(X), h(D)) ≥ 0 is necessary and sufficient for v = 1. Thus we obtain

Λ(µ,X) = E[h(D) | X]−E[h(D)] = E[h(D) | XS ]−E[h(D)], where we used the additional

assumption XSc ⊥⊥ D | XS in the second equation. Furthermore, E[Λ(µ,X) | XS ] =

Λ(µ,X), from which the stated result follows.

b) Again, it is sufficient to show that E[Λ(µ,X) | XSc ] is a constant, which follows from the

additional independence assumption.

3.2 Local measurement of demographic unfairness

We introduce local (i.e., policyholder-specific) measures, based on the difference of the price-in-use

and the a benchmark fair price. For demographically fair prices, a standard construction has been
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via optimal transport (OT) methods (Gordaliza et al., 2019; Chiappa et al., 2020). In an insurance

context, such methods aim at achieving independence between prices π(X) and the protected char-

acteristics D by suitable variable transformations; for insurance-specific investigations see Lindholm

et al. (2024); Charpentier (2024). The broader mathematical problem of approximating a random

variable with another, subject to an independence constraint, is treated by Delbaen & Majumdar

(2024).

Here, to create a demographically fair benchmark price, we follow an Output OT approach. This

refers to a transformation (post-processing) of prices π(X) in order to achieve independence from

D. Denote the conditional distributions of the prices by Gd(m) = P(π(X) ≤ m | D = d), d ∈ D,

and assume for simplicity that they are continuous. Then, for any continuous distribution G, we

may construct the prices

π̃(X, D) =
∑
d∈D

1{D=d}G
−1 ◦Gd

(
π(X)

)
. (12)

The price π̃(X, D) satisfies P(π̃(X, D) ≤ m) = G(m) and P(π̃(X, D) ≤ m | D = d) = G(m), d ∈
D, such that D ⊥⊥ π̃(X, D) ∼ G; the construction (12) works by making the conditional distribution

of prices the same on each demographic subgroup D = d. Note that the transformed price π̃(X, D)

explicitly depends on D – even as π(X) does not. This is a form of direct discrimination arising

in the process of engineering demographic parity; see Lindholm et al. (2024) for more discussion

of this point. Finally, to construct a demographically fair benchmark, we need to select the target

distribution G. A standard choice is given by Chzhen et al. (2020)

G−1(u) =
∑
d′∈D

P
(
D = d′

)
G−1

d′ (u), (13)

From now on we will consistently refer to the Output OT price as the construction π̃(X, D) from

(12) and (13).

We can now proceed with the definition of a local measure of demographic unfairness.

Definition 7. Consider a pricing functional π and the Output OT price π̃(X, D). Then, for the

policyholder with profile X = x, D = d, the local measure of demographic unfairness is defined as:

δUF(x, d;π) = π(x) − π̃(x, d). (14)

If π(X) = µ(X) is the unawareness price, we just write δUF(x, d).

A value of δUF(x, d;π) > 0 implies that policyholders with attributes X = x, D = d suffer from

demographic unfairness in the sense that the price they are charged is higher than the corresponding

benchmark demographically fair price. Clearly, if X and D are already independent, the prices

π(X) and π̃(X, D) coincide such that the measure becomes zero. This is stated formally below.

Proposition 6. If P1 in Definition 6 holds, then δUF(x, d) = 0.

Furthermore, it is of interest to establish conditions for the sign of the metric δUF(x, d;π). In

the simple but common case of a binary D, this is straightforward. Denote by ⪯st precedence in
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the usual stochastic order, such that for two distributions F,G, we have that F ⪯st G ⇐⇒ F (x) ≥
G(x) for all x; this is a strong condition not allowing the crossing of distributions.

Proposition 7. Let D = {0, 1} and G0 ⪯st G1.

i) δUF(x, 0;π) ≤ 0 and δUF(x, 1;π) ≥ 0.

ii) For x such that P(D = 0 | X = x) > 0, it holds that:

E[δUF(X, D;π) | X = x] > 0 ⇐⇒
P(D = 1 | X = x)

P(D = 0 | X = x)
>

−δUF(x, 0;π)

δUF(x, 1;π)
=

G−1 ◦G0(π(x)) − π(x)

π(x) −G−1 ◦G1(π(x))
≥ 0,

where G is given by (13).

Proof.

i) The statement follows by noting that construction (13) implies G0 ⪯st G ⪯st G1 and conse-

quently

δUF(x, 0;π) = π(x) −G−1 ◦G0(π(x)) ≤ 0,

δUF(x, 1;π) = π(x) −G−1 ◦G1(π(x)) ≥ 0.

ii) We have that

E[δUF(X, D;π) | X = x] =

= P(D = 0 | X = x)δUF(x, 0;π) + P(D = 1 | X = x)δUF(x, 1;π),

with the stated result following directly from the inequalities of part i).

To interpret part i) of Proposition 7, first note that G0 ⪯st G1 means that the policyholders

with protected attribute D = 1 tend to be considered as higher risk, according to best-estimate

prices. So these are the policyholders for whom the use of the Output OT price (12) should

confer a discount, compared with the unawareness price. For part ii), we consider a situation

where for a policyholder with X = x the value of D may not be known. The left-hand side

of the stated condition implies that, on average, the local measure of unfairness will be positive

when P(D = 1 | X = x)/P(D = 0 | X = x) is high, such that there is a high chance that, given

X = x, the policyholder belongs to the demographically disadvantaged group D = 1. Furthermore,

the condition is more likely to be satisfied when the ratio −δUF(x, 0;π)/δUF(x, 1;π) is low. That

fraction becomes small if the comparative disadvantage for group D = 1 (denominator) becomes

much higher than the comparative advantage of group D = 0 (numerator), given the information

X = x.

These ideas are illustrated in the following example.
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Example 3. We continue from Example 2, where µ(X,D) = 1
2 +X+D and X ∼ U(0, 1). Note that

µ(x, 1) > µ(x, 0) for all x. However, we now allow a variety of positive and negative dependence

relations between (X,D) by assuming that

P(D = 1 | X = x) =
1 − a

2
+ ax, a ∈ (−1, 1].

By setting a = 1, we recover the exact setting of Example 2; 0 < a < 1 gives a weaker positive

dependence, while −1 < a < 0 gives a negative dependence. With this modification the unawareness

price changes to µ(X) = 2−a
2 + (a + 1)X.

We now evaluate the local measure of unfairness (14) for the unawareness price µ(X) and

various levels of a. The calculations are simple but tedious and are not reported here. In Figure

1 we plot the functions δUF(x, d) (blue for d = 0, red for d = 1), as well as their conditional

mean E[δUF(X,D) | X = x] (black) for a = 0.75 (positive dependence) and a = −0.75 (negative

dependence). While the shapes appear similar, there are two observations. First, for a = 0.75,

the red line is above zero and the blue line below, showing that policyholders with D = 1 are

adversely affected by demographic unfairness, while policyholders with D = 0 are benefiting. This

pattern is reversed when the dependence of (X,D) becomes negative (a = −0.75). Second, the two

plots are at very different scales, with the absolute value of local demographic unfairness being an

order of magnitude higher in the case of positive dependence. The reason is that, for a = 0.75,

the positive dependence of (X,D) works in the same direction as the impact of each of those

two variables on claims costs. However, when dependence is negative, then the unawareness price

becomes less sensitive to X (in the extreme a → −1 leads to a constant µ(X)). As a result, for

negative dependence much smaller disparities between demographic groups emerge. This point

is reinforced by Figure 2, where we plot E[δUF(X,D) | X = x] against different values of the

dependence parameter a.

■

3.3 Local measurement of proxy discrimination

Analogously to the last section, we propose a local measure of proxy discrimination. Again, we

need for that purpose a benchmark price that avoids proxy discrimination. Any such price takes

the form (6); nonetheless, to produce a benchmark one needs to choose the values of c, vd, d ∈ D.

Here we choose values that minimise the numerator in (7), such that the benchmark is the price

closest to the original price π(X), which is free from proxy discrimination. The difference between

a price and its closest proxy-discrimination-free approximation has already been defined in Section

2.5, as the regression residual Λ(X, π). Hence we re-purpose this quantity as a local measure of

proxy discrimination.

Definition 8. Consider a pricing functional π and Λ(X, π) in equation (9). Then, for the policy-

holder with profile X = x, the local measure of proxy discrimination is defined as:

δPD(x;π) = Λ(x, π). (15)
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Figure 1: Local unfairness metric δUF(x, d) (blue for d = 0, red for d = 1) and conditional mean

E[δUF(X,D) | X = x] (black) for a = 0.75 (left) and a = −0.75 (right).

If π(X) = µ(X) is the unawareness price, we just write δPD(x).

We state Proposition 8 below without proof – for each property it is easy to show that the

unawareness price is already free from proxy discrimination, such that Λ(X, π) is identically zero.

Proposition 8. If any one of P1, P2 or P3 in Definition 6 holds, then δPD(x) = 0.

We conclude this section with a continuation of our running example.

Example 4. We continue from Example 3, considering the evaluation of our local measure of proxy

discrimination. We make a qualitative argument, omitting a formal proof. Recall the forms of the

best-estimate and unawareness prices, µ(X,D) = 1/2 + X + D and µ(X) = 1 − a/2 + (1 + a)X

respectively. If −1 < a ≤ 0, the slope of the unawareness price in X is less or equal to that of

the best-estimate price. As a result Λ(X,µ) = 0 and there is no proxy discrimination. However,

when 0 < α ≤ 1, proxy discrimination arises. The closest approximation to µ(X) that avoids proxy

discrimination is the price µ∗(X) = 1 + X, which reduces the slope in X to 1. Consequently we

have

δPD(x) =

0, −1 ≤ a ≤ 0

−a
2 + ax, 0 < a ≤ 1,

showing how the metric increases linearly with x, at a slope determined by the dependence param-

eter a. Because of the positive dependence, policyholders with x > 0.5 are implicitly inferred to

have protected attribute D = 1 and hence are disadvantaged in the sense of proxy discrimination;

the reverse happens for x < 0.5.
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Figure 2: Conditional mean of the local unfairness metric E[δUF(X,D) | X = x] for the unawareness

price and a range of dependence parameters a.

4 Case study: insurance prices and ethnicity in a real-world motor

portfolio

We now apply the metrics developed in this paper to a real-world non-life motor insurance dataset,

previously discussed in Lindholm et al. (2023). The dataset consists of policyholder and vehicle

covariates, as well as exposure and claims data for a large portfolio, observed over a single year

of exposure. Moreover, the data include protected information D ∈ D = {1, 2, 3, 4, 5}, relating

to the ethnicity code of the policyholder, as defined in the jurisdiction in which the policies were

written. The anonymous insurer contributing the data – a large multi-national insurance company

– records this information at the time of underwriting the policy. The ethnicity data are not

used by the insurer for pricing, but are collected to enable the insurer to monitor and report

insurance penetration. To preserve confidentially of the contributing company and to ensure that

no commercially sensitive information is provided, the ethnicity categories relating to the levels of

D have not been used in our analysis; instead we use an integer code randomly assigned to each

category.

The data relate to a period close to the turn of the century and contain 165,511 years of exposure

of comprehensive motor insurance policies, with 41,608 claims arising in the same period of exposure.

The claims can be assumed to be fully run-off, i.e., no incurred but not reported adjustments

need to be made, and they relate to property (motor-hull), liability (third-party property and/or

bodily injury) and other associated coverages; we do not disclose the exact coverages to avoid
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disclosing potentially commercially sensitive information. Moreover, information on the excesses

and deductibles (which influence the frequency) in this portfolio are also not disclosed, thus, the

information shown is not commercially useful.

Table 1 shows a summary of the claims, exposures and frequencies for each ethnicity code D ∈ D

in the data.

Ethnicity code Number of claims Exposure Frequency

1 5, 223 14, 317 36.48%

2 965 3, 925 24.59%

3 3, 354 14, 363 23.35%

4 5, 249 20, 240 25.93%

5 26, 817 112, 667 23.80%

Table 1: Summary of real-world non-life insurance claims, exposures and frequencies of claims

according to the ethnicity codes D ∈ D.

The portfolio exhibits substantial heterogeneity in the size of demographic groups. The largest

group corresponds to D = 5, while other groups range from D = 2 with the smallest population to

D = 4 with approximately one fifth of the size of the largest group. Analysis of claims experience

reveals broadly similar frequencies across groups, with the notable exception of policyholders with

D = 1 who display markedly higher claim frequencies.

The vector of non-protected characteristics X = (X1, . . . , Xq)
⊤ comprises standard rating fac-

tors used in non-life insurance pricing, including policyholder and driver demographics (age and

gender), vehicle characteristics, and geographical information (note that, within the context of this

application, we do not treat gender as a protected characteristic). For each policy i, where 1 ≤ i ≤ n,

we observe the tuple (Yi,Xi, Di, vi), where vi represents the exposure period (the fraction of the

year for which the policy was active) and serves as a weight in the calculation of claim frequencies.

Throughout this application we compare three types of price: (a) best-estimate prices (1);

(b) unawareness prices (2); and (c) discrimination-free prices (6) under the canonical choices c =

0, vd = P(D = d) as in Lindholm et al. (2022) – note that these choices are exogenous and not the

product of any optimisation. These data were modelled by Lindholm et al. (2023), using a plain-

vanilla Feed-forward Neural Network (FNN) with embedding layers for the categorical covariates

and standard training procedures to regularize the network; we refer the interested reader to that

paper and its appendices for further details. Here, using the predictions from the fitted models, we

estimate the unfairness metric UF and the proxy discrimination metric PD, using empirical versions

of equations (4) and (7).

Table 2 shows the estimated values of the two measures, for the best-estimate, unawareness

and discrimination-free prices, with bootstrap standard deviations in parentheses. We observe that

the best-estimate price exhibits the highest level of the unfairness metric UF, with UF = 0.0892,

indicating that approximately 9% of price variability can be attributed to systematic differences
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Price UF PD

Best-estimate 0.0892 (0.00095) 0.00924 (0.0000443)

Unawareness 0.0639 (0.00079) 0.00277 (0.0000203)

Discrimination-free 0.0533 (0.00070) 0

Table 2: Demographic unfairness metric UF and proxy discrimination metric PD, for the motor

dataset and for the three pricing rules considered. Bootstrap standard errors are in parentheses.

between ethnic groups. The unawareness price yields an intermediate value of UF = 0.0639, while

the lowest level of the unfairness measure, UF = 0.0533, comes from the discrimination-free prices.

This ordering is not surprising. First, the unawareness price leads to a reduction in demographic

unfairness, since it eliminates the direct impact of D on prices. Nonetheless, demographic unfairness

persists, because of the statistical dependence of µ(X) and D. Second, beyond removing the direct

impact of D on predictions, discrimination-free prices aim to also remove indirect proxying impacts.

Nonetheless, it is not obvious that the latter effect holds more generally, given that demographic

unfairness and proxy discrimination are deeply different concepts, and there are no guarantees

that using a discrimination-free price will also lead to a reduction in (let alone an elimination of)

demographic unfairness – see Lindholm et al. (2024) for an extensive discussion.

In Figure 3 we take a more granular view, by evaluating UF for the unawareness and discrim-

ination free prices, on different sub-portfolios arising from segmentation by age. We select age

given its importance in terms of potential discriminatory effects, as identified in Lindholm et al.

(2023). The demographic unfairness metric exhibits its highest values for young drivers around age

20, with UF reaching approximately 0.3 for both unawareness and discrimination-free prices. This

effect diminishes substantially with age, stabilizing at much lower levels (around 0.05) for drivers

over 40. While both pricing approaches show similar patterns, the unawareness price consistently

demonstrates slightly higher levels of unfairness compared to the discrimination-free price, with the

difference being most pronounced for drivers of ages 20-40.

Table 2 also presents the proxy discrimination metrics PD for the three pricing approaches. The

standard best-estimate price shows the highest level of proxy discrimination with PD = 0.00924.

Note that in this case, the PD measure also implicitly reflects some of the direct discrimina-

tion arising from using D as a rating factor. For unawareness prices, the value of the metric is

lower, at PD = 0.00277, now reflecting only proxy discrimination. Finally, by construction, the

discrimination-free price achieves PD = 0.

The relatively low, though still statistically significant, value of the PD metric for the unaware-

ness price, suggests that proxy discrimination represents a relatively small portion of the overall

price variation in this portfolio. This is consistent with the nature of modern motor insurance

pricing, where key rating factors like vehicle characteristics and driver age have strong direct effects

on expected claims, beyond any relation they may have with protected characteristics. Nonethe-

less, even such low levels of proxy discrimination may be considered problematic from a regulatory
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Figure 3: Unfairness metric UF evaluated for the unawareness prices, evaluated on sub-portfolios

split by age.

perspective, particularly given the systematic nature of the bias they represent.

In particular, heterogeneity in the portfolio means that substantial discriminatory effects may

be suffered by a specific sub-population of policyholders. To investigate this further, we evaluate

PD on subsets of the portfolio. We split the portfolio into 5 parts, by ethnicity and calculate

PD on each of these. This is of interest, as the results reflects the comparative extent to which

different ethnicities are impacted by proxy discrimination, with reference to variation within their

own group (segmentation will tend to increase the value of the PD metric by reducing the value of

the denominator in (7)). Furthermore, for each ethnicity and for the portfolio as a whole, we also

segment the data by age and calculate PD for each age group.

The results are summarised Figure 4; panels correspond, first, to the portfolio as a whole and,

then, to individual ethnicity codes. Within each panel we state the value of the PD metric and

show graphically PD by age. It is seen that the proxy discrimination metric shows pronounced

heterogeneity across both age and ethnicity groups. Most notably, ethnicity code 1 exhibits the

highest levels of proxy discrimination, with a sharp peak for young drivers around age 20. While
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other ethnicity groups also show some proxy discrimination effects, these are generally of lower

magnitude. The age-related pattern of declining discrimination is consistent across all ethnic groups,

though the rate and extent of this decline varies. These findings align with and provide additional

insight to the observations in Lindholm et al. (2023), who noted the vulnerability of young drivers

with ethnicity code 1 in this dataset, to discriminatory pricing effects.
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Figure 4: Proxy discrimination metric PD evaluated for the age variable, for each ethnicity code

separately and for the portfolio as a whole.

While Figure 4 shows how the heterogeneity of proxy-discriminatory effects across the portfolio,

it does not provide an interpretation of the absolute scale of the PD metric. For example, the

portfolio shows PD = 0.00277 – but is that a lot? To gain insight into this question, we distort the

model under which the unawareness prices are calculated. Specifically, we add a fixed cost equal to

α to best-estimate prices, for those policyholders with D = 1, such that the distorted unawareness

price becomes
∑

d∈D
(
µ(X, D) + α1{D=1}

)
P(D = d | X). Details on this technique are given in

the Supplementary materials. There, we also provide an alternative model distortion that controls

the extent to which an ethnicity code is inferred more accurately from the data X, compared to

the baseline model.

In Figure 5, we show how the PD metric for the whole portfolio changes, with the level α of fixed

costs added to the costs of ethnicity code 1. As one would expect, the PD measure increases for
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positive α, since this means additional costs that are proxied by the covariates X in the calculation

of unawareness prices. The PD measure approximately doubles from its baseline of 0.00277 to

0.00531 for α = 0.02, while it reaches its approximate minimum of 0.00102 for a negative value

α = −0.04. From a practical perspective, since α represents the increase in claims frequency for

members of demographic group D = 1, we can use this analysis to benchmark what levels of the

PD metric mean in real-world terms. From the first row of Table 1, it can be seen that the value

α = 0.02 represents a 5.5% increase in the claims costs for ethnicity 1, while α = −0.04 represents

a 11% reduction. These are substantial changes for a real-world portfolio. Thus, by evaluation of

the sensitivity of PD to model distortions, we can establish that the values of PD we observe are

practically significant. More broadly this type of concrete interpretation can allow pricing actuaries

and other stakeholders to assess whether observed values of the PD metric constitute problematic

levels of proxy discrimination.
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Figure 5: Sensitivity of the PD metric, subject to distortions of the underlying model. The value

of α represents additional claims cost applied to ethnicity D = 1.

We now demonstrate the practical application of the PD attribution methodology of Section 2.5

using real insurance data. Specifically, we use attributions to identify the most important (single)

covariates in our dataset, which contribute most substantially to proxy discrimination when the

unawareness price is used. We calculate both the first-order (PDi) and total sensitivity (P̃Di)

metrics defined in Section 2.5 for each covariate. To approximate the conditional expectations in
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equations (10), we use a random forest model (Breiman, 2001), fitted to a 50, 000-record subset

of the dataset. Figure 6 shows these results for each covariate, where, for commercial reasons, we

have disguised the covariate name (except for the age). We observe that the first-order and total

sensitivity metrics produce different orderings of the covariates, though there is a broad agreement

between them regarding the most significant ones. Furthermore, the attribution analysis reveals

substantial variation in the extent to which different covariates contribute to proxy discrimination.

Several covariates demonstrate notable proxying effects, with covariate 17 showing the strongest

first-order contribution to proxy discrimination.
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Figure 6: First-order (PDi) and total sensitivity (P̃Di) of unawareness prices, for each covariate in

the real world dataset.

The total sensitivity measures generally exceed their first-order counterparts and, furthermore,

total sensitivities differentiate less between covariates. This indicates substantial interaction effects

(including statistical dependence) between covariates. Age demonstrates moderate proxy effects

by both measures, suggesting that while demographic variables naturally correlate with ethnicity,

their contribution to proxy discrimination is not necessarily dominant. Some covariates, e.g., 4 and

12, show notably different rankings between first-order and total sensitivity measures, highlighting

the complex interplay between rating factors in insurance portfolios.

In Table 3, we consider covariate 17, to which the value of the PD metric is most strongly

attributed using first-order sensitivities, and report its conditional distribution given each ethnicity
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code. Marked differences in the distribution of this variable across ethnic groups can be observed –

in particular the conditional distribution of the covariate is different for ethnicity code 1, compared

to other ethnicities. For instance, Level 4 represents 60.7% of ethnicity code 1 but ranges between

82.0% and 85.8% for other ethnicity codes. Correspondingly, for ethnicity code 1, there is a higher

frequency of observing Level 1 of covariate 17. The different distribution for ethnicity code 1 is

consistent with the higher proxy discrimination observed for this ethnicity in the earlier analysis

(Figure 4) together with the higher observed claim rates for this ethnicity shown in Table 1.

Levels of covariate 17

Ethnicity Code Level 1 Level 2 Level 3 Level 4 Level 5

1 0.201 0.004 0.171 0.607 0.017

2 0.153 0.003 0.016 0.820 0.009

3 0.156 0.001 0.009 0.823 0.011

4 0.137 0.002 0.018 0.832 0.011

5 0.124 0.002 0.006 0.858 0.011

Table 3: Conditional distribution of covariate 17, given ethnicity code (the table rows sum to 1).

Finally, we consider local measurements of demographic unfairness and proxy discrimination

using the tools developed in Section 3. First, we illustrate the local measure of demographic un-

fairness by estimating empirical versions of the distributions underlying (12), calculating δUF(x, d)

w.r.t. the unawareness prices predicted for the real-world portfolio and then plotting this quantity

against the age covariate, as well as against covariate 17 identified above. This analysis is shown in

Figure 7.

For the age covariate (left panel), we observe clear patterns of demographic unfairness that vary

both by age and ethnicity. Policyholders with ethnicity 1 (red points) experience consistently posi-

tive values of δUF(x, d), particularly in the 20-50 age range where values reach up to 0.12, indicating

these policyholders are charged higher prices compared to the demographically fair benchmark. In

contrast, policyholders with ethnicities 3-5 (green, blue and purple points) show predominantly

negative or near-zero values of δUF(x, d), suggesting they benefit from demographic unfairness in

pricing. The magnitude of unfairness appears to decrease with age across all ethnic groups, with

the spread of δUF(x, d) values notably smaller above age 60.

The right panel shows the relationship between δUF(x, d) and covariate 17, which takes discrete

levels 1-5, as analyzed in Table 3. Here we observe that the magnitude of unfairness varies substan-

tially across different levels of this covariate. The effect is particularly pronounced for ethnicity 1,

where level 4 shows the highest concentration of positive δUF(x, d) values. This suggests that the

interaction between ethnicity and covariate 17 is an important driver of demographic unfairness in

the portfolio. These patterns suggest that demographic unfairness is not uniform across the real

world portfolio but rather concentrated in particular combinations of age, ethnicity and other rating

factors.
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Figure 7: Local unfairness metric δUF(x, d) plotted against the values of age (left panel) and

covariate 17 (right panel).

A different picture emerges when we consider the local measure of proxy discrimination, δPD(x),

shown in Figure 8. The left panel shows δPD(x) plotted against age. There is a notable concentra-

tion of positive values for ethnicity 1 (red points) in the younger age ranges, particularly between

ages 20-40, suggesting these segments are most affected by proxy discrimination, which is a finding

in line with Lindholm et al. (2023). The effect appears to diminish with age, with values converging

closer to zero beyond age 60. Unlike the demographic unfairness measure, we observe both posi-

tive and negative values of δPD(x) across all ethnic groups, indicating a more complex pattern of

discriminatory effects.

The right panel displays δPD(x) against the levels of covariate 17, revealing distinct clustering

patterns. Level 3 shows the highest concentration of proxy discrimination effects, with values

reaching up to 0.06 particularly for ethnicity 1. This suggests that this level of covariate 17 may be

particularly effective at proxying protected characteristics, as discussed above. These visualizations

demonstrate how the local measure δPD(x) can identify specific segments where proxy discrimination

manifests most strongly, while also highlighting areas where pricing appears to avoid such effects.

The patterns suggest that proxy discrimination, while present, operates in a more nuanced way than

demographic unfairness. This is because the latter quantifies systematic differences in outcomes
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Figure 8: Local proxy discrimination metric δPD(x) plotted against the values of age (left panel)

and covariate 17 (right panel).

across groups without considering the level of risk within each subset of the portfolio, while the

former involves the implicit inference of protected characteristics from other variables within the

risk rating process.

5 Conclusions

We propose measures of demographic unfairness and proxy discrimination that can be widely ap-

plied to decision-making contexts were algorithmic predictions are used and these forms of unfairness

are of concern. The measure of demographic unfairness is already present in the literature (Bénesse

et al., 2024), while the measure of proxy discrimination is new. For that measure, we also propose

methods for attributing any proxying effects to the different covariates. These measures are global,

in the sense that they quantify unfairness or discrimination across a portfolio. In addition to study-

ing the properties of these measures, we develop related local measures, which allow a quantification

of demographic unfairness and proxy discrimination at the granular policy level.

The proposed methods were successfully applied to a real-world insurance claims data set, where

ethnicity is the protected characteristic. Importance analysis of the proxy discrimination metric

revealed the key covariates generating discriminatory effects, through implicit inference of ethnicity.

27



We note that the importance of those variables was not a priori known to us – in other words, the

analysis led to a deeper understanding of the portfolio. Furthermore, given the heterogeneity of

the portfolio, application of the PD measure to sub-populations of policyholders provides a more

granular understanding of the groups mostly affected by proxy discrimination.
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Numbered references in these Appendices point to equations, theorems, etc in the main paper.

A Additive decomposition of the PD and P̃D metrics

The question of additivity is important for interpreting the contributions of covariates to proxy

discrimination. Specifically, for the importance measures developed in Section 2.5 it will generally

be
∑q

i=1 PDi(π) ̸= PD(π) and
∑q

i=1 P̃Di(π) ̸= PD(π). Nonetheless, an additive decomposition

of PD(π) is achievable by employing the game-theoretical concept of the Shapley value (Shapley

et al., 1953) for the value functional S 7→ Var(E[Λ(π,X) | XS ]). While recent literature on model

interpretability has focused on the use of Shapley values to derive local model explanations for

given instances X = x (Lundberg & Lee, 2017; Aas et al., 2021), we use the Shapley value for a

decomposition of a global sensitivity measure, following Owen (2014); Owen & Prieur (2017); Song

et al. (2016). This leads to following definition.

Definition A. For the proxy discrimination metric PD of (7) and Λ(π,X) as in (9), denote

w(S) = Var(E[Λ(π,X) | XS ]), S ⊆ Q.

Then, we define the Shapley attribution of the covariate Xi to proxy discrimination as the metric,

PDsh
i (π) =

1

Var(π(X)) q

∑
S⊆Q\{i}

(
q − 1

|S|

)−1(
w(S ∪ {i})− w(S)

)
. (i)
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As the Shapley value is a well-known concept across literatures, we do not review its proper-

ties here. The key practical feature is that by the use of Shapley values we achieve an additive

attribution.
q∑

i=1

PDsh
i (π) = PD(π).

Furthermore, we note that while Definition A calculates the Shapley value with respect to w(S) =
Var(E[Λ(π,X) | XS ]) and is thus based on PDS , a result identical to (i) is obtained if instead we

additivise the alternative metric P̃DS (Song et al., 2016). Hence the distinction between the two

metrics of Definition A collapses when Shapley values are employed.

Furthermore, Shapley-based decompositions can also be applied to the local measures of Section

3. In Example 3, we had a single non-protected covariate X = X, but, in general, δUF(x, d) will

be a multivariate function. Then the question arises as to how individual covariates contribute

to this metric. This can be done by using standard local model explainability methods, e.g.,

by, analogously to (i), calculating Shapley values with respect to the alternative value functional

S 7→ E[δUF(X, D) | XS = xS ], where xS is a sub-vector of x for the specific instance of interest

(Lundberg & Lee, 2017; Aas et al., 2021). The same comments apply to the local metric for proxy

discrimination introduced in the next section.

B Response of PD metric to model distortions

To gain more insights into the scale of the PD metric as applied to the unawareness price, we design

distortions of the underlying model, which enable re-evaluations of the metric without needing to

re-fit the model. We assume that we have available the best-estimate prices µ(X, d), and the

conditional distribution P(D = d | X) for all d ∈ D. The unawareness price can be calculated by

averaging

µ(X) =
∑
d∈D

µ(X, d)P(D = d | X),

rather than a direct regression of claims on X (Lindholm et al., 2022).

There are two ways in which we will intervene in the model. First, we make the best-estimate

prices more sensitive to a particular demographic group, e.g., D = 1. Denote by ν(X, D) and ν(X)

the best-estimate and unawareness prices of the distorted model. We set

να(X, D) := µ(X, D) + α1{D=1}.

Hence α represents an additional fixed predicted claim cost corresponding to the demographic group

D = 1.

Second, we increase the model’s ability to proxy the demographic group by being able to infer

more accurately whether or not D = 1, given X. To do this consider an alternative probability

Qβ under which the event D = 1 can be better inferred from X. The model distortion operates

by increasing the variability of the random variable P(D = 1 | X) (since constancy implies inde-

pendence). For β > 0, let Gβ(·) by the cumulative distribution of a Beta(1 + β, 1 + β) variable.
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This has a sigmoid shape, resembling a step function as β gets large. Hence, we can apply the

transformation:

Qβ(D = 1 | X) = Gβ(P(D = 1 | X))

Qβ(D = d | X) = P(D = d | X)

(
1 +

P(D = 1 | X)−Qβ(D = 1 | X)∑
d′ ̸=1 P(D = d′ | X)

)
, d ̸= 1

It can be checked that Qβ(D = d | X) is a proper probability mass function in d. This

transformation makes the probability of Qβ(D = 1 | X) closer to 1 or 0 for specific ranges of X

meaning that there is a higher potential for proxy discrimination. (Note though that the marginal

probabilities are also affected i.e., generally Qβ(D = d) ̸= P(D = d).)

With this in place we can now work out the unawareness price of the distorted model:

να,β(X) =
∑
d∈D

να(X, d)Qβ(D = d | X).

By comparing the PD metric under να,β(X) with that under µ(X), one can understand now the

scale of the PD metric changes with the specified model distortions. By plotting the function

(α, β) 7→ PD(να,β(X)), we can get a sense of how distortions in the model that increase proxying

can impact the PD measure.
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Figure 1: Sensitivity analysis of the PD metric, subject to distortions of the underlying model.

In Figure 1, we produce this analysis for our real-world dataset of 4 in the main paper, for α

varying between -0.1 and 0.1, and β varying from 0 to 6. The role of α is already explained in the
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paper. The impact of increasing β, which controls the ability to infer demographic characteristics, is

positive but shows diminishing returns at higher values. The highest PD value of 0.0926 is achieved

when both direct sensitivity to protected attributes and the ability to infer them are highest. This

finding validates the PD metric’s capacity to detect not only explicit demographic sensitivity in

pricing but also the more subtle effects of proxy discrimination arising from enhanced demographic

inference. Notably, the metric exhibits higher sensitivity to changes in α than to changes in β,

suggesting that direct demographic sensitivity in best-estimate prices has a more substantial impact

on proxy discrimination than improvements in demographic inference capability.
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