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Abstract 

Successful disinformation campaigns depend on the availability of fake social media profiles 

used for coordinated inauthentic behavior with networks of false accounts including bots, trolls, 

and sockpuppets. This study presents a scalable and unsupervised framework to identify visual 

elements in user profiles strategically exploited in nearly 60 influence operations, including 

camera angle, photo composition, gender, and race, but also more context-dependent categories 

like sensuality and emotion. We leverage Google’s Teachable Machine and the DeepFace 

Library to classify fake user accounts in the Twitter Moderation Research Consortium database, 

a large repository of social media accounts linked to foreign influence operations. We discuss the 

performance of these classifiers against manually coded data and their applicability in large-scale 

data analysis. The proposed framework demonstrates promising results for the identification of 

fake online profiles used in influence operations and by the cottage industry specialized in 

crafting desirable online personas. 



1. Introduction 

Influence operations orchestrated by the Kremlin-linked Internet Research Agency (IRA) to 

target the 2016 US presidential election created the blueprint for large-scale disinformation 

campaigns leveraging social media platforms to seed division and explore socially contentious 

issues (Bastos & Farkas, 2019; Freelon et al., 2020). This playbook is based on the creation and 

management of fake social media profiles to push divisive narratives, including conspiracy 

theories that are impervious to mitigation strategies like fact-checking (Stencel & Luther, 2021). 

The supply chain of fake social media profiles is also central to luring individuals into fraudulent 

schemes, including the cottage industry of pig-butchering scams specialized in crafting desirable 

online personas. 

 Social media platforms have devised community guidelines to prevent the spread of false 

or misleading information about elections and civic processes. Twitter’s Civic Integrity policy 

lists misleading information about how to participate in an election or other civic process, false 

or misleading information that causes confusion or undermines public confidence in an election 

or other civic process, unverified information about election rigging, ballot tampering, vote 

tallying, or certification of election results, inciting violence or illegal behavior to interfere with 

an election or other civic process, and coordinated reporting, posting, or sharing of information 

to manipulate the public conversation (Twitter, 2021). 

 Upon identifying and attributing the source and target of such campaigns, social media 

platforms label, remove, or reduce the visibility of such content depending on the severity and 

reach of the violation. Very Large Online Platforms (VLOPs) also take action against accounts 

that repeatedly violate their policies, such as suspending or permanently banning the accounts. 

The monitoring and identification of such activities relies on users who report content in 

violation of the Terms of Service. Social media platforms also work with cybersecurity 



companies and a host of organizations that monitor and verify information related to elections 

and civic processes. 

 Within Twitter, these initiatives would eventually mature into the Twitter Moderation 

Research Consortium (TMRC). Starting in 2018 as a reaction to the large influence operation 

carried out by the IRA during the 2016 US Presidential Election (Gadde & Roth, 2018; Twitter, 

2019), Twitter’s then-head of Trust and Safety, Del Harvey, oversaw the company’s efforts to 

safeguard elections and deal with problematic content that could jeopardize healthy 

conversations. Data would be shared with the academic community in 2017-2018, initially under 

the umbrella of Twitter’s Elections Integrity initiative, which identified and ultimately removed 

false accounts, Twitterbots, and sockpuppets operated by the Internet Research Agency. The first 

data release included 2752 accounts the company attributed to the IRA. This list was expanded in 

early 2018 to include 3814 IRA-linked accounts (Harvey & Roth, 2018). In the following years, 

the TMRC would grow to include 115,474 unique Twitter accounts removed from the platform 

due to breaches of the Terms of Service. These accounts posted in excess of 100 million tweets 

linked to 57 separate influence operations. 

 The TMRC was the most comprehensive database of social media propaganda available 

to researchers. It stood out in providing the profile photos and the totality of the content posted 

by the fake accounts. This is critical for research on social media propaganda, which leverages 

visual markers to entrust veracity and trigger emotional response, as visual content is often 

assumed to be a candid reflection of reality (Powell et al., 2015). Research on inauthentic 

campaigns, however, remains relatively forthcoming, especially in comparison to the large body 

of work dedicated to textual misinformation (Brennen et al., 2021; Garimella & Eckles, 2020). In 

the following we address this gap by describing and testing a set of open-source models trained 

to identify visual markers of coordinated inauthentic behavior conspicuous in the TMRC 



database and ultimately adopted by the romance scam industry. The codebase for the models 

detailed in this study is provided with the training and test datasets, and we expect this material 

to be relevant for research in inauthentic online activity and mitigation strategies. 

 

2. Previous work 

Successful propaganda campaigns on social media are supported by the streamlined and cost-

effective creation of fake social media profiles that also marked a shift in the frames and 

compositional choices employed by propagandists. Social media propaganda has leveraged the 

affordances of social platforms and quickly supplanted the typical militaristic tropes of state 

propaganda by subtler, more insidious penetration tactics across communication networks (Arif 

et al., 2018). Digital tools such as Twitterbots, fake accounts, sock puppets, trolls, and 

compensated influencers have become the instruments of modern propaganda campaigns that 

circulate at scale owning to the socially embedded, impactful, and creative visual composition of 

such campaigns (Bastos & Mercea, 2019; Benkler et al., 2018). 

 Visual propaganda is increasingly employed by state and non-state actors operating vast 

networks of fake accounts on social media. These actors meticulously manipulate user profile 

images to influence and engage culturally and politically entrenched audiences (Bastos et al., 

2023). Previous research has expounded the profound impact of emotional and human-centric 

narratives on social media platforms, underscoring the effectiveness of strategies that exploit the 

vulnerability of human perceptions to biases (Seo, 2019), including racial prejudice promptly 

weaponized for political objectives (Freelon et al., 2020). Profile pictures play a significant role 

in visual misinformation, serving as initial touchpoints on social platforms and acting as visual 

representations of individuals and groups. These images are curated to motivate trust, evoke 

emotions, or resonate with specific lifestyles. Indeed, the inherent ability of images to command 



attention and evoke strong emotional responses renders them invaluable for persuasion (Iyer et 

al., 2014; von Sikorski, 2022). Propagandists have aptly utilized visual media to steer public 

opinion, exploiting cognitive biases and eliciting emotions to advance their agendas (Qian et al., 

2023). 

 Such visual mechanisms are critical to how information is perceived (Peng et al., 2023). 

Visual features such as realism or aesthetic appeal can lend undue credibility to misinformation, 

exploiting the very heuristics that influence audience perception. This is particularly relevant for 

social media profile pictures, with the presence of human faces on social media profiles being 

associated with higher user engagement, which in turn is conducive to trustworthiness and 

likability (Li & Xie, 2020; Sasahara et al., 2020). Consequently, the choice of a profile picture is 

more than a personal expression; it can serve as a powerful tool for influencing public perception 

by exploiting the complex interplay between knowledge, trust, and narrative alignment that 

underpins credibility. Audiences with limited knowledge about a topic are particularly 

susceptible to the persuasive power of information sources that appear credible, as the 

trustworthiness and expertise attributed to these sources can compensate for the audience’s 

limited knowledge (Khatib, 1989). 

 Previous research has charted how the visual strategies employed by the IRA displayed 

cultural insight and familiarity with the social identity of their targets by trafficking in the tropes 

of ordinary urban men and attractive young women. This body of work identified differences 

across campaign targets, with males more likely to appear in the BlackLivesMatter and Russian 

targeted groups, and females dominating the profile composition of Christians, Conservatives, 

and particularly Trump supporters (Bastos et al., 2023; Freelon et al., 2020). BlackLivesMatter 

activists and Christians were more likely to be depicted with high angles, whereas low angles 

prevailed among Trump supporters and Russian groups. Selfies and self-portraits prevailed in the 



profiles of BlackLivesMatter activists and Conservatives, while Christians and Trump supporters 

were framed with regular close-ups. Amateur profile photos were frequent, except for Trump 

supporters and Christian profiles, which featured a higher incidence of professional profile 

photos featuring sensually crafted images of young women typical of soft advertisements 

employed by the cosmetic industry (Bastos et al., 2023). 

 As such, social media profile pictures extend beyond simple visual identifiers as they 

embody users’ identities and often contain critical information that is not explicitly stated in the 

profile bio. Liu et al. (2016) found that the profile picture choices of over 66,000 Twitter users 

varied along with their personality traits, and highlighted their potential for use in 

misinformation campaigns. A prime example that speaks to the potential of visual 

communication for social media propaganda was the seminal influence operation during the 

2016 US presidential election, when the IRA manipulated profile pictures on Twitter to 

disseminate divisive social issues, reportedly influencing public opinion and effecting change to 

the process of democratic deliberation (Benkler et al., 2018). It manufactured credibility by 

manipulating social media profiles, creating sockpuppet accounts that mimic the behavior of 

genuine users, buying followers or likes to simulate popularity, and adopting the racial and 

ideological characteristics that resonate with the target communities (Freelon et al., 2020). Such 

activities contribute to the illusion of authenticity and can effectively mask the intentions of 

influence operations. 

 Fake Twitter profiles often adhere to distinct visual patterns or frames to maximize the 

odds of a successful group infiltration. These often include the exploitation of the female body to 

elicit emotional responses from the audience. The IRA in particular has expertly crafted credible 

and relatable online personas by devising profile pictures that appeal to different demographic 

groups, with the most salient features in the profile image composition encompassing social 



dimensions like gender, race, emotion, sensuality, and photographic framing among others (see 

Appendix 1 for the codebook, including the coded variables). This study is informed by this 

body of research and attendant literature on visual misinformation, including studies on 

deepfakes (Dobber et al., 2021; Hameleers et al., 2020; Sundar et al., 2021; Vaccari & 

Chadwick, 2020), bias in visual communication (Peng et al., 2023), and the narrower literature 

on audience’s perception of photographic images, often mistakenly assumed to represent 

‘unfiltered reality’ (Hameleers et al., 2020; Li & Xie, 2020; Sundar, 2008). While the literature 

on this topic is largely restricted to the manual coding of images, and is therefore of limited 

scalability, we seek to leverage Google’s Teachable Machine and the DeepFace library to build 

state-of-the-art classifiers that can meet this challenge. 

 

3. Methods 

While services based on large language models like GPT-4V and Gemini Pro offer powerful 

capabilities in image description, their generalist nature, lack of transparency, inherent bias, and 

high resource requirements hinder their application in scientific research where precision, 

specialization, and ethical considerations are paramount. While such models are suited for 

Natural Language Processing tasks, open-source models like TensorFlow and Keras are best 

suited for reproducible research in computer vision due to their flexibility, accessibility, 

performance, cost-effectiveness, and community support. The customizable capabilities, fine-

tuning resources, cost-effectiveness, end-to-end workflows from data collection to preprocessing, 

and transparency of pre-trained open-source models are particularly important for research 

leveraging deep learning and neural networks for tasks such as image classification, object 

detection, and image segmentation. 

https://osf.io/wbuxd?view_only=71b06a3d84b349f7a7a1d429755d1c26


Indeed, recent advancements in computer vision techniques have facilitated the extraction 

of visual attributes like face orientation and eye movement, which would otherwise be labor-

intensive to classify manually (Peng et al., 2023), and allowed for combining traditional content 

analysis of visual formats and machine learning algorithms to process large datasets (Lu & Pan, 

2022; Matz et al., 2019; Peng, 2018; Peng & Jemmott III, 2018; Talamas et al., 2016). We 

leverage these advancements to implement a two-phased approach in the classification of the 

TMRC database. The first phase relies on Google’s Teachable Machine to classify the images 

based on subjective criteria such as sensuality, but also objective technical indicators such as the 

type of photo and camera angle. The second phase relies on the DeepFace Python library to 

automate the classification of images by gender and race while also assessing the precision and 

reliability of the library. 

 Teachable Machine is a machine-learning tool that offers an intuitive interface for model 

training and deployment. It enables users to easily train models using a variety of drag-and-drop 

inputs like images, sounds, and poses. The platform operates by collecting and processing 

labeled examples through deep learning algorithms to identify patterns in the data. Teachable 

machine’s base model MobileNet was trained on a vast dataset with several categories and the 

knowledge acquired during its foundational training can be repurposed through transfer learning 

to recognize new user-defined classes (Figure 1), thereby requiring minimal data and training 

time for new models (Carney et al., 2020). These models can be customized by adjusting 

parameters like epochs, learning rate, and batch size to alter the length and speed of the training 

cycle and to improve precision and recall while preventing overfitting and overshooting. Once 

trained (Zhang & Peng, 2022), these models can be deployed elsewhere using TensorFlow. 



 

Figure 1: Teachable Machine’s transfer learning model (Google, 2017). 

 

The model training entailed two phases. The first used Teachable Machine for the classification 

of sensual images. Initially set to 50 epochs, the performance evaluation suggested that accuracy 

would improve by increasing the number of epochs without affecting the batch size and learning 

rate. Key performance metrics such as accuracy per class, confusion matrix, accuracy per epoch, 

and loss per epoch were monitored. An increase to 83 epochs resulted in sensual image 

classification accuracy improving from .92 to .98, while non-sensual image accuracy declined 

slightly. Accuracy started to plateau above 90 epochs, suggesting overfitting and selecting the 

83-epoch model the most effective, which was then exported as Keras for downstream analysis 

using Python. Benchmarking for the sensuality category was performed against the ‘racy’ 

category in Google Vision API, which was trained on ImageNet to identify suggestive or 

provocative elements, including minimal clothing, evocative poses, or close-ups of sensitive 

body parts without being explicitly adult in nature (Szegedy et al., 2015). 

 Six other models were trained using MobileNet and PoseNet architectures to classify 

camera angles and types of shots, with a standard epoch count of 50 and a batch size of 16. 

Learning rates were set at .001 for MobileNet and .0001 for PoseNet. Manual validation with 

random images and subsequent error feedback refined the models without altering the initial 



parameters to maintain training reliability. The outcome of these sessions resulted in the optimal 

epochs for each model after adjustments for performance: CAD1-MN at 60 epochs, CAD1-PN at 

62, CAD2-MN at 50, CAD2-PN at 50, TSD-MN at 80, and TSD-PN at 60. These adjustments 

achieved a balance between low loss and high accuracy, with CAD1 models requiring additional 

epochs and CAD2 models achieving near-perfect results. 

 The other models were trained using the DeepFace library, which is optimized for face 

recognition and performing detailed facial attribute analysis (Serengil & Ozpinar, 2020). 

DeepFace incorporates various state-of-the-art face recognition models, including VGG-Face, 

which was trained on 2.6M images of 2.6K individuals and features an accuracy of 97% for 

gender and 68% for race prediction, but also FaceNet, OpenFace, DeepID, Dlib, and ArcFace. 

DeepFace’s features cover initial facial feature detection and alignment to representation and 

verification through multiple facial detectors, including OpenCL OpenCV, SSD, MTCNN, 

DLIB, and RetinaFace. Key to our analysis is the Multi-Task Convolution Neural Network 

(MTCNN), a three-stage cascade framework for face detection and facial landmarks localization 

that we leverage as the primary facial recognition system owing to its high accuracy (Zhang et 

al., 2020). MTCNN’s three interconnected deep learning models, Proposal Network (P-Net), 

Refine Network (R-Net), and Output Network (O-Net) progressively improve the accuracy of 

face detection by identifying potential face areas in the image, refining the scan area to reduce 

false positives, and outputting precise face locations and landmarks (Zhang et al., 2020). 

 DeepFace includes a specialized module for detailed facial attribute analysis integrated 

with the face recognition module. This module excels at predicting complex attributes like age, 

gender, emotion, and race. Facial landmarks, such as those around the eyes, nose, mouth, and 

jawline are crucial for machine learning models to accurately determine facial structure and 

orientation. They also provide essential information about facial structure and orientation and 



enable effective face normalization, especially by measuring the distance between the eyes and 

the positions of mouth corners for emotion analysis (Çeliktutan et al., 2013). Gender and race 

identification is based on deep learning models pretrained on extensive datasets, particularly the 

VGG-Face model. These models use facial landmarks identified by MTCNN in conjunction with 

deep learning pattern analysis to detect and analyze attributes like gender, emotion, and race. The 

VGG-Face model features an accuracy of 97% for gender and 68% for race prediction.  

  

4. Framework 

We build on the categories mapped in the body of work reviewed above to devise an analytical 

framework based on DeepFace and Teachable Machine that can identify the compositional 

tropes of visual propaganda. By processing and analyzing the TMRC database, we identify social 

and technical indicators in the composition of these images, including camera placement, zoom 

angles, and distance, which are indicative of the intention to distort one’s perceptions of the 

subject (Huang et al., 2002). Camera angles can be used to subtly shape perceptions and power 

dynamics, while the type of shot typically influences the viewer’s emotional connection to the 

subject (Wang & Cheong, 2009). This machine-learning framework offers the possibility of 

rapid scalability and support for the analysis of inauthentic behavior exploited in political 

propaganda and online scams that manipulate one’s emotional response (Qian et al., 2023). 

 This framework relies on computer vision, a specialized branch of computer science 

focused on enabling machines to interpret digital images, a set of techniques that can bridge the 

gap between traditional research methods and artificial intelligence (Joo & Steinert-Threlkeld, 

2018; Torres & Cantú, 2022; N. W. Williams et al., 2020). In addition to the variables mapped in 

the research discussed above, we also identify sociodemographic variables such as gender and 

race that also influence the perception of credibility (Khatib, 1989). As discussed in the previous 



sections, social bots and sockpuppets carefully emulate cultural and sociodemographic traits to 

maximize perceived in-group association and credibility within the target group. This perceived 

membership, crafted through mimicry and strategic alignment, fosters intergroup trust that is 

critical to influence operations masquerading as trustworthy sources (Marwick & Boyd, 2011; 

Metaxas & Mustafaraj, 2010; Zimmer & Proferes, 2014). In the following, we detail the 

categories comprising this framework for the study of inauthentic visual communication. 

 

4.1 Gender and Race 

As a social construct, gender encompasses the expected roles, behaviors, and activities assigned 

to individuals based on societal norms (Butler, 1999; West & Zimmerman, 1987). Gender norms 

guide the personalization strategies employed by real and fake social media profiles alike, with 

the visual representation of gender in profile images often reinforcing societal stereotypes 

whereby women are objectified and depicted in a sexualized manner (Bastos et al., 2023; Davis, 

2018). Gender is thus a central dimension in the creation of fake profiles and the construction of 

digital identities (Muscanell & Guadagno, 2012; Toma & Hancock, 2012), with ‘catfishing’ 

epitomizing the centrality of such social constructs to craft persuasive and convincing personas 

that mimic real-life stories and engage in communication styles that adhere to stereotypical 

gender expectations. 

 Another meaningful social category is race (Lewontin, 1972), which operates as a 

powerful stratifier and is central to the persistence of inequalities (Bonilla-Silva, 1997). Race 

also shapes cultural norms and traditions by intersecting with intergroup interaction and intrinsic 

biases, stereotypes, and prejudice (Omi & Winant, 2014). Race is thus central to identity 

formation, intergroup relationships, political participation, and cultural acceptance (Bonilla-

Silva, 1997). Racial categorizations intersect with other categories to suppress or wield structures 



that legitimize power imbalances and inequalities (Crenshaw, 1997), including of course the 

intersection of race and gender, which further compounds their influence on individual 

experiences (Smedley & Smedley, 2005). The intersection between gender and race, 

furthermore, is particularly challenging for machine learning algorithms to evaluate (Buolamwini 

& Gebru, 2018). 

 

4.2 Sensuality 

Sensuality is a more difficult social vector to define due to its experiential (subjective) and 

physical (tangible) dimensions. But the distinction between sensuality and nudity is relatively 

straightforward. Ringrow (2016) describes sensuality as transcending nudity, aiming to evoke 

sexual feelings through a variety of sensory stimuli beyond the visual. Visual elements like 

parted lips have been associated with sexual arousal, yet cultural contexts are central to how 

these cues are rendered socially. In some cultures, including Middle Eastern and South Asian 

cultures that feature in the TMRC, any form of female nudity in the public space is perceived as 

sexualized; in other cultures, however, nudity may be featured without overt sexualization. These 

distinctions may appear exceedingly subtle for social media propaganda, where the 

representation of women leans towards sensual tropes and veers towards objectification, with 

female avatars often showcasing their attractiveness by foregrounding their physical appeal 

(Davis, 2018; Rose et al., 2012). 

 The perception of sensuality also varies substantially across the groups and cultures 

targeted by influence operations in the TMRC database, chiefly because sensuality encompasses 

the myriad ways humans experience physical pleasure. Skin exposure and skin color, for 

instance, have played significant roles in shaping perceived notions of sensuality across social 

groups. Before skin color became primarily associated with race and class, skin tone carried 



sexual connotations (Frost, 1990). Sensuality is not only rooted in tangible biological factors; it 

is culturally and historically defined, with the Japanese manga-style portrayal of beauty marked 

by slender and elongated legs having shaped the more recent perceptions of sensuality in East 

Asian culture (Starr et al., 2020). Sensuality is nonetheless successfully commodified by the 

advertising and cosmetics industry to evoke sensory experiences that shape emotional 

engagement and brand loyalty (Roberts, 2005). In this context, sensuality is used to market 

products to women without their narrative control (Wolf, 1991). 

 Given the above, we parameterize sensuality as a binary value (T/F) measured on visual 

elements such skin exposure, voluptuous hair, body pose, and facial expressions, including half-

smiles and parted lips. Our approach draws on the insights of sensuality as extending beyond 

mere nudity to evoke sexual feelings through diverse sensory stimuli. Visual cues are however 

context-dependent and as such we sought to consider the cultural nuances highlighted by 

Ringrow (2016) by employing coders outside Europe and North America. Our coding scheme 

also takes into account what has been termed ‘beauty pornography’ (Wolf, 1991) in reference to 

subtle visual elements like parted lips that are linked to sensuality and suggest implicit 

sexualization even in the absence of overt nudity. Intercoder reliability for the manually coded 

data was performed across the three coders who independently assessed a random sample of 

images, with Krippendorff’s alpha of .739 indicating substantial agreement among coders despite 

the perennial challenges in defining sensuality. 

 

4.3 Camera Angle 

The angle of the camera is broadly defined by whether the subject is shot from above, below, or 

at eye level to frame the object through high, low, or neutral angle shots (Merkt et al., 2022). The 

perceptions linked to camera angles are influenced by evolutionary cues, social learning, and 



embodied cognition. Evolutionary cues stem from height signaling dominance and threat 

(Freedman, 1979), and social learning literature established that power associations with 

verticality begin in childhood and persist into adulthood (Schwartz et al., 1982). Research on 

embodied cognition, finally, posits that abstract concepts like power are based on physical 

experiences whereby higher positions translate to more power (IJzerman & Koole, 2011). 

Language reflects these perceptions by equating power with upward positions and lack of power 

with downward trajectories. It also associates vertical angles with dominance or subordination 

(Meyers-Levy & Peracchio, 1992). 

 Changes in camera angle can lead to significant and predictable changes in how the 

physical and personal characteristics of the photographed object are judged. Low-angle shots 

often make the object appear taller and stronger, and are thus employed to portray power and 

courage (Figure 2). Eye-level shots, on the other hand, connote a sense of equality, parity, or 

neutrality. High-angle shots tend to present the photographed subject as weaker or frail and 

manufacture a sense of vulnerability (Kraft, 1987). Notably, men tend to be depicted from low 

angles to suggest dominance and power, whereas women are often shown from high angles to 

suggest fragility or lower status. Memory recall for these traits was found to be more accurate 

than for the specific camera angles that influenced these judgments. Huang et al. (2002) also 

found that the perceived differences in height influenced the outcomes of group decision-making 

tasks over video chat, with taller participants having more influence over the group. 

 

4.4 Type of Shot 

The type of shot in visual storytelling allows for conveying emotions, emphasizing context, and 

connecting with viewers on a personal level by changing the camera’s distance from the subject 

in focus. A common directing technique, camera distance is used to change the emphasis 



between the subject and the surrounding scene and it affects the audience’s emotional 

involvement and identification with the photographed subject (Canini et al., 2011). These effects 

are explained by proxemics thresholds where the perceived closeness increases persuasiveness 

and likability to suggest a subliminal familiarity (Grayson & Coventry, 1998; Mehrabian & 

Williams, 1969; Patterson, 1968). The distance between the photographed subject and the viewer 

decreases as we move from long to mid-shots, close-ups, and big close-ups (Arijon, 1991; Hall, 

1990), with the camera distance often dictating audience attention and closer shots garnering 

more focus (Wang & Cheong, 2009).  

 



 

Figure 2: Camera angle and camera distance in visual composition (Chandler, 2001). 

 

Long shots establish context by offering a wide perspective and including the subject and its 

environment, whereas medium shots cut at the waist, blending the subject with their setting to 

foreground a personal view of gestures and expressions that strike a balance between subjects 

and their surroundings. This is in sharp contrast to close-ups that fill the screen with the subject’s 

face and shoulders for a detailed, intimate view of their expressions, and that are designed to 

highlight subjective experiences and evoke emotions (Canini et al., 2011). Large faces in photos 

also correlate positively with engagement, as larger objects attract more attention (Peng, 2021). 

The face-ism index, which measures face prominence in photographs, suggests that more visible 

faces are associated with perceptions of ambition and intelligence, whereas greater body 

prominence foregrounds traits like attractiveness and emotion (Archer et al., 1983). Figure 2 

shows variations in camera angle and distance that are central to visual composition. 

The model outputs both the predicted class and the confidence score for each prediction, 

with the probability distribution expressed in percentages across each dimension set against a 

threshold value to convert the continuous probabilities into discrete classes. A threshold of 75% 

is employed for binary classifications such as sensuality and gender, so if the predicted 



probability for a class is above this threshold we consider the outcome to be positive. A threshold 

of 50% is employed for multidimensional classes like race, type of shot, and camera angle, so 

that the class with the highest probability (above 50%) is selected. In practical terms, the 

DeepFace model classifies gender and race based on the highest confidence scores for each 

category as described in the literature (Agarwal, 2018; Shorten & Khoshgoftaar, 2019; Serengil 

& Ozpinar, 2020; Raj et al., 2020). In the remainder of this study we evaluate the performance of 

this framework for the identification of fake social media profiles, with the codebase openly 

available on the project’s repository. 

 

5. TMRC 

Twitter has curated a large database of influence operations that includes user accounts and the 

content posted by this cohort of users. Originally made available to researchers through their 

Civic and Election Integrity, this initiative evolved into a large database known as the Twitter 

Moderation Research Consortium. In addition to comprehensive visual information, the database 

offers information about the number of removed accounts, number of tweets, languages, 

hashtags, reported locations, and technical indicators of location from a broad spectrum of 

accounts from various regions around the world (Gadde & Roth, 2020; Roth, 2019). Since 

Twitter’s acquisition by Elon Musk, however, data related to the Twitter Moderation Research 

Consortium is no longer available. 

The TMRC is separated by influence operation, with specific datasets reflecting the 

geographic coverage of the campaign. The TMRC14_APAC_3, for instance, contains content 

from accounts that predominantly posted in Urdu. It details the removal of 568 accounts that 

collectively posted over 4 million tweets reportedly from Pakistan, often featuring sensual 

women (see Figure 3). The geographic coverage of the database has a considerable impact on the 

https://osf.io/nrdyj/?view_only=71b06a3d84b349f7a7a1d429755d1c26


analysis of the data, particularly for context and culturally dependent variables like sensuality. 

To this end, we manually coded images with characteristics associated with femininity, 

corporeality, and eroticism across the many regional contexts and the varied perceptions of 

sensuality that emerged from the data. The selection ensured that the training corpus included a 

balanced representation of sensual images across different cultures while also preventing 

misclassification of non-sensual images that may share similar visual properties with sensual 

ones. A total of 2,000 images were manually coded across each category to establish a 

benchmark. For camera angle, we also relied on the CAD2 training set to address variability in 

more controlled conditions. 

Figure 3: Sample profiles from TMRC14_APAC_3 identified as sensual. 

 



6. Results 

6.1 Sensuality 

We start by identifying sensual images in the entire TMRC database and inspecting the 

performance of models generated by Teachable Machine against Google Vision API (Figure 3). 

Benchmarking for this comparative analysis was set using a hand-curated dataset of 500 images 

for each category from the TMRC dataset, distinctly labeled as sensual or non-sensual. Key 

performance indicators include accuracy of .87 and .72 and precision of .65 and .35, for 

Teachable Machine and Vision API, respectively. They also include recall of .48 and .80, F1 of 

.55 and .49, and specificity of .94 and .71 for Teachable Machine and Vision API, respectively. 

Figure 4 shows the confusion matrices of both models. We also inspected the Receiver Operating 

Characteristic (ROC) curve for further performance comparison between Teachable Machine and 

Vision API (Figure 4). 

  

Figure 4: Confusion matrices for the classification of sensual images on Teachable Machine 

(Figure 4a) and Vision API (Figure 4b). 

 

While Teachable Machine presents a notably higher recall rate of .80, precision was significantly 

lower at .35 compared to Vision API’s score of .65. Vision API also showed higher accuracy 



(.87) compared to the Teachable Machine (.72). This suggests that while Teachable Machine was 

better at correctly identifying sensual images, it also misclassified a larger number of non-

sensual images as sensual. The F1 Score, which balances precision and recall, is slightly higher 

for Vision API (.55) compared with Teachable Machine (.49), and in specificity Vision API 

outperforms Teachable Machine with a score of .94 against .71, indicating its superior ability to 

correctly classify non-sensual images. But the Receiver Operating Characteristic (ROC) curve 

area provides some nuance to these findings. Indeed, the area under the curve (AUC) for 

Teachable Machine was .75, slightly exceeding Vision API’s AUC of .71. In other words, while 

Vision API reported a higher overall accuracy, Teachable Machine showed a marginally better 

discriminative ability when considering the recall. Figure 5 unpacks these results. 

 

Figure 5: Receiver Operating Characteristic (ROC) curves for Google’s Teachable Machine and 

Vision API in identifying sensual images in the TMRC dataset. 



 

6.2 Camera angle 

Given that the data entail categorical variables that have an inherent order (Low < Neutral < 

High), Kendall’s tau-b (τb) correlation coefficient was chosen to assess the concordance between 

the predicted and actual values for camera angle. CAD2-MN displayed the weakest association 

with Kendall’s tau-b of .0682. This was followed by CAD2-PN, which showed a slight positive 

concordance at Kendall’s tau-b of .1196. CAD1-PN showed a mild agreement with tau-b of 

.1902, while CAD1-MN stood out with a more robust moderate concordance of Kendall’s tau-b 

of .3044. These values highlight the gradation in the models’ effectiveness in maintaining the 

inherent order of the camera angle categories. The increasing positive values show that there are 

more concordant pairs where the order is maintained compared with discordant pairs.  

 

  

Figure 6: Confusion matrices for camera angle models. 

 

The models trained on CAD1 outperformed those trained on CAD2. For the same data, the 

models trained on MobileNet performed slightly better than those trained on PoseNet. We further 

inspected their performance for each category and found that all models offered high precision 



for neutral angles, but the recall for neutral images is higher for CAD1-PN and lower in 

comparison with CAD1-MN. We observe that the poorer-performing models CAD2-MN and 

CAD2-PN exhibit higher recall values for both high and low angles, but their precision values 

are notably lower. The confusion matrices show a significant overlap between neutral and other 

categories for the low-performing models (Figure 6). Upon inspecting the ROC curves for the 

better-performing model, we infer that CAD1-MN does a better job of distinguishing between 

categories shown by its slightly higher AUC values (Figure 7). 

 

 

 

 

Figure 7: ROC curves for camera angle models. 

 

We relied on a manually classified dataset (n=620) where all six categories were equally 

represented to estimate model performance for camera angle and type of shot. As this model 

includes categorical, non-ordinal variables, Cramer’s V was used to quantify the association 

between the predicted and actual classifications. Both models performed well with Cramer’s V 

values of .756 and .773 for TSD-MN and TSD-PN models, respectively. The higher Cramer’s V 

value translates to higher precision, accuracy, recall, and F1-scores overall, particularly for big 



close-ups and long shots. Illustrations were included only under TSD-MN and are classified with 

a high precision score of .95. The performance of TSD-PN in mid-shot is superior to that of 

TSD-MN, but both models perform poorly for close-ups and selfies, with the confusion matrices 

showing that the models fail to accurately distinguish between selfies and close-ups. To a lesser 

extent, this is also the case for mid-shots (waist shots) and long-shots classified by TSD-MN. 

Looking at the ROC curves, however, we find that TSD-MN has overall more differentiating 

capabilities than TSD-PN as indicated by the higher AUC values (Figure 7). 

 

6.3 Gender and Race 

Identifying gender and race from profile images is a relatively established but fraught area in 

computer visual analysis (Buolamwini & Gebru, 2018). We manually classified the perceived 

gender and race displayed in a subset of the profile images and tested the accuracy of the 

DeepFace algorithm. The algorithm performed particularly well in detecting the gender 

dimension, with a precision of 99.5% and a recall of 99.5% for men, though precision and recall 

for women were lower at 73.8% for both parameters. Taken together, the DeepFace algorithm 

achieved an accuracy rate of 84.44% in gender identification, with an F1-score of 84.43%. 

Accuracy for racial categories varied across subgroups. The model correctly identified Asians 72 

times, but often misclassified Asians as Latinos, Middle Eastern, or White. 

Overall, the model was moderately effective by achieving accuracy of 62.42%, precision 

of 63.49%, and recall of 62.42%. The F1-score, which balances precision and recall, was slightly 

lower at 60.39% compared with the gender classifier. Figure 8 shows the confusion matrices for 

the categories gender and race. The combined classifier yielded a high accuracy rate in gender 

classification for the Latino Hispanic group, with men being identified correctly 56 times and 

women 26 times, although 10 women were misclassified as men. This translates to an accuracy 



rate of 89.13% and an F1-score of 87.84%. The ROC curve features an impressive area of .86, 

indicating strong diagnostic capability, with precision of .9077 and recall of .8913, another 

marker of a high rate of correct positive predictions. 

 

  

Figure 8a: Confusion matrix for gender (manual vs. DeepFace classification). Figure 8b: 

Confusion matrix for race (manual vs. DeepFace classification). 

 

But the intersection between gender and race showed greater variability. The algorithm was good 

at identifying Asians, with a perfect record for men and a high success rate for Asian women. 

Gender accuracy for Asians was 80.77%, with an F1-score of 80.38%. The ROC curve for 

Asians is .86, with precision of .8780 and recall of .8076, comparable to that of the Latino 

Hispanic subgroup and indicating solid model performance. The algorithm was also effective at 

identifying gender within the Indian subgroup, with accuracy of 89.33%, precision of .9131, and 

recall of .8933. The F1-score was similarly high at 89.31% with the ROC at .90.  



  

  

  

Figure 9: Confusion matrices for the intersection of gender and the following racial categories: 

Latino Hispanic subgroup (Figure 9a); Asians (Figure 9b); Indians (Figure 9c); Middle 

Easterners (Figure 9d); Blacks (Figure 9e); and Caucasians (Figure 9f). 



 

The algorithm’s performance for the Middle Eastern subgroup was also effective, with accuracy 

at 88.89%, precision of .9099, and recall of .8888. The F1-score of 88.84% and the ROC curve 

of .89 are similarly indicators of good performance. The least accurate subgroup was of 

individuals of African descent. While the algorithm could perfectly identify men, it had only 

50% accuracy for women, leading to an overall accuracy rate of 67.5% and an F1-score of 

67.48%. The ROC curve was also lower at .75, with precision at .8314 and recall at .675, a result 

of the model’s moderate ability to detect true positive cases. Finally, the algorithm was also 

effective at the intersection of gender and race for Caucasians, with white men and women 

identified correctly at rates of 96.6% and 87.2%, respectively, which is in line with the broader 

biases identified in mainstream machine learning algorithms (Buolamwini & Gebru, 2018; 

Kleinberg et al., 2018). The model’s accuracy stood at 89.72% with an F1-score of 88.05% and 

ROC of .92 AUC. Precision was similarly high at .9181, indicating accurate positive predictions, 

with strong recall at .8971, reflecting the model’s capabilities in identifying true positives. Figure 

9 shows the confusion matrices for the intersection of gender and race across subgroups.  

 

7. Discussion 

The comparison between Google’s Vision API and Teachable Machine in identifying sensual 

images provides insightful revelations about the performance of both models. The model built 

with Teachable Machine to identify sensual images in profile pictures of social media 

propaganda underperformed relative to the Vision API ‘racy’ category, a classifier that identifies 

content that is suggestive or provocative, often characterized by skimpy attire, provocative poses, 

or close-ups of sensitive body areas. Unsurprisingly, Vision API shows superior performance in 

terms of accuracy, precision, and specificity, likely due to being trained on ImageNet, a 



repository of approximately 100 million images. This vast exposure allows the model to 

generalize better across a myriad of image types and contexts, leading to classifications with 

higher accuracy and precision. In contrast, Teachable Machine may face constraints due to the 

specificity of its training data even if it leverages MobileNet’s transfer learning, which was 

originally designed to discern between 1000 classes and may therefore limit its ability to 

generalize across contexts. 

 This limitation could be a significant contributor to Teachable Machine’s relatively lower 

accuracy and precision. While it offers the benefits of customization, it may lack the 

sophisticated fine-tuning and continuous optimization dedicated to products like Vision API. 

Despite being outperformed in accuracy, precision, and specificity, the Teachable Machine 

algorithm surpasses Vision API in recall, achieving a score of .80 against Vision API’s .48. 

Furthermore, the ROC curve for the Teachable Machine algorithm stands at .75, marginally 

outperforming Vision API’s score of .71. The F-scores of both models are also comparable, with 

Teachable Machine scoring .49 against Vision API’s score of .55. Perhaps more interestingly, 

the false positives triggered by Teachable Machine when classifying sensual images follow a 

discernible pattern, with close-up shots of white or fair-skinned women under bright lighting 

conditions having been often mistakenly classified as sensual. Interestingly, this pattern observed 

in the misclassification speaks to long-running social constructions around sensuality, with Frost 

(1990) arguing that skin color and tone initially held sexual connotations before becoming 

associated with race and class. 

 The identification of camera angles and type of shots is greatly dependent on the quality 

of the facial images available. Clear and sharp images yield much more accurate verification and 

recognition (Agarwal, 2018), but many of the images in the TMRC database are of subpar 

quality. The DeepFace algorithm may further worsen the signal by focusing on and cropping 



facial regions, which leads to further quality loss. Proactive image preprocessing can mitigate 

some of the effects associated with cropping and improve classifier accuracy. By fortifying the 

quality of images prior to analysis, the performance of facial recognition systems can be 

substantially enhanced (Raj et al., 2020). Additionally, the abundance of AI beautification filters 

built into smartphones can also distort facial landmarks that are critical for algorithms that 

identify photo composition, but also categories like gender and race (Broz, 2022; Yang, 2021). 

Such alterations by AI filters challenge facial recognition systems like DeepFace and lead to 

potential misclassification when features fail to align with the trained data. 

 This seems to be the case in the observed performances of models CAD1 and CAD2. 

While the latter was trained on a larger dataset, it was overperformed by CAD1 likely due to the 

stratified random sampling of TMRC folders and the resulting overfitting of CAD2. Similarly, 

MobileNet overperformed PoseNet models, which rely on landmarks for image composition. 

This is likely a result of occlusion, a significant hindrance in image processing that diminishes 

available visual data (Antoniadis, 2022). In PoseNet, occlusion can lead to inaccurate detection 

of key points essential for angle estimation, and is particularly problematic in common image 

scenarios like selfies. In contrast, models analyzing shot types showed better performance, 

indicating effective feature extraction and limited occlusion, as the focus was on the screen space 

occupied by the subject. PoseNet models nonetheless struggled with big close-ups and selfies 

due to reliance on body landmark key points, which are compromised by shot proximity and 

body orientation. 

 Finally, gender classification is an inherently challenging task due to the complex, non-

binary dimension of gender identity, in sharp contrast to more stable characteristics tied to sexual 

dimorphism (Butler, 1999; West & Zimmerman, 1987). As gender identity is largely fluid and 

constructed, and ultimately influenced by intersectionality with race, class, and age (Cole, 2009; 



Crenshaw, 1997), it presents a formidable challenge for tools like the DeepFace, which often 

struggles with gender classification due to the dynamic nature of such identities, particularly for 

visuals that do not conform to the traditional gender binary or whose appearance has been altered 

by camera filters. This is in line with previous research that cautioned against gender 

classification based on facial structures without taking into account the contextual and social 

aspects of one’s identity (Bastos et al., 2023). A more comprehensive model would analyze not 

just facial features, but also user-generated content like bios and self-reported names to portray 

the array of complex elements shaping one’s gender identity on social platforms. 

 

8. Conclusion 

The framework detailed in this study can be leveraged to identify influence operation at scale 

given their reliance on stable visual markers such as sensuality and camera angle. Future 

research should expand the framework described in this study by incorporating additional 

conceptual dimensions beyond gender, race, sensuality, camera angle, and type of shot that are 

salient in political propaganda and the cottage industry of romance scams. This framework for 

computer vision communication should prove particularly relevant for social media research on 

Instagram, TikTok, and other services that rely on rich social media content. Indeed, the Keras 

model detailed in this study can be promptly applied to any set of images collected from social 

media platforms. It should be possible to set up a data collection pipeline based on hashtags 

and/or keywords that would then be processed to identify higher-than-average levels of sensual 

content that intersect with gender, race, emotion, and specific photographic frames. Such an 

automated approach could yield significant results in early-detection systems or be integrated 

into downstream visual social media research analysis. 



 Another immediate application of this framework, beyond the identification of 

inauthentic political campaigns, refers to the automated detection of fake social media profiles 

explored by the cottage industry of frauds and scams using desirable online personas. Leaked 

manuals of pig butchering scams explicitly mention that fake social media profiles of men should 

craft personas with developmental disorders or previous psychological trauma to exploit the 

victim’s maternal love. Fake social media profiles of women, on the other hand, require no such 

backstory but include detailed information about their visual composition. These profiles should 

not be crude; they should feature a naughty but cute nickname and present attractive young 

females who appear wealthy and educated (Reddit, 2021; Faux, 2023). These guidelines are 

supposed to arouse the victim’s inner dreams and goals and entail another dimension of social 

infiltration. 

The framework could also be expanded to other directions of research by training visual 

characteristics not covered in our Keras model (e.g., the incidence of political slogans, military 

fatigues, or tactical gear). Further training of the data through Teachable Machine is likely to be 

required, but it would suit research agenda contending with information that needs to be 

processed efficiently and with relative ease of implementation. The most salient challenges in 

expanding the framework detailed in this study include the selection of an appropriate pretrained 

model that resonates with their data in terms of subjects, sources, and styles. To this end, an 

examination of the labels in the pretrained dataset can offer important insights into the potential 

alignment with the research objectives of the study, even if the availability of pretrained models 

remains limited (Zhang & Peng, 2022). 

 Ultimately, DeepFace and Teachable Machine offer a user-friendly machine-learning 

framework that can effectively identify fake social media profiles, visual disinformation, and 

inauthentic social media activity by leveraging deep learning. Future research seeking to expand 



on our model should begin by collecting visual data from social media that are then preprocessed 

through resizing, scaling, and data augmentation. The pre-trained models detailed in this study 

can then be used for feature extraction and fine-tuning on this dataset through transfer learning. 

The training involves building and customizing convolutional neural networks (CNNs) to 

identify visual markers typical of inauthentic and manipulated content. The final model, 

evaluated for accuracy and robustness, can ultimately be deployed to monitor and flag potentially 

deceptive visual content online in real time 

 Teachable Machine also has however limited interpretability tools, which are central for 

building trustworthy and transparent machine learning models (Doshi-Velez & Kim, 2017), and 

lacks support for data augmentation techniques that are important for image classification tasks, 

including random rotations, zooming, and flipping that artificially expand and diversify the 

training dataset (Shorten & Khoshgoftaar, 2019). The absence of such features is particularly 

salient in tasks that demand fine distinctions between categories and small-sized datasets, or 

where augmentation could significantly enhance model performance. These models, however, 

offer a tangible and effective framework for analyzing inauthentic social media campaigns at 

scale, with the Keras model trained for this study offering an off-the-shelf tool for research on 

influence operations exploiting gender, sensuality, and race to infiltrate target groups with 

messages that are segmented into groups with clear visual identities emphasizing selfies and 

sensual young women. Indeed, sensuality is quickly becoming a key variable associated with 

influence operations replicating the Kremlin-linked Internet Research Agency campaign, but 

future research should continue to expand the visual markers driving such influence operations. 

 

  



9. References 

Agarwal, V. (2018). Deep Face Quality Assessment (arXiv:1811.04346). arXiv. 

https://doi.org/10.48550/arXiv.1811.04346 

Antoniadis, P. (2022, February 19). Image Processing: Occlusions | Baeldung on Computer 

Science. https://www.baeldung.com/cs/image-processing-occlusions 

Archer, D., Iritani, B., Kimes, D. D., & Barrios, M. (1983). Face-ism: Five studies of sex 

differences in facial prominence. Journal of Personality and Social Psychology, 45(4), 

725–735. https://doi.org/10.1037/0022-3514.45.4.725 

Arif, A., Stewart, L. G., & Starbird, K. (2018). Acting the part: Examining information 

operations within# BlackLivesMatter discourse. Proceedings of the ACM on Human-

Computer Interaction, 2(CSCW), 20. 

Arijon, D. (1991). Grammar of the Film Language. Silman-James Press. 

https://www.amazon.co.uk/Grammar-Film-Language-Daniel-Arijon/dp/187950507X 

Bastos, M. T., & Farkas, J. (2019). “Donald Trump Is My President!”: The Internet Research 

Agency Propaganda Machine. Social Media + Society, 5(3). 

https://doi.org/10.1177/2056305119865466 

Bastos, M. T., & Mercea, D. (2019). The Brexit Botnet and User-Generated Hyperpartisan 

News. Social Science Computer Review, 37(1), 38–54. 

https://doi.org/10.1177/0894439317734157 

Bastos, M. T., Mercea, D., & Goveia, F. (2023). Guy Next Door and Implausibly Attractive 

Young Women: The Visual Frames of Social Media Propaganda. New Media and 

Society, 25(8), 2014–2033. 

Benkler, Y., Faris, R., & Roberts, H. (2018). Network Propaganda: Manipulation, 

Disinformation, and Radicalization in American Politics. Oxford University Press. 

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of 

Machine Learning Research, 13(2), 281–305. 



Bonilla-Silva, E. (1997). Rethinking Racism: Toward a Structural Interpretation. American 

Sociological Review, 62(3), 465–480. https://doi.org/10.2307/2657316 

Brennen, J. S., Simon, F. M., & Nielsen, R. K. (2021). Beyond (Mis)Representation: Visuals in 

COVID-19 Misinformation. The International Journal of Press/Politics, 26(1), 277–299. 

https://doi.org/10.1177/1940161220964780 

Broz, M. (2022, February 17). How Many Photos Are There? (Statistics & Trends in 2024). 

https://photutorial.com/photos-statistics/ 

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in 

commercial gender classification. Conference on Fairness, Accountability and 

Transparency, 77–91. 

Butler, J. (1999). Gender Trouble (2nd ed.). Routledge. https://doi.org/10.4324/9780203902752 

Canini, L., Benini, S., & Leonardi, R. (2011). Affective analysis on patterns of shot types in 

movies. 2011 7th International Symposium on Image and Signal Processing and Analysis 

(ISPA), 253–258. 

Carney, M., Webster, B., Alvarado, I., Phillips, K., Howell, N., Griffith, J., Jongejan, J., Pitaru, 

A., & Chen, A. (2020). Teachable Machine: Approachable Web-Based Tool for 

Exploring Machine Learning Classification. Extended Abstracts of the 2020 CHI 

Conference on Human Factors in Computing Systems, 1–8. 

https://doi.org/10.1145/3334480.3382839 

Çeliktutan, O., Ulukaya, S., & Sankur, B. (2013). A comparative study of face landmarking 

techniques. EURASIP Journal on Image and Video Processing, 2013(1), 13. 

https://doi.org/10.1186/1687-5281-2013-13 

Chandler, D. (2001). The “Grammar” of Television and Film. http://visual-

memory.co.uk/daniel/Documents/short/gramtv.html 

Cole, E. R. (2009). Intersectionality and research in psychology. American Psychologist, 64(3), 

170–180. https://doi.org/10.1037/a0014564 



Crenshaw, K. (1997). Demarginalizing the Intersection of Race and Sex: A Black Feminist 

Critique of Antidiscrimination Doctrine, Feminist Theory and Antiracist Politics. In K. 

Maschke (Ed.), Feminist Legal Theories (p. 328). Routledge. 

Davis, S. E. (2018). Objectification, Sexualization, and Misrepresentation: Social Media and the 

College Experience. Social Media + Society, 4(3), 2056305118786727. 

https://doi.org/10.1177/2056305118786727 

Dobber, T., Metoui, N., Trilling, D., Helberger, N., & de Vreese, C. (2021). Do (Microtargeted) 

Deepfakes Have Real Effects on Political Attitudes? The International Journal of 

Press/Politics, 26(1), 69–91. https://doi.org/10.1177/1940161220944364 

Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine 

Learning. https://arxiv.org/abs/1702.08608v2 

Faux, Z. (2023). Number Go Up: Inside Crypto’s Wild Rise and Staggering Fall. Penguin 

Random House. 

Freedman, D. G. (1979). Human sociobiology: A holistic approach. Free Press. 

https://repository.library.georgetown.edu/handle/10822/548140 

Freelon, D., Bossetta, M., Wells, C., Lukito, J., Xia, Y., & Adams, K. (2020). Black Trolls 

Matter: Racial and Ideological Asymmetries in Social Media Disinformation. Social 

Science Computer Review, 0894439320914853. 

Frost, P. (1990). Fair women, dark men: The forgotten roots of colour prejudice. History of 

European Ideas, 12(5), 669–679. https://doi.org/10.1016/0191-6599(90)90178-H 

Gadde, V., & Roth, Y. (2018, October 17). Enabling further research of information operations 

on Twitter. 

Gadde, V., & Roth, Y. (2020, November 12). An update on our work around the 2020 US 

Elections. 

https://web.archive.org/web/20210612062339/https://blog.twitter.com/en_us/topics/comp

any/2020/2020-election-update 

https://arxiv.org/abs/1702.08608v2


Garimella, K., & Eckles, D. (2020). Images and Misinformation in Political Groups: Evidence 

from WhatsApp in India (arXiv:2005.09784). arXiv. http://arxiv.org/abs/2005.09784 

Google. (2017). Teachable Machine. 

https://web.archive.org/web/20171003160620/https://teachablemachine.withgoogle.com 

Grayson, D., & Coventry, L. (1998). The effects of visual proxemic information in video 

mediated communication. ACM SIGCHI Bulletin, 30(3), 30–39. 

https://doi.org/10.1145/565711.565713 

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of 

Machine Learning Research, 3(Mar), 1157–1182. 

Hall, E. T. (1990). The hidden dimension, reprint. Anchor Books. 

Hameleers, M., Powell, T. E., Van Der Meer, T. G. L. A., & Bos, L. (2020). A Picture Paints a 

Thousand Lies? The Effects and Mechanisms of Multimodal Disinformation and 

Rebuttals Disseminated via Social Media. Political Communication, 37(2), 281–301. 

https://doi.org/10.1080/10584609.2019.1674979 

Harvey, D., & Roth, Y. (2018, October 1). An update on our elections integrity work. 

https://web.archive.org/web/20210624004136/https://blog.twitter.com/en_us/topics/comp

any/2018/an-update-on-our-elections-integrity-work 

Huang, W., Olson, J. S., & Olson, G. M. (2002). Camera angle affects dominance in video-

mediated communication. CHI ’02 Extended Abstracts on Human Factors in Computing 

Systems, 716–717. https://doi.org/10.1145/506443.506562 

IJzerman, H., & Koole, S. L. (2011). From perceptual rags to metaphoric riches—Bodily, social, 

and cultural constraints on sociocognitive metaphors: Comment on Landau, Meier, and 

Keefer (2010). Psychological Bulletin, 137(2), 355–361. 

https://doi.org/10.1037/a0022373 

Iyer, A., Webster, J., Hornsey, M. J., & Vanman, E. J. (2014). Understanding the power of the 

picture: The effect of image content on emotional and political responses to terrorism. 



Journal of Applied Social Psychology, 44(7), 511–521. 

https://doi.org/10.1111/jasp.12243 

Joo, J., & Steinert-Threlkeld, Z. C. (2018). Image as Data: Automated Visual Content Analysis 

for Political Science (arXiv:1810.01544). arXiv. http://arxiv.org/abs/1810.01544 

Jung, H., & Oh, Y. (2021). Towards Better Explanations of Class Activation Mapping 

(arXiv:2102.05228). arXiv. https://doi.org/10.48550/arXiv.2102.05228 

Khatib, S. M. (1989). Race and Credibility in Persuasive Communications. Journal of Black 

Studies, 19(3), 361–373. 

Kleinberg, J., Ludwig, J., Mullainathan, S., & Sunstein, C. R. (2018). Discrimination in the Age 

of Algorithms. Journal of Legal Analysis, 10, 113–174. https://doi.org/10.1093/jla/laz001 

Kraft, R. N. (1987). The influence of camera angle on comprehension and retention of pictorial 

events. Memory & Cognition, 15(4), 291–307. https://doi.org/10.3758/BF03197032 

Lewontin, R. C. (1972). The apportionment of human diversity. In Evolutionary biology (pp. 

381–398). Springer. 

Li, Y., & Xie, Y. (2020). Is a Picture Worth a Thousand Words? An Empirical Study of Image 

Content and Social Media Engagement. Journal of Marketing Research, 57(1), 1–19. 

https://doi.org/10.1177/0022243719881113 

Liu, L., Preotiuc-Pietro, D., Samani, Z. R., Moghaddam, M. E., & Ungar, L. (2016). Analyzing 

Personality through Social Media Profile Picture Choice. Proceedings of the 

International AAAI Conference on Web and Social Media, 10(1), Article 1. 

https://doi.org/10.1609/icwsm.v10i1.14738 

Lu, Y., & Pan, J. (2022). The Pervasive Presence of Chinese Government Content on Douyin 

Trending Videos. Computational Communication Research, 4(1). 

https://doi.org/10.5117/CCR2022.2.002.LU 

Marwick, A. E., & Boyd, D. (2011). I tweet honestly, I tweet passionately: Twitter users, context 

collapse, and the imagined audience. New Media & Society, 13(1), 114–133. 

https://doi.org/10.1177/1461444810365313 



Matz, S. C., Segalin, C., Stillwell, D., Müller, S. R., & Bos, M. W. (2019). Predicting the 

Personal Appeal of Marketing Images Using Computational Methods. Journal of 

Consumer Psychology, 29(3), 370–390. https://doi.org/10.1002/jcpy.1092 

Mehrabian, A., & Williams, M. (1969). Nonverbal concomitants of perceived and intended 

persuasiveness. Journal of Personality and Social Psychology, 13(1), 37. 

Merkt, M., Weingärtner, A.-L., & Schwan, S. (2022). Digital images are hard to resist: Teaching 

viewers about the effects of camera angle does not reduce the camera angle’s impact on 

power judgments. Acta Psychologica, 229, 103687. 

Metaxas, P., & Mustafaraj, E. (2010). From Obscurity to Prominence in Minutes: Political 

Speech and Real-Time Search. Proceedings of the WebSci Conference. 

Meyers-Levy, J., & Peracchio, L. A. (1992). Getting an Angle in Advertising: The Effect of 

Camera Angle on Product Evaluations. Journal of Marketing Research, 29(4), 454–461. 

https://doi.org/10.2307/3172711 

Muscanell, N. L., & Guadagno, R. E. (2012). Make new friends or keep the old: Gender and 

personality differences in social networking use. Computers in Human Behavior, 28(1), 

107–112. https://doi.org/10.1016/j.chb.2011.08.016 

Omi, M., & Winant, H. (2014). Racial formation in the United States. Routledge. 

Patterson, M. (1968). Spatial Factors in Social Interactions. Human Relations, 21(4), 351–361. 

https://doi.org/10.1177/001872676802100403 

Peng, Y. (2018). Same Candidates, Different Faces: Uncovering Media Bias in Visual Portrayals 

of Presidential Candidates with Computer Vision. Journal of Communication, 68(5), 

920–941. https://doi.org/10.1093/joc/jqy041 

Peng, Y. (2021). What Makes Politicians’ Instagram Posts Popular? Analyzing Social Media 

Strategies of Candidates and Office Holders with Computer Vision. The International 

Journal of Press/Politics, 26(1), 143–166. https://doi.org/10.1177/1940161220964769 



Peng, Y., & Jemmott III, J. B. (2018). Feast for the Eyes: Effects of Food Perceptions and 

Computer Vision Features on Food Photo Popularity. International Journal of 

Communication, 12, 313–336. 

Peng, Y., Lu, Y., & Shen, C. (2023). An Agenda for Studying Credibility Perceptions of Visual 

Misinformation. Political Communication, 40(2), 225–237. 

https://doi.org/10.1080/10584609.2023.2175398 

Powell, T. E., Boomgaarden, H. G., De Swert, K., & de Vreese, C. H. (2015). A Clearer Picture: 

The Contribution of Visuals and Text to Framing Effects. Journal of Communication, 

65(6), 997–1017. https://doi.org/10.1111/jcom.12184 

Qian, S., Shen, C., & Zhang, J. (2023). Fighting cheapfakes: Using a digital media literacy 

intervention to motivate reverse search of out-of-context visual misinformation. Journal 

of Computer-Mediated Communication, 28(1), zmac024. 

https://doi.org/10.1093/jcmc/zmac024 

Raj, R. J. S., Shobana, S. J., Pustokhina, I. V., Pustokhin, D. A., Gupta, D., & Shankar, K. 

(2020). Optimal Feature Selection-Based Medical Image Classification Using Deep 

Learning Model in Internet of Medical Things. IEEE Access, 8, 58006–58017. 

https://doi.org/10.1109/ACCESS.2020.2981337 

Reddit. (2021). Pig-Butchering Scam / Sha Zhu Pan—Photos of training manuals. 

https://www.reddit.com/r/Scams/comments/njimju/pigbutchering_scam_sha_zhu_pan_ph

otos_of_training/?utm_source=share&utm_medium=web2x&context=3 

Ringrow, H. (2016). The Language of Cosmetics Advertising. Palgrave Macmillan UK. 

https://doi.org/10.1057/978-1-137-55798-8 

Roberts, K. (2005). Lovemarks: The future beyond brands. Powerhouse Books. 

Rose, J., Mackey-Kallis, S., Shyles, L., Barry, K., Biagini, D., Hart, C., & Jack, L. (2012). Face 

it: The Impact of Gender on Social Media Images. Communication Quarterly, 60(5), 

588–607. https://doi.org/10.1080/01463373.2012.725005 



Roth, Y. (2019, January 31). Empowering further research of potential information operations. 

https://web.archive.org/web/20210613173536/https://blog.twitter.com/en_us/topics/comp

any/2019/further_research_information_operations 

Sasahara, K., Chen, W., Peng, H., Ciampaglia, G. L., Flammini, A., & Menczer, F. (2020). 

Social influence and unfollowing accelerate the emergence of echo chambers. Journal of 

Computational Social Science. https://doi.org/10.1007/s42001-020-00084-7 

Schwartz, B., Tesser, A., & Powell, E. (1982). Dominance cues in nonverbal behavior. Social 

Psychology Quarterly, 114–120. 

Seo, H. (2019). Visual Propaganda and Social Media. In The SAGE Handbook of Propaganda. 

Serengil, S. I., & Ozpinar, A. (2020). LightFace: A Hybrid Deep Face Recognition Framework. 

2020 Innovations in Intelligent Systems and Applications Conference (ASYU), 1–5. 

https://doi.org/10.1109/ASYU50717.2020.9259802 

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep 

Learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0 

Smedley, A., & Smedley, B. D. (2005). Race as biology is fiction, racism as a social problem is 

real: Anthropological and historical perspectives on the social construction of race. 

American Psychologist, 60(1), 16–26. https://doi.org/10.1037/0003-066X.60.1.16 

Starr, R. L., Wang, T., & Go, C. (2020). Sexuality vs. sensuality: The multimodal construction of 

affective stance in Chinese ASMR performances. Journal of Sociolinguistics, 24(4), 492–

513. https://doi.org/10.1111/josl.12410 

Stencel, M., & Luther, J. (2021). Fact-checking census shows slower growth. Duke. 

Sundar, S. S. (2008). The MAIN model: A heuristic approach to understanding technology 

effects on credibility. MacArthur Foundation Digital Media and Learning Initiative 

Cambridge, MA. 

Sundar, S. S., Molina, M. D., & Cho, E. (2021). Seeing Is Believing: Is Video Modality More 

Powerful in Spreading Fake News via Online Messaging Apps? Journal of Computer-

Mediated Communication, 26(6), 301–319. https://doi.org/10.1093/jcmc/zmab010 



Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & 

Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 1–9 

Talamas, S. N., Mavor, K. I., Axelsson, J., Sundelin, T., & Perrett, D. I. (2016). Eyelid-openness 

and mouth curvature influence perceived intelligence beyond attractiveness. Journal of 

Experimental Psychology: General, 145(5), 603–620. 

https://doi.org/10.1037/xge0000152 

Toma, C. L., & Hancock, J. T. (2012). What lies beneath: The linguistic traces of deception in 

online dating profiles. Journal of Communication, 62(1), 78–97. 

Torres, M., & Cantú, F. (2022). Learning to see: Convolutional neural networks for the analysis 

of social science data. Political Analysis, 30(1), 113–131. 

Twitter. (2019). Election integrity policy. Twitter, Inc. 

https://web.archive.org/web/20190428071045/https://help.twitter.com/en/rules-and-

policies/election-integrity-policy 

Twitter. (2021). Civic integrity. Twitter, Inc. 

https://web.archive.org/web/20210130191423/https://about.twitter.com/en/our-

priorities/civic-integrity 

Vaccari, C., & Chadwick, A. (2020). Deepfakes and Disinformation: Exploring the Impact of 

Synthetic Political Video on Deception, Uncertainty, and Trust in News. Social Media + 

Society, 6(1), 2056305120903408. https://doi.org/10.1177/2056305120903408 

von Sikorski, C. (2022). Visual polarisation: Examining the interplay of visual cues and media 

trust on the evaluation of political candidates. Journalism, 23(9), 1900–1918. 

https://doi.org/10.1177/1464884920987680 

Wang, H. L., & Cheong, L.-F. (2009). Taxonomy of Directing Semantics for Film Shot 

Classification. IEEE Transactions on Circuits and Systems for Video Technology, 19(10), 

1529–1542. https://doi.org/10.1109/TCSVT.2009.2022705 



West, C., & Zimmerman, D. H. (1987). Doing Gender. Gender & Society, 1(2), 125–151. 

https://doi.org/10.1177/0891243287001002002 

Williams, N. W., Casas, A., & Wilkerson, J. D. (2020). Images as data for social science 

research: An introduction to convolutional neural nets for image classification. 

Cambridge University Press. 

Wolf, N. (1991). The beauty myth: How images of beauty are used against women. Vintage. 

Yang, Y. (2021). Smartphone photography and its socio-economic life in China: An 

ethnographic analysis. Global Media and China, 6(3), 259–280. 

https://doi.org/10.1177/20594364211005058 

Zhang, H., & Peng, Y. (2022). Image Clustering: An Unsupervised Approach to Categorize 

Visual Data in Social Science Research. Sociological Methods & Research, 

00491241221082603. https://doi.org/10.1177/00491241221082603 

Zhang, N., Luo, J., & Gao, W. (2020). Research on Face Detection Technology Based on 

MTCNN. 2020 International Conference on Computer Network, Electronic and 

Automation (ICCNEA), 154–158. https://doi.org/10.1109/ICCNEA50255.2020.00040 

Zimmer, M., & Proferes, N. J. (2014). A topology of Twitter research: Disciplines, methods, and 

ethics. Aslib Journal of Information Management, 66(3), 250–261. 

https://doi.org/10.1108/AJIM-09-2013-0083 


