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Abstract

Age-specific life-table death counts observed over time are examples of densi-

ties. Nonnegativity and summability are constraints that sometimes require

modifications of standard linear statistical methods. The centered log-ratio

transformation presents a mapping from a constrained to a less constrained

space. With a time series of densities, forecasts are more relevant to the recent

data than the data from the distant past. We introduce a weighted composi-

tional functional data analysis for modeling and forecasting life-table death

counts. Our extension assigns higher weights to more recent data and provides

a modeling scheme easily adapted for constraints. We illustrate our method

using age-specific Swedish life-table death counts from 1751 to 2020. Com-

pared with their unweighted counterparts, the weighted compositional data

analytic method improves short-term point and interval forecast accuracies.

The improved forecast accuracy could help actuaries improve the pricing of

annuities and setting of reserves.

KEYWORD S

age distribution of death counts, centered log-ratio transformation, geometrically decaying
weights, weighted principal component analysis

1 | INTRODUCTION

Actuaries and demographers have long been interested in
developing mortality modeling and forecasting methods. In
the literature on human mortality, three functions are
widely considered: hazard, survival, and probability density
functions. Although these functions are complementary
(Dickson et al., 2009; Preston et al., 2001), most attention
was given to new approaches for forecasting age-specific
hazard function (see, e.g., Booth, 2006; Booth &
Tickle, 2008, for reviews). Instead of modeling central mor-
tality rates, we consider modeling the life-table death distri-
bution (see, e.g., Basellini et al., 2020). Observed over a

period, we could model and forecast a redistribution of the
density of life-table death counts, where deaths at younger
ages are shifted gradually toward older ages. The period
life-table death counts represent the mortality conditions,
which, in recent years, have reflected a trend toward
increasing longevity. Apart from providing an informative
description of the mortality experience of a population, the
life-table death counts yield readily available information
on “central longevity indicators” (see, e.g., Cheung et al.,
2005; Canudas-Romo, 2010), and lifespan variability (see,
e.g., Aburto & van Raalte, 2018; Aburto et al., 2020;
Robine, 2001; Vaupel et al., 2011; Horiuchi et al., 2013;
van Raalte & Caswell, 2013; van Raalte et al., 2014).
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In demography, Oeppen (2008) and Bergeron-
Boucher et al. (2017, 2018) treat life-table death counts as
compositional data and use compositional data analysis
(CoDa) to model and forecast age distribution of death
counts. The data are constrained to vary between two
limits (e.g., 0 and a constant upper bound), which in turn
imposes constraints upon the variance-covariance struc-
ture of the original data. To remove the nonnegativity
and most of the summability constraints, the centered
log-ratio transformation (Aitchison & Shen, 1980;
Aitchison, 1982, 1986) can be deployed before applying
principal component analysis to the transformed data.

In actuarial science, Shang and Haberman (2020) and
Shang et al. (2022) apply the centered log-ratio transfor-
mation within the CoDa framework to model and fore-
cast life-table death counts. The main contribution of this
paper is that we extend the CoDa by assigning a set of
geometrically decaying weights to estimate the geometric
mean function and the estimated principal component
decomposition. As described in Section 3, our extension
assigns higher weights to relatively more recent data to
improve short-term forecast accuracy. This extension is
particularly important in demography, where we can
have over 250 years of data, and data from the 18th and
19th centuries may not be so helpful in determining the
recent trend for forecasting.

In statistics, Scealy et al. (2017) apply CoDa to study
the concentration of chemical elements in sediment or
rock samples. Scealy and Welsh (2017) apply CoDa to
analyze total weekly expenditure on food and housing
costs for households in a chosen set of domains. Stefa-
nucci and Mazzuco (2022) apply CoDa to model cause-
specific mortality data. Delicado (2011) and Romano
et al. (2021) use CoDa to analyze density functions over
space, while Kokoszka et al. (2019) model and forecast a
time series of density functions.

Using Swedish life-table death counts from 1751 to
2020 in Section 2, we highlight the difference between
the weighted and standard CoDa methods in Section 3.
In Section 4, we study the optimal selection of weight
parameters for each horizon by minimizing point and
interval forecast errors. We evaluate and compare point
forecast accuracy in Section 5 and interval forecast accu-
racy in Section 6, respectively. The conclusion is pre-
sented in Section 7, along with some ideas on how the
methodology can be further extended.

2 | SWEDISH AGE DISTRIBUTION
OF DEATH COUNTS

We consider age- and sex-specific life-table death
counts from 1751 to 2020 in Sweden, the country with

the longest record in the Human Mortality Database
(2024). For over 250 years, each parish in Sweden has
kept a complete and continuously updated register of its
population (see Glei et al., 2007). We study life-table
death counts, where the life-table radix (i.e., a population
experiencing 100,000 births annually) is fixed at
100,000 at age 0 for each year. For the life-table death
counts, there are 111 ages, and these are ages
0,1,…,109,110þ. Due to rounding, there are zero counts
for age 110+ at some years, which may create an issue
when taking log-ratio transformation. To rectify this
problem, we use the probability of dying and the life-
table radix to recalculate our estimated death counts
(up to 6 decimal places). In doing so, we obtain more pre-
cise death counts than the ones reported in the Human
Mortality Database (2024), which are often reported as
integers. To some extent, the probability of dying relies
on smooth rates (see the Human Mortality
Database, 2024, protocol for detail). Figure 1 presents
rainbow plots of the female and male age-specific period
life-table death counts in Sweden from 1751 to 2020 in
single years.

Both subfigures demonstrate a slowly decreasing
trend in infant death counts and a typical negatively
skewed distribution for the life-table death counts, where
the peaks shift to higher ages for both females and males.
This gradual shift is a primary driver of longevity risk,
which is a major issue for insurers and pension funds,
especially in the selling and risk management of annuity
products (see Denuit et al., 2007, for a discussion).

The redistribution of life-table death counts indicates
lifespan variability across ages. A decrease in variability
over time can be observed. This variability can be
measured, for example, with the interquartile range of
life-table death counts or the Gini coefficient (for com-
prehensive reviews, see Wilmoth & Horiuchi, 1999;
Shkolnikov et al., 2003; van Raalte & Caswell, 2013;
Deb�on et al., 2017). In economics, the Gini coefficient
summarizes the degree of concentration contained in
the Lorenz curve with a single value, and its value varies
from 0 (perfect equality) to 1 (perfect inequality). Since
income and death counts are inversely related, a value
of 0 indicates perfect inequality among ages in life-table
death counts, and a value of 1 indicates perfect equality,
implying that death occurs at the same age.

Figure 2 presents an example where the life-table death
counts provide essential insights into longevity and life-
span variability that cannot be grasped directly from exam-
ining the trend in the age-specific central mortality rate or
the survival function. We also include graphs of the trend
in life expectancy at age zero, denoted by e(0), over time.

The Gini coefficient can be viewed as a single sum-
mary measure of inequality in a distribution. In
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FIGURE 1 Rainbow plots of age-specific period life-table death count from 1751 to 2020 in a single-year group in Sweden. Curves are

ordered chronologically according to the colors of the rainbow. The oldest years are displayed in red, with the most recent years shown in

violet.
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FIGURE 2 Gini coefficients and life expectancy at age 0, e(0), for Swedish period female and male life-table death counts from 1751 to

2020. When the Gini coefficient approaches 0, it indicates perfect inequality across ages in the life-table death counts. When the Gini

coefficient approaches 1, it indicates perfect equality.
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economics, it is derived from the Lorenz curve which is
nondecreasing. The Lorenz curve shares a strong resem-
blance to a cumulative distribution function. In econom-
ics, denote p as the fraction of the population that holds
LðpÞ proportion of the whole income. The Gini coeffi-
cient can then be expressed as follows:

G¼ 2
Z 1

0
½p�LðpÞ�dp:

The distribution of death counts has an inverse relation-
ship to the income. When the coefficient equals 0, it
expresses maximal age-at-death inequality. Inversely, when
the coefficient equals 1, equality occurs for all ages. From
Figure 2, the effects of the cholera epidemic that occurred
in 1834 are apparent for the Swedish female and male data
(Larsson, 2020). In 1918, there was a sudden drop in the
Gini coefficient related to the Spanish flu pandemic.

3 | GEOMETRICALLY WEIGHTED
COMPOSITIONAL DATA ANALYTIC
APPROACH

Density functions are nonnegative functions that inte-
grate into one. They share features with compositional
data (see, e.g., Aitchison, 1986; Pawlowsky-Glahn et al.,
2015). Compositional data arise in many scientific fields,
such as geology (geochemical elements), economics
(income/expenditure distribution), medicine (body com-
position), the food industry (food composition), chemis-
try (chemical composition), agriculture (nutrient balance
bionomics), environmental science (soil contamination),
ecology (abundance of different species), and demogra-
phy (life-table death counts).

In statistics, Scealy et al. (2017) use CoDa to study the
concentration of chemical elements in sediment. Scealy
and Welsh (2017) apply CoDa to analyze the total weekly
household expenditure on food and housing costs.
Delicado (2011), Kokoszka et al. (2019), Shang and
Haberman (2020) and Shang et al. (2022) use the cen-
tered log-ratio transformation to analyze density func-
tions and implement principal component analysis on
the unconstrained space. In demography, Oeppen (2008)
and Bergeron-Boucher et al. (2017) introduce a principal
component analysis approach to forecast life-table death
counts within the centered log-ratio transformation.

For a given year t, compositional data are defined as a
random vector of I nonnegative components,
½dtðu1Þ,…,dtðuIÞ�, whose sum is a specified constant, such
as 1 (portion), 100 (percentage), 105 (radix) in life-table
death counts, and 106 (parts per million) in geochemical
trace element compositions (Aitchison, 1986, p.1).

Between the nonnegativity and summability constraints,
the sample space of compositional data is a simplex:

SI ¼ ½dtðu1Þ,…,dtðuIÞ� > , dtðuiÞ>0,
n
XI

i¼1

dtðuiÞ¼ c

)
, t¼ 1,…,n,

where u denotes a continuum, such as age in this study,
c is a fixed constant, > denotes vector transpose, and S
denotes a simplex. The simplex sample space is a I�1
dimensional subset of the real-valued space RI . The
restriction of shares to the unit simplex sometimes leads
to the lack of an interpretable covariance structure,
which has been recognized by researchers in many fields
(see, e.g., Aitchison, 1986; Barcel�o et al., 1996; Fry et al.,
1996).

The centered log-ratio transformation presents one of
many possible ways to deal with the nonnegativity con-
straint by transforming the raw data. The clr transforma-
tion (see, e.g., Aitchison & Shen, 1980; Aitchison, 1982;
1986) is a mapping between the simplex to the hyper-
plane in the Euclidean space. Principal component analy-
sis (PCA) can be applied directly to this hyperplane. The
algorithm for implementing the weighted CoDa method
consists of the following steps:

1. Compute the geometric mean function with geometri-
cally decaying weights. The mean function can be esti-
mated by a weighted average

αnðuÞ¼ exp
Xn
t¼1

wt ln½dtðuÞ�
( )

, ð1Þ

where wt ¼ κð1� κÞn�t is a set of geometrically decay-

ing weights with 0< κ<1 and
Pn
t¼1

wt ¼ 1, lnð�Þ denotes
natural logarithm, and dtðuÞ>0 denotes the age-
specific life-table death count (see Section 2 for the
treatment of dtðuÞ¼ 0). In Figure 3, we display geo-
metrically decaying weights when the weight parame-
ter κ¼ 0:05 or 0.95, respectively. When κ¼ 0:05,
forecasts depend on more distant past observations.
When κ¼ 0:95, forecasts rely on the most recent
observations.

We treat age as a continuum u� ½0,110� although age is
observed at discrete points and set

stðuÞ¼ dtðuÞ
αnðuÞ : ð2Þ

2. Apply the centered log-ratio transformation given by

4 LIN SHANG and HABERMAN
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βtðuÞ¼ ln½stðuÞ�:

From (1) and (2), we obtain

βtðuÞ ¼ lndtðuÞ� lnαnðuÞ
¼ lndtðuÞ�

Pn
t¼1

wt lndtðuÞ:

For a given population, βtðuÞ can be viewed as an
unconstrained functional time series.

3. Compute eigenvalues and eigenfunctions from the
covariance across t of the weighted unconstrained
functional time series: Let βðuÞ¼ ½β1ðuÞ,…,βnðuÞ� > be
a time series of unconstrained functions, and
w¼ diagonalðw1,…,wnÞ. The weighted curve time
series is given as β ∗ ðuÞ¼wβðuÞ. The weighting
scheme aims to help find the most suitable basis func-
tions for the curve time series to project onto. Apply-
ing eigendecomposition to β ∗ ðuÞ gives

β ∗
t ðuÞ¼

Xn
k¼1

γ̂t,kϕ̂kðuÞ¼
XK
k¼1

γ̂t,kϕ̂kðuÞþωtðuÞ, ð3Þ

where ϕ̂kðuÞ is the kth weighted orthonormal eigen-
function (i.e., functional principal components), γ̂t,k ¼
hβtðuÞ, ϕ̂kðuÞi is the kth set of principal component
scores at time t, and ωtðuÞ denotes the model residual
function for age u in year t.

When K ¼ 1, (3) reduces to the a version of Lee and
Carter's (1992) method. The Lee–Carter model estimates
parameters by minimizing the residual sum of squares

via singular value decomposition. While the Lee–Carter
model has the advantage of being nonparametric, its
goodness-of-fit and forecasting performance can be
improved with the inclusion of higher-order principal
components (see, e.g., Brouhns et al., 2002; Renshaw &
Haberman, 2003; Booth & Tickle, 2008). We consider an
eigenvalue ratio criterion of Li et al. (2020) to select the
optimal value of K, and K ¼ 6 as used in Hyndman et al.
(2013) and the default opinion in the demography pack-
age (Hyndman, 2023).
4. Forecasting β ∗ ðuÞ. By conditioning on the estimated

functional principal components ΦðuÞ¼
½ϕ̂1ðuÞ,…, ϕ̂KðuÞ� and observed data β ∗ ðuÞ, the h-step-
ahead forecast of β ∗ ðuÞ can be obtained as follows:

β̂
∗
nþhjnðuÞ¼E½βnþhðuÞjΦðuÞ,β ∗ ðuÞ� ¼

XK
k¼1

γ̂nþhjn,kϕ̂kðuÞ,

where γ̂nþhjn,k denotes the h-step-ahead univariate
time-series forecast of the kth set of principal compo-
nent scores. Among univariate time-series methods,
we consider the random walk with drift (RWD)
method for forecasting principal component scores.

5. Transform back to the compositional data. We take the
inverse centered log-ratio transformation given by

ŝnþhjnðuÞ¼ exp β̂
∗
nþhjnðu1Þ, exp β̂

∗
nþhjnðu2Þ,…, exp β̂

∗
nþhjnðu111Þ

h i
,

where β̂
∗
nþhjnðuiÞ denotes the forecasts in Step 3).

6. We add back the geometric means to obtain the life-
table death count forecasts dnþhðuÞ,

d̂nþhjnðuÞ¼ ŝnþhjnðu1Þ�αnðu1Þ, ŝnþhjnðu2Þ
�
�αnðu2Þ,…, ŝnþhjnðu111Þ�αnðu111Þ

�
where αnðuiÞ is the weighted geometric mean given in
Step 1.

To evaluate forecast uncertainty, we apply a nonpara-
metric bootstrap method to generate future sample paths.
We consider two sources of uncertainty: truncation errors
in the functional principal component decomposition
and forecast errors in the predicted principal component
scores (see, e.g., Hyndman & Shang, 2009; Shang &
Haberman, 2020). Since principal component scores are
regarded as surrogates of the original functional time
series, these principal component scores capture the tem-
poral dependence structure inherited in the original func-
tional time series (see, e.g., Paparoditis, 2018;
Shang, 2018; Paparoditis & Shang, 2023). By adequately
bootstrapping the forecast principal component scores,

FIGURE 3 Geometrically decaying weights when κ¼ 0:05 and

0.95, respectively.
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we can generate a set of bootstrapped forecasts
β̂
∗
nþhjnðuÞ¼ ½β̂ð1ÞnþhjnðuÞ,…, β̂

ðBÞ
nþhjnðuÞ�, conditional on the

estimated weighted mean function and weighted func-
tional principal components from the observed data.

Using a univariate time series model, we can obtain
multistep-ahead forecasts for the principal component
scores, fγ̂1,k,…, γ̂n,kg for k¼ 1,…,K . Let the h-step-ahead
forecast errors be given by ϑt,h,k ¼ γ̂t,k� γ̂tjt�h,k for
t¼ hþ1,…,n. The forecast errors, ϑt,h,k, measure the dif-
ference between the estimated and forecast principal
component scores. These can then be sampled with
replacement to give a bootstrap sample for γnþh,k:

γ̂ðbÞnþhjn,k ¼ γ̂nþhjn,kþϑðbÞ∗ ,h,k, b¼ 1,…,B,

where B¼ 1000 symbolizes the number of bootstrap sam-
ples and ϑðbÞ∗ ,h,k are sampled with replacement from
fϑhþ1,h,k,…,ϑn,h,kg.

Assuming the first K functional principal components
approximate the original functional time series relatively
well, the model residuals should contribute nothing but
random noise. In contrast to the underestimation of K,
the overestimation of K does not hinder much forecast
accuracy (see also Hyndman et al., 2013). Consequently,
we can bootstrap the model fit errors in (3) by sampling
with replacement from the model residual term
fω1ðuÞ,…,ωnðuÞg.

Due to orthonormality, these two components of vari-
ability are summable. We obtain B variants of βnþhðuÞ,

β̂
ðbÞ
nþhjnðuÞ¼

XK
k¼1

γ̂ðbÞnþhjn,kϕ̂kðuÞþωðbÞ
nþhðuÞ,

where γ̂ðbÞnþhjn,k denotes the bootstrap forecast of the princi-
pal component scores.

With the bootstrapped β̂
∗
nþhjnðuÞ, we follow Steps

4 and 5 of the above algorithm to obtain the bootstrap
forecasts of d ∗

nþhjnðuÞ. At the 100ð1�αÞ% nominal cover-
age probability, the pointwise prediction intervals are
obtained by taking α=2 and 1�α=2 quantiles based on
fd̂ð1ÞnþhjnðuÞ,…, d̂

ðBÞ
nþhjnðuÞg.

4 | SELECTION OF THE
GEOMETRICALLY DECAYING
WEIGHT PARAMETER

4.1 | Point forecast error criteria

Since the age-specific life-table death counts can be con-
sidered a probability density function, we also consider

density evaluation metrics. They include discrete
Kullback–Leibler divergence (Kullback & Leibler, 1951)
and the square root of the Jensen–Shannon divergence
(Shannon, 1948; Fuglede & Topsoe, 2004).

The Kullback–Leibler divergence measures information
loss by replacing an unknown density with an approxima-
tion. For two probability density functions, denoted by
dnþξðuÞ and d̂nþξjnðuÞ, the discrete Kullback–Leibler
divergence is defined as follows:

KLD hð Þ¼DKL dnþξ uið Þjj d
nþξjn

uið Þ
� �

þDKL d
nþξjn

uið Þjjdnþξ uið Þ
� �

¼ 1
111� 11�hð Þ

X10
ξ¼h

X111
i¼1

dnþξ uið Þ � lndnþξ uið Þ� ln d
nþξjn

uið Þ
� �

þ

1
111� 11�hð Þ

X10
ξ¼h

X111
i¼1

d
nþξjn

uið Þ � ½ln d
nþξjn

uið Þ� lndnþξ uið Þ�,

where i¼ 111 corresponds to the number of age groups
and ξ corresponds to the forecasting period. The discrete

Training Testing

1751:2000 2001:2010 2011:2020

Validation

FIGURE 4 Illustration of the cross-validation method. A

model is constructed using data in the training set to forecast data

in the validation set. The optimal weight parameter is determined

based on the minimal forecast error in the validation set.

TABLE 1 Estimated geometrically decaying weight parameters

in the weighted CoDa method under the KLD and two variants of

the JSD.

Female Male

h KLD JSDs JSDg KLD JSDs JSDg

1 0.024 0.024 0.024 0.016 0.016 0.021

2 0.024 0.024 0.024 0.019 0.029 0.029

3 0.049 0.049 0.025 0.029 0.019 0.019

4 0.052 0.053 0.052 0.076 0.076 0.076

5 0.055 0.055 0.055 0.019 0.019 0.080

6 0.054 0.025 0.025 0.030 0.030 0.030

7 0.056 0.056 0.056 0.094 0.094 0.094

8 0.059 0.060 0.059 0.093 0.093 0.093

9 0.064 0.065 0.065 0.104 0.105 0.104

10 0.055 0.003 0.000 0.106 0.106 0.106

Note: The values in bold are used in our demonstration in Figure 5. The
number of retained functional principal components is K ¼ 6 as used in
Hyndman et al. (2013). Superscripts s and g represent simple mean and
geometric mean.

Abbreviation: CoDa, compositional data analysis.
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FIGURE 5 (a–d) Elements of the CoDa methods for modeling and forecasting the Swedish female and male life-table death counts. The

estimated functions for the standard CoDa method are shown in red, while the estimated functions for the weighted CoDa method are

displayed in blue.
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FIGURE 6 (a,b) One-step-ahead forecasts between the CoDa method shown in red and the weighted CoDa method in blue.
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TABLE 2 Comparison of point forecast errors (�100), namely, the KLD and two variants of the JSD, between the CoDa and its

weighted variant for forecasting the age-specific Swedish female and male data.

CoDa CoDa (1950) Weighted CoDa

Sex K h KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg

Female EVR 1 1.278 0.314 0.315 0.207 0.049 0.049 0.185 0.043 0.043

2 1.353 0.333 0.334 0.183 0.043 0.043 0.162 0.037 0.037

3 1.448 0.356 0.358 0.199 0.046 0.047 0.171 0.039 0.040

4 1.519 0.373 0.375 0.206 0.048 0.048 0.163 0.036 0.037

5 1.519 0.373 0.375 0.247 0.058 0.058 0.206 0.047 0.048

6 1.585 0.390 0.392 0.300 0.071 0.072 0.210 0.050 0.050

7 1.683 0.414 0.417 0.357 0.086 0.086 0.226 0.053 0.053

8 1.835 0.452 0.455 0.330 0.079 0.079 0.265 0.062 0.063

9 1.886 0.464 0.468 0.431 0.104 0.105 0.299 0.070 0.071

10 1.170 0.288 0.289 0.840 0.205 0.206 0.220 0.051 0.051

Mean 1.527 0.376 0.378 0.330 0.079 0.079 0.211 0.049 0.049

K ¼ 6 1 0.282 0.067 0.067 0.212 0.048 0.049 0.248 0.057 0.057

2 0.309 0.073 0.074 0.198 0.044 0.045 0.232 0.052 0.052

3 0.324 0.078 0.078 0.220 0.050 0.050 0.206 0.045 0.049

4 0.362 0.087 0.087 0.237 0.054 0.055 0.229 0.051 0.052

5 0.373 0.089 0.089 0.289 0.066 0.067 0.230 0.050 0.051

6 0.458 0.111 0.112 0.364 0.086 0.087 0.270 0.069 0.069

7 0.615 0.150 0.151 0.444 0.106 0.107 0.316 0.074 0.074

8 0.645 0.158 0.158 0.438 0.104 0.105 0.281 0.065 0.065

9 0.655 0.160 0.161 0.537 0.128 0.128 0.365 0.084 0.085

10 0.300 0.072 0.072 1.001 0.243 0.243 0.215 0.086 0.088

Mean 0.432 0.104 0.105 0.394 0.093 0.093 0.259 0.063 0.064

Male EVR 1 1.246 0.308 0.309 0.643 0.157 0.158 0.242 0.057 0.058

2 1.392 0.344 0.345 0.687 0.168 0.169 0.228 0.054 0.054

3 1.510 0.374 0.375 0.701 0.172 0.172 0.214 0.050 0.051

4 1.632 0.403 0.405 0.757 0.185 0.186 0.301 0.071 0.072

5 1.719 0.425 0.427 0.753 0.184 0.185 0.265 0.063 0.063

6 1.908 0.472 0.474 0.901 0.221 0.221 0.410 0.098 0.098

7 2.112 0.523 0.525 0.994 0.244 0.245 0.470 0.114 0.114

8 2.115 0.524 0.526 0.905 0.222 0.222 0.434 0.105 0.105

9 2.077 0.514 0.516 0.849 0.207 0.208 0.454 0.109 0.109

10 1.250 0.309 0.309 0.552 0.131 0.132 0.187 0.044 0.044

Mean 1.696 0.419 0.421 0.774 0.189 0.190 0.321 0.076 0.077

K ¼ 6 1 0.231 0.055 0.055 0.251 0.059 0.059 0.233 0.054 0.053

2 0.241 0.057 0.058 0.249 0.058 0.058 0.220 0.051 0.051

3 0.203 0.048 0.048 0.266 0.062 0.063 0.260 0.059 0.059

4 0.262 0.062 0.063 0.312 0.073 0.073 0.331 0.077 0.078

5 0.269 0.064 0.065 0.271 0.064 0.064 0.322 0.077 0.074

6 0.355 0.085 0.086 0.423 0.100 0.101 0.480 0.114 0.114

7 0.420 0.102 0.102 0.370 0.088 0.088 0.506 0.121 0.122

8 0.401 0.097 0.098 0.378 0.090 0.090 0.518 0.124 0.125

8 LIN SHANG and HABERMAN
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Kullback–Leibler divergence is symmetric and
nonnegative.

An alternative is given by the Jensen–Shannon diver-
gence, defined by

JSDðhÞ¼ 1
2
DKL½dnþξðuiÞjjδnþξðuiÞ�

þ1
2
DKL½d̂nþξjnðuiÞjjδnþξðuiÞ�,

where δnþξðuiÞ measures a common quantity between

dnþξðuiÞ and d̂nþξjnðuiÞ. We consider the simple mean

δnþξðuiÞ¼ 1
2 ½dnþξðuiÞþ d̂nþξjnðuiÞ� or geometric mean

δnþξðuiÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dnþξðuiÞd̂nþξjnðuiÞ

q
. We denote JSDsðhÞ for

the Jensen–Shannon divergence with the simple mean
and JSDgðhÞ for the Jensen–Shannon divergence with the
geometric mean.

4.2 | Interval forecast error criteria

To evaluate the interval forecast accuracy, we consider
the coverage probability difference (CPD) between the
empirical and nominal coverage probabilities. For each
year in the forecasting period, the h-step-ahead predic-
tion intervals are computed at the 100ð1�νÞ% nominal
coverage probability, where ν denotes a significance level,
such as ν¼ 0:2 or 0.05. We consider the common case of
the symmetric 100ð1�νÞ% prediction intervals, with
lower and upper bounds that are predictive quantiles at

ν=2 and 1�ν=2, denoted by d̂
lb
nþξðuiÞ and d̂

ub
nþξðuiÞ. The

empirical coverage probability (ECP) is defined as

ECPðhÞ¼ 1� 1
111�ð11�hÞ

X10
ξ¼h

X111
i¼1

1fdnþξðuiÞ> d̂
ub
nþξðuiÞg

h

þ1fdnþξðuiÞ< d̂
lb
nþξðuiÞg

i
:

The CPD is then expressed as

CPDðhÞ¼ jECPðhÞ�ð1�νÞj:

4.3 | Expanding window scheme

An expanding window scheme of a time series model is
commonly used to assess model and parameter stability
over time and the reliability of predictions. The expand-
ing window analysis determines the variability of the
model's parameters by computing parameter estimates
and their forecasts over an expanding window. In
Figure 4, we visually display sample splitting.

Using the first 250 observations from 1751 to 2000 in
the life-table death counts, we produce one- to 10-step-
ahead forecasts. Through an expanding window
approach, we re-estimate the parameters using the first

TABLE 2 (Continued)

CoDa CoDa (1950) Weighted CoDa

Sex K h KLD JSDs JSDg KLD JSDs JSDg KLD JSDs JSDg

9 0.438 0.106 0.106 0.484 0.115 0.115 0.653 0.155 0.156

10 0.223 0.053 0.053 0.293 0.067 0.068 0.288 0.067 0.067

Mean 0.304 0.073 0.073 0.330 0.077 0.078 0.381 0.090 0.090

Note: Based on the averages of the point forecast errors, minimum values are highlighted in bold. Superscripts s and g represent simple mean and geometric
mean.
Abbreviations: CoDa, compositional data analysis; EVR, eigenvalue ratio criterion.

TABLE 3 Estimated geometrically decaying weight parameters

in the weighted CoDa method under the CPD.

Female Male

h α¼ 0:2 0.05 0.2 0.05

1 0.075 0.061 0.083 0.106

2 0.083 0.090 0.100 0.136

3 0.085 0.089 0.100 0.117

4 0.081 0.093 0.108 0.100

5 0.084 0.087 0.108 0.137

6 0.078 0.100 0.126 0.100

7 0.083 0.086 0.114 0.142

8 0.086 0.091 0.100 0.102

9 0.076 0.051 0.100 0.100

10 0.100 0.100 0.147 0.100

Abbreviations: CoDa, compositional data analysis; CPD, coverage
probability difference.
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251 observations from 1751 to 2001. Forecasts from the
estimated models are then produced for one- to nine-
step-ahead forecasts. We iterated this process by increasing
the sample size by 1 year until we reached the data in
2010. This process produces 10 one-step-ahead forecasts,
9 two-step-ahead forecasts, …, and one 10-step-ahead fore-
cast. We compare these forecasts with the validation sam-
ples from 2001 to 2010 to determine the optimal weight
parameter, κ, for each of the 10 forecast horizons. In
Table 1, we tabulate the estimated geometrically decaying
weight parameters in the weighted CoDa method under
the Kullback-Leibler divergence (KLD) and two variants
of the Jensen-Shannon divergence (JSD).

4.4 | CoDa model fitting

We apply the standard and weighted CoDa methods to
the Swedish female and male data. From the observed
life-table death counts from 1751 to 2019 (i.e., 278
observations), we present the simple and weighted geo-
metric means of the female and male life-table death

counts in Figure 5a,b. The estimated functions for the
standard CoDa method are shown in red, while those
for the weighted CoDa method are displayed in blue.
Via functional principal component analysis, we dis-
play the first estimated functional principal component
in Figure 5c,d.

For producing one-step-ahead forecasts, the weight
parameters κ¼ 0:024 and 0.016 are based on the KLD, as
shown in Table 1. From the one-step-ahead point fore-
casts of life-table death counts in 2020, the weighted
CoDa method produces one-step-ahead forecasts that are
comparably closer to the holdout data as shown in
Figure 6a,b.

5 | COMPARISON OF POINT
FORECAST ACCURACY

Using the first 260 observations from 1751 to 2010, we
produce 1- to 10-step-ahead forecasts via an expanding
window approach. We evaluate forecast accuracy by com-
paring the forecasts with the holdout data from 2011 to

TABLE 4 Comparison of the CPD

between the CoDa and its weighted

variant for forecasting the age-specific

Swedish data.

CoDa CoDa (1950) Weighted CoDa

K h α¼ 0:2 α¼ 0:05 α¼ 0:2 α¼ 0:05 α¼ 0:2 α¼ 0:05

Female 1 0.167 0.046 0.030 0.035 0.053 0.007

2 0.180 0.050 0.034 0.027 0.054 0.034

3 0.188 0.049 0.045 0.041 0.038 0.025

4 0.187 0.050 0.012 0.048 0.023 0.032

5 0.183 0.050 0.054 0.037 0.030 0.015

6 0.195 0.050 0.058 0.040 0.022 0.027

7 0.195 0.050 0.034 0.015 0.012 0.014

8 0.194 0.050 0.070 0.013 0.029 0.008

9 0.186 0.050 0.088 0.004 0.007 0.023

10 0.191 0.050 0.011 0.004 0.178 0.049

Mean 0.187 0.050 0.044 0.026 0.045 0.023

Male 1 0.191 0.050 0.005 0.028 0.083 0.027

2 0.188 0.049 0.016 0.046 0.080 0.033

3 0.195 0.050 0.045 0.022 0.057 0.005

4 0.195 0.049 0.072 0.041 0.059 0.004

5 0.195 0.050 0.009 0.025 0.036 0.024

6 0.196 0.050 0.085 0.049 0.086 0.005

7 0.195 0.050 0.041 0.047 0.036 0.011

8 0.194 0.050 0.028 0.013 0.044 0.001

9 0.200 0.050 0.057 0.049 0.025 0.000

10 0.191 0.050 0.074 0.023 0.106 0.014

Mean 0.194 0.050 0.043 0.034 0.061 0.012

Abbreviations: CoDa, compositional data analysis; CPD, coverage probability difference.
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2020. Table 2 presents point forecast evaluation metrics
between standard and geometrically decaying weighted
CoDa methods for the Swedish female and male data.
The weighted CoDa method's estimated weight parame-
ters for different horizons are tabulated in Table 1. For
the CoDa method, we consider using the fitting period
from 1950 onwards and all available data.

For forecasting the Swedish female life-table death
counts, we observe the following:

1. The CoDa method with the fitting period from 1950
onwards produces more accurate point forecasts than
the one with all available data in the fitting period.

2. From a forecast accuracy perspective, it is advanta-
geous to use K ¼ 6, compared with the eigenvalue
ratio criterion.

3. Based on the averaged error criterion, the weighted
CoDa method generally produces more accurate fore-
casts than the standard CoDa method. When h¼ 1,2,
we also show that the CoDa method with the fitting
period from 1950 onwards can outperform the
weighted CoDa method.

For forecasting the Swedish male life-table death
counts, we observe the following:

1. The CoDa method with a longer fitting period pro-
duces more accurate point forecasts than the one from
1950 onwards.

2. The weighted CoDa method produces more accurate
point forecasts for shorter horizons rather than at lon-
ger horizons.
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FIGURE 7 (a–d) Age-specific life-table death count point forecasts from 2021 to 2070 for Swedish females and males.
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3. From a forecast accuracy perspective, it is advanta-
geous to use K ¼ 6, compared with the eigenvalue ratio
criterion. Hereafter, we report the results based on
K ¼ 6.

6 | COMPARISON OF INTERVAL
FORECAST ACCURACY

In Table 3, we tabulate the estimated weight parameter
in the weighted CoDa method under the CPD metrics.
Notably, the selected weight parameters all lie between
0.051 and 0.147. Using the selected weight parameters in
Table 3, we present interval forecast accuracy between
the standard and weighted CoDa methods for the
Swedish data.

As shown in Table 4, the weighted CoDa method pro-
duces smaller CPD values than those obtained from the
standard CoDa methods at α¼ 0:05. For α¼ 0:2,

the CoDa method with the fitting period from 1950 per-
forms the best.

7 | APPLICATION TO A SINGLE-
PREMIUM TEMPORARY
IMMEDIATE ANNUITY

An important use of mortality forecasts for individuals
over 60 is in the pension and insurance industries, whose
profitability and solvency depend on accurate mortality
forecasts to hedge longevity risk. Longevity risk is the
chance that life expectancies exceed expectations for pric-
ing, resulting in greater than anticipated cash flow needs
from insurance companies or pension funds. When a per-
son retires, an optimal way of guaranteeing one individ-
ual's financial income in retirement is to purchase an
annuity (see Yaari, 1965). An annuity is a financial con-
tract offered by insurers that guarantees a steady stream

TABLE 5 Estimates of annuity prices with various ages and maturities ðTÞ for female and male policyholders residing in Sweden, when

the interest rate is set at 3%.

CoDa Weighted CoDa

Age T ¼ 5 10 15 20 25 30 5 10 15 20 25 30

Female

60 4.517 8.289 11.385 13.844 15.662 16.791 4.515 8.276 11.354 13.785 15.571 16.684

65 4.484 8.165 11.089 13.250 14.592 15.177 4.476 8.139 11.032 13.157 14.482 15.068

70 4.433 7.953 10.555 12.171 12.876 13.045 4.423 7.917 10.484 12.084 12.792 12.967

75 4.334 7.537 9.526 10.394 10.603 10.624 4.319 7.490 9.469 10.343 10.559 10.582

80 4.116 6.673 7.788 8.057 8.084 8.085 4.103 6.662 7.793 8.072 8.102 8.103

85 3.646 5.236 5.619 5.657 5.659 3.665 5.285 5.686 5.728 5.730

90 2.894 3.590 3.660 3.662 2.921 3.643 3.720 3.723

95 2.036 2.241 2.248 2.079 2.300 2.309

100 1.323 1.370 1.359 1.412

105 0.875 0.907

Male

60 4.485 8.161 11.082 13.278 14.742 15.502 4.486 8.166 11.097 13.305 14.782 15.554

65 4.427 7.946 10.591 12.354 13.269 13.569 4.431 7.959 10.617 12.396 13.325 13.631

70 4.339 7.600 9.774 10.903 11.272 11.332 4.344 7.617 9.807 10.952 11.329 11.391

75 4.176 6.959 8.404 8.877 8.953 8.958 4.181 6.979 8.441 8.923 9.002 9.007

80 3.838 5.831 6.483 6.588 6.595 6.595 3.851 5.864 6.527 6.635 6.642 6.642

85 3.249 4.312 4.484 4.495 4.495 3.260 4.334 4.509 4.520 4.520

90 2.438 2.831 2.856 2.857 2.449 2.846 2.873 2.873

95 1.671 1.780 1.783 1.680 1.790 1.792

100 1.110 1.137 1.112 1.139

105 0.777 0.780

Abbreviation: CoDa, compositional data analysis.

12 LIN SHANG and HABERMAN

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3171 by C

ity U
niversity O

f L
ondon L

ibrary, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 6 Ninety-five percentage pointwise prediction intervals of annuity prices with different ages and maturities (T) for female and

male policyholders residing in Sweden, when the interest rate is set at 3%.

Sex Age T¼ 5 T¼ 10 T¼ 15 T¼ 20 T¼ 25 T¼ 30

CoDa

F 60 (4.487, 4.533) (8.206, 8.338) (11.235, 11.492) (13.652, 14.028) (15.438, 15.951) (16.556, 17.220)

65 (4.433, 4.514) (8.056, 8.254) (10.913, 11.267) (13.037, 13.554) (14.344, 15.073) (14.924, 15.804)

70 (4.355, 4.487) (7.793, 8.114) (10.329, 10.874) (11.931, 12.689) (12.593, 13.584) (12.769, 13.824)

75 (4.247, 4.426) (7.360, 7.817) (9.333, 10.059) (10.174, 11.154) (10.382, 11.435) (10.409, 11.476)

80 (3.991, 4.287) (6.460, 7.167) (7.516, 8.569) (7.751, 8.947) (7.788, 9.000) (7.789, 9.002)

85 (3.476, 3.949) (4.932, 5.940) (5.284, 6.500) (5.321, 6.580) (5.321, 6.583)

90 (2.620, 3.399) (3.203, 4.376) (3.267, 4.477) (3.270, 4.490)

95 (1.707, 2.575) (1.878, 2.923) (1.884, 2.935)

100 (0.985, 1.876) (1.014, 1.974)

105 (0.597, 1.339)

M 60 (4.435, 4.510) (8.032, 8.239) (10.875, 11.235) (12.972, 13.522) (14.356, 15.125) (15.083, 16.013)

65 (4.359, 4.477) (7.792, 8.072) (10.314, 10.840) (11.989, 12.758) (12.866, 13.841) (13.185, 14.250)

70 (4.231, 4.419) (7.330, 7.822) (9.397, 10.193) (10.471, 11.529) (10.841, 12.021) (10.907, 12.108)

75 (4.029, 4.307) (6.689, 7.336) (8.064, 9.028) (8.527, 9.679) (8.615, 9.792) (8.619, 9.799)

80 (3.653, 4.073) (5.524, 6.387) (6.143, 7.247) (6.251, 7.420) (6.256, 7.428) (6.256, 7.428)

85 (3.050, 3.626) (4.017, 4.996) (4.182, 5.267) (4.193, 5.295) (4.193, 5.296)

90 (2.121, 2.916) (2.460, 3.512) (2.484, 3.556) (2.485, 3.558)

95 (1.383, 2.171) (1.467, 2.361) (1.468, 2.367)

100 (0.769, 1.611) (0.788, 1.665)

105 (0.508, 1.220)

Weighted CoDa

F 60 (4.439, 4.521) (8.048, 8.268) (10.904, 11.318) (13.100, 13.715) (14.752, 15.548) (15.881, 16.836)

65 (4.366, 4.488) (7.813, 8.130) (10.476, 11.016) (12.469, 13.234) (13.829, 14.795) (14.517, 15.672)

70 (4.252, 4.444) (7.498, 7.982) (9.980, 10.708) (11.632, 12.622) (12.502, 13.719) (12.751, 14.078)

75 (4.198, 4.404) (7.323, 7.829) (9.422, 10.264) (10.507, 11.658) (10.836, 12.116) (10.877, 12.180)

80 (4.028, 4.353) (6.725, 7.514) (8.103, 9.312) (8.512, 9.937) (8.573, 10.024) (8.575, 10.031)

85 (3.676, 4.189) (5.541, 6.616) (6.095, 7.418) (6.166, 7.547) (6.168, 7.552)

90 (2.891, 3.607) (3.746, 4.848) (3.858, 5.048) (3.865, 5.057)

95 (2.094, 2.757) (2.355, 3.205) (2.368, 3.228)

100 (1.321, 1.813) (1.375, 1.907)

105 (0.821, 1.148)

M 60 (4.423, 4.515) (8.032, 8.267) (10.936, 11.351) (13.218, 13.833) (14.859, 15.712) (15.863, 16.939)

65 (4.371, 4.496) (7.883, 8.202) (10.612,11.177) (12.611, 13.443) (13.781, 14.930) (14.273, 15.607)

70 (4.300, 4.488) (7.651, 8.128) (10.030, 10.908) (11.500, 12.751) (12.061, 13.543) (12.187, 13.713)

75 (4.146, 4.443) (7.102, 7.877) (8.908, 10.119) (9.649, 11.116) (9.767, 11.342) (9.777, 11.361)

80 (3.841, 4.330) (6.119, 7.239) (6.996, 8.562) (7.192, 8.846) (7.207, 8.872) (7.207, 8.873)

85 (3.231, 3.936) (4.483, 5.749) (4.736, 6.159) (4.756, 6.191) (4.757, 6.192)

90 (2.411, 3.123) (2.891, 3.846) (2.926, 3.900) (2.927, 3.900)

95 (1.640, 2.125) (1.747, 2.291) (1.749, 2.296)

100 (0.953, 1.303) (0.975, 1.336)

105 (0.582, 0.896)

Abbreviation: CoDa, compositional data analysis.
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of income for a temporary or lifetime of the annuitants in
exchange for an initial premium charge.

Following Shang and Haberman (2017), we consider
temporary annuities, which have grown in popularity in
many developed countries, because immediate lifetime
annuities, where rates are locked in for life, have been
shown to deliver poor value for money (see Cannon &
Tonks, 2008, Chapter 6). These temporary annuities pay
a predetermined and guaranteed income level higher
than the income provided by a lifetime annuity for a sim-
ilar premium. Fixed-term annuities offer a more afford-
able alternative to lifetime annuities and allow the
purchaser to purchase a deferred annuity to address
the tail longevity risk.

We obtain forecasts of life-table death counts using
the standard and weighted CoDa methods and then
determine the corresponding survival probabilities. Using
the RWD forecasting method, we display the forecasts of
the life-table death counts from 2021 to 2070 for Swedish
females and males in Figure 7.

With the forecasts of the life-table death counts, we
compute a single-premium temporary immediate annuity
(see Dickson et al., 2009, p.114), and we adopt a cohort
approach to the computation of the survival probabilities.
The τ year survival probability of a person aged x at t¼ 0
(or year x) is determined by

τpx ¼
Yτ�1

x¼0

px ¼
Yτ�1

x¼1

ð1�qxÞ¼
Yτ�1

x¼1

1�dx
lx

� �
,

where dx denotes the number of death counts between
two successive ages x and xþ1 and lx denotes the num-
ber of lives alive at age x.

Annuity price with a maturity period of T year is a
random quantity, which depends on the value of zero-
coupon bond price and future mortality. For an x-year-
old with benefits $1 per year, the temporary immediate
annuity price can be written as

aTx ¼
XT
τ¼1

Bð0,τÞτpx ,

where Bð0,τÞ is the τ-year bond price and τpx denotes the
survival probability.

In Table 5, we compute our best estimate of annuity
prices for various ages and maturities for female and
male policyholders residing in Sweden. We assume a con-
stant interest rate at ζ¼ 3%, and a zero-coupon bond is
given as

Bð0,τÞ¼ exp�ζτ:

For the male population, the annuity prices for the
weighted CoDa method are higher than the ones produced
from the CoDa method. This may indicate the increasing
life expectancy for the male population. For the female
population, the weighted CoDa method recognizes the
longevity risk trend more than its unweighted counterpart;
thus, it produces different mortality forecasts. Between
ages 60 and 80, the weighted CoDa mortality forecasts are
predicted to be lower than the unweighted counterpart.
This implies that fewer people are likely to die in that age
group. For ages 85 and above, this is a longevity risk group
with increasingly more people.

To provide forecast uncertainty, we rely on the boot-
strapped life-table death counts, derive the survival prob-
abilities, and compute the associated annuities for
different ages and maturities. Since we consider ages
from 60 to 110, we construct 50 steps ahead bootstrap
forecasts of life-table death counts. In Table 6, we present
the 95% pointwise prediction intervals of annuities for
different ages and maturities, where age + maturity
≤ 110.

Appendix A presents the point estimate of annuity
prices for various ages and maturities when the interest
rate ζ¼ 1% and 5%, respectively. In Appendix B, we show
the 95% pointwise prediction intervals.

8 | CONCLUSION

We present an extension of the CoDa method by incorpo-
rating geometrically decaying weights to estimate mean
function and functional principal components. The
weighted CoDa method can improve the forecast accu-
racy of age-specific life-table death counts, which could
help actuaries enhance the accuracy of their pricing of
annuities and setting of reserves.

In the weighted CoDa method, larger weights are
assigned to the most recent data, whereas the data from
the distant past are less important to forecasting. We
select the estimated optimal value of the weight parame-
ter by minimizing the KLD and two variants of the JSD
using a set of validation data. We compare the point fore-
cast errors between the standard and weighted CoDa
methods in the testing data with the estimated weight
parameter. The weighted CoDa method generally
improves accuracy compared with its unweighted
counterparts.

14 LIN SHANG and HABERMAN

 1099131x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/for.3171 by C

ity U
niversity O

f L
ondon L

ibrary, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



From the viewpoint of forecast accuracy, we suggest
implementing the weighted CoDa method. From the per-
spective of actuarial calculations, the improvement in
mortality leads to a more accurate estimate of annuity
prices. To facilitate reproducibility, the code for
implementing all the methods is available online
(https://github.com/hanshang/Weighted_CoDa).

There are a few ways in which the present paper can be
further extended, and we briefly mention five as follows:

1. Although we demonstrate the practicability of the pro-
posal via the Swedish data, the weighted CoDa
method can be applied to other countries (such as
Denmark, Japan, and the United States), especially
with long-run high-quality mortality data.

2. One could implement a hypothesis test, such as the
Friedman and Nemenyi tests in Shang (2015), to
examine the statistical significance between the stan-
dard and weighted CoDa methods.

3. One could study the uncertainty associated with the
estimated weight parameter.

4. One could apply the weighted CoDa method to death
counts from cohort-based life tables.

5. Centered log-ratio transformation is one of many pos-
sible transformations. We may also study additive log-
ratio transformation in Aitchison (1986), square-root
transformation in Scealy and Welsh (2011) or α trans-
formation in Tsagris and Stewart (2020).
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APPENDIX A: ESTIMATE OF ANNUITY PRICES WHEN INTEREST RATE ζ¼ 1% or 5%

In Table A1, we present the estimated annuity premium prices with $1 benefit for various ages and maturities when
the interest rate ζ¼ 1%.

In Table A2, we present the estimated annuity premium prices with $1 benefit for various ages and maturities when
the interest rate ζ¼ 5%.

TABLE A1 Estimates of annuity prices with various ages and maturities ðTÞ for female and male policyholders residing in Sweden,

when the interest rate is set at 1%.

CoDa Weighted CoDa

Age T ¼ 5 10 15 20 25 30 5 10 15 20 25 30

Female

60 4.791 9.213 13.224 16.743 19.615 21.582 4.789 9.198 13.184 16.663 19.485 21.426

65 4.756 9.071 12.856 15.945 18.061 19.078 4.748 9.040 12.786 15.824 17.914 18.931

70 4.701 8.825 12.191 14.496 15.604 15.896 4.690 8.784 12.104 14.388 15.499 15.802

75 4.594 8.344 10.912 12.146 12.472 12.508 4.578 8.291 10.845 12.088 12.425 12.465

80 4.360 7.346 8.781 9.160 9.202 9.204 4.345 7.335 8.790 9.185 9.231 9.233

85 3.853 5.705 6.194 6.248 6.250 3.874 5.760 6.272 6.332 6.335

90 3.047 3.853 3.942 3.945 3.076 3.912 4.010 4.014

95 2.132 2.367 2.377 2.178 2.432 2.443

100 1.377 1.430 1.415 1.475

105 0.906 0.940

Male

60 4.757 9.065 12.848 15.989 18.299 19.620 4.758 9.072 12.866 16.023 18.355 19.698

65 4.695 8.818 12.241 14.758 16.199 16.718 4.699 8.833 12.272 14.812 16.275 16.806

70 4.600 8.419 11.227 12.835 13.414 13.516 4.606 8.438 11.268 12.898 13.489 13.595

75 4.424 7.678 9.540 10.211 10.329 10.338 4.430 7.702 9.586 10.269 10.391 10.400

80 4.061 6.384 7.221 7.369 7.380 7.380 4.074 6.421 7.272 7.424 7.435 7.436

85 3.427 4.662 4.880 4.896 4.896 3.439 4.686 4.909 4.925 4.925

90 2.560 3.013 3.046 3.046 2.571 3.031 3.064 3.065

95 1.745 1.870 1.873 1.754 1.880 1.883

100 1.152 1.183 1.155 1.186

105 0.804 0.807

Abbreviation: CoDa, compositional data analysis.
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APPENDIX B: NINETY-FIVE PERCENTAGE PREDICTION INTERVALS OF ANNUITY PRICES WHEN
INTEREST RATE ζ¼ 1% or 5%

In Tables B1 and B2, we present the pointwise prediction intervals of annuity prices with different ages and maturities
(T) for female and male policyholders residing in Sweden when the interest rates are ζ¼ 1% and 5%, respectively.

TABLE A2 Estimates of annuity prices with various ages and maturities ðTÞ for female and male policyholders residing in Sweden,

when the interest rate is set at 5%.

CoDa Weighted CoDa

Age T ¼ 5 10 15 20 25 30 5 10 15 20 25 30

Female

60 4.261 7.482 9.874 11.594 12.745 13.394 4.259 7.471 9.849 11.549 12.681 13.320

65 4.231 7.375 9.634 11.147 11.998 12.336 4.224 7.351 9.588 11.075 11.916 12.254

70 4.183 7.190 9.203 10.336 10.786 10.884 4.174 7.159 9.145 10.268 10.718 10.819

75 4.091 6.830 8.372 8.983 9.117 9.129 4.077 6.789 8.323 8.938 9.076 9.090

80 3.889 6.080 6.947 7.138 7.155 7.155 3.877 6.069 6.949 7.147 7.166 7.167

85 3.452 4.819 5.119 5.146 5.147 3.470 4.863 5.176 5.206 5.207

90 2.750 3.352 3.407 3.409 2.775 3.399 3.460 3.462

95 1.946 2.124 2.130 1.986 2.179 2.186

100 1.272 1.313 1.306 1.353

105 0.846 0.876

Male

60 4.232 7.370 9.629 11.165 12.094 12.531 4.233 7.376 9.640 11.185 12.122 12.566

65 4.178 7.184 9.230 10.465 11.047 11.220 4.182 7.195 9.251 10.497 11.088 11.265

70 4.096 6.884 8.567 9.360 9.596 9.631 4.101 6.899 8.595 9.399 9.640 9.676

75 3.944 6.327 7.449 7.783 7.832 7.835 3.950 6.344 7.480 7.820 7.870 7.873

80 3.631 5.341 5.850 5.925 5.929 5.929 3.643 5.370 5.888 5.964 5.969 5.969

85 3.081 3.999 4.133 4.141 4.141 3.092 4.018 4.155 4.163 4.163

90 2.324 2.664 2.684 2.684 2.333 2.678 2.699 2.699

95 1.602 1.697 1.699 1.610 1.706 1.708

100 1.070 1.093 1.072 1.096

105 0.752 0.755

Abbreviation: CoDa, compositional data analysis.
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TABLE B1 Ninety-five percentage pointwise prediction intervals of annuity prices with different ages and maturities (T), when the

interest rate ζ¼ 1%.

Sex Age T ¼ 5 T ¼ 10 T ¼ 15 T ¼ 20 T¼ 25 T¼ 30

CoDa

F 60 (4.760, 4.809) (9.117, 9.270) (13.043, 13.355) (16.497, 16.990) (19.302, 20.034) (21.240, 22.255)

65 (4.702, 4.789) (8.946, 9.172) (12.645, 13.075) (15.662, 16.349) (17.739, 18.760) (18.735, 20.052)

70 (4.619, 4.760) (8.647, 9.011) (11.923, 12.584) (14.180, 15.189) (15.251, 16.593) (15.550, 17.013)

75 (4.502, 4.694) (8.144, 8.665) (10.668, 11.564) (11.871, 13.124) (12.190, 13.577) (12.248, 13.648)

80 (4.226, 4.543) (7.102, 7.911) (8.460, 9.721) (8.800, 10.257) (8.842, 10.349) (8.844, 10.352)

85 (3.670, 4.179) (5.371, 6.504) (5.813, 7.224) (5.857, 7.335) (5.859, 7.341)

90 (2.759, 3.582) (3.424, 4.719) (3.508, 4.866) (3.510, 4.880)

95 (1.779, 2.702) (1.989, 3.106) (1.995, 3.135)

100 (1.020, 1.960) (1.054, 2.077)

105 (0.615, 1.390)

M 60 (4.703, 4.784) (8.917, 9.156) (12.600, 13.036) (15.592,16.314) (17.762, 18.842) (19.019, 20.410)

65 (4.622, 4.748) (8.642, 8.964) (11.901, 12.549) (14.288, 15.295) (15.662, 17.007) (16.202, 17.703)

70 (4.484, 4.685) (8.108, 8.673) (10.775, 11.744) (12.296, 13.657) (12.901, 14.435) (13.006, 14.583)

75 (4.268, 4.565) (7.374, 8.110) (9.141, 10.297) (9.786, 11.221) (9.934, 11.404) (9.942, 11.419)

80 (3.864, 4.310) (6.043, 7.010) (6.851, 8.127) (6.988, 8.382) (7.005, 8.392) (7.006, 8.393)

85 (3.212, 3.831) (4.333, 5.434) (4.557, 5.778) (4.574, 5.810) (4.575, 5.811)

90 (2.226, 3.070) (2.621, 3.766) (2.651, 3.821) (2.652, 3.824)

95 (1.443, 2.271) (1.531, 2.493) (1.533, 2.500)

100 (0.800, 1.675) (0.818, 1.748)

105 (0.526, 1.266)

Weighted CoDa

F 60 (4.707, 4.796) (8.933, 9.188) (12.634, 13.139) (15.768, 16.565) (18.379, 19.471) (20.358, 21.736)

65 (4.629, 4.760) (8.666, 9.028) (12.108, 12.771) (14.958, 15.943) (17.102, 18.414) (18.279, 19.953)

70 (4.505, 4.712) (8.309, 8.859) (11.509, 12.384) (13.868, 15.142) (15.247, 16.873) (15.680, 17.491)

75 (4.448, 4.670) (8.108, 8.682) (10.810, 11.841) (12.348, 13.840) (12.812, 14.548) (12.878, 14.662)

80 (4.264, 4.614) (7.414, 8.319) (9.189, 10.639) (9.763, 11.526) (9.857, 11.672) (9.861, 11.681)

85 (3.888, 4.438) (6.055, 7.275) (6.759, 8.301) (6.855, 8.469) (6.860, 8.478)

90 (3.048, 3.807) (4.032, 5.254) (4.185, 5.506) (4.195, 5.521)

95 (2.195, 2.895) (2.496, 3.417) (2.510, 3.443)

100 (1.375, 1.888) (1.439, 1.995)

105 (0.849, 1.190)

M 60 (4.691, 4.789) (8.921, 9.187) (12.681, 13.186) (15.937, 16.740) (18.526, 19.720) (20.259, 21.869)

65 (4.635, 4.769) (8.747, 9.113) (12.281, 12.964) (15.121, 16.225) (16.966, 18.577) (17.788, 19.747)

70 (4.560, 4.760) (8.478, 9.028) (11.568, 12.631) (13.621, 15.263) (14.541, 16.518) (14.746, 16.825)

75 (4.396, 4.712) (7.856, 8.733) (10.180, 11.643) (11.176, 13.079) (11.373, 13.452) (11.388, 13.466)

80 (4.063, 4.589) (6.715, 7.992) (7.861, 9.695) (8.124, 10.106) (8.145, 10.135) (8.145, 10.136)

85 (3.410, 4.165) (4.870, 6.267) (5.188, 6.802) (5.217, 6.849) (5.218, 6.850)

90 (2.533, 3.287) (3.089, 4.128) (3.133, 4.193) (3.134, 4.195)

95 (1.713, 2.226) (1.835, 2.414) (1.838, 2.419)

100 (0.988, 1.354) (1.012, 1.391)

105 (0.601, 0.926)

Abbreviation: CoDa, compositional data analysis.
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TABLE B2 Ninety-five percentage pointwise prediction intervals of annuity prices with different ages and maturities (T) when the

interest rate ζ¼ 5%.

Sex Age T ¼ 5 T ¼ 10 T ¼ 15 T ¼ 20 T¼ 25 T¼ 30

CoDa

F 60 (4.234, 4.277) (7.410, 7.525) (9.749, 9.961) (11.443, 11.733) (12.574, 12.946) (13.222, 13.677)

65 (4.183, 4.259) (7.278, 7.452) (9.488, 9.779) (10.979, 11.378) (11.808, 12.343) (12.145, 12.757)

70 (4.109, 4.234) (7.048, 7.331) (9.020, 9.466) (10.130, 10.732) (10.570, 11.303) (10.678, 11.442)

75 (4.010, 4.178) (6.672, 7.073) (8.208, 8.805) (8.797, 9.581) (8.936, 9.757) (8.951, 9.778)

80 (3.773, 4.050) (5.890, 6.512) (6.713, 7.603) (6.879, 7.874) (6.900, 7.899) (6.900, 7.899)

85 (3.294, 3.735) (4.542, 5.438) (4.818, 5.882) (4.845, 5.928) (4.845, 5.930)

90 (2.490, 3.228) (3.004, 4.066) (3.054, 4.148) (3.056, 4.154)

95 (1.636, 2.456) (1.783, 2.757) (1.788, 2.765)

100 (0.950, 1.796) (0.976, 1.880)

105 (0.579, 1.292)

M 60 (4.185, 4.255) (7.258, 7.438) (9.454, 9.753) (10.932, 11.352) (11.819, 12.365) (12.224, 12.870)

65 (4.115, 4.224) (7.047, 7.293) (9.004, 9.435) (10.180, 10.771) (10.740, 11.457) (10.920, 11.686)

70 (3.995, 4.170) (6.653, 7.078) (8.246, 8.908) (9.002, 9.844) (9.245, 10.158) (9.279, 10.215)

75 (3.806, 4.067) (6.086, 6.657) (7.161, 7.970) (7.490, 8.419) (7.549, 8.494) (7.553, 8.499)

80 (3.457, 3.850) (5.067, 5.837) (5.554, 6.504) (5.623, 6.616) (5.628, 6.621) (5.628, 6.621)

85 (2.895, 3.436) (3.728, 4.610) (3.856, 4.819) (3.863, 4.839) (3.864, 4.840)

90 (2.024, 2.774) (2.318, 3.290) (2.333, 3.321) (2.333, 3.325)

95 (1.325, 2.077) (1.402, 2.242) (1.406, 2.248)

100 (0.740, 1.546) (0.761, 1.598)

105 (0.491, 1.177)

Weighted CoDa

F 60 (4.189, 4.266) (7.272, 7.465) (9.481, 9.822) (11.019, 11.495) (12.067, 12.654) (12.712, 13.389)

65 (4.122, 4.234) (7.068, 7.344) (9.130, 9.571) (10.526, 11.125) (11.388, 12.108) (11.801, 12.613)

70 (4.015, 4.194) (6.790, 7.216) (8.710, 9.320) (9.861, 10.654) (10.429, 11.347) (10.589, 11.560)

75 (3.965, 4.157) (6.635, 7.083) (8.269, 8.968) (9.041, 9.945) (9.244, 10.222) (9.277, 10.264)

80 (3.805, 4.110) (6.118, 6.809) (7.202, 8.207) (7.491, 8.631) (7.528, 8.695) (7.530, 8.698)

85 (3.478, 3.958) (5.078, 6.034) (5.526, 6.666) (5.576, 6.749) (5.578, 6.752)

90 (2.749, 3.416) (3.487, 4.488) (3.581, 4.643) (3.583, 4.649)

95 (1.998, 2.626) (2.223, 3.015) (2.232, 3.033)

100 (1.268, 1.740) (1.318, 1.821)

105 (0.793, 1.108)

M 60 (4.174, 4.260) (7.256, 7.463) (9.504, 9.844) (11.099, 11.579) (12.144, 12.764) (12.712, 13.468)

65 (4.126, 4.243) (7.124, 7.406) (9.240, 9.703) (10.641, 11.287) (11.396, 12.227) (11.681, 12.612)

70 (4.059, 4.235) (6.922, 7.342) (8.773, 9.491) (9.784, 10.777) (10.170, 11.288) (10.232, 11.374)

75 (3.913, 4.193) (6.447, 7.128) (7.848, 8.856) (8.383, 9.551) (8.477, 9.690) (8.484, 9.702)

80 (3.633, 4.089) (5.595, 6.577) (6.279, 7.599) (6.401, 7.807) (6.408, 7.818) (6.409, 7.819)

85 (3.061, 3.723) (4.138, 5.280) (4.333, 5.591) (4.345, 5.617) (4.345, 5.617)

90 (2.295, 2.965) (2.715, 3.590) (2.743, 3.632) (2.744, 3.632)

95 (1.574, 2.033) (1.664, 2.177) (1.667, 2.181)

100 (0.920, 1.254) (0.939, 1.281)

105 (0.563, 0.867)

Abbreviation: CoDa, compositional data analysis.
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