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The specificity of sequential statistical learning: Statistical
learning accumulates predictive information from
unstructured input but is dissociable from (declarative)

memory for words

Learning statistical regularities from the environment is ubiquitous across do-
mains and species. It might support the earliest stages of language acquisi-
tion, especially identifying and learning words from fluent speech (i.e., word-
segmentation). But how do the statistical learning mechanisms involved in
word-segmentation interact with the memory mechanisms needed to actually
remember words as well as with the learning situations where words actually
need to be learned? We show that, in a memory recall task after exposure
to continuous, statistically structured speech sequences, participants track the
statistical structure of the speech sequences and are thus sensitive to probable
syllable transitions, but hardly remember any items at all. Analysis of their
productions suggests that they are unable to identify probable word bound-
aries. As a result, they tend to produce low-probability items even while pre-
ferring high-probability items in a recognition test. Only discrete familiariza-
tion sequences with isolated words yield memories of actual items. Through
computational modeling, we show that earlier results purportedly supporting
memory-based theories of statistical learning can be reproduced by memory-
less Hebbian learning mechanisms. Turning to how specific learning situ-
ations affect statistical learning, we show that it predominantly operates in
continuous speech sequences like those used in earlier experiments, but not
in discrete chunk sequences likely encountered during language acquisition.
Taken together, these results suggest that statistical learning might be special-
ized to accumulate distributional information, but that it is dissociable from
the (declarative) memory mechanisms needed to acquire words and does not
allow learners to identify probably word boundaries.

Keywords: Statistical Learning; Declarative Memory; Predictive Processing;
Language Acquisition; Hebbian Learning

1 Introduction

The ability to learn statistical regularities from
the environment is remarkably widespread across
species and domains (Aslin, Saffran, & Newport,
1998; Saffran, Aslin, & Newport, 1996; Hauser,
Newport, & Aslin, 2001; Kirkham, Slemmer,
& Johnson, 2002; Toro, Trobalon, & Sebastian-
Gallés, 2005; Turk-Browne & Scholl, 2009; Chen
& Ten Cate, 2015), and might support a wide

range of computations (e.g., Sherman, Graves, &
Turk-Browne, 2020). Forms of statistical learn-
ing that allow learners to track sequential depen-
dencies among sequence items might be especially
important during language acquisition (Aslin &
Newport, 2012; Saffran & Kirkham, 2018). How-
ever, their computational function is unclear. It is
widely believed that such forms of statistical learn-
ing help learners acquire words from fluent speech
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(e.g., Aslinet al., 1998; Saffran, Aslin, & Newport,
1996), and thus (presumably) store word candi-
dates in (declarative) memory (Graf-Estes, Evans,
Alibali, & Saffran, 2007; Isbilen, McCauley, Kidd,
& Christiansen, 2020). However, other authors
suggest that statistical learning is important for
predicting events (Sherman & Turk-Browne, 2020;
Turk-Browne, Scholl, Johnson, & Chun, 2010).
Here, we suggest that statistical learning is criti-
cal for predicting speech material and operates pre-
dominantly under conditions where prediction is
possible. However, we also suggest that statistical
learning does not lead to declarative memories of
words, and that separate mechanisms are required
to form these memories.

We note that the label “statistical learning” has
also been used for a variety of other computa-
tions, including discovering phonemic and allo-
phonic categories (e.g., Maye, Werker, & Gerken,
2002), learning relevant locations in visual search
(e.g., van Moorselaar & Slagter, 2019), compress-
ing redundant information in visual working mem-
ory (e.g., Brady, Konkle, & Alvarez, 2009), among
others (see Sherman et al., 2020 for a review).
Here, we focus on forms of statistical learning that
allow learners to track sequential dependencies
among items in continuous sequences (and pos-
sibly also to associate simultaneously presented
items in vision). We surmise that other computa-
tions referred to as “statistical learning” likely rely
on different mechanisms and might well have dif-
ferent properties.

1.1 Statistical learning vs. declarative mem-
ory of words in fluent speech

Speech is often thought to be a continuous
signal (and often perceived as such in unknown
languages, but see below), and before learners
can commit any words to memory, they need
to learn where words start and where they end.
They might rely on Transitional Probabilities (TPs)
among syllables, that is, the conditional probabil-
ity of a syllable o;,; given a preceding syllable
i, P(oioi11)/P(o;). Relatively predictable tran-

sitions are likely located inside words, while un-
predictable ones straddle word boundaries. Early
on, Shannon (1951) showed that human adults are
sensitive to such distributional information. Sub-
sequent work demonstrated that infants and non-
human animals share this ability (Saffran, Aslin,
& Newport, 1996; Hauser et al., 2001; Kirkham
et al., 2002; Toro, Trobalon, & Sebastian-Gallés,
2005; Turk-Browne & Scholl, 2009; Chen & Ten
Cate, 2015).

Statistical learning therefore supports predictive
processing (Sherman & Turk-Browne, 2020; Turk-
Browne et al., 2010), that is, the ability to an-
ticipate stimuli and events based on current and
past experience. This ability is critical for lan-
guage (Levy, 2008; Trueswell, Sekerina, Hill,
& Logrip, 1999) and other cognitive processes
(Clark, 2013; Friston, 2010; Keller & Mrsic-
Flogel, 2018). However, while words are clearly
stored in declarative Long-Term Memory (after all,
the point of knowing words is to “declare” them),
statistical knowledge does not imply the forma-
tion of such memory representations. In fact, after
exposure to sequences where some transitions are
more likely than others, observers report greater
familiarity with high-TP items than with low-TP
items, even when they have never encountered ei-
ther of these items and thus could not have mem-
orized them (because the items are played back-
wards with respect to the familiarization sequence;
Endress & Wood, 2011; Turk-Browne & Scholl,
2009; Jones & Pashler, 2007). Sometimes, ob-
servers even report greater familiarity with high-
TP items they have never encountered than with
low-TP items they have heard or seen (Endress
& Langus, 2017; Endress & Mehler, 2009b; En-
dress, under review), suggesting that a preference
for high-TP items over low-TP items does not nec-
essarily imply that the high-TP items are encoded
in declarative LTM. Further, and in line with this
view, statistical learning abilities might reflect sim-
ple associative mechanisms such as Hebbian learn-
ing (Endress, 2010; Endress & Johnson, 2021; En-
dress, 2024): If the representation of a syllable is
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still active while the next one is presented, the two
syllable representations are active together and can
thus form an association. These Hebbian associa-
tions will thus reflect the TPs among syllables.

While the question of whether statistical learn-
ing leads to memory for items (or chunks) is con-
troversial (see e.g. Perruchet, 2019 vs. Endress,
Slone, & Johnson, 2020 and General Discus-
sion), statistical learning has been linked to im-
plicit learning (e.g., Christiansen, 2018; Per-
ruchet & Pacton, 2006; Saffran, Newport, Aslin,
Tunick, & Barrueco, 1997), and is available
to arguably implicit learners such as sleeping
newborns, (Fl6, Benjamin, Palu, & Dehaene-
Lambertz, 2022). Dissociations between implicit
learning and declarative memory have long been
documented behaviorally (Graf & Mandler, 1984),
developmentally (Finn et al., 2016), and neuropsy-
chologically (Cohen & Squire, 1980; Knowlton,
Mangels, & Squire, 1996; Poldrack et al., 2001;
Squire, 1992), to the extent that statistical predic-
tions can impair declarative memory encoding in
healthy adults (Sherman & Turk-Browne, 2020).
If statistical learning operates similarly in a word-
segmentation context as in other learning situa-
tions, one would expect it to be dissociable from
declarative Long-Term Memory.

That said, different memory systems can cer-
tainly interfere with each other during consolida-
tion or support each others when the memories
share a structure (see Robertson, 2022, for a re-
view). However, given that the format of the repre-
sentations created by statistical learning might dif-
fer from that used for linguistic stimuli (Endress
& Langus, 2017; Fischer-Baum, Charny, & Mc-
Closkey, 2011; Miozzo, Petrova, Fischer-Baum, &
Peressotti, 2016), it is at least an open question to
what extent statistical learning supports declarative
memories for words. In the General Discussion,
we will discuss ways in which statistical learning
might be useful for word learning even if it is dis-
sociable from declarative memory.

In addition to possible dissociations between
statistical learning and declarative memory, it is

also unclear how continuous fluent speech really
is. In fact, due to its prosodic organization, speech
does not come as a continuous signal but rather
as a sequence of smaller units (Cutler, Oahan,
& van Donselaar, 1997; Nespor & Vogel, 1986;
Shattuck-Hufnagel & Turk, 1996). This prosodic
organization is perceived in unfamiliar languages
(Brentari, Gonzalez, Seidl, & Wilbur, 2011; En-
dress & Hauser, 2010; Pilon, 1981) and even
by newborns (Christophe, Mehler, & Sebastian-
Galles, 2001). It might affect the usefulness of
statistical learning, because such speech cues tend
to override statistical cues (Johnson & Jusczyk,
2001; Johnson & Seidl, 2009), and because statis-
tical learning primarily operates within rather than
across major prosodic boundaries (Shukla, Nes-
por, & Mehler, 2007; Shukla, White, & Aslin,
2011). As a result, the learner’s segmentation task
is not so much to integrate distributional informa-
tion over long stretches of continuous speech, but
rather to decide whether the correct grouping in
prosodic groups such as “thebaby” is “theba + by”
or “the + baby” (though prosodic groups are often
longer than just three syllables; Nespor & Vogel,
1986).

1.2 Statistical learning in continuous se-
quences and discrete chunks

If statistical learning mainly supports predictive
processing, it might also operate predominantly
under conditions that are conducive for prediction,
and associations among syllables might form more
easily when the syllables are part of a continu-
ous sequence compared to when they are packaged
into discrete items (e.g., through prosodic phras-
ing); after all, longer, continuous sequences pro-
vide more information on which predictions can
be based than shorter chunks.

Preferential statistical learning in continuous
sequences would be one of numerous examples
where statistical learning works better over some
stimulus classes than others. The classic example
is taste aversion, where rats readily associate tastes
with sickness and external stimuli with pain but
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cannot associate taste with pain or external stim-
uli with sickness (Garcia, Hankins, & Rusiniak,
1974; L. T. Martin & Alberts, 1979; Alberts &
Gubernick, 1984); other examples include asso-
ciations of objects with landmarks vs. boundaries
(Doeller & Burgess, 2008), associations among so-
cial vs. non-social objects (Tompson, Kahn, Falk,
Vettel, & Bassett, 2019), and associations among
consonants vs. vowels (Bonatti, Pefia, Nespor, &
Mehler, 2005; Toro, Bonatti, Nespor, & Mehler,
2008).!

The hypothesis that statistical learning predom-
inantly supports predictive processing thus raises
the possibility that it might operate predominantly
in continuous rather than discrete sequences. Con-
versely, discrete chunks might be more conducive
for the formation of declarative memories, because
such chunks have clear onsets and offsets, which
appears to be a key requirement of the memory
representations of linguistic stimuli (Endress &
Langus, 2017; Fischer-Baum et al., 2011; Miozzo
et al., 2016). The importance of discrete chunks
for word learning is supported by the finding that a
word-segmentation model relying just on informa-
tion at the edges of discrete chunks (in the form of
utterance boundaries) performed better than most
other word-segmentation models (Monaghan &
Christiansen, 2010), and that statistical informa-
tion does not always lead to better performance
when boundary information is provided (Sohail &
Johnson, 2016).

In fact, statistical learning is typically explored
with continuous sequences. Participants are fa-
miliarized with speech sequences consisting of
random concatenations of non-sense ‘“words” (or
equivalent units in other modalities). As a re-
sult, syllables within words are more predictive
of one another (and have higher TPs) than sylla-
ble combinations that straddle word boundaries.
Following such a familiarization, (adult) partici-
pants typically complete a two-alternative forced-
choice recognition task, where they have to choose
between the words from speech stream and part-
words. Part-words are tri-syllabic items that strad-

dle a word boundary. For example, if ABC and
DEF are two consecutive words, BCD and CDE
are the corresponding part-words. Participants
tend to choose words over part-words, suggesting
that they are sensitive to the greater predictive-
ness (and TPs) of syllables within words. How-
ever, such results still leave open the question
of whether participants can use this sensitivity to
memorize words from fluent speech, and whether
this sensitivity would be present in discrete se-
quences.

Some evidence suggests that learners might pro-
cess continuous speech sequences differently from
discrete ones (e.g., Endress & Bonatti, 2016;
Marchetto & Bonatti, 2015; Pena, Bonatti, Nespor,
& Mehler, 2002). For example, Peiia et al. (2002)
familiarized participants with continuous speech
streams as well as with discrete, “pre-segmented”
speech streams, in which each word was followed
by a brief silence. The brief silences triggered ad-
ditional processes such as rule-like generalizations
that were unavailable after continuous familiariza-
tions. Critically, the rule-like generalizations ob-
served after pre-segmented familiarizations might
reflect memory processes. Endress and Mehler
(2009a) suggested that the role of the silences
was to act as Gestalt-like grouping cues that pro-
vided learners with the location of the word edges
(i.e., onsets and offsets), and thus enabled gen-
eralizations based on those word-edges (see also
Glicksohn & Cohen, 2011; Morgan, Fogel, Nair,
& Patel, 2019 for other perceptual grouping ef-
fects in statistical learning). Given that the group-
ing cues resulted in a sequence of discrete chunks,
the grouping cues might also support declarative
memory processing.

I'This is not to say that statistical learning evolved
for specific computations; statistical learning might still
be a “spandrel” (Gould, Lewontin, Maynard Smith, &
Holliday, 1979) that evolved as a side effect of local
neural processing and might undergo positive, negative
or no selection in different brain pathways.
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1.3 The current experiments

Here, we explore the computational function of
statistical learning in word-segmentation. In Ex-
periment 1, we ask if statistical learning leads
to declarative memory of words. We exposed
(adult) participants to the speech stream from
Saffran, Aslin, and Newport’s (1996) classic word-
segmentation experiment. The speech stream con-
sists of four non-sense words randomly concate-
nated into a continuous speech sequence. As
a result, TPs among syllables are higher within
words than across word-boundaries. We pre-
sented the stream either as a continuous sequence
(as in Saffran, Aslin, and Newport’s (1996) ex-
periments), or as a pre-segmented sequence of
words, with brief silences across word bound-
aries. As mentioned above, these continuous vs.
pre-segmented presentation modes trigger differ-
ent sets of memory processes (Endress & Bon-
atti, 2016; Marchetto & Bonatti, 2015; Pefia et
al., 2002), but it is unknown if either of these
processes involves declarative memory. Follow-
ing this familiarization, we simply asked partic-
ipants to recall what they remembered from the
speech stream. In light of the finding that partic-
ipants in statistical learning tasks sometimes en-
dorse items they have never encountered (e.g.,
Endress & Wood, 2011; Turk-Browne & Scholl,
2009; Jones & Pashler, 2007) and can endorse
them over items they have encountered (Endress
& Langus, 2017; Endress & Mehler, 2009b; En-
dress, under review), we expected that participants
would form declarative memories only after a pre-
segmented familiarization.

To foreshadow our results, participants could re-
call items after a pre-segmented familiarization,
but tended to produce incorrect items after a con-
tinuous familiarization. ~We then verified that
a prominent statistical learning model based on
memories for chunks (Perruchet & Vinter, 1998)
cannot explain these data.

As these results suggest that learners do not re-
member items from continuous statistically struc-
ture streams and cannot even identify word bound-

aries, we then reconsider the strongest evidence
purportedly supporting memory-based accounts of
statistical learning, and report neural network sim-
ulations showing that this evidence can be ex-
plained by memory-less Hebbian learning mech-
anisms.

Finally, in Experiment 2, we asked whether sta-
tistical learning operates in smaller chunks such
as those that might be encountered due to the
prosodic organization of language, or only in
longer stretches of continuous speech. Participants
listened to a speech sequence of tri-syllabic non-
sense words. As in Experiment 1, the words were
either pre-segmented (i.e., with a silence after each
word) or continuously concatenated.

For half of the participants, both the TPs and the
chunk frequency was higher between the first two
syllables of the word than between the last two syl-
lables (TPs of 1.0 vs. .33). A statistical learner
should thus split triplets like ABC into an initial AB
chunk followed by a singleton C syllable (hereafter
AB+C pattern). For the remaining participants,
both the TPs and the chunk frequency favored an
A+BC pattern. To make the learning task as simple
as possible, the statistical pattern of the words was
thus consistent for each participant. Following this
familiarization, participants heard pairs of AB and
BC items, and had to indicate which item was more
like the familiarization items. If statistical learning
predominantly operates in continuous rather than
pre-segmented sequences, participants should split
the triplets into their underlying chunks only after
continuous but not pre-segmented familiarizations.

To preview our results, while Experiment 1 re-
vealed that participants remember words only af-
ter listening to pre-segmented speech sequences, in
Experiment 2, participants predominantly tracked
TPs in continuous speech sequences, but less so in
pre-segmented sequences.

2 Experiment 1: Do learners remember items
in a statistical learning task?

In Experiment 1, we asked if participants would
remember the items that occurred in a speech
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stream. Adult participants listened to the artifi-
cial languages from Saffran, Aslin, and Newport’s
(1996) Experiment 2 with 8-months-old infants,
except that, to increase the opportunity for learn-
ing the statistical structure of the speech stream,
we doubled the exposure to 90 repetitions of
each word.? The languages comprised four tri-
syllabic words, with a TP of 1.0 within words
and 0.33 across word boundaries. The words
were presented in a continuous stream or as a pre-
segmented word sequence. We ran a lab-based ver-
sion of the experiment (Experiment 1a) and an on-
line replication with a larger sample size (Experi-
ment 1b). As the results of both experiments were
similar, we present them jointly.

Following a retention interval, participants had
to repeat back the words they remembered from
the speech stream.®> Lab-based participants re-
sponded vocally, while online participants typed
their answers into a comment field. Finally, par-
ticipants completed a recognition test during which
we pitted words against part-words. Part-words are
tri-syllabic items that straddle a word-boundary.
For example, if ABC and DEF are two consecutive
words, BCD and CDE are the corresponding part-
words. If participants reliably choose words over
part-words, they must be sensitive to TPs (even
though such a sensitivity might arise from different
mechanisms).

We also asked if a prominent chunking model of
word segmentation (Perruchet & Vinter, 1998) can
account for the results presented here.

2.1 Materials and methods

2.1.1 Participants. As we had no prior ex-
pectation about the effect size, we targeted a sam-
ple of at least 30 participants for each of the
conditions (i.e., continuous vs. pre-segmented X
Language 1 vs. Language 2, see below) in the
(laboratory-based) Experiment 1a. This number
was chosen because it is realistic in the time-frame
available for a third-year honors project. In the
(online) Experiment 1b, we tested 50 participants
per language and segmentation condition. Partici-

pants reported to be native speakers of English, but
we did not further assess their English proficiency.
At least in Experiment la, participants were most
likely exposed to English from childhood, as the
experiment took place in London, UK, and the ex-
perimenters did not notice any clear non-native ac-
cents.

To reduce performance differences between the
pre-segmented and the continuous familiarization
conditions, participants were excluded from anal-
ysis if their accuracy in the recognition test was
below 50% (N = 8 in Experiment la; N = 11 in
Experiment 1b). Given that our aim was to assess
the role of statistical learning in the formation of
declarative LTM representations of words, we re-
stricted our analysis to participants who were most
likely to have engaged in the statistical learning
task.

Another 11 participants were excluded from Ex-
periment 1b because parsing their productions took
an excessive amount of computing time, though
their productions did not seem to resemble the
familiarization items in the first place.* In Ex-

2We doubled the exposure with respect to Saffran,
Aslin, and Newport’s (1996) infant studies to maximize
the chance of observing successful learning, given that
even the experimenters found the learning task chal-
lenging with the stimuli from Saffran, Newport, and
Aslin’s (1996) (adult) experiment.

3Given that the focus of our experiments is the
potential usefulness of statistical learning for placing
items into declarative memory, we introduced a brief
retention interval to mimic slightly longer-term reten-
tion than in typical statistical learning studies (but see
e.g. Karaman & Hay, 2018; Vlach & DeBrock, 2019).

“When participants produce excessively long
items (e.g., takahsakakakaratatataikokokoko-
tatakatakatakatakatakatakataka, matikulatatitula-
papitularimatitulaatitula), it can take our recursive
parsing algorithm (see below) a substantial amount
of computing time to generate all possible matches
to the speech stream. When the analysis of a single
participant exceeded several days of calculations,
we decided to remove this participant from analysis.
Critically, and as mentioned above, the productions for
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periment 1b, once the final sample of partici-
pants in the continuous condition was established,
we randomly removed participants from the pre-
segmented condition to equate the number of par-
ticipants across the conditions. As a result, any
differences between the continuous and the pre-
segmented conditions were not just a consequence
of differences in statistical power. (This was not
necessary in the within-participant design of Ex-
periment la.) The final sample included 26 par-
ticipants in the lab-based version (Experiment 1a),
and 152 in the online version (Experiment 1b). De-
mographic information is given in Table 1. With
the exception of the exclusions due to excessive
computing time (which we did not anticipate), the
exclusion criteria were set forth prior to analysis.

2.1.2 Materials. We re-synthesized the lan-
guages used in Saffran, Aslin, and Newport’s
(1996) Experiment 2. The four words in each
language are given in Table 2. Each word was
composed of three syllables, which were com-
posed of two segments in turn. Stimuli were syn-
thesized using the us3 (male American English)
voice’ of the mbrola synthesizer (Dutoit, Pagel,
Pierret, Bataille, & van der Vreken, 1996), at a
constant F of 120 Hz and at a rate of 216 ms per
syllable (108 ms per phoneme). This syllable du-
ration is comparable to that in Saffran, Aslin, and
Newport (1996) (222 ms per syllable).

During familiarization, words were presented 45
times each. We generated random concatenations
of 45 repetitions of the 4 words, with the constraint
that words could not occur in immediate repetition.
For continuous streams, each randomization was
then synthesized into a continuous speech stream
(with no silences between words) using mbrola
(Dutoit et al., 1996) and then converted to mp3
using ffmpeg (https://ffmpeg.org/). For pre-
segmented streams, words were synthesized in iso-
lation. Each randomization was then used to con-
catenate the words into a pre-segmented stream,
with silences of 222 ms between words, which was
then converted to mp3. Streams were faded in and
out for 5 s using sox (http://sox.sourceforge

.net/). For continuous streams, this yielded a
stream duration of 1 min 57 s; for segmented
streams, the duration was 2 min 37. Syllable tran-
sitions had TPs of 1.0 within words and 0.33 across
word boundaries. We created 20 versions of each
stream with different random orders of words.

As the role of the silences in the pre-segmented
stream was to create clearly identifiable chunks,
the silence duration was chosen to result in clearly
perceptible syllable groups (according to the ex-
perimenters’ perception).  Other investigations
with pre-segmented material used shorter silences
(e.g., Pefia et al., 2002), longer ones (e.g., So-
hail & Johnson, 2016; Endress & Mehler, 2009a)
or natural prosodic phrasing (Shukla et al., 2007;
Seidl & Johnson, 2008). Relatedly, other ex-
periments mimicking the prosodic organization of
speech used natural prosodic phrasing (Shukla et
al., 2007; Seidl & Johnson, 2008) or grouped sev-
eral “words” together using silences (Sohail &
Johnson, 2016). In the light of Experiment 2,
where we ask if statistical learning can be used to
break up small prosodic groups such as “thebaby”
into their underlying words (i.e., “the+baby”), we
follow Pena et al. (2002) and present silences after
each word instead of inducing longer groupings.

For the online Experiment 1b, the speech
streams were combined with a silent video with
no clear objects to increase attention to the stim-
uli. We used a panning of the Carina nebula, ob-
tained from https://esahubble.org/videos/
heic0707g/. The video was combined with the
speech streams using the muxmovie utility.

2.1.3 Apparatus. The lab-based Ex-
periment la was run using Psyscope X
(http://psy.ck.sissa.it) in a quiet
room. The online Experiment 1b was run on

which this occurred did not resemble the statistically
defined words in the first place.

SExperiment 1 was chronologically carried out after
Experiment 2, but we changed the order for readabil-
ity. We chose the us3 voice because the alternative enl
(British English) voice introduced artifacts in Experi-
ment 2a.
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Table 1

Demographics of the final sample in Experiments I and 2. In Experiment la, the (lab-based) participants
completed both segmentation conditions. In Experiment 2b, we conducted two independent replications
with the same American English voice due to unexpected results with the British English voice in Exper-

iment 2a.
Sequence Type Voice N Females Male Age (M) Age (range)
Experiment 1a: Lab-based recall experiment
continuous us3 13 13 0 19.2 18-22
pre-segmented us3 13 13 0 19.2  18-22
Experiment 1b: Online recall experiment
continuous us3 76 26 50 30.7 18-71
pre-segmented us3 76 15 61 289 18-62
Experiment 2a — Lab-based segmentation experiment (British English voice)
pre-segmented enl 30 22 8 25 18-42
continuous enl 30 20 10 239 18445
Experiment 2b — Lab-based segmentation experiment (American English voice)
pre-segmented us3 30 18 12 26.3 18-43
continuous us3 (1) 32 26 6 20.1 18-44
continuous us3 (2) 30 20 10 23.2 18-36

https://testable.org.
2.1.4 Procedure.

2.1.4.1 Familiarization. Participants were
informed that they would be listening to an
unknown language and that they should try to
learn the words from that language. The famil-
iarization stream was presented twice, leading
to a total familiarization duration of 3 min 53
for the continuous streams and 5 min 13 for the
segmented streams. Participants could proceed to

Table 2
Languages used Experiment 1. The words are the

same as in Experiment 2 in Saffran, Aslin, and
Newport (1996).

L1 L2
pabiku bikuti
tibudo pigola
daropi  tudaro
golatu  budopa

the next presentation of the stream by pressing a
button.

In the online Experiment 1b, participants
watched a video with no clear objects during the
familiarization.

Following the familiarization, there was a 30 s
retention interval. In both Experiment 1a and 1b,
participants were instructed to count backwards
from 99 in time with a metronome beat at 3s per
beat. Performance was not monitored. Given that
our objective was to investigate the role of statisti-
cal learning in the formation of declarative LTM
representations of words, we attempted to make
our memory tests at least somewhat long-term by
introducing this filled retention interval.

2.1.4.2 Recall test. Following the retention
interval, participants completed the recall test. In
Experiment 1a, participants had 45 s to repeat back
the words they remembered; their vocalizations
were recorded using fimpeg and saved in mp3 for-
mat. In Experiment 1b, participants had 60 s to
type their answer into a comment field, during
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which they viewed a progress bar.

2.1.4.3 Recognition test. Following the re-
call test, participants completed a recognition test
during which we pitted words against part-words.
The (correct) test words for Language 1 (and
part-words for Language 2) were /pAbiku/ and
/tibudO/; the (correct) test words for Language 2
(and part-words for Language 1) were /tudArO/
and /pigOlA/. These items were combined into 4
test pairs.

2.1.5 Analysis strategy. As we used perfor-
mance in the recognition test to restrict the analysis
to those participants most likely to have engaged
in statistical learning, performance in the recogni-
tion test in the final sample is not representative of
the whole sample, and is thus not compared to a
chance level. Therefore, we focus on the partici-
pants’ recall responses.

It turned out that the written recall responses
required substantial pre-processing because par-
ticipants transcribed syllables using different or-
thographies and misperceived some phonemes,
among other inconsistencies. The detailed analysis
procedure is described in in Supplementary Mate-
rial SM1. All analytic choices were made to maxi-
mize the correspondence between the participants’
responses and the syllable sequences attested in the
speech stream.

In brief, the responses were first transformed us-
ing a set of substitutions rules to allow for misper-
ceptions (e.g., confusion between /b/ and /p/) or or-
thographic variability (e.g., ea and ee both reflect
the sound /i/).

Second, the responses were segmented into their
underlying units. This was necessary because
some participants separated only words by spaces,
while others separated syllables by spaces, and
groups of syllables (e.g., words) by other charac-
ters (e.g., commas). For example, responses such
as bee coo tee,two da ra,bout too pa likely reflected
the words bikuti, tudaro and budopa.

Third, we applied another set of substitution
rules to allow for other misperceptions.

Finally, we selected the best matches to the fa-

miliarization stimuli. We selected these matches
by (1) maximizing the length of the match and (2)
minimizing the number of substitutions with re-
spect to the original responses.

Based on these matches, we calculate a various
properties of these matches (see Table S2). For
readability, we will introduce these measures in the
Results section. Exclusion criteria for responses
with unattested syllables are given in Supplemen-
tary Material SM1.4.

In Experiment 1a, the (lab-based) participants’
verbal responses were recorded and transcribed by
two independent observers. Disagreements were
resolved by discussion.® Online participants typed
their responses directly into a comment box. Anal-
ysis of these responses was fully automatic (see be-
low).

We use likelihood ratios to provide evidence for
the various null hypotheses. Following Glover and
Dixon (2004), we fit the participant averages to (1)
a linear model comprising only an intercept and (i)
the null model fixing the intercept to the appropri-
ate baseline level, and evaluated the likelihood of
these models after correcting for the difference in
the number of parameters using the Bayesian In-
formation Criterion.

2.2 Results

2.2.1 Analysis of the participants’ produc-
tions. We present the results in three steps. First,
we report some general measures of the recall
items to show that participants engage in the task
and track TPs in both the continuous and the pre-
segmented condition. Second, we ask whether par-
ticipants are more likely produce words than part-
words. Third, we ask whether participants know
where words start and where they end.

Descriptives, comparisons to chance levels as
well as comparisons between the continuous and
the pre-segmented conditions are given in Table 3.

%The number of disagreements can no longer be re-
covered.
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Figure 1. Number of items produced and number
of syllables per item in the recall phase of Experi-
ments la (top) and 1b (bottom).

2.2.1.1 General measures: Do participants
engage in the task? As shown in Table 3 and
Figures la and b, participants produced about 4
items. Neither the number of items produced nor
their lengths differed across the segmentation con-
ditions. Critically, and as shown in Table 3 and
Figures 2a and b, forward and backward TPs in the
participants’ responses were significantly greater
than the chance level of .083 in both segmenta-
tion conditions. These TPs were greater in the pre-
segmented condition. These TPs likely underes-
timate the participants’ actual performance, as we
included responses with unattested syllables that
might reflect misperceptions (and thus lower TPs);
after removing such responses, TPs in the partici-
pants’ responses were about twice as large. Partic-
ipants were thus clearly sensitive to the TPs in the
speech stream.

We next examined the production of two-
syllable chunks. Such chunks can be either high-
TP chunks (if they are part of a word) or low-TP
chunks (if they straddle a word boundary). For
example, with two consecutive words ABC and
DEF, the high-TP chunks are AB, BC, ..., while
the low-TP chunk is CD. As a result, two-syllable
items have a 66% probability of being a high-TP
chunk. As shown in Figure 3b, the proportion of

a 100

o
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» o
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Backward TPs
8

continuous  segmented continuous  segmented

Figure 2. Forward and backward TPs in the par-
ticipants’ productions in the recall phase of Exper-
iments la (top) and 1b (bottom). The dotted line
represents the chance level for a randomly ordered
syllable sequence.

high-TP among chunks high- and low-TP chunks
exceeded chance in both the pre-segmented con-
dition and the continuous condition in Experiment
1b (though not in the continuous condition of Ex-
periment la), with a significantly higher propor-
tion in the pre-segmented versions. These results
thus confirm that participants are sensitive to TPs
or high frequency chunks (which are confounded
in the current design).

2.2.1.2 Are participants more likely to pro-
duce words rather than part-words? We now
turn to the question of whether a sensitivity to TPs
implies memory for words. We address this is-
sue in two ways, by using the traditional contrast
between words and part-words and by turning to
the question at the heart of word segmentation —
do participants know where words start and where
they end?

The traditional analysis of word segmentation
experiments relies on the contrast between words
and part-words.  As mentioned above, part-
words are tri-syllabic items that straddle a word-
boundary. We thus calculated the proportion of
words among words and part-words recalled by the
participants. If participants faithfully produce tri-
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Figure 3. Analyses of the participants’ productions
in the recall phase of Experiments la (top) and 1b
(bottom). (a) Proportion of words among words
and part-words. The dotted line represents the
chance level of 50% in a two-alternative forced-
choice task, while the dashed line represents the
chance level of 33% that an attested 3 syllable-
chunk is a word rather than a part-word. (b) Pro-
portion of high-TP chunks among high- and low-
TP chunks. The dashed line represents the chance
level of 66% that an attested 2 syllable-chunk is a
high-TP rather than a low-TP chunk.

syllabic sequences from the stream, they can start
the sequences on the first, second or third sylla-
ble of a word, but only the first possibility yields a
word rather than a part-word. As a result, if partic-
ipants initiate their productions with a random syl-
lable, a third of their productions should be words.

As shown in Table 3 and in Figure 3a, the pro-
portion of words among words and part-words was
close to 100% in the pre-segmented conditions, but
did not differ from the chance level of 33% in the
continuous conditions. This difference was statis-
tically significant. Likelihood ratio analysis sug-
gests that, in the continuous condition of Experi-
ment 1b, participants were 3.5 times more likely to
perform at the chance level of 33% than to perform
at a level different from chance; in Experiment 1a,
the likelihood ratio was 2.6. These results thus
suggest that participants in the continuous condi-
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Figure 4. Number and proportion (among vo-
calizations) of words and part-words in the recall
phase of Experiments 1a (top) and 1b (bottom).

tion initiate their productions at random positions
in the stream, and that they do not remember any
word forms.

However, inspection of Figure 3a shows that the
distribution in the continuous condition is bimodal,
with some participants producing only words, and
others producing only part-words. Such a behav-
ior can arise if participants pick a syllable as their
starting-point, and segment the rest of the stream
accordingly. If they happen to pick a word-initial
syllable, they will produce only words; if they pick
the second or the third syllable of a word, all sub-
sequent items will be part-words.

Assuming that the number of participants pro-
ducing words vs. part-words is binomially dis-
tributed, we calculated the likelihood ratio of a
model where learners identify word boundaries
(and should produce words with probability 1),
and a model where they track TPs and initiate
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productions at random positions (and should pro-
duce words with a probability of 1/3). As shown
in SM4, the likelihood ratio in favor of the first
model is 3™ if participants produce no part-words
(i.e., after a pre-segmented familiarization), where
Ny is the number of participants producing words;
otherwise, the likelihood ratio in favor of the sec-
ond model is infinity. Given that the overwhelming
majority of participants produce words only after a
pre-segmented familiarizations, these results thus
suggest that, despite their ability to track TPs, par-
ticipants initiate productions at random positions
in the sequence, and thus do not remember statis-
tically defined words.

However, as shown in Figure 4, these results
might be misleading because, in the continu-
ous condition, many participants produce neither
words nor part-words. In fact, on average, they
produce only .4 words and part-words combined,
respectively. (In the pre-segmented condition,
most participants produce at least one word, with
an average of 1.26.)

We thus turn to the question of whether partic-
ipants know where words start and end, asking if
participants produce correct initial and final sylla-
bles.

2.2.1.3 Do participants know where words
start and where they end? If participants use sta-
tistical learning to remember words, they should
know where words start and where they end. In
contrast, if they just track TPs, they should initiate
the responses with random syllables. As there are
four words with one correct initial and final sylla-
ble each, and 12 syllables in total, 4/12 = 1/3 of
the productions should have “correct” initial sylla-
bles, and 1/3 should have correct final syllables.
Given that participants tend to produce high-TP
two-syllable chunks (i.e., AB and BC rather than
CD chunks), the actual baseline level is somewhat
higher.” However, to evaluate the group perfor-
mance, we keep the baseline of 1/3.

As shown in Table 3 and Figure 5a and b, par-
ticipants produced items with correct initial or fi-
nal syllables at greater than chance level only in

a

# Correct Initial Syllables
Productions
Productions

# Correct Final Syllables

continuous segmented

continuous segmemed

Figure 5. Analyses of the participants’ productions
in the recall phase of Experiments la (top) and 1b
(bottom). (a) Proportion of productions with cor-
rect initial syllables and (b) with correct final syl-
lables. The dotted line represents the chance level
of 33%.

the pre-segmented conditions, but not in the con-
tinuous conditions. In the continuous condition
of Experiment 1b, the likelihood ratio in favor of
the null hypothesis was 0.785 for initial syllables
and 4.06 for final syllables; in Experiment 1b, the
likelihood ratios are 3.61 and 2.14, respectively.
While it is possible that performance in the con-
tinuous condition might exceed the chance-level of
1/3 with more than the 78 participants currently in-
cluded, the actual chance-level is somewhat higher
(about 38.4%). Critically, only 42% of the produc-
tions have a correct initial syllable, which is unex-
pected if participants knew where words start and
where they end. Together with the finding that the
overwhelming majority of participants produce no
word at all, these results thus suggest that TPs do
not allow learners to reliably detect onsets and off-
sets of words.

"For example, participants in the continuous condi-
tion produce about 75% high-TP chunks; if they initiate
their productions with high-TP chunks, one would ex-
pect them to produce about 75%/2 = 3/8 rather than
1/3 items with correct initial syllables.
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Table 3

Main analyses pertaining to the productions as well as test against their chances levels in the recall phase
of Experiments la and 1b. The p value in the rightmost column reflects a Wilcoxon test comparing the

continuous and the pre-segmented conditions.

Continuous Pre-segmented

p(continuous vs. pre-segmented)

Number of items

lab-based (Exp. la) M=4.23, SE=0.756, p= 0.0016 M=4.23, SE=0.818, p=0.00152 0.812

online (Exp. 1b) M=4.03, SE= 0.292, p=3.17e-14 M=3.25, SE= 0.202, p= 2.74e-14 0.099
Number of syllables/item

lab-based (Exp. la) M=3.79, SE= 0.421, p=0.0016 M=12.97, SE=0.0246, p= 0.0007 0.026

online (Exp. 1b) M=2.65, SE= 0.0869, p= 2.29¢-14 M=2.93, SE= 0.0364, p= 1.04e-15 <0.001
Forward TPs

lab-based (Exp. 1la) M= 0.301, SE= 0.0702, p= 0.0107 M= 0.634, SE= 0.092, p= 0.00159 0.006

online (Exp. 1b) M=0.397, SE= 0.0316, p= 6.26e-12 M= 0.583, SE= 0.04, p= 3.82¢-13 0.001
Backward TPs

lab-based (Exp. 1la) M= 0.301, SE= 0.0702, p= 0.0107 M= 0.634, SE= 0.092, p= 0.00159 0.006

online (Exp. 1b) M=0.397, SE= 0.0316, p= 6.26e-12 M= 0.583, SE= 0.04, p= 3.82¢-13 0.001
Proportion of High-TP chunks among High- and Low-TP chunks

lab-based (Exp. la) M=0.75, SE= 0.289, p= 0.85 (vs. 2/3) M= 1, SE= 0, p=0.0006 (vs. 2/3) 1.000

online (Exp. 1b) M=0.767, SE= 0.0459, p= 0.00154 (vs. 2/3) M=0.97, SE= 0.0187, p= 6.75e-13 (vs. 2/3) <0.001
Proportion of words among words and part-words (or concatenations thereof)

lab-based (Exp. 1la) M= 0.321, SE=0.153, 0.798 (vs. 1/3) M= 1, SE= 0, p=0.0006 (vs. 1/3) 0.034

online (Exp. 1b) M=0.417, SE= 0.105, p= 0.189 (vs. 1/3) M=1,SE=0, p=2.08e-13 (vs. 1/3) < 0.001
Proportion of items with correct initial syllables

lab-based (Exp. la) M= 0.333, SE=0.105, p= 0.856 M= 0.809, SE= 0.0694, p= 0.00186 0.016

online (Exp. 1b) M=0.419, SE= 0.0392, p= 0.0864 M=0.738, SE= 0.0387, p= 1.58e-11 0.000
Proportion of items with correct final syllables

lab-based (Exp. la) M= 0.456, SE=0.125, p=0.5 M= 0.818, SE= 0.0829, p= 0.00222 0.025

online (Exp. 1b) M= 0.386, SE= 0.043, p= 0.456 M= 0.7, SE= 0.0437, p= 4.14e-10 0.000

2.2.2 Can chunking models account for
these results? Taken together, the results of Ex-
periment 1 suggest that participants can learn sta-
tistical information from fluent speech. However,
the information they retain does not allow them to
learn (statistically defined) chunks that might then
be encoded as word candidates in declarative long-
term memory. Rather, few participants produced
any words or part-words at all, and among those
participants who produced such items, only one-
third produced words. Further, only about a third
of the participants produced items starting with
word-initial syllables, while two-thirds produced
items starting with word-medial or word-final syl-
lables. Such results suggest that statistical learning
does not support the very function for which it was
motivated originally — to identify word boundaries
in fluent speech, and thus to learn words from flu-
ent speech.

Given the debate about whether statistical
learning entails memories for chunks (see e.g.
Perruchet, 2019 vs. Endress et al.,, 2020 and

General Discussion), we illustrate the conclusion
that chunking models will not produce part-words
rather than words. Specifically, in SM6, we re-
port simulations with PARSER (Perruchet & Vin-
ter, 1998), a prominent chunking model of word
segmentation, (see also Endress & Langus, 2017,
for related simulations), where we attempt to bias
the model to prefer part-words over words. How-
ever, despite our attempt to bias the model, it never
preferred part-words to words.

Given that, in our recall experiment, the majority
of those participants who produced either words
or part-words produced part-words, these results
suggest that chunking models (or at least at least
one rather prominent chunking model) either can-
not account for the current results, or, to the ex-
tent that other chunking models might account for
them, that these models learn information that does
not allow them to recover word boundaries from
fluent speech.

Critically, such models would also need to ac-
count for the fact that participants produce part-
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words even when they prefer words in a recogni-
tion test. As a result, while it might be possible
to create chunking model that produce part-words
(even though this would contradict their original
purpose),® such models are unlikely to simultane-
ously prefer words in a recognition test. After all,
the preferences of chunking models are driven by
those chunks with the strongest memory represen-
tations. If these chunks happen to be words, the
models will prefer words in both recognition and
recall; if they are part-words, the models will pre-
fer part-words, again in both recognition and re-
call. As a result, we believe that the current re-
sults are fundamentally incompatible with chunk-
ing models of statistical learning.

2.2.3 Relations between recall and recogni-
tion. The results so far suggest that the infor-
mation extracted in statistical learning tasks does
not allow participants to identify word boundaries.
Further, the pattern of performance is unlikely to
be explained by chunking models of word seg-
mentation. As mentioned above, such models are
driven by the memory strength of those chunks
they happen to have memorized. As a result, even
if it is possible to bias such models to prefer low-
probability items, it is unclear how such models
could prefer words over part-words in a recogni-
tion test (and thus have stronger memory traces
of words), and simultaneously produce part-words
rather than words in a recall test (and thus have
stronger memory traces of part-words).

That being said, statistical learning performance
(as measured in the recognition test) might still be
related to memory for word candidates (as mea-
sured by the participants’ productions), albeit in-
directly. For example, and as mentioned above,
participants might focus on particular individual
syllables, and preferentially track statistics around
those syllables they happen to focus on.

Given that attention affects statistical learning
(e.g., Turk-Browne, Jungé, & Scholl, 2005; Toro,
Sinnett, & Soto-Faraco, 2005), focusing on partic-
ular syllables might also direct the participants’ at-
tention and thus what they learn from the streams.

For example, if participants happen to focus on
word-medial or word-final syllables, they would
also focus on statistically less cohesive syllable
sequences as a result. Conversely, if participants
happen to focus on word-initial syllables, they
would also focus on statistically more cohesive
syllables. This, in turn, which might affect recog-
nition performance: Those participants who pro-
duced part-words might have focused on those syl-
lables at the beginning of part-words, and those
who produced words might have focused on word-
initial syllables, and the syllables participants hap-
pen to focus on might be chosen randomly.
Critically, while our evidence does not allow
us to decide whether participants focused on par-
ticular syllables, such views would imply that,
in Experiment 1, most participants focused on
other syllables than word-initial syllables, given
that two thirds of the participants produced part-
words rather than words. While we show in
SMS5 that recall performance is related to recogni-
tion performance, any memory-based views would
thus still imply that statistical learning does not
lead to memories of high probability sequences in
most participants, and rather to memories of low-
probability sequences, which would make statisti-
cal learning unsuitable for word learning in turn.
Further, and as mentioned above, most partic-
ipants produced part-words even while preferring
words in a recognition test. It is thus unclear how
the same memory-based mechanisms can show
different preferences in recall and recognition.

2.3 Discussion

Experiment 1 provided the first direct test of the
contents of the participants’ (episodic or semantic)
declarative memory after exposure to a statistical
learning task. The results suggest that, even when
participants successfully track statistical informa-

8For example, it is possible to add an “attentional”
component that forces the model to start chunks with
word-medial syllables. We are grateful to a reviewer
for pointing out this possibility.
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tion, they remember familiarization items only
when familiarized with a pre-segmented sequence.
In contrast, when familiarized with a continuous
sequence, their productions start with random syl-
lables rather than actual word onsets. Given that
the memory representations of linguistic items are
based on their initial and final syllables (Endress &
Langus, 2017; Fischer-Baum et al., 2011; Miozzo
etal., 2016), these results thus suggest that statisti-
cal learning did not lead to the creation of declara-
tive memory representations.

Contrary to this conclusion, some authors sug-
gest that statistical learning might lead to declara-
tive memories for chunks (Graf-Estes et al., 2007;
Hay, Pelucchi, Graf Estes, & Saffran, 2011; Isbilen
et al., 2020). Such experiments generally proceed
in two phases. During a statistical learning phase,
participants are exposed to some statistically struc-
tured sequence. Then, they are exposed to items
presented in isolation, and show some processing
advantage for isolated high-probability items com-
pared to isolated low-probability items. However,
we proposed that such experiments have a two-step
explanation that does not involve declarative mem-
ory (Endress & Langus, 2017). First, during the
statistical learning phase, participants acquire sta-
tistical knowledge without remembering any spe-
cific items. When experimenters subsequently pro-
vide participants with isolated chunks, the accu-
mulated statistical knowledge facilitates process-
ing of the experimenter-provided chunks (e.g., due
to predictive processing), without these chunks
having been acquired before being supplied by the
experimenter. In contrast to such indirect designs,
we provide a direct measure of declarative knowl-
edge of sequence items, and show that participants
do not form declarative memories of sequence
items unless the sequence is pre-segmented.

Another major argument for a role of declara-
tive memory in statistical learning comes from the
observation that learners tend to recognize entire
units better than sub-units (e.g., Fiser & Aslin,
2005; Giroux & Rey, 2009; Orban, Fiser, Aslin,
& Lengyel, 2008; Slone & Johnson, 2018). We

now show that such results can be explained using
a simple Hebbian learning model, and propose fur-
ther alternative interpretations in the General Dis-
cussion.

3 Simulation 1: Does Hebbian learning
provide an alternative to memory-based
theories of statistical learning?

There is considerable debate about whether sta-
tistical learning leads to memory for recurring
chunks (e.g., Endress et al., 2020; Goodsitt, Mor-
gan, & Kuhl, 1993; Perruchet, 2019; Swingley,
2005; Thiessen, 2017), and some empirical results
seem to support this idea.

While most of these results have alternative in-
terpretations (see above and General Discussion),
there is one research tradition that appears to pro-
vide strong evidence in favor of a memory based
theory of statistical learning.

Specifically, in some studies, recognition per-
formance is better for (statistically defined) units
compared to (statistically defined) sub-units (e.g.,
Fiser & Aslin, 2005; Giroux & Rey, 2009; Or-
ban et al., 2008; Slone & Johnson, 2018). In a
word recognition analogy, hearing the word ham-
ster makes it difficult to recognize that the first
syllable of hamster is a word on its own (i.e.,
ham), though, in word recognition, the reduced
availability of sub-units is at least partially driven
by phonetic differences between syllables that are
parts of words and syllables that are words on
their own (e.g., van Alphen & van Berkum, 2010;
Salverda, Dahan, & McQueen, 2003; Shatzman &
McQueen, 2006a, 2006b).

Similar effects are observed in statistical learn-
ing in both vision and audition. For example, the
AB part of an ABC unit is harder to recognize than
a complete CD unit, which would suggest that the
entire units are stored in memory. We now pro-
vide simulation results suggesting that such results
are compatible with a memory-less Hebbian learn-
ing mechanism, but discuss this issue separately
for sequential, auditory sequences and simultane-
ously presented visual shapes as the arguments are
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somewhat different.

3.1 Units vs. sub-units in audition

As mentioned above, most statistical learning re-
sults can be explained by simple Hebbian learn-
ing: If the representation of a syllable is still active
while the next one is presented, the two syllable
representations are active together can thus form
an association. An implementation of this idea is
provided in models such as Endress and Johnson’s
(2021). In their neural network model, neurons are
connected through both excitatory and inhibitory
connections, where only the excitatory connec-
tions undergo Hebbian learning. After learning,
when B (from ABC) is activated, it will excite (and
inhibit) both A and C in turn. Critically, the excita-
tory connections between A and C are weaker than
those between A and B and those between B and C
(since there is less temporal overlap between their
activations, and thus less Hebbian learning). This
idea is illustrated in Figure 6. After an (external)
activation of the neuron A (top), excitatory connec-
tions as well as external input to B will activate
both B and C (bottom). Depending on the balance
of excitation and inhibition between A and C, the
net input on from C to A might thus be inhibitory
on the next time step. In contrast, in complete two-
item units, there is no extra item like C that could
reduce the activation within the unit due to inhibi-
tion.

We now illustrate this point by using Endress
and Johnson’s (2021) model to simulate one of
the first experiments showing better recognition of
units compared to units Giroux and Rey’s (2009)
experiment. In their experiment, participants were
presented with streams consisting of two three-
syllable words and four two-syllable words. Af-
ter such a familiarization, Giroux and Rey (2009)
found better recognition for sub-units (i.e., two syl-
lables from a three-syllable word) than for units
(i.e., entire two-syllable words).

The model is a fully connected network where
all neurons send both excitatory and inhibitory in-
put to all other units. Their activations also de-

T

Figure 6. After an (external) activation of the neu-
ron A (top), excitatory connections as well as ex-
ternal input to B will activate both B and C (bot-
tom). Depending on the balance of excitation and
inhibition between A and C, the net input on from
C to A might thus be inhibitory on the next time
step.

cays over time. Critically, excitatory connections
are turned using a Hebbian learning rule.

In our simulations, we randomly concatenated
these words into familiarization streams with 143
occurrences of each word (matching Giroux and
Rey’s (2009) familiarization). We then presented
the network with test items (see below) and
recorded the total network activation while each
item was presented, using the total activation as a
measure of the network’s familiarity with the test
item. We tested the network for different decay
rates (A in Endress & Johnson, 2021) and interfer-
ence rates (B in Endress & Johnson, 2021). The
cycle of familiarization and test was repeated 100
times for each parameter set, representing 100 sim-
ulated participants.

To compare the network’s familiarity with two-
syllable units and two-syllable sub-units, we cre-
ated normalized difference scores d = phiSubunl,
We evaluated these difference scores against the
chance level of zero using Wilcoxon tests.

As shown in Figure 7, when averaging across
trials comparing two-syllable units to AB and BC
sub-units, there was a significant preference for
units for most parameter sets (except for some sim-
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Figure 7. Normalized average difference scores
of network activations after presentation of en-
tire two-syllable units and different types of two-
syllable units (i.e., AB and BC from ABC units),
as a function of the forgetting rate (y axis) and the
interference rate (facets in rows). As in Giroux and
Rey (2009), we do not separate AB and BC sub-
units. Positive values indicate stronger activations
for units. Significance stars reflect a Wilcoxon test
against the chance level of zero. Units generally
elicit greater activation compared to the average of
AB and BC sub-units. Significance labels: **%*;
< 0.001; **: <0.01; *: <0.05; .: 0.1

ulations with low inhibition rates). A simple Heb-
bian network can thus account for better recogni-
tion of units compared to sub-units.

However, as shown in Figure 8, while units
were systematically preferred over AB sub-units
for most parameter values, BC sub-units were
sometimes preferred for very low or very high in-

terference rates. Be that as it might, the current
results clearly demonstrate that a simple Hebbian
network can account for the preference for units
over sub-units, though the level of inhibition might
need to be adequate.

To support our contention that the preference for
units over sub-units might arise from the interplay
between learning (and thus excitation) and inhi-
bition, Figure 9 shows the weights between dif-
ferent pairs of neurons after learning. As sug-
gested above, the connection between A and C
in a three-syllable ABC unit is generally weaker
than the other connections, and often substantially
smaller than the interference rate. Depending on
the parameter values, (second order) activation of
C might thus partially suppress activation in AB
sub-units, and activation of A might suppress acti-
vation in BC sub-units. However, the exact com-
putational mechanisms, as well as the differences
in behavior between AB and BC sub-units deserve
further investigation. For the current purposes,
we just conclude that the fact that a simple Heb-
bian learning model can account for a preference
for units over sub-units demonstrates that such re-
sults do not provide evidence that units have been
placed in memory, and thus do not license the con-
clusion that the units are stored as chunks in mem-
ory.

3.2 Units vs. sub-units in vision

The simulations reported above suggest that a
simple Hebbian network can account for the pref-
erence for units over sub-units (though the level of
inhibition might need to be adequate) when items
are presented sequentially. As a result, such re-
sults do not provide evidence that statistical learn-
ing leads to memory for chunks.

There is also evidence that units are easier to rec-
ognize than sub-units for simultaneously presented
shapes in vision (e.g., Fiser & Aslin, 2005; Orbin
et al., 2008). In such experiments, shape combina-
tions are presented simultaneously, leading to pat-
terns of spatial statistical regularities.

However, it is unclear how reliable such effects
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Figure 8. Normalized difference scores of net-
work activations after presentation of entire two-
syllable units and different types of two-syllable
units (i.e., AB and BC from ABC units), as a func-
tion of the forgetting rate (y axis) and the interfer-
ence rate (facets in rows). The rightmost column
is the average of the other columns reported by
Giroux and Rey (2009). Positive values indicate
stronger activations for units. Significance stars
reflect a Wilcoxon test against the chance level of
zero. Units generally elicit greater activation com-
pared to AB sub-units and compared to the aver-
age; when compared to BC units, the sign of the
difference score depends on the parameters. Sig-
nificance labels: ***: < 0.001; **: < 0.01; *:
<0.05;.: <0.1
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Figure 9. Connection weights between different
pairs of neurons as a function of the forgetting rate
(columns) and the interference rate (rows). The
figure shows connection weights within a trisyl-
labic unit (ABC) and a bisyllabic unit (Unit). The
black line represents the interference rate. The A-
C connection is generally smaller than the other
connections, and often substantially smaller than
the interference rate.

are. For example, Fiser and Aslin (2005) observed
better recognition of units in their Experiments 1
and 4, but not in their Experiment 5. Further, when
presenting shapes in a sequence rather than simul-
taneously, Slone and Johnson (2015) also failed to
find evidence for better recognition of units in their
Experiment 2, where they directly contrasted the
strength of representation of units vs. sub-units.

To the extent that such findings are reliable, they
are consistent with a similar explanation as the se-
quential case above. Presumably, the strength of
associations among shapes depends on their spa-
tial distance. Further, given the ubiquity of lateral
inhibitory processes in vision (Desimone & Dun-
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can, 1995; Hampshire & Sharp, 2015; Kiyonaga &
Egner, 2016), one would expect spatial inhibitory
processes to take place in statistical learning tasks
as well. As a result, one would expect a Hebbian-
like model similar to the one above to reproduce
better recognition of visually presented units com-
pared to sub-units, though the temporal organiza-
tion in the model above would need to be replaced
with some spatial organization.

Better recognition for units compared to sub-
units can thus be explained by simple Hebbian pro-
cesses in the absence of the creation of memories
for these units.

However, we will now suggest further alterna-
tive interpretations of a preference for units over
sub-units.

3.3 Further alternative explanations of a pref-
erence for units over sub-units

In the case of sequential statistical learning
tasks, results that units are easier to recognize than
sub-units have another mutually non-exclusive al-
ternative explanations on top of the Hebbian ex-
planation above. This explanation is based on pre-
dictive processing. If C is strongly associated with
AB, hearing an AB fragment during test might lead
to a prediction error because participants expect to
hear C (or A for backward predictions after hear-
ing BC) even when they have no memory repre-
sentation of the entire ABC chunk. In contrast,
in entire units, there is no such prediction error.
This interpretation is in line with the classic finding
that tasks such as stem completion do not require
declarative LTM (Graf & Mandler, 1984). Mutatis
mutandis, participants might make predictions in
test items, without any units having been placed in
memory, and these predictions might affect their
familiarity judgements.

In the case of spatial statistical learning, atten-
tional processes provide a further alternative ex-
planation in terms of the preference for units over
sub-unit. This account relies on the spatial regions
attended by participants. In unpublished results,
we presented participants with simultaneously pre-

sented shape combinations, and then tested for
recognition of entire units or of sub-units. We
found better recognition of units than of sub-units,
but only when these sub-units are located in parts
of the display that do not attract attention. In con-
trast, when the sub-units came from salient parts
of the units, recognition was as good as for units
(Endress, in preparation).

Taken together, it seems reasonable to conclude
that a preference for units over sub-units is not di-
agnostic of memory representations of the units.
Rather, such results can be explained by simple
and memory-less Hebbian learning mechanisms,
or by the other explanations above.

4 Experiment 2: Is statistical learning
available in both continuous and
pre-segmented speech ?

Experiment 1 suggests that participants do not
form declarative memory traces of words when the
only available cues are statistical in nature. In con-
trast, they readily form declarative memories when
items are pre-segmented.

These results do not imply that statistical learn-
ing might not play a critical role in word segmen-
tation. As mentioned above, speech is prosodi-
cally organized (Cutler et al., 1997; Nespor & Vo-
gel, 1986; Shattuck-Hufnagel & Turk, 1996), and a
learner’s segmentation task is not so much to inte-
grate distributional information over long stretches
of continuous speech, but rather to decide whether
the correct grouping in prosodic groups such as
“thebaby” is “theba + by” or “the + baby”. In
principle, statistical learning might be well suited
to this task. In line with the two-step explana-
tion of Graf-Estes et al.’s (2007), Hay et al.’s
(2011), Isbilen et al.’s (2020) experiments above,
implicit knowledge of statistical regularities might
help learners acquire words more effectively once
(prosodic) segmentation cues are given (but see
e.g. Ngon et al., 2013; Sohail & Johnson, 2016).

We test this issue in Experiment 2. Participants
listened to a speech sequence of tri-syllabic non-
sense words. For half of the participants, both the
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TPs and the chunk frequency were higher between
the the first two syllables of the word than between
the last two syllables. We thus expected learners
to split a triplet like ABC into an AB+C pattern.
For the remaining participants, both the TPs and
the chunk frequency favored an A+BC pattern. In
the pre-segmented condition, the words were pre-
sented separated from each other and with a si-
lence after each word. In the continuous condition,
they were continuously concatenated. Following
this familiarization, participants heard pairs of AB
and BC items and had to indicate which item was
more like the familiarization items. In Experiment
2a, stimuli were synthesized with the enl (British
English male) voice, though this voice turned out
to produce artifacts in the continuous stream. In
Experiment 2b, stimuli were synthesized using the
us3 (American English male) voice.

If, as as we initially assumed, statistical learning
allows learners to extract “correct” syllable group-
ings, they should recognize high-frequency chunks
after both continuous and pre-segmented familiar-
izations. In contrast, if statistical learning predom-
inantly supports predictive processing (Sherman &
Turk-Browne, 2020; Turk-Browne et al., 2010),
participants should extract high frequency group-
ings predominantly after continuous familiariza-
tions in the continuous condition.

4.1 Material and Methods

We prepared two versions of Experiment 2, dif-
fering in the voice used to synthesize the stimuli.
In Experiment 2a, we used a British English male
(enl) voice. In Experiment 2b, we used an Amer-
ican English male (us3) voice. Both experiments
were lab-based.

4.1.1 Participants. Participants were re-
cruited from the City, University London partici-
pant pool and received course credit or monetary
compensation for their time. We targeted 30
participants per experiment (15 per language).
This number was chosen because it is realistic in
the time-frame available for a third-year honors
project. Participants reported to be native speakers

of English, but we did not assess their English
proficiency. However, participants were most
likely exposed to English from childhood, as the
experiment took place in London, UK, and the
experimenters did not notice any clear non-native
accents in most participants and excluded the
few participants with non-native accents from
analysis. The final demographic information is
given in Table 1. In Experiment 2a, an additional
3 participants took part in the experiment but
were not retained for analysis because they were
much older than the rest of the sample (N = 3) or
because they had a noticeable non-native accent
N = 1. In Experiment 2b, an additional six
participants were excluded from analysis because
they had taken part in a prior version of this
experiment (N = 4), were much older than the rest
of our sample (N = 2), or used their phone during
the experiment or were visibly inattentive (N = 2).

4.1.2 Design. Participants were familiarized
with a sequence of tri-syllabic words. In Language
1, both the TPs and the chunk frequency were
higher in the bigram formed by the first two syl-
lables than in the bigram formed by the last two
syllables. As a result, a statistical learner should
split a triplet like ABC into an initial AB chunk fol-
lowed by a singleton C syllable (hereafter AB+C
pattern). In Language 2, both the TPs and the
chunk frequency favored an A+BC pattern. The
basic structure of the words is shown in Table 4.

As aresult, in Language 1, the first bigram has a
(forward and backward) TP of 1.0, while the sec-
ond bigram has a (forward and backward) TP of
.33. In contrast, in Language 2, the first bigram
has a (forward and backward) TP of .33, while the
second bigram has a (forward and backward) TP of
1.0. Likewise, the initial bigrams were three times
as frequent as the final ones for Language 1, while
the opposite holds for Language 2.

We asked whether participants would extract ini-
tial bigrams or final bigrams. The test items are
given in Table 4.

4.1.3 Stimuli. Stimuli in Experiment 2a
were synthesized using the en/ (British English
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male) voice from mbrola (Dutoit et al., 1996).
However, as discussed below, it turned out to be
of relatively low quality and introduced artifacts in
the data. Stimuli in Experiment 2b were synthe-
sized using the us3 voice (American English male)
voice from mbrola (Dutoit et al., 1996).

Segments had a constant duration of 60 ms (syl-
lable duration 120 ms) with a constant Fy of 120
Hz. These values were chosen to match recordings
of natural speech that were intended to be used in
investigations of prosodic cues to word segmenta-
tion.

For continuous streams, a single file with 45 rep-
etitions of each word was synthesized for each lan-
guage (2 min 26 s duration). It was faded in and
out for 5 s using sox (http://sox.sourceforge
.net/) and then compressed to an mp3 file us-
ing ffmpeg (https://ffmpeg.org/). The stream
was then presented 3 times to a participant (total
familiarization duration: 7 min 17 s). The random
order of the words was different for every partici-
pant.

For segmented streams, words were individually
synthesized using mbrola. We then used a custom-

Table 4

Design of Experiment 2. (Left) Language struc-
ture. (Middle) Structure of test items. Correct
items for Language 1 are foils for Language 2 and
vice versa. (Right) Actual items in SAMPA format;
dashes indicate syllable boundaries.

made Perl script to randomize the words for each
participant and concatenate them into a familiar-
ization file using sox. The order of words was then
randomized for each participant and concatenated
into a single aiff file using sox. The silence among
words was 540 ms (1.5 word durations). The total
stream duration was 6 min 12s. The stream was
then presented 3 times to a participant (total famil-
iarization: 18 min 14 s).

4.1.4 Apparatus. The experiment was run
using Psyscope X (http://psy.ck.sissa.it).
Stimuli were presented over headphones in a quiet
room. Responses were collected from pre-marked
keys on the keyboard.

4.1.5 Procedure. Participants were in-
formed that they would listen to a monologue
by a talkative Martian, and instructed to try to
remember the Martian words. Following this, they
listened to three repetitions of the familiarization
stream described above, for a total familiarization
duration of 7 min 17 s (continuous stream) or 18
min 14 s (segmented stream).

Following this familiarization, participants were
presented with pairs of items with an inter-stimulus
interval of 500 ms, and had to choose which items
was more like what they heard during familiariza-
tion. One item comprised the first two syllables of
a word, and was a correct choice for Language 1.
The other item comprised the last two syllables of
a word, and was a correct choice for Language 2.
There were three items of each kind. They were
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for participants, correct items and foils. Following
Baayen, Davidson, and Bates (2008), random fac-
tors were removed from the model when they did
not contribute to the model likelihood.

We use likelihood ratios to provide evidence for
the null hypothesis that performance did not differ
from the chance level of 50%. Following Glover
and Dixon (2004), we fit the participant averages to
(1) a linear model comprising only an intercept and
(i1) the null model fixing the intercept to the appro-
priate baseline level, and evaluated the likelihood
of these models after correcting for the difference
in the number of parameters using the Bayesian In-
formation Criterion.

4.2 Results

4.2.1 Experiment 2a (British English voice).
We first report the results from Experiment 2a,
using a British English voice. When the famil-
larization stream was pre-segmented, participants
failed to split smaller utterances into their under-
lying components. As shown in Figure 10 (top),
the average performance did not differ significantly
from the chance level of 50% when the stream was
synthesized with the en/ voice (M = 54.26, SD =
25.09), Cohen’s d = 0.17, Cl 95 = 44.89, 63.63, ns.
Likelihood ratio analysis favored the null hypoth-
esis by a factor of 3.55 after correction with the
Bayesian Information Criterion. Further, as shown
in Table 5, performance did not depend on the lan-
guage condition.

In contrast to the common finding that humans
and other animals are sensitive to TPs, our partic-
ipants failed to use TPs to split pre-segmented ut-
terances into their underlying units. We thus asked
if, in line with previous research, they can track
TPs units are embedded into a continuous speech
stream. That is, participants in the continuous con-
dition listened to the very same artificial speech
stream as in the pre-segmented condition, except
that the stream was continuous and had no silences
between words.

Participants also failed to use TPs to segment
words when the speech stream was continuous.

Specifically, and as shown in Figure 10 (top), the
average performance did not differ significantly
from the chance level of 50%, (M = 48.89, SD =
19.65), 1(29) = -0.31, p = 0.759, Cohen’s d =
0.057, Clys = 41.55, 56.23, ns, V = 166, p
= 0.818. Likelihood analyses revealed that the
null hypothesis was 5.22 times more likely than
the alternative hypothesis after a correction with
the Bayesian Information Criterion. However, as
shown in Table 5, performance was much better
for Language 1 than for Language 2, presumably
due to some click-like sounds the synthesizer pro-
duced for some stops and fricatives (notably /f/ and
/g/). These sounds likely affected grouping, and
prevented participants from using statistical learn-
ing. We thus decided to replicate Experiment 2a
with a different, American English voice.

4.2.2 Experiment 2b (American English
voice). When the familiarization stream was pre-
segmented, participants failed to split smaller ut-
terances into their underlying components. As
shown in Figure 10 (bottom), the average perfor-
mance did not differ significantly from the chance
level of 50% when the stream was synthesized with
the us3 voice (M = 51.67, SD =15.17), V =216, p
= 0.307. Likelihood ratio analysis favored the null
hypothesis by a factor of 4.57 after correction with
the Bayesian Information Criterion. As shown in
Table 5, performance did not depend on the lan-
guage condition. However, Figure 10 also shows a
clearly defined outlier. In Supplementary Informa-
tion SM7, we remove participants for Experiments
2a and 2b who differ by more than 2.5 standard
deviations from the condition mean. This analysis
yields similar results to the unfiltered analyses.

The failure to use statistical learning to split
pre-segmented units was conceptually replicated in
a pilot experiment with Spanish/Catalan speakers
using chunk frequency and backwards TPs as the
primary cues (SM8).

As in Experiment 2a, and in contrast to the com-
mon finding that humans and other animals are
sensitive to TPs, our participants failed to use TPs
to split pre-segmented utterances into their under-
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Table 5

Performance differences across familiarization
conditions in Experiment 2. The differences were
assessed using a generalized linear model for
the trial-by-trial data, using participants, correct
items and foils as random factors. Random factors
were removed from the model when they did not
contribute to the model likelihood.

Log odds Odds ratios

Term Voice Estimate  SE CI Estimate  SE CI ' P

Pre-segmented familiarization, British English voice (Exp. 2a)

language = L2 enl -0.097 0441 [0.96,0.767) 0908 0400 [0383,2.15]  -0.22 0.826

Continuous familiarization, British English voice (Exp. 2a)

language = L2 enl -1024 0410 [-1.83,-0.22] 0359 0.147 [0.161,0.803] -2.50 0.013
vs. conti iliarization, British English voice (Exp. 2a)

language =12 enl -1.061 0382 [-1.81,-0313] 0346 0.132 [0.164,0.732] 2779 0.005

stream type = segmented enl 0242 0360 [-0.949, 0.464] 0785 0283 [0387,1.59] -0.673 0.501

language = L2 x stream type = segmented enl 0967 0508 [0.0292,1.96] 2631 1338 [0971,7.13] 1903 0.057

Pre-segmented familiarization, American English voice (Exp. 2b)

language = L2 us3 0.114 0673 [-12,143] L121 0754 [03,4.19] 0.170 0.865

Continuous familiarization (1), American English voice (Exp. 2b)

language = 1.2 us3 0.184 0480 [-1.12,0.757] 0832 0400 [0325,2.13] -0.383 0.702

Continuous familiarization (2), American English voice (Exp. 2b)

language = L2 us3 0317 0786 [-1.22,1.86] 1372 1079 [0294,64] 0403 0.687

P vs. ion, American English voice (Exp. 2b, 1)

language = L2 us3 0019 0558 [-1.11,1.07) 0982 0547 [0329,2.93] -0.033 0973

stream type = segmented us3 0328 0188 [-0.696,00391] 0720 0.135 [0.499,1.04] -1752 0.080

P vs. ? ion, American English voice (Exp. 2b, 2)

language = L2 us3 0215 0.657 [-1.07,15] 1240 0814 [0342,449] 0327 0.743

stream type = segmented us3 -0.608 0.244 [-1.09,-0.13] 0.544 0.133 [0.337,0.878] -2.493 0.013

lying units. We thus asked if they could track TPs
units that are embedded into a continuous speech
stream. As in Experiment 2a, participants in the
continuous condition listened to the very same ar-
tificial speech stream as in the pre-segmented con-
dition, except that the stream was continuous and
had no silences between words.

As shown in Figure 10 (bottom), when the
speech stream was synthesized with the us3 voice,
the average performance differed significantly
from the chance level of 50%, (M = 58.51, SD =
16.21), Cohen’s d = 0.52, Cl 95 = 52.66, 64.35, V =
306.5, p =0.02. As shown in Table 5, performance
did not depend on the language condition, and was
marginally better than in the pre-segmented condi-
tion (p = .08).

Given the likely confound introduced by the
voice used in Experiment 2a, we sought to ensure
that the results of Experiment 2b would be reli-
able, and replicated the successful tracking of sta-
tistical information using a new sample of partic-
ipants, still with the us3 voice. As shown in Fig-
ure 10 (bottom), the average performance differed
significantly from the chance level of 50%, (M =
62.78, SD =21.35), Cohen’s d = 0.6, Cl 95 = 54.81,
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Figure 10. Results of Experiment 2. Each dot
represents a participant. The central red dot is the
sample mean; error bars represent standard errors
from the mean. The results show the percentage of
correct choices in the recognition test after famil-
iarization with (left) a continuous familiarization
stream or (right) a pre-segmented familiarization
stream, with a British English voice (enl, top) or
an American English voice (us3, bottom). The two
continuous conditions with the American English
voice are replications of one another.

70.75, V = 320, p = 0.008. As shown in Table 5,
performance did not depend on the language con-
dition, and was significantly better than in the pre-
segmented condition (p = .013).

Taken together, these results thus suggest that
statistical learning mechanisms predominantly op-
erate in continuous sequences, but less so in pre-
segmented sequences (see also Shukla et al., 2007,
2011). Such a result is compatible with the view
that statistical learning is important for predictive
processing, given that continuous sequences are
more conducive for prediction. In contrast, it raises
doubts as to whether participants can use statistical
learning mechanisms to memorize words, given
that they do not seem to be able to do so in pre-
segmented streams.
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4.3 Discussion

In Experiment 2, participants tracked statisti-
cal dependencies predominantly when they were
embedded in a continuous speech stream, but not
across pre-segmented chunk sequences. This find-
ing does not contradict the results from the Exper-
iment 1 above, where TPs were somewhat higher
in the pre-segmented condition; after all, if partici-
pants faithfully recall familiarization items, the re-
sulting TPs will be high as well.

This result is also consistent with earlier find-
ings that statistical learning predominantly occurs
within major prosodic groups, and, within these
groups, predominantly at the edges of those groups
(Shukla et al., 2007; Seidl & Johnson, 2008).
We show that, with shorter and better separated
groups, statistical learning can be weakened fur-
ther, to the extent that it is no longer detectable (at
least in the current experiment).

In line with results from conditioning experi-
ments (Alberts & Gubernick, 1984; Garcia et al.,
1974; Gubernick & Alberts, 1984; L. T. Martin
& Alberts, 1979), statistical learning, and maybe
associative learning in general, can thus be en-
hanced or suppressed depending on the learning
situation. The enhanced statistical learning in con-
tinuous sequences is consistent with the view that
statistical learning is important for predictive pro-
cessing (Turk-Browne et al., 2010; Sherman &
Turk-Browne, 2020), given that prediction is ar-
guably more useful in lengthy chunks. It is also
consistent with the view that statistical learning
may be less important for memorizing words (or
at least to break up utterances so that the under-
lying words can be memorized), especially given
that, due to its prosodic organization, speech tends
to be pre-segmented into smaller groups (Cutler
et al., 1997; Nespor & Vogel, 1986; Shattuck-
Hufnagel & Turk, 1996; Brentari et al., 2011; En-
dress & Hauser, 2010; Pilon, 1981; Christophe et
al., 2001).

A possible alternative interpretation is that,
in the continuous streams of Experiment 2, re-
peated bisyllabic items pop out (and are thus re-

membered), while, in the pre-segmented streams,
chunking cues (in the form of silences) prevent
sub-chunks from popping out. However, if re-
peated bisyllabic items pop out in Experiment 2’s
continuous streams, repeated trisyllabic items (i.e.,
words) should pop out in Experiment 1 as well,
and participants should be able to recall them as
a result. As this prediction is falsified, a reason-
able conclusion is that statistical learning does not
make repeating elements pop out. Conversely, the
availability of chunks might make statistical learn-
ing of within-chunk regularities more difficult, es-
pecially if chunks are memorized as whole units.
This possibility would also confirm that statistical
learning is separable from the (declarative) mech-
anisms involved in memorizing chunks.

Further, while our trisyllabic items are rela-
tively short, so are utterances in infant-directed
speech. For example, infant-directed utterances
have a typical duration of about 1 s (with some
cross-language variability; see e.g., Fernald et al.,
1989; Grieser & Kuhl, 1988), with a mean utter-
ance length of about 4 (e.g., Snow, 1977; Smolak
& Weinraub, 1983; see also A. Martin, Igarashi,
Jincho, & Mazuka, 2016). As a result, if statistical
learning is difficult in shorter utterances, the util-
ity of statistical learning for language acquisition
might be reduced.

This is not to say that statistical learning can
never occur in pre-segmented units. While the
available statistical information does not always
improve performance when chunking information
is available (e.g., Sohail & Johnson, 2016), Shukla
et al. (2007) showed that, when adults learners are
exposed to 10-syllables chunks (defined by intona-
tional contours), they have some sensitivity to sta-
tistical information within the chunks, though they
might also use declarative memory mechanisms to
remember sub-chunks (see also Endress & Bon-
atti, 2007; Endress & Mehler, 2009a; Endress &
Wood, 2011 for additional results suggesting that
statistical learning is possible within chunks, at
least when the structure of the test items made the
TP contrast rather salient). However, Shukla et al.
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(2007) also found that participants predominantly
retain information at chunk edges rather than at
chunk medial positions. At minimum, it is thus an
empirical question to what extent statistical learn-
ing is useful for word segmentation in the short ut-
terances infants are faced with.

5 General Discussion

In the current experiments, we explored to what
extent statistical learning can fulfill the function
that is often attributed to it: Identifying word
boundaries in fluent speech so that participants
can learn words and, ultimately, commit them
to declarative LTM.? In Experiment 1, we ex-
posed (adult) participants to the speech streams
from Saffran, Aslin, and Newport’s (1996) classic
word-segmentation experiment with infants, and
asked whether they would be able to recall the
words contained in these speech streams. When
the speech streams were continuous, participants
clearly tracked TPs in the speech streams, but we
found no evidence that they had remembered any
words at all. The overwhelming majority produced
neither words nor part-words, and, even among
those who produced word or part-words, two thirds
produced part-words. Further, only about a third
of the participants produced items starting with
word-initial syllables, while two-third produced
items starting with word-medial or word-final syl-
lables. Statistical learning thus does not appear
to provide participants with the ability to identify
word boundaries in fluent speech nor to remem-
ber the words to which they have been exposed.
Through simulations with a prominent chunking
model (Perruchet & Vinter, 1998), we confirmed
that these results cannot be explained by chunk-
ing models of word segmentation. Further, and
as mentioned above, the fact that participants pro-
duce part-words even when they prefer words in
a recognition test is fundamentally incompatible
with such models, given that the models’ prefer-
ences are driven by those chunks with the strongest
memory representations, in both recall and recog-
nition. As a result, they should show the same

preferences in both recall and recognition. In con-
trast, when brief silences were inserted at word
boundaries, mimicking the prosodic organization
of speech, participants reliably produced words.

In Experiment 2, we asked whether statistical
learning operates in smaller chunks, such as those
that might be encountered due to the prosodic or-
ganization of language, or only in longer stretches
of continuous speech. Participants listened to a
speech sequence of tri-syllabic non-sense words.
As in Experiment 1, the words were either pre-
segmented (i.e., with a silence after each word)
or continuously concatenated. @ We found that
participants preferred high probability sequences
only after exposure to continuous but not to
pre-segmented streams, suggesting that statistical
learning might be much less effective in the short
and prosodically structured sequences that are typ-
ical of language acquisition (e.g., Fernald et al.,
1989; Grieser & Kuhl, 1988; A. Martin et al.,
2016; Snow, 1977; Smolak & Weinraub, 1983).'°

Taken together, Experiments 1 and 2 suggest
that statistical learning does not lead to declara-
tive LTM representations of words, does not allow
learners to identify word boundaries, and might
not even operate under those conditions likely en-
countered during language acquisition. As a result,
statistical learning and (declarative) memory might
fulfill different computational functions in the pro-
cess of word segmentation.

These results echo dissociations between asso-
ciative learning and declarative memory (Cohen
& Squire, 1980; Graf & Mandler, 1984; Finn et
al., 2016; Knowlton et al., 1996; Poldrack et al.,

9As mentioned above, we focus on forms of sta-
tistical learning that allow learners to track sequen-
tial dependencies among items in continuous sequences
and possibly also to associate simultaneously presented
items in vision. Other forms of statistical learning
might well have different properties.

10As mentioned above, we do not propose that sta-
tistical learning is impossible within chunks, and there
is evidence that statistical learning can occur within
chunks under some conditions.
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2001; Squire, 1992), suggesting that the (corti-
cal) declarative memory system might be inde-
pendent of a (neostriatal) system for associative
learning (Knowlton et al., 1996; Poldrack et al.,
2001; Squire, 1992), though other authors propose
that both types of memory involve the hippocam-
pus (Ellis et al., 2021; Schendan, Searl, Melrose,
& Stern, 2003; Sherman & Turk-Browne, 2020)
and different memory systems can interact during
consolidation (Robertson, 2022). In line with ear-
lier proposals (Turk-Browne et al., 2010; Sher-
man & Turk-Browne, 2020), we thus suggest that
the computational function of statistical learning
might be distinct from that of (declarative) mem-
ory encoding, and that statistical learning might be
more important for predictive processing. The rel-
ative salience of these mechanisms might depend
on how useful and adaptive they are for the learn-
ing problem at hand.

5.1 Can chunking models account for word-
segmentation data?

As mentioned above, there is considerable de-
bate about whether statistical learning leads to
memory for recurring chunks (e.g., Endress et
al., 2020; Goodsitt et al., 1993; Perruchet, 2019;
Swingley, 2005; Thiessen, 2017). However, and
as also mentioned above, there are a number of
results that seem incompatible with a declarative
memory theory of statistical learning.

For example, observers sometimes report
greater familiarity with high-TP items than with
low-TP items when they have never encountered
either of them (because the items are played back-
wards with respect to the familiarization sequence;
Endress & Wood, 2011; Turk-Browne & Scholl,
2009; Jones & Pashler, 2007). Further, observers
sometimes report greater familiarity with high-
TP items they have never encountered than with
low-TP items they have heard or seen (Endress
& Langus, 2017; Endress & Mehler, 2009b; En-
dress, under review), a result that has been indi-
rectly replicated even in findings that purportedly
challenge these conclusions (Perruchet & Poulin-

Charronnat, 2012).!! Such results clearly demon-
strate that a sensitivity to statistical structure does
not imply that the statistically favored items have
been encoded in LTM. In line with this view, many
statistical learning results can be explained by
purely correlational, memory-less Hebbian learn-
ing mechanisms (e.g., Endress & Johnson, 2021,
2023; Endress, 2024; Verosky & Morgan, 2021).

In our view, the main evidence in favor
of memory-based models of statistical learning
comes in three flavors (see Endress et al., 2020, for
a critical review of other evidence). First, different
authors suggested that statistically favored items
are preferentially encoded in memory (e.g., Graf-
Estes et al., 2007; Hay et al., 2011; Isbilen et al.,
2020). However, as mentioned above, such results
are compatible with a two-step explanation: First,
during the statistical learning phase, participants
acquire statistical knowledge without remember-
ing any specific items. When experimenters subse-
quently provide participants with isolated chunks,
the accumulated statistical knowledge facilitates
processing of the experimenter-provided chunks,
without these chunks having been acquired before
being supplied by the experimenter. According to
this explanation, there would not be any declar-
ative memory of these chunks due to statistical
learning.

The second major source of evidence that is
compatible with a memory-based model for sta-
tistical learning is the observation that statistically
structured sequences can elicit periodic electro-
physiological activity with rhythms correspond-
ing to word durations. For example, if words are
three syllables long, a neural rhythm with a pe-
riodicity of three syllables can arise (e.g., Bat-
terink & Paller, 2017; Buiatti, Pefia, & Dehaene-
Lambertz, 2009; Fl6 et al., 2022; Kabdebon, Pena,

"Tn Perruchet and Poulin-Charronnat’s (2012), as in
Endress and Langus’s (2017) and Endress and Mehler’s
(2009b) experiments, it was much harder to choose
between words and unattested high-TP items than to
choose between words and part-words, a result that is
incompatible with current chunking models.
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Buiatti, & Dehaene-Lambertz, 2015; Moser et al.,
2021). At first sight, such results seem to suggest
that participants must track (and thus remember)
words, though not all of these authors espoused a
memory-based perspective of statistical learning.
However, it turns out that this periodic activity can
also result from Hebbian learning mechanisms that
do not place any items in memory (Endress, 2024).
After all, in each word, the final syllable is maxi-
mally predictive, and thus receives more associa-
tive input from other syllables than word-initial
and word-medial syllables. As a result, one would
expect an activation peak on word-final syllables,
and thus a rhythm with a periodicity of a word du-
ration.

The third major source of evidence for a
memory-based model of statistical learning comes
from studies revealing better recognition of (sta-
tistically defined) units compared to (statistically
defined) units (e.g., Fiser & Aslin, 2005; Giroux
& Rey, 2009; Orban et al., 2008; Slone & John-
son, 2018). In the word recognition analogy used
above, hearing the word hamster makes it difficult
to recognize that the first syllable of hamster is
a word on its own (i.e., ham; leaving aside pho-
netic differences between syllables that are parts
of words and syllables that are words on their own;
e.g., van Alphen & van Berkum, 2010; Salverda et
al., 2003; Shatzman & McQueen, 2006a, 2006b).
In actual statistical learning tasks, the AB part of
an ABC unit is harder to recognize than a complete
CD unit, which would suggest that the entire units
are stored in memory.

However, the simulations reported here suggest
that such results are compatible with memory-less
Hebbian learning mechanisms, due to the interplay
between excitation and inhibition. We also pro-
vided additional alternative explanations, which
suggest that the evidence for chunk-based mem-
ory due to statistical learning is much weaker than
commonly believed.

Taken together, these results suggest there are
several alternative explanations for better recog-
nition of units than of sub-units that do not in-

volve declarative memory representations of the
units. Given that the relatively direct memory test
presented here revealed no evidence that statistical
learning leads to memory representation for recur-
ring units, a plausible conclusion is that it does not.
Potentially, statistical learning might reflect sim-
ple Hebbian learning as in Endress and Johnson’s
(2021) model."?

The conclusion that statistical learning does
not lead to declarative memories of words does
not imply that statistical learning has no role in
word learning. For example, and as mentioned
above, prior associations among syllables (or other
phonological units) might facilitate the subsequent
establishment of declarative memory representa-
tions for words once suitable cues become avail-
able. Pre-existing associations might be particu-
larly useful for word learning if the initial (phono-
logical) representations of word sounds are not
yet integrated in the mental lexicon, and if this
integration requires additional exposure to these
words (e.g., Gaskell & Dumay, 2003; see also
Viviani & Crepaldi, 2022, for evidence that lex-
ica are acquired gradually in second language ac-
quisition). However, most words are exceedingly
rare (Yang, 2013), which, in turn, raises the ques-
tion of whether sufficient exposure would be avail-
able to learners to acquire all but the most frequent

2This conclusion does not imply that there are no
explicit components to statistical learning. In fact, sta-
tistical learning is sensitive to attentional manipula-
tions (Turk-Browne et al., 2005; Toro, Sinnett, & Soto-
Faraco, 2005), and recognition performance in statisti-
cal learning tasks tends to be better when participants
are more confident in their responses (e.g., Batterink,
Reber, Neville, & Paller, 2015; Smalle, Daikoku, Sz-
malec, Duyck, & Moéttonen, 2022). However, such
results do not imply that statistical learning leads to
declarative memory for words. For example, after fa-
miliarization with an episode of Looney Tunes, partic-
ipants would presumably be highly confident in the as-
sociation between Bugs Bunny and a carrot. However,
this association does not imply that the Bugs Bunny-
carrot combination is stored as a chunk in LTM.
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words. Conversely, when potential meanings are
available, people can learn words from just one or
a few exposures (e.g., Aravind et al., 2018; Carey
& Bartlett, 1978; Stevens, Gleitman, Trueswell, &
Yang, 2017; Trueswell, Medina, Hafri, & Gleit-
man, 2013), suggesting that considerable exposure
is not required for all forms of word learning.

Be that as it may, the current results also demon-
strate that statistical learning does not allow learn-
ers to identify the beginnings and endings of words
in the absence of other cues. While statistical
learning might lead to helpful prior associations
among syllables, other cues seem to be required
to identify the (phonological) word forms that can
later be consolidated.

5.2 Cues to word boundaries

These current results have implications for how
words can be learned from fluent speech. If learn-
ers cannot use statistical learning to encode word
candidates in (declarative) memory, they need to
use other cues. Possible cues include using known
words as delimiters for other words (Bortfeld,
Morgan, Golinkoff, & Rathbun, 2005; Brent &
Siskind, 2001; Mersad & Nazzi, 2012), attentional
allocation to beginnings and ends of utterances
(Monaghan & Christiansen, 2010; Seidl & John-
son, 2008; Shukla et al., 2007), legal sound se-
quences (McQueen, 1998) and universal aspects
of prosody (Brentari et al., 2011; Christophe et al.,
2001; Endress & Hauser, 2010; Pilon, 1981). Such
cues might plausibly support declarative memories
of words because they (but not transition-based as-
sociative information) are consistent with how lin-
guistic sequences are encoded in declarative long-
term memory: Linguistic sequences are encoded
with reference to their first and their last element
(Endress & Langus, 2017; Fischer-Baum et al.,
2011; Miozzo et al., 2016). Moreover, even a fairly
simple computational model attending to utterance
edges yielded excellent segmentation and word-
learning performance (Monaghan & Christiansen,
2010), suggesting that such cues might be useful
for actual language learners as well.

5.3 Potential roles of statistical learning

This is no to say that statistical learning might
play no implicit role in word learning even when
it is not sufficient to produce memories that can be
recalled. For example, and as mentioned above, as-
sociations among syllables might facilitate the es-
tablishment of declarative memories once suitable
(and explicit) segmentation cues become available
(Endress & Langus, 2017), and, once words are
acquired, word processing is not immune to un-
conscious stimuli such as masked primes (e.g.,
Forster, 1998; Kouider & Dupoux, 2005). Sta-
tistical learning might also facilitate word learn-
ing indirectly, for example through the acquisition
of phonotactic constraint that might affect word
learning in turn (e.g., Friederici & Wessels, 1993;
Mattys, Jusczyk, Luce, & Morgan, 1999; Mc-
Queen, 1998). However, the extent to which statis-
tical learning supports such computations remains
to be established. For example, the phonotactic
regularities above can be learned by keeping track
of material at utterance boundaries (Monaghan &
Christiansen, 2010), and thus just using the type
of cues we introduced in the pre-segmented condi-
tions. However, given that the current results sug-
gest that statistical learning and declarative mem-
ory might have separable functions, and that statis-
tical learning does not lead to memory for words
nor to knowledge of word boundaries, we believe
that it is an important topic for further research to
determine the role statistical learning plays in word
acquisition.
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Supplementary Online Materials

SM1 Analysis of the productions in Experiment 1
SM1.1 Pre-processing of the responses

Each recall response was analyzed in five steps. First, we applied pre-segmented substitution rules
to make the transcriptions more consistent (see Table S1, “before segmentation”, for a complete list of
substitution rules). For example, ea (presumably as in fea) was replaced with i. These substitutions were
not considered when calculating the derivation length (see below).

Second, responses were segmented into their underlying units. This was necessary because some
participants separated only words by spaces, while others separated syllables by spaces, and groups of
syllables (e.g., words) by other characters (e.g., commas). If the response did not contain any commas (,)
or semicolons (;), any spaces in the response were used to delineate units. For example, if the response
was “tudaro pigola”, tudaro and pigola would be accepted as units. If a response contained a semicolon
or comma, these were used to delineate units. For each of the resulting units, we verified if they contained
additional spaces. If they did, these spaces were removed if further segmenting the units based on the
spaces resulted in one or more single-syllable units (operationalized as a string with a single vowel);
otherwise, the units were further sub-divided based on the spaces. The rationale for this algorithm is that
responses such as bee coo tee,two da ra,bout too pa were likely to reflect the words bikuti, tudaro and
budopa.

Third, we removed geminate consonants and applied another set of substitution rules to take into ac-
count possible misperceptions (see Table S1). For example, we treated the voiced and unvoiced varieties
of stop consonants as interchangeable. Specifically, for each “surface” form produced by the participants,
we generated candidate “underlying” forms by recursively applying all substitutions rules and keeping
track of the number of substitution rules that were applied to derive an underlying form from a surface
form. For each unique candidate underlying form, we kept the shortest derivation.

In some cases, these rules result in multiple possible matches. For example, the transcription rapidala
might correspond to /rOpidAlA/ or /rOpidOlA/. In such cases, we apply the following criteria (in the
following order) to decide which match to choose.

1. Choose the option leading to more or longer chunks that are attested in the speech stream.
2. If multiple options lead to chunks of equal length, choose the option requiring fewer changes with
respect to the original transcription.

Fourth, for each candidate underlying form, we identified the longest matching string in the familiar-
ization stream. The algorithm first verified if a form was contained in a speech stream starting with an A,
B or C syllable; if the underlying form contained unattested syllables, one syllable change was allowed
with respect to the speech streams. If no match was found, two sub-strings were created by clipping the
first or the last syllable from the underlying form, and the search was repeated recursively for each of
these sub-strings until a match was found. We then selected the longest match for all substrings.

Fifth, for each surface form, we selected the underlying form among the candidate underlying forms
using three criteria:

1. The winning underlying form had the maximal number of attested syllables among candidate un-
derlying forms;
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Table S1

Substitution rules applied to the participants vocalizations before and after the input was segmented into
chunks. The patterns are given as Perl regular expressions. Substitutions prior to segmentation were
intended to make transcriptions more consistent, and were not counted when calculating the derivation
length. Substitutions after segmentation allowed for misperceptions, and were counted when calculating
derivation length. These substitution rules were motivated by three observations: (1) /O/ might be per-
ceived as /A/. (2) Voiced and unvoiced consonants can be confused; that is /g/ can be confused with /kj, /d/
with ft/ and /b/ and /p/. (3) /b/ might be perceived as }v/.

Before segmentation After segmentation
Pattern Replacement Pattern Replacement
\{3,} u 0
- \Y% b
2 tu p b
two tu b p
(J[aeou])ck \lk t d
ar([,\s+]) a\l d t
ar$ a k g
tyu tu g k
ph f a 0
th t
qu k
ea 1
ou u
aw a
ai a
ie 1
ee i
00 u
e 1
c k
W \

y i
h

2. The winning underlying form had the maximal length among candidate underlying forms;
3. The winning underlying form had the shortest derivation among candidate underlying forms.

The criteria were applied in this order.
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SM1.2 Measures of interest

We computed various properties for each underlying form, given the “target” language the partici-
pants had been exposed to. All measures provided in the raw data are described in Table S2. For each
underlying form, we calculated:

the number of syllables;

whether it was a word from the target language;

whether it was a concatenation of words from the target language;

whether it was a single word or a concatenation of words from the target language (i.e., the disjunc-

tion of (2) and (3));

whether it was a part-words from the target language;

6. whether it was a complete concatenation of part-words from the target language (i.e., the number
of syllables of the item had to be a multiple of three, without any unattested syllables);

7. whether it was a single part-word or a concatenation of part-words from the target language;

8. whether it was high-TP chunk (i.e., a word with the first or the last syllable missing, after removing
any leading or trailing unattested syllables);

9. whether it was a low-TP chunk (i.e., a chunk of the form C;A;, after removing lead or trailing
unattested syllables;

10. whether it had a “correct” initial syllable;

11. whether it had a “correct” final syllable;

12. whether it was part of the speech stream (i.e., the disjunction of being an attested syllable, being
a word or a concatenation thereof, being a part-word or a concatenation thereof, being a high-TP
chunk or a low-TP chunk);

13. the average forward TP of the transitions in the form;

14. the expected forward TP of the form if form is attested in the speech stream (see below for the
calculation);

15. the average backward TP of the transitions in the form.

el .

e

SM1.3 Expected TPs

For items that are correctly reproduced from the speech stream, the expected TPs depend on the starting
position. For example, the expected TPs for items of at least 2 syllables starting on an initial syllable are
1, 1,1/3,1,1,1/3, 1, 1, 1/3, ...); if the item starts on a word-medial syllable, these TPs are (1, 1/3, 1, 1,
1/3,1,1,1/3, 1, ...).

In contrast, the expected TPs for a random concatenation of syllables are the TPs in a random bigram.
For an A or a B syllable, there is only one (out 12) non-zero TP continuation with a TP of 1.0, and the 11
other continuations have a TP of zero. As a result, the random TP is 1.0 x 1/12+ 0.0 x 11/12 = 1/12.
For a C syllable, there are 3 (out of 12) possible continuations with a TP of 1/3; the other 9 continuations
have a TP of zero. As a result, the random TP is 1/3x3/12+0.0x9/12 = 1/12. On average, the random
TPis thus (1/12+ 1/12+1/12)/3 = 1/12 ~ .083.

SM1.4 Exclusion of responses and participants

There was a considerable number of recall responses containing unattested syllables. The complete
list of unattested items is in segmentation_recall unattested.xlsx in the supplementary data.
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Unattested items are items that are not words, part-words (or concatenations thereof), high- or low-TP
chunks, or a single syllable. However, it is unclear if these unattested syllables reflect misperceptions not
caught by our substitution rules, typos, memory failures or creative responses. This makes it difficult to
analyze these responses. For example, the TPs from and to an unattested syllable are zero. However, if
the unattested syllable reflects a misperception or a typo, the true TP would be positive, and our estimates
would underestimate the participant’s statistical learning ability.

Here, we decided to include items with unattested syllables to avoid excluding an excessive number of
participants. However, the results after removing such items are essentially identical, with the exception
of the TPs in the participants’ responses. Given that TPs to and from unattested syllables are zero by
definition, TPs after removal of responses containing unattested syllables are much higher.

We also decided to remove single syllable responses, as it is not clear if participants volunteered such re-
sponses because they thought that individual syllables reflected the underlying units in the speech streams
or because they misunderstood what they were ask to do.
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SM2 Measures and column names in the supplementary data file for Experiment 1

Table S2

Analyses performed for the vocalizations

Column name in data file

Meaning

n.items

n.syll

n.words

p-words
n.words.or.multiple

p-words.or.multiple
n.part.words
p-part.words
n.part.words.or.multiple
p-part.words.or.multiple

p-words.part.words
p-words.part.words.or.multiple
n.high.tp.chunk
p-high.tp.chunk

n.low.tp.chunk

p-low.tp.chunk

p-high.tp.chunk.low.tp.chunk

average_fw_tp

average_fw_tp_d_actual_expected

average_bw_tp

p.correct.initial.syll
p.correct.final.syll
p-correct.initial.or.final.syll

Number of recalled items

Mean number of syllables of the recalled items
Number of recalled words

Proportion (among recalled items) of words
Number of recalled words or concatenation of words

Proportion (among recalled items) of words or concatenation of words
Number of recalled part-words

Proportion (among recalled items) of part-words

Number of recalled part-words or concatenation of part-words
Proportion (among recalled items) of part-words or concatenation of
part-words

Proportion of words among (recalled) words and part-words. This is used
for comparison to the recognition test.

Proportion of words among (recalled) words and part-words or
concatenation thereof. This is used for comparison to the recognition test.
Number of high TP chunks. High TP chunks are defined as two-syllabic
chunk from a word

Proprtion (among recalled items) of high TP chunks. High TP chunks are
defined as two-syllabic chunk from a word

Number of low TP chunks. Low TP chunks are defined as two-syllabic
word transitions

Proportion (among recalled items) of low TP chunks. Low TP chunks are
defined as two-syllabic word transitions

Proportion of high-TP chunks among high and low-TP chunks. High TP
Chunks are defined as two-syllabic chunks from words; low TP chunks are
two-syllabic word transitions

Average (across recalled items) of average forward TPs among transitions
in a given item.

Average (across recalled items) of the difference between the average
ACTUAL forward TPs among transitions in a given item and the
EXPECTED forward TP in that item, based on the items first element. See
calculate.expected.tps.for.chunks for the calculations

Average (across recalled items) of average backward TPs among
transitions in a given item.

Proportion (among recalled items) that have a correct initial syllable.
Proportion (among recalled items) that have a correct final syllable.
Proportion (among recalled items) that have a correct initial or final
syllable.




S6 THE SPECIFICITY OF SEQUENTIAL STATISTICAL LEARNING

SM3 Additional results for Experiment 1

Table S3
Supplementary analyses pertaining to the productions as well as test against their chances levels in the
recall phase of Experiments la and 1b. The p value in the rightmost column reflects a Wilcoxon test

comparing the continuous and the pre-segmented conditions.

Continuous

Segmented

p(Continuous vs. Segmented).

Number of words

lab-based (Exp. 1a) M= 0.308, SE=0.139, p=0.0719 M=1.85, SE=0.308, p= 0.00224 0.005

online (Exp. 1b) M= 0.224, SE= 0.0791, p= 0.00482 M=1.32, SE=0.143, p=7.32e-11 < 0.001
Proportion of words among productions

lab-based (Exp. 1a) M= 0.308, SE=0.139, p=0.0719 M= 1.85, SE= 0.308, p= 0.00224 0.005

online (Exp. 1b) M= 0.224, SE= 0.0791, p= 0.00482 M=1.32, SE=0.143, p=7.32e-11 < 0.001
Number of part-words

lab-based (Exp. 1a) M= 0.692, SE=0.273, p=0.031 M=0, SE= 0, p= NaN 0.031

online (Exp. 1b) M=0.25, SE= 0.0657, p= 0.000717 M=0, SE= 0, p= NaN <0.001
Proportion of part-words among productions

lab-based (Exp. 1a) M= 0.692, SE=0.273, p=0.031 M=0, SE= 0, p= NaN 0.031

online (Exp. 1b) M=0.25, SE= 0.0657, p= 0.000717 M=0, SE= 0, p= NaN <0.001
Actual vs. expected forward TPs

lab-based (Exp. la) M=-0.462, SE=0.07, p= 0.000244 M=-0.315, SE= 0.0803, p= 0.00915 0.147

online (Exp. 1b) M=-0.42, SE=0.0329, p= 1.3e-12 M= -0.352, SE= 0.0365, p= 7.56e-11 0.120
Number of High-TP chunks

lab-based (Exp. 1a) M= 0.769, SE= 0.459, p=0.181 M=12.31, SE=0.361, p= 0.00224 0.022

online (Exp. 1b) M=1.13, SE=0.13, p= 5.35¢-10 M=1.62, SE= 0.147, p= 6.19e-12 0.014
Proportion of High-TP chunks among productions

lab-based (Exp. 1a) M= 0.104, SE=0.0601, p= 0.181 M=0.615, SE= 0.0999, p= 0.00241 0.003

online (Exp. 1b) M=0.279, SE= 0.0331, p= 1.08e-09 M=0.516, SE= 0.0435, p= 8.27e-12 < 0.001
Number of Low-TP chunks

lab-based (Exp. 1a) M= 0.0769, SE= 0.0801, p= > .999 M=0, SE= 0, p= NaN >.999

online (Exp. 1b) M=0.355, SE= 0.0747, p= 2.41e-05 M=0.0395, SE= 0.0226, p= 0.149 < 0.001
Number of Low-TP chunks among productions

lab-based (Exp. 1a) M=0.011, SE=0.0114, p=>.999 M=0, SE=0, p= NaN >.999

online (Exp. 1b) M=0.0855, SE= 0.0198, p= 6.04e-05 M=0.00846, SE= 0.00523, p=0.181 < 0.001

" The expected TPs for items of at least 2 syllables starting on an initial syllable are 1, 1/3, 1, 1, 1/3, 1, 1, 1/3,
.... The difference between the actual and the expected TP needs to be compared to zero, as the expected TP

differs across items.
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SM4 Fit of the number of participants producing words or part-words to a binomial distribution

We fit the data to two models, one where the learner successfully detected word-boundaries, and one
where the learner successfully track TPs but initiates productions at a random position. We then calculate
the likelihood of the data given these models.

According to the first model, the probability of producing words rather then part-words is py, = 1, and
the probability of using part-words is pp, = 1 — py, = 0. According to the second model, the learner
has one chance in three to initiate a production on a word-initial syllable. As a result, the probability of
producing words is pg, = 1, and the probability of using part-words is ppy, = 1 — p§, = 3.

Assuming that participants produce either words or part-words, the probability of Ny producing words
and Npw producing part-words is given by a binomial distribution. We can then use Bayes’ theorem to
calculate the model likelihood P(model|data) = P(datajmodel) 22D 1f hoth models are equally likely a

P(data)
priori, the likelihood ratio of the models given the data is the likelihood ratio of the data given the models:

P(model;|data)  P(datajmodel,)
P(model,|data)  P(datajmodel,)
NW + pr
Nw | Vw(New
Nw 2 N
(NW"'NPW)% W% PW
Ny
_ { 3V Npw =0

Ain

0 pr>0

For Npw = 0, the likelihood ratio in favor of the first model is 3"V; Npw > 0O the likelihood ratio in
favor of the second model is infinite.
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Table S4

Counts of participants producing exclusively words, exclusively part-words, neither words nor part-
words, or a mixture of both. To compare the recognition performance of participants who produced
part-words to that of participants producing words, we excluded participants who produced neither of
these item types or a mixture thereof.

Participants producing

Segmentation Condition Part-words Words Neither (excluded) Mixture (excluded)

Lab-based
Continuous 3 1 6 3
Pre-segmented 0 12 1 0
Online
Continuous 14 10 52 0
Pre-segmented 0 52 24 0

SMS Relations between recall and recognition performance in Experiment 1

In this section, we seek to compare recognition and recall performance in Experiment 1. This is some-
what problematic, because our data resulting from the recall phase of Experiment 1 is discrete rather than
continuous. We will thus link recognition and recall performance through two analyses. First, and as
mentioned above, two-thirds of the participants in the continuous condition produced part-words, while
only one-third produced words. We will compare performance in the recognition phase between those
participants producing part-words and those producing words.

Second, it turned out that, during the recall phase, the proportion of productions with “correct” initial or
final syllables was reasonably continuous (see Figure 5). We will thus correlate these proportions as well
as the TPs in the strings produced by the participants with their performance in the recognition phase.

SMS5.1 Recognition performance in word-producers vs. part-word producers

The overwhelming majority of participants who produced words or part-words produced either exclu-
sively words or exclusively part-words (or concatenations thereof). For our analysis, we thus excluded a
total of 3 participants who had intermediate proportions.

Further, we excluded participants who produced neither words nor part-words. The counts are shown
in Table S4. Finally, since no participants in the pre-segmented conditions produced part-words, some
statistical comparisons are not available for the pre-segmented condition.

As shown in Table S5 and Figure S2, participants in the continuous condition of the online experiment
who produced words performed statistically better in the recognition test than participants who produced
part-words. (In the lab-based experiments, there were only 4 participants in total who produced either
words or part-words, making statistical comparisons unreliable.)

SMS.2 Production of correct initial and final syllables vs. recognition performance

We next correlate recognition performance with the continuous measures of the recall performance, that
is, the average forward TPs of the production, the proportion of productions with correct initial syllables,
and the proportion of productions with correct final syllables.
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Table S5

Recognition performance as a function of whether participants produced words or part-words. The p
value reflects a Wilcoxon test comparing participants producing words and participants producing part-
words, respectively. The statistical comparisons are available only in the continuous conditions because
no participant in the pre-segmented condition produced part-words.

Recognition performance

Segmentation Condition Productions N M SE )/
Lab-based
Continuous Words 1 50.0 — 0.637
Continuous Part-Words 3 75.0 17.68
Pre-segmented Words 12 91.7 491 —
Online
Continuous ‘Words 10 90.0 5.83 < 0.001
Continuous Part-Words 14 429 5.04
Pre-segmented Words 52 933 2.09 —

As shown in Figure S3, recognition performance in the continuous condition was correlated both with
the proportion of correct initial syllables in the participants’ productions and with the production of cor-
rect final syllables. However, it was not correlated with the average TPs in the participants’ productions.
These correlations were not significant in the pre-segmentation conditions, presumably because of the
very high level of performance.

While these results suggest that recognition and recall performance are related, the underlying causal
pathway is unclear. On the one hand, and as mentioned above, participants who happen to focus on those
syllables corresponding to words rather than part-words would also focus on more statistically cohesive
syllable sequences, which, in turn, would lead to better recognition performance as well. Alternatively,
recall and production performance might be linked directly.

Critically, under either hypothesis, statistical learning would not allow help participants with the prob-
lem that motivated sequential statistical learning approaches to word segmentation in the first instance,
namely to identify word boundaries in fluent speech. According to the first interpretation, participants do
not remember any words to begin with. According to the second interpretation, participants might use
statistical learning to recover word boundaries, but recover incorrect word boundaries in two-thirds of the
cases even in a highly simplified learning situation, and thus cannot rely on statistical learning for word
learning either.
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Figure S2. Recognition performance in Experiment 1 as a function of whether a participant produces
words or part-words. Each dot represents a participant. The central red dot is the sample mean; error bars
represent standard errors from the mean. The results show the percentage of correct choices in the recog-
nition test after familiarization with (left) a continuous familiarization stream or (right) a pre-segmented
familiarization stream, in the lab-based version of the experiment (top) or in the online version (bottom).
Participants producing words performed better in the recognition test than participants producing part-
words.
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Figure $3. Spearman correlations between the performance in the recognition test (P, Recognition)
and three measures of the participants’ productions: The proportion of correct initial syllables (P o recs
Initial o) and of final syllables (P, Final o) as well as the average forward TPs in the participants’
productions (T Pry). Correlations were calculated separately after familiarization with (left) a continuous
familiarization stream or (right) a pre-segmented familiarization stream, in the lab-based version of the
experiment (top) or in the online version (bottom). Significance labels: ***: < 0.001; **: < 0.01; *:
<0.05;.:<0.1
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SM6 Simulations with PARSER (Perruchet & Vinter, 1998)

PARSER segments continuous streams by recursively chunking units in the stream. These units are
syllables or syllable combinations the model has encountered and retained in the speech stream. Units
are built up recursively. For example, if a unit A is followed by a unit B, the model can create a new and
larger unit AB that it can recognize later on. As a result, if this new unit AB is later followed by C, a new
and still larger unit ABC might be created. These units are stored in a lexicon and have some memory
weight. The weight of recurring units is strengthened, while spurious units are eliminated through decay
and interference.

We first familiarized the model with one of the speech streams used in Experiment 1 (i.e., one of the
speech streams from Saffran, Aslin, and Newport’s (1996) Experiment 2). Following this, we recorded
the memory strength of words and part-words. Specifically, we created 4 test trials pitting the two words
against the two part-words, and, in each test trial, we compared the weight of the word and that of the
part-word. We assigned a score of 1 to a trial if the weight of the word in the lexicon was higher than
that of the part-word, a score of 0 with the weight of the part-word was higher, and a score of 0.5 if the
two weights were the same. We then averaged these scores for all trials, and used this average as the
performance of a simulated participant (see below).

We attempted to bias the model to prefer part-words in two ways. First, we deleted the first two
syllables from each speech stream. Speech streams thus started with a part-word. Second, at each time
step, PARSER reads in a randomly determined number of units. We forced it to read in three units on the
first time step, and thus to create a part-word in its lexicon, at least initially.

PARSER has five parameters: the maximal number of units considered, the increment in memory
strength upon encountering a unit, the weight threshold for an item to be removed from the lexicon, the
initial weights of the syllables, the forgetting rate, and the interference rate. We varied the forgetting
and interference rates and kept the original values of the other variables. We used forgetting rates from
0 to 0.1 and interference rates from 0O to 0.01, both in 101 equidistant steps. (In the original model, the
forgetting rate was 0.05 and the interference rate 0.005.) These parameter combinations thus yielded
101 x 101 = 10,201 simulated “experiments.” Each experiment was run with 50 random initializations,
representing 50 participants. We created 40 different “speech streams” with different random orderings
of the words. For each simulated participant, we then randomly chose one of those speech streams.

The results revealed that all 507,965 simulated participants for which we obtained data (i.e., who had
either words or part-words in the lexicon) had a preference for words over part-words.

Further, all 10,201 simulated experiments showed a statistically significant preference for words.
Across experiments, the average effect size (Cohen’s d) was 1.616 (range: 0.344, 3.672), with the smaller
effect sizes mainly occurring for high forgetting rates (see Figure S4). With Perruchet and Vinter’s (1998)
original parameters, the effect size was 1.833.

These results show that at least one prominent chunking model never prefers part-words over words.
Given that, in our recall experiment, the majority of those participants who produced either words or
part-words produced part-words, these results suggest that chunking models either cannot account for the
current results, or, to the extent that other chunking models might account for them, that these models
learn information that does not allow them to recover word boundaries from fluent speech.
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Figure S4. Effect sizes (Cohen’s d) of the preference for words over part-words in simulations with
PARSER as a function of the forgetting rate and the interference rate. All simulated experiments yielded
a significant preference for words.
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SM7 Analyses of Experiment 2 after removing outliers

We repeat the analyses of Experiment 2 after removing outliers differing by more than 2.5 standard
deviations from the mean in each condition (N = 2). As in the main analyses above, we first present the
results for the British English (en1) voice and then those for the American English (us3) voice.

SM7.1 Experiment 2a (British English voice)

Figure S5 shows the results for the pre-segmented familiarization. The average performance did not
differ significantly from the chance level of 50%, (M = 54.26, SD = 25.09), #(29) = 0.93, p = 0.36,
Cohen’s d = 0.17, Clgs = 44.89, 63.63, ns, V = 222, p = 0.242. Likelihood ratio analysis favored the
null hypothesis by a factor of 3.555 after correction with the Bayesian Information Criterion. Further, as
shown in Table S6, performance did not depend on the language condition.

We next asked if, in line with previous research, they can track TPs units that are embedded into a
continuous speech stream. That is, participants listened to the very same speech stream as in the pre-
segmented condition, except that the stream was continuous.

Figure S5 shows that the average performance did not differ significantly from the chance level of
50%, (M = 47.13, SD = 17.42), #(28) = -0.89, p = 0.382, Cohen’s d = 0.16, Clys = 40.5, 53.75, ns, V
= 140, p = 0.551. Likelihood analyses revealed that the null hypothesis was 3.629 than the alternative
hypothesis after a correction with the Bayesian Information Criterion. However, as shown in Table S6,
performance was much better for Language 1 than for Language 2, presumably due to some click-like
sounds the synthesizer produced for some stops and fricatives (notably /f/ and /g/). These sounds might
have prevented participants from using statistical learning. We thus decided to replicate the results with a
different, American English voice.

SM7.1.1 Experiment 2b (American English voice). Figure S5 shows the results for the pre-
segmented condition with the American English (us3) voice. The average performance did not differ
significantly from the chance level of 50%, (M = 53.26, SD = 12.64), t(28) = 1.39, p = 0.176, Cohen’s
d = 0.26, Clys = 4845, 58.07, ns, V = 216, p = 0.151. Likelihood ratio analysis favored the null
hypothesis by a factor of 2.058 after correction with the Bayesian Information Criterion. As shown in
Table S6, performance did not depend on the language condition.

We next asked if, in line with previous research, they can track TPs units are embedded into a continu-
ous speech stream. That is, participants listened to the very same speech stream as in the pre-segmented
condition, except that the stream was continuous.

As shown in Figure S5, when the us3 voice was used, the average performance differed significantly
from the chance level of 50%, (M = 58.51, SD = 16.21), t(31) = 2.97, p = 0.00573, Cohen’s d = 0.52,
Clgs = 52.66, 64.35, V =306.5, p = 0.0185. As shown in Table S6, performance did not depend on the
language condition, and was significantly better than in the pre-segmented condition.

Given the unexpected results with the enl voice above, we replicated the successful tracking of statis-
tical information using a new sample of participants. As shown in Figure S5, the average performance
differed significantly from the chance level of 50%, (M = 62.78, SD = 21.35), t(29) = 3.28, p = 0.00272,
Cohen’s d = 0.6, Clgs = 54.81, 70.75, V = 320, p = 0.00778. As shown in Table S6, performance did
not depend on the language condition, and was significantly better than in the pre-segmented condition.

The results obtained after removing outliers are thus similar to those reported in the main text.
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Figure S5. Results of Experiment 1 after outliers of more than 2.5 standard deviations from each con-
dition mean were excluded. Each dot represents a participant. The central red dot is the sample mean;
error bars represent standard errors from the mean. The results show the percentage of correct choices
in the recognition test after familiarization with (left) continuous familiarization stream or (right) a pre-
segmented familiarization stream, synthesized with a British English voice (top) or an American English
voice (bottom). The two continuous conditions are replictions of one another.
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Table S6

Performance differences across familiarization conditions in Experiment 2 after removal of outliers differ-
ing more thang 2.5 standard deviations from the mean. The differences were assessed using a generalized
linear model for the trial-by-trial data, using participants, correct items and foils as random factors.
Random factors were removed from the model when they did not contribute to the model likelihood.

Log-odds Odd ratios

term Voice Estimate SE CI Estimate SE CI t P
Pre-segmented familiarization, British English voice (Exp. 2a)

language = L2 enl -0.097 0.441 [-0.96, 0.767] 0.908 0.400 [0.383,2.15] -0.220 0.826
Continuous familiarization, British English voice (Exp. 2a)

language = L2 enl -0.842 0.221 [-1.28,-0.409] 0.431 0.095 [0.279, 0.665] -3.807 0.000
Pre-segmented vs. continuous familiarization, British English voice (Exp. 2a)

language = L2 enl -0.903 0.369 [-1.63,-0.179] 0.406 0.150 [0.197,0.836] -2.446 0.014

stream type = segmented enl -0.090 0.347 [-0.77,0.591] 0914 0.317 [0.463,1.81] -0.258 0.796

language = L2 x stream type = segmented enl 0.810 0.487 [-0.144,1.76] 2248 1.094 [0.866, 5.84] 1.664 0.096
Pre-segmented familiarization, American English voice (Exp. 2b)

language = L2 us3 -0.048 0.654 [-1.33,1.23] 0.953 0.624 [0.264,3.44] -0.074 0.941
Continuous familiarization (1), American English voice (Exp. 2b)

language = L2 us3 -0.184 0.480 [-1.12,0.757] 0.832 0.400 [0.325,2.13] -0.383 0.702
Continuous familiarization (2), American English voice (Exp. 2b)

language = L2 us3 0.317 0.786 [-1.22,1.86] 1.372  1.079 [0.294, 6.4] 0.403 0.687
Pre-segmented vs. continuous familiarization (1), American English voice (Exp. 2b)

language = L2 us3 -0.102 0.551 [-1.18,0.978] 0.903 0.497 [0.307,2.66] -0.185 0.853

stream type = segmented us3 -0.243 0.167 [-0.571,0.0843] 0.784 0.131 [0.565,1.09] -1.456 0.145
Pre-segmented vs. continuous familiarization (2), American English voice (Exp. 2b)

language = L2 us3 0.115 0.652 [-1.16,1.39] 1.122 0.732 [0.313, 4.03] 0.177 0.859

stream type = segmented us3 -0.509 0.224 [-0.949, -0.0693] 0.601 0.135 [0.387,0.933] -2.269 0.023
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SMS8 Pilot Experiment: Testing the use of chunk frequency

In a pilot experiment, we asked if participants could break up tri-syllabic items by using the chunk
frequency of sub-chunks. The artificial languages were designed such that, in a trisyllabic item such as
ABC, chunk frequency (and backwards TPs) favor in the initial AB chunk for half of the participants, and
the final BC chunk for the other participants.

Across participants, we also varied the exposure to the languages, with 3, 15 or 30 repetitions per word,
respectively.

SMS8.1 Methods

Table S7
Demographics of the final sample in the pilot experiment.

# Repetitions/word N Age (M) Age (Range)
3 37 21.1 18-35

15 41 21.0 18-27
30 40 20.8 18-26

SMS8.1.1 Participants. Demographic information of the pilot experiment is given in Table S7. Par-
ticipants were native speakers of Spanish and Catalan and were recruited from the Universitat Pompeu
Fabra community.

SMS8.1.2 Stimuli. Stimuli transcriptions are given in Table S8. They were synthesized using the
es2 (Spanish male) voice of the mbrola (Dutoit et al., 1996) speech synthesized, using a segment duration
of 225 ms and an fundamental frequency of 120 Hz.

SMS8.1.3 Apparatus. Participants were test individually in a quiet room. Stimuli were presented
over headphones. Responses were collected from pre-marked keys on the keyboard. The experiment
with 3 repetitions per word (see below) were run using PsyScope X; the other experiments were run
using Experyment (https://www.expyriment.org/).

SMS8.1.4 Familiarization. The design of the pilot experiment is shown in Table S8. The languages
comprise trisyllabic items. All forward TPs were 0.5. However, in Language 1 the chunk composed of
the first two syllables (e.g., AB in ABC) were twice as frequent as the chunk composed of the last two
syllables (e.g., BC in ABC); the backward TPs were twice as high as well. Language 2 favored the word-
final chunk. Participants were informed that they would listen to a sequence of Martian words, and then
listened to a sequence of the eight words in 4 with an ISI of 1000 ms and 3, 15 or 30 repetitions per word.
Due to programming error, the familiarization items for 15 and 30 repetitions per word were sampled
with replacement.

SM8.1.5 Test. Following this familiarization, participants were informed that they would hear new
items, and had to decide which of them was in Martian. Following this, they heard pairs of two syllabic
items with an ISI of 1000 ms. One was a word-initial chunk and one a word-final chunk.

The test items shown in Table 4 were combined into four test pairs, which were presented twice with
different item orders. A new trial started 100 ms after a participant response.
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Table S8

Design of the pilot experiment. (Left) Language structure. (Middle) Structure of test items. Correct items
for Language 1 are foils for Language 2 and vice versa. (Right) Actual items in SAMPA format; dashes
indicate syllable boundaries

Word structure for Test item structure for Actual words for
Language 1 Language2 Languagel Language?2 Language 1 Language 2
ABC ABC AB BC ka-lu-mo ka-lu-mo
DEF DEF DE EF ne-fi-To ne-fi-To
ABF DBC ka-lu-To ne-lu-mo
DEC AEF ne-fi-mo ka-fi-To
AGJ JBG ka-do-ri ri-lu-do
AGK KBG ka-do-tSo tSo-lu-do
DHJ JEH ne-pu-ri ri-fi-pu
DHK KEH ne-pu-tSo  tSo-fi-pu
100
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Figure S6. Results of the pilot experiment. Each dot represents a participants. The central red dot is
the sample mean; error bars represent standard errors from the mean. The results show the percentage
of correct choices in the recognition test after familiarization with (left) 3, (middle) 15 or (right) 30
repetitions per word.
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Table S9
Performance in the pilot experiment for different amounts of exposure. The differences were assessed
using a generalized linear model for the trial-by-trial data, using participants as a random factor.

Log-odds Odds ratios
term Estimate SE CI t p Estimate SE CI t p
language = L2 0.337 0493 [-0.629, 1.3] 0.684 0.494 1.401 0.691 [0.533,3.68] 0.684 0.494
number of repetitions/word 0.017 0.018 [-0.018,0.0513] 0.942 0.346 1.017 0.018 [0.982,1.05] 0.942 0.346

language = L2 x number of repetitions/word -0.042  0.025 [-0.0916,0.00698] -1.682 0.093 0.959 0.024 [0.912,1.01] -1.682 0.093

SMS8.2 Results

As shown Table S9, a generalized linear model revealed that performance depended neither on the
amount of familiarization nor on the familiarization language. As shown in Figure S6, a Wilcoxon test
did not detect any deviation from the chance level of 50%, neither for all amounts of familiarization
combined, M= 53.5, SE= 2.71, p= 0.182, nor for the individual familiarization conditions (3 repetitions
per word: M= 54.1, SE= 4.81, p= 0.416; 15 repetitions per word: M= 54.6, SE= 4.52, p= 0.325; 30
repetitions per word: M= 51.9, SE= 4.98, p= 0.63). Following Glover and Dixon (2004), the null hy-
pothesis was 4.696 times more likely than the alternative hypothesis after corrections with the Bayesian
Information Criterion, and 1.217 more likely after correction with the Akaike Information Criterion.
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