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Abstract

Traumatic brain injury (TBI) is as an alteration in brain function pathology by a sudden
trauma, causing damage to the brain. Symptoms vary from mild to severe, depending on
the extent of the damage to the brain. Intracranial pressure (ICP) monitoring is a “gold
standard” for severe TBI patients, measuring pressure inside the skull. An ICP crisis is
a sustained ICP value above a threshold of 20-25 mmHg. Effective ICP monitoring and
intervention at defined thresholds can reduce mortality and secondary brain injury. The
gold standard for ICP monitoring involves invasive neurosurgical intervention to implant
a pressure sensor into the brain, which is expensive, carries risk, requires expertise and is
only accessible within a hospital setting. Consequently, timely and effective monitoring is
restricted, exacerbating adverse outcomes, and excluding millions of mild and moderate
TBI cases from continuous and quantitative assessment.

There is a nascent body of research investigating non-invasive ICP monitoring aiming
to reduce the barrier to entry to efficacious monitoring and intervention for patients and
healthcare systems. A growing body of research is exploring the use of Photoplethysmo-
graph (PPG) for the non-invasive estimation of ICP. This thesis makes novel contributions
to knowledge by evaluating the relationship between PPG derived features and variations
in ICP using the largest clinically collected, labelled PPG dataset, to-date. The novel
PPG data, produced by an in-house, Near-infrared spectroscopy, reflectance, non-invasive
optical ICP sensor, was collected from 40 TBI patients at The Royal London Hospi-
tal. Data is categorised based on “proximal” and “distal” photodiodes, hypothesised to
correspond to extracerebral and cerebral data, respectively.

The research makes novel contributions to the field via the testing of three main
hypotheses: (i) PPG feature alterations correlate with ICP changes, (ii) distal PPG data
shows stronger correlations with ICP than proximal data, and (iii) PPG features can
estimate ICP non-invasively.

A total of 141 features were extracted for each one-minute window of PPG data, in-
cluding the original waveform and its first and second derivatives. Spearman’s correlation
and the Kruskal-Wallis test evaluated the first two hypotheses. Results indicated sig-
nificant correlations between PPG features and ICP levels, with 77.30% and 79.43% of
features significantly correlated (p < 0.05) for distal and proximal datasets, respectively.
Group analysis revealed significant changes across ICP groups (0-10, 10-20, 20-39 mmHg)
in 81.56% and 75.89% of features. The mean absolute correlation of all features and sig-
nificantly correlated features was 25.76% and 24.24% higher for distal than for proximal
features, supporting the potential of PPG-based ICP monitoring.

To test the third hypothesis, five classical machine learning models were implemented,
optimised, and assessed across six key metrics using a leave-one-patient-out cross-validation
approach. Distal models outperformed proximal ones, with the best model, a Random
Forest, achieving a mean RMSE of 5.030 mmHg, MAE of 4.067 mmHg, and Bland-Altman
limits of agreement around 8.5 mmHg, and a low correlation coefficient of -0.007.

There is a need for the development of a continuous noninvasive, easy-to-use, inex-
pensive monitoring device. Such a device would reduce the barrier to entry for ICP
monitoring across all severities, providing timely diagnosis whilst serving the currently
undeserved majority of TBI cases. This work provides a credible foundation for further
research in this domain.



Chapter 1

Introduction

1.1 Research Motivation

Traumatic brain injury (TBI) is an alteration in brain function pathology resulting from

a sudden trauma, causing damage to the brain. The severity of symptoms are categorised

as mild, moderate, or severe, depending on the extent of the damage to the brain [1].

TBI constitutes a significant burden to healthcare systems with an estimated global

incidence rate of up to 69 million cases per annum of which 5.48 million are estimated

to be severe [2]. The majority of TBI cases are mild, which despite being low in severity

can have serious, long term impact on patients. TBI not only causes a significant burden

for healthcare systems and nations but also to individuals and their families due to the

complex and expensive medical care the condition necessitates. The total annual economic

cost of TBI was estimated at US $400 billion [3].

Currently, after head injury, patients undergo assessment using the Glasgow Coma

Scale (GCS) which evaluates verbal, eye and motor responses. Upon admission to hospital

patients considered to be at high risk for clinically important TBI undergo a clinical

examination to establish any need for evaluation using computed tomography (CT) scans

or magnetic resonance imaging (MRI). In severe cases, if the resulting scans are abnormal,

intracranial pressure (ICP) monitoring is initiated.

Within neurocritical care, ICP monitoring is a clinical cornerstone for the management

of severe TBI. ICP monitoring measures the pressure inside the skull. Elevated ICP, often

defined as sustained ICP above 20-25 millimeters of mercury (mmHg), can precipitate

further brain injury and increase mortality rates. Studies consistently link elevated ICP
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with poor neuropsychological performance and functional outcomes [4]–[6]. Efficacious

ICP monitoring and intervention at clinically defined thresholds may reduce mortality

and secondary injury to the brain. The gold standard for ICP monitoring is invasive,

necessitating neurosurgical intervention to implant a pressure sensor via a burr hole in

the skull. The gold standard is expensive, high risk, requires a high level of expertise and

is only accessible within a hospital setting. Consequently, this restricts access to timely

and effective monitoring, exacerbating the potential for adverse outcomes, particularly in

severe TBI cases and leaves the majority of cases, constituted by mild TBI under-served.

No method to accurately, non-invasively and continuously monitor ICP currently ex-

ists. This work is motivated by the clinical need and desire for an easy-to-use, non-invasive,

continuous ICP monitor to cost effectively facilitate, accurate and timely triage and inter-

vention for TBI patients, helping reduce the barrier to entry for patients and healthcare

systems whilst increasing patient care outcomes.

1.2 Research aim & objectives

The aim of this research is to evaluate the dynamic relationship between photoplethys-

mography (PPG) features and ICP in patients with TBI using a labeled dataset of PPG

signals collected from patients’ foreheads (below the hairline), with labels derived from

invasive, gold-standard ICP data. This aim is fulfilled via the testing of three main hy-

potheses: (i) if alterations in PPG features correlate with changes in ICP levels, (ii) if the

association between PPG features and variations in ICP levels is stronger in long-distance

PPG data compared to short-distance PPG data (PPG data was collected from two pho-

todetectors at two different distances from the photodiodes, data is referred to as either

“short-distance” or “long-distance” data based on photodiode-photodetector separation),

and (iii) if PPG derived features can accurately estimate ICP non-invasively. In order to

test these hypotheses and fulfill the aim the following objectives are set:

• Evaluate and identify gaps within the existing research on PPG driven non-invasive

ICP monitoring.

• Format and preprocess raw clinical data, including both non-invasive PPG and

invasive ICP measurements, ensuring temporal synchronicity between the datasets.

• Separate the data into two datasets of short-distance and long-distance PPG data.

2



CHAPTER 1

• Implement, apply and evaluate a denoising algorithm to effectively identify and

remove noise within the non-invasive PPG signal.

• Implement an algorithm for the detection of fiducial points of each cardiac cycle

within the PPG data.

• Develop and apply algorithms for the extraction of morphological and time-series

features from the PPG’s original waveform, as well as its first and second derivatives.

• Refine the dataset to create a subset facilitating a robust analysis of the relationship

between PPG features and ICP levels.

• Statistically evaluate the relationship between short and long-distance PPG derived

features and variations in ICP levels.

• Divide each set of short and long-distance PPG features into separate “evaluation”

and “optimisation” datasets.

• Conduct feature selection on the optimisation feature sets using a combination of

collinearity testing, Maximum Information Coefficient (MIC) ranking, and Recursive

Feature Elimination (RFE).

• Implement, optimise and train five classical machine learning models for estimating

ICP values using the derived feature sets.

• Evaluate and compare the performance of the five models on both the short and

long distance PPG datasets using commonly employed statistical metrics.

1.3 Contribution to knowledge

The main contributions to knowledge of this work include:

• The development of a novel, effective and efficient PPG denoising algorithm which

handles labelled datasets.

• To the knowledge of the author, the largest group of features to be extracted from

the PPG signal for the investigation of the relationship between PPG features and

ICP.
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• A novel statistical analysis of the dynamical relationship between PPG features

using the largest, clinically collected, labelled dataset of its kind, to-date.

• To the knowledge of the author, the largest group of machine learning models to

be implemented and evaluated for the predictive task of estimating ICP via PPG

derived features.

• Findings from the statistical analysis and evaluation of machine learning models

using data from both photodetectors of the PPG sensor can be used to inform

future sensor design and development.

1.4 Thesis outline

Chapter 2: Background and Literature Review

Chapter 2 provides a comprehensive exploration of TBI and its implications on cerebral

physiology and ICP. It begins with an in-depth examination of TBI, covering its epi-

demiology, demographics, economic burden, and assessment methods, such as the GCS.

Following this, the foundational concepts of cerebral physiology and hemodynamics are

introduced, with a focus on the relationship between TBI and variations in ICP. Both

invasive and non-invasive approaches to ICP monitoring are then reviewed, highlighting

their methodologies, strengths and limitations. The chapter concludes with an intro-

duction to PPG, detailing its principles and the potential utility of PPG waveforms in

non-invasive ICP estimation, including the sensor central to this research.

Chapter 3: Dataset and Pre-processing

Chapter 6 discusses the core dataset driving this research, describing its collection, struc-

ture, and challenges. It details the formatting, denoising, and pre-processing of the raw

data.

Chapter 4: Feature Engineering

Chapter 7 introduces and explains the development of algorithms for identifying fiducial

points and conducting feature engineering.
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Chapter 5: Statistical analysis

Chapter 8 outlines the statistical analysis employed to assess the relationship between

morphological and time-series PPG features and variations in ICP levels. This chapter

evaluates the two hypotheses: (i) if alterations in PPG features correlate with changes in

ICP levels, and (ii) if the association between PPG features and variations in ICP levels

is stronger in long-distance PPG data compared to short-distance PPG data.

Chapter 6: Classical Machine Learning Models

Chapter 9 introduces and explains the workings of the five classical machine learning

models implemented within this research, drawing attention to the main parameters of

each algorithm and their effects on model performance.

Chapter 7: Evaluation of Machine Learning Models

Chapter 10 presents the methodology and results for feature selection, hyperparameter

optimisation and evaluation and comparison of results obtained from the implemented

models across datasets. It employs various performance evaluation metrics to assess the

models’ efficacy in utilising PPG features for non-invasive ICP estimation.

Chapter 8: Discussion and Conclusion

Chapter 11 serves as the culmination of the thesis, offering a summary of key findings, a

discussion, and comparison with related works. It presents the strengths and limitations

of the research providing recommendations for future research endeavours in this domain.
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Background and Literature Review

This chapter aims to provide a comprehensive understanding of the epidemiology, clini-

cal principles, and cerebral physiology relevant to TBI and its monitoring. It begins by

defining TBI, describing its types, epidemiology, and the societal and economic burden

associated with the condition. Next, it delves into the fundamental cerebral physiological

and hemodynamic components, highlighting how fluctuations in ICP can impact cerebral

dynamics and lead to additional brain injuries or adverse patient outcomes. The chap-

ter then discusses the gold standard of invasive ICP monitoring, alongside other invasive

and non-invasive methods, evaluating the advantages and limitations of each approach.

Finally, it introduces PPG and its basic principles, focusing on the non-invasive ICP mon-

itoring sensor central to this research, and explores the theoretical relationship between

PPG and ICP in the context of cerebral physiology and hemodynamics.

2.1 Traumatic Brain Injury

2.1.1 Definition, types and severity

Acquired Brain Injury (ABI) characterises any damage to the brain that occurs after birth,

which can be categorised into traumatic and non-traumatic causes. Non-traumatic ABI

may include, stoke, infectious disease, oxygen deprivation, or degenerative neurological

conditions. TBI is a form of ABI caused by external mechanical forces. TBI occurs when

a sudden trauma causes damage to the brain. It can result from “a forceful bump, blow, or

jolt to the head or body, or from an object that pierces the skull and enters the brain” [7].

Depending on the extent of the damage to the brain, symptoms can be mild, moderate,
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or severe [1]. TBI can be categorised into two broad injury types: (i) closed TBI and

(ii) open TBI. Closed brain injury occurs when there is a non-penetrating injury to the

brain with no break in the skull but with a force strong enough to move the brain within

the skull. Open TBI also referred to as penetrating brain injury occurs when an object

pierces the skull and enters the tissue of the brain.

The GCS is a widely used clinical tool designed to assess a patient’s level of con-

sciousness, guide treatment following a TBI and to gauge the severity of the injury. GCS

is discussed in detail in section 2.1.3 but referenced here for use in description of TBI

severity. GCS scores patients based on their verbal, motor, and eye-opening responses

to stimuli, with the total score ranging from 3 (indicating deep unconsciousness) to 15

(indicating full consciousness). A lower score suggests a more severe injury.

Mild TBI

There is no consensus definition of mild TBI (mTBI) despite it making up the majority of

TBI cases (81% to > 90%) [2], [8]. The three leading definitions of mTBI are outlined by

the American Congress of Rehabilitation Medicine (ACRM), the US Centers for Disease

Control and Prevention (CDC), and the World Health Organization (WHO) [9]. While

there is variability in these definitions, there are commonalities which can be used to

create a general definition of mTBI. These include: (i) an alteration in mental state or

consciousness, and normal structural imaging, (ii) a loss of consciousness lasting less than

30 minutes, (iii) a GCS score ranging from 13 to 15, and (iv) post-traumatic amnesia

not exceeding 24 hours. The ACRM’s expert panel, with a 93.8% agreement, posits that

the term “concussion” can be used synonymously with mTBI provided that neuroimaging

results are normal or such imaging is not deemed clinically necessary[10].

One of the primary symptoms of mTBI is an alteration in mental state, manifesting

as headaches, confusion, irritability, and dizziness, among others. The subjective na-

ture of assessment of these symptoms and the absence of objective markers significantly

complicate the diagnosis, leading to the under-reporting of the condition. Mild TBI is

particularly prevalent among military personnel and contact sport athletes, with studies

indicating that up to 56% of concussions in military contexts and between 30% to 50%

in sports settings go unreported [11]–[14].

The implications of mTBI extend beyond immediate health concerns, posing serious
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long-term consequences. An unselected observational cohort study across three centers in

the United States evaluated the 3-month and 6-month month outcomes for 485 patients

with mTBI (GCS scores between 13 and 15). The findings revealed that at 3 months post-

injury, 34% of the cohort had either died (2%), or were experiencing moderate (28%) to

severe (4%) disabilities. The 6-month data, of the patients who continued in the study

indicate that, 3% had died, while 30% and 3% were found to be moderately and severely

disabled, respectively [15]. In a separate cohort study of 1104 mTBI patients assessed

with the Glasgow Outcome Scale - Extended (GOSE) at similar intervals, 23% and 16%

of patients in the uncomplicated mTBI group (n=569) were considered impaired at 3

and 6 months post-injury, respectively. This rate of impairment notably increased among

patients with complicated mTBI (n=535), with 41% and 35% of patients being considered

impaired at 3 and 6 months post-injury, respectively [16].

Moderate and severe TBI

Moderate and severe TBIs are distinguished using similar diagnostic criteria. Specifically,

moderate TBI is identified by a loss of consciousness lasting from 30 minutes to 24 hours,

alterations in consciousness or mental state extending beyond 24 hours, post-traumatic

amnesia persisting for 1 to 7 days, and a GCS score ranging from 9 to 12. Severe TBI, in

contrast, involves a loss of consciousness for more than 24 hours, post-traumatic amnesia

exceeding 7 days, and a GCS score between 2 and 8. Both conditions may present with

either normal or abnormal structural imaging findings [17]. A moderate to severe TBI can

significantly increase ICP beyond the normal range of 10 to 15 mmHg for adults and 3 to

7 mmHg for young children [18]. Elevated ICP can precipitate multiple adverse events,

including cerebral herniation, ischemia, and or death.

2.1.2 Epidemiology

Global incidence

The global annual incidence of all-cause, all-severity TBI is estimated to range between

50 to 69 million cases [2], [8]. TBI has the highest incidence rate of all common neurolog-

ical disorders. Figure 2.1 depicts the global incidence rate of TBI compared with other

common neurological disorders. The distribution of TBI severity is predominantly mild

(81%) and moderate (11%), with an estimated 5.48 million cases annually classified as
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severe [2]. Regions with the lowest resources bear the highest disease burden, with low-

and middle-income countries (LMICs) experiencing three to four times as many TBIs as

high-income countries (HICs) [19]. Southeast Asia and the Western Pacific report the

greatest incidence rates, with 18.3 million and 17.3 million cases per year, respectively [2].

In contrast, Europe records more than 2 million hospital admissions due to TBI each year,

resulting in approximately 82,000 fatalities [8]. Statistics published by the CDC indicate

that 3.5 million people sustain a TBI in the United States of America (USA) annually

[20], where at least 25% of these cases are diagnosed as either moderate or severe [21].

Figure 2.1: Global incidence and prevalence of traumatic brain injury compared with other
common neurological diseases [8].
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Trends

The incidence rate of TBI is increasing. A retrospective cohort study in Nova Scotia,

evaluating severe TBI cases from 2002 to 2018, reported a 39% increase in the incidence

of severe TBI over the study period, totaling 5,590 patients [22]. Similarly, data from

California’s Office of Statewide Health Planning and Development between 2005 and

2014 showed a 57.7% increase in TBI-related emergency department visits, equating to a

40.5% rise in TBI visit rates over a decade [23].

Mechanism of injury

The primary cause of TBI varies significantly between LMICs and HICs. In LMICs, road

traffic collisions are the leading cause of TBI [24]. Conversely, in HICs, falls constitute the

majority of TBI cases. The CENTER-TBI registry, which includes data from 56 acute

trauma receiving hospitals across 17 countries in Europe and Israel, found that 56% of TBI

cases resulted from falls, 71% of which were ground-level falls [25]. The study by Kureshi

et al. further supports this finding, suggesting falls as the predominant mechanism of

injury among severe TBI patients, where the rate of fall-related TBIs more than doubled

from 2002 to 2017 [22].
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Figure 2.2: Cause composition of age-standardised incidence of traumatic brain injury by
Global Burden of Disease region for both sexes, 2016 [24].

Risk factors

The growing and aging population is reflected in the risk factors of TBI. Hospital admis-

sions for TBI predominantly affect older individuals (aged ≥ 65 years), with the incidence

notably higher in this demographic compared to any other age groups [26]. The CDC

report that older adults constitute 43.9% of all TBI-related hospital admissions in the

USA. Similarly, data from China indicate 18.3% of TBI patients are from an older cohort

[27].

Conversely, children and adolescents (0–19 years) represent the second-highest inci-

dence group for TBI hospital admissions, with the European Union (EU) reporting ap-

proximately 345 hospital admissions per 100,000 children or adolescents annually [28]. In

the United States, the annual incidence of mild TBI in this age group ranges between 1

million and 2 million [29].
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Violence emerges as the third-most common cause of TBI, as illustrated by findings

from the CENTER-TBI and TRACK-TBI studies, with approximately 6.7 to 13% of TBIs

attributed to violence [30].

A cohort study examining historical data found that former professional football play-

ers have a neurodegenerative disease mortality rate approximately triple that of general

population controls, suggesting significantly elevated risks within this group [31]. Further-

more, evidence indicates that the likelihood of experiencing a sport-related concussion is

markedly higher in contact sports, with rugby and American football identified as partic-

ularly high-risk activities [32].

Economic burden

The in-hospital treatment of patients with TBI is considered to be expensive, especially in

patients with severe TBI. The estimated total global annual burden being US $400 billion

[3]. In 2010 in the USA, the TBI-related in-hospital charges totalled US 21.4 billion [33].

These patients also have the longest hospital or intensive care unit (ICU) length of stay

(LOS) and the highest number of surgical and medical interventions [34], [35].

2.1.3 Severity assessment and classification

The National Institute for Health and Care Excellence (NICE) provide gold standard

guidelines for the assessment of TBI severity and injury classification [36]. According to

these guidelines initial physical examination is conducted using the GCS followed by a

computerised tomography (CT) scan for the classification of brain injury if indicated by

the initial examination results.

Glasgow Coma Scale

The GCS was developed in 1974, with the purpose of providing a tool for the assessment

of level of consciousness and coma [37]. A GCS score is calculated by summing the scores

of three categories: (i) eye opening response (score 1–4), (ii) verbal response (score 1–5)

and (iii) motor response (score 1–6). Scores between 3–8 are defined as severe, scores

between 9–12 as moderate and scores between 13–15 as mild. Table 2.1 depicts the GCS

score matrix.
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Glasgow Coma Scale (Categories and Scores)

Eye opening response Verbal response Motor Response

4: Spontaneous 5: Oriented 6: Obeys commands

3: To verbal stimuli 4: Confused 5: Localizes pain

2: To pain 3: Inappropriate words 4: Withdraws from pain

1: None 2: Incoherent 3: Flexion to pain or decortricate

1: None 2: Extension to pain or decerebrate

1: None

Table 2.1: Table of Glasgow Coma Scale categories and scoring.

The GCS is the gold standard clinical examination tool which categorises TBI as

mild, moderate, or severe. Genenarelli et al’s study which analysed data from 174,160

patients submitted from 165 trauma centres demonstrated a progressive association be-

tween increasing mortality after TBI and decreases in GCS score [38]. Once the severity

of a patient has been assessed using the GCS, if the resultant GCS score indicates, fur-

ther examination is carried out using brain imaging techniques which provides further

information on the extent and type of injury to the brain.

Computerised tomography head scan

The gold standard imaging technique is CT [39], CT remains the technique of choice

for initial assessment due to its speed, accessibility, and sensitivity for depicting brain in-

juries that require neurosurgical intervention, such as large volume haemorrhage [40], [41].

Additionally unlike MRI there is no need to screen for safety when using CT imaging[42].

The criteria for conducting a CT head scan vary based on age groups and specific

risk factors following head injuries. For individuals aged 16 and over, a CT head scan

is recommended within one hour if they exhibit certain risk factors such as a GCS score

of 12 or less, signs of skull fracture, post-traumatic seizure, or other neurological deficits.

For those under 16, the recommendation is also within one hour for suspicion of non-

accidental injury, post-traumatic seizure, or specific GCS scores. Further, for this age

group, if multiple risk factors are present, a CT head scan is advised within one hour.

Additionally, observation is suggested for those with one identified risk factor, with further

scans indicated if specific symptoms arise during observation [36].
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2.1.4 Summary

TBI represents a significant global health concern with an estimated annual incidence

ranging between 50 to 69 million cases worldwide. The burden of TBI disproportionately

affects LMICs, where incidences are three to four times higher than in high-income coun-

tries, primarily due to the prevalence of road traffic collisions in LMICs versus falls in

higher-income regions. The majority of these cases are mTBI, accounting for 81% to over

90% of all TBI incidents. However, the diagnosis of mTBI remains challenging due to its

subjective nature and the reliance on self-reported symptoms, making under-reporting a

significant issue, especially among military personnel and athletes. Although the GCS

serves as a crucial tool in assessing TBI severity, its lack of precision highlights the ne-

cessity for more refined diagnostic methods. Given the vast scale of TBI incidence, the

specific challenges posed by mTBI, and the limitations of current assessment tools like the

GCS, there’s a compelling need for the development of a simple, inexpensive, and non-

invasive monitoring device. Such a device should be universally accessible and capable of

effectively serving the majority of TBI cases, including settings with limited healthcare

resources, to address both the acute and long-term consequences of all severities of TBI.

2.2 Intracranial Pressure, Cerebral Physiological and

Haemodynamic Components

The brain’s function and structural integrity are directly influenced by its physiological

and hemodynamic environment, including factors such as cerebral blood flow (CBF),

cerebral perfusion pressure (CPP), mean arterial pressure (MAP), and the mechanism of

cerebral autoregulation. These elements are interdependent and crucial for maintaining

the balance within the cranial vault. Disruptions in these parameters, especially following

TBI, can lead to significant changes in ICP, impacting patient outcomes.

2.2.1 The Monro-Kellie Doctrine and ICP

ICP is the pressure within the cranial vault, governed by the Monro-Kellie hypothesis,

which posits that the cranial compartment’s volume is fixed, comprising brain tissue,

cerebral blood, and cerebrospinal fluid (CSF) [43]. Variations in ICP arise from changes
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in these components due to pathological conditions such as mass lesions, venous sinus

obstructions, and cerebral oedema. Figure 2.3 illustrates the progressive relationship

between the increase in volume of the intracranial pathologies within the cranial vault

(depicted in red) which can be caused by TBI and the corresponding rise in ICP.

Figure 2.3: Illustration of the relationship between increasing intracranial pathologies and
consequential increases in intracranial pressure. The four skull images represent different
stages of volume increase within the cranial compartments due to the increasing volume of

intracranial pathologies mirrored by a subsequent increase in intracranial pressure

These changes can trigger compensatory mechanisms aimed at preserving normal ICP

levels, which are typically between 10 to 15 mmHg in adults and 3 to 7 mmHg in children

[18]. Within this framework, cerebral compliance, or the brain’s ability to accommodate

volume changes without significant variations in ICP, plays a crucial role. It reflects the

adaptability of the intracranial contents and their capacity to compensate for volume

increases, thereby maintaining a stable ICP within physiological limits. Reduced cerebral

compliance indicates a diminished capacity for such compensation, making the brain more

susceptible to ICP fluctuations and the potential for secondary injuries, underlining the

importance of monitoring these parameters closely in patients with potential or actual

brain injuries.

15



CHAPTER 2

2.2.2 Cerebral Perfusion Pressure

CPP is defined as the difference between MAP and ICP (or central venous pressure (CVP)

if greater than ICP), expressed in millimeters of mercury (mmHg). CPP is calculated as:

CPP = MAP − ICP .

This differential is fundamental for ensuring adequate blood flow to the brain, providing

the oxygen and nutrients necessary for cerebral metabolism. Normal CPP values range

from 60 to 100 mmHg, maintaining adequate cerebral blood flow and ensuring brain health

[44].

2.2.3 Cerebral Blood Flow

CBF represents the volume of blood flowing through a given amount of brain tissue over

time, measured in milliliters per 100 grams of brain tissue per minute (ml/100g/min).

Cerebral autoregulation plays a key role in maintaining CBF by adjusting cerebral vas-

cular resistance to ensure consistent blood flow despite variations in CPP, within the

autoregulatory limits of approximately 50 to 150 mmHg [44].

2.2.4 Mean Arterial Pressure

MAP is a critical determinant of CPP and hence, indirectly affects CBF. It is the average

pressure in a patient’s arteries during one cardiac cycle and is influenced by factors such

as blood volume, cardiac output, and vascular resistance [45].

2.2.5 Autoregulation

Cerebral autoregulation refers to the brain’s ability to maintain a relatively constant CBF

despite changes in CPP [46]. This mechanism works through the dilation and constriction

of cerebral blood vessels in response to changes in blood pressure, ensuring stable oxygen

and glucose delivery to brain tissue.

2.2.6 Impact of TBI on ICP

TBI can precipitate elevated ICP through mechanisms such as cerebral edema, hemor-

rhage, and disruption of CSF clearance [43], [47]. The consequential increase in brain
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volume or intracranial blood exerts additional pressure against the skull directly elevat-

ing ICP. This scenario challenges the capacity of cerebral compliance. When compliance

reaches its limit, the rise in ICP can consequently reduce CPP. The elevation in ICP can

reduce CPP by increasing the resistance against arterial blood entering the brain, thus

reducing the net driving force for blood flow. In response, cerebral autoregulation en-

deavours to maintain constant CBF despite variations in CPP by adjusting the diameter

of cerebral vessels, vasodilation to increase blood flow when CPP is low and vasoconstric-

tion to decrease flow when CPP is high. However elevated ICP may reduce CPP below a

critical threshold causing cerebral dysregulation. Under these circumstances, the cerebral

vessels cannot dilate sufficiently to counteract the reduced driving pressure, resulting in a

sustained decrease in CBF. This persistent reduction in blood flow initiates a cascade of

secondary brain injuries, through neuronal injury, herniation, and brain death [48]–[50].

These secondary injuries exacerbate the primary damage caused by the TBI, leading to

outcomes such as cognitive deficits, physical impairments, and in severe cases, increased

mortality risk [15], [16]

2.2.7 Summary

This chapter delves into the cerebral physiological and hemodynamic components and

their roles in regulating ICP and their alteration due to TBI. It explains how TBI-induced

disruptions in CBF, CPP, MAP, and cerebral autoregulation can precipitate significant

elevations in ICP. Sustained elevations in ICP can instigate secondary brain injuries by

compromising blood flow to the brain, thereby reducing the essential supply of oxygen

and nutrients. The chapter underscores the need for accurate ICP monitoring for the

timely intervention and maintenance of normal ICP levels reducing the risk of secondary

injury to the brain.

2.3 Intracranial Pressure Monitoring

TBI can impact cerebral physiology, potentially causing elevations in ICP. Without ef-

fective monitoring, these changes in ICP can result in secondary brain injuries. This

chapter discusses the gold standard of invasive ICP monitoring, alongside other invasive

and non-invasive methods. It evaluates the advantages and limitations of each approach.
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2.3.1 ICP monitoring

ICP monitoring serves either as a therapeutic guideline or as a diagnostic tool in various

pathological conditions that lead to neurological damage. The guidelines of the American

Brain Trauma Foundation (BTF) specify criteria for implementing ICP monitoring in

patients with severe TBI who present with a normal CT scan. According to these guide-

lines, ICP monitoring is indicated under the presence of any two or more of the following

conditions at admission: (i) age exceeding 40 years, (ii) the occurrence of unilateral or

bilateral motor posturing, or (iii) a systolic blood pressure < 90 mmHg. The guidelines

recommend treating ICP above 22 mmHg [51]. Elevated levels of ICP is referred to as

intracranial hypertension (ICH).

2.3.2 Invasive monitoring

Intraventricular pressure monitoring

Intraventricular pressure monitoring is the monitoring of ICP by the insertion of a catheter

into a ventricle of the brain through a small hole in the skull made by a neurosurgeon, this

hole is referred to a as burr hole. Intraventricular pressure monitoring is achieved through

the use of an extraventricular drain (EVD) connected to an external strain gauge fluid

device which measures ICP the value. Although it is the oldest method, intraventricular

pressure monitoring via an EVD remains the gold standard for ICP monitoring techniques

[52], [53]

EVD monitoring involves the placement of a catheter into one of the brain’s four

ventricles. This method provides several benefits beyond mere ICP monitoring. By

facilitating the insertion of an EVD, it enables not only the therapeutic drainage of CSF

to assist in controlling ICP but also allows for the intrathecal delivery of medications and

the removal of intraventricular hemorrhages [54]. The conventional technique for EVD

insertion employs the freehand pass method, guided by surface anatomical landmarks [55].

Given the predominance of the left frontal cerebral hemisphere for language functions in

over 90% of individuals, the right frontal hemisphere is generally chosen as the entry point

[56]. A burr hole is created at Kocher’s point, carefully positioned to bypass the superior

sagittal sinus and the motor strip of the frontal cortex [57]. Following the application of

local anesthesia, a skin incision is made down to the bone, and the periosteum is cleared.
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Subsequently, a twist drill creates an opening in the skull along the predetermined path

for ventricular access, piercing through the pia and dura mater. The ventricular catheter,

is then navigated towards the ipsilateral Foramen of Monro [54]. With the catheter

in place and the stylet removed, the initiation of CSF flow through the EVD confirms

proper placement, at which point the catheter is connected to an external strain gauge

fluid measurement device. Figure 2.4 depicts the placement of a intraventricular ICP

monitoring device.

Figure 2.4: An illustration depicting the placement of an intraventricular, intracranial pressure
monitoring device [58].

Despite being the gold standard method of monitoring ICP, EVD monitoring is expen-

sive and may lead to a series of complications. The most common complications being: (i)

intracranial hemorrhage, (ii) infection and (iii) failure to tap ventricle or misplacement.

Miller et al. observed in their study that hemorrhage occurred in 94 (21.6%) of the

patients subjected to imaging following an EVD placement procedure [59]. Saladeno et al.

found a misplacement rate of 12.3%, with ventriculostomy-related hemorrhages occurring

in 7.1% of patients [60]. Hagel et al. reported an 8.3% cumulative incidence rate of

EVD-related infections [61], while Wright et al. documented an infection rate of 23.5%

[62]. The estimated diagnostic, procedural, and material cost of EVD placement is in the

range of US $1300–$3200 [63], [64].

Intraventricular ICP monitoring is the oldest and gold standard method of monitoring
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ICP. Despite this it suffers from a high level of complexity, infection, hemorrhage and cost

to patients and healthcare systems.

Transducer-based Pressure Monitoring

Transducer-based ICP monitoring technologies can be categorised into three main types:

(i) fiber optic sensors, (ii) strain gauge sensors, and (iii) pneumatic sensors.

Fiber optic-based ICP monitors operate by transmitting light through a fiber optic

cable to a pressure-sensitive reflective diaphragm at the sensor’s tip. Variations in ICP

cause movements of this diaphragm, which in turn alter the intensity of the light reflected

back. These changes in light intensity are then converted into ICP readings [65]. A study

was conducted between 1992 and 2004, involving 1,000 patients who had a fitted Camino

fiberoptic intraparenchymal ICP monitor for an average monitoring time of 184.6 ± 94.3

hours. The study reported that of the 574 probe tips examined, 8.5% were positive for

bacterial growth. Of the 92.2% of patients which underwent a control CT scan, the scans

indicated a 2.5% incidence rate of haemorrhage. Technical complications were noted in

4.5% of cases, predominantly associated with the fibre optic cable. Further analysis by

Münch et al. based on data from 136 Camino devices, indicated an infection rate of

0.7%, a 5.1% occurrence of intraparenchymal hematoma, and a 23.5% rate of technical

complications [66]. Another study by Bekar et al., which reviewed 328 patients with

Camino monitors, reported hemorrhage in 1.1% of cases, infections in 4.75%, and technical

errors in 3.14% [67].

Strain gauge devices measure ICP through a transducer that alters resistance in re-

sponse to bending induced by ICP changes. This change in resistance translates to an

ICP measurement. Hong et al’s investigation into the Codman Microsensor, a subdural

transducer-tipped catheter, reported no complications related to infection or hemorrhage

[68]. A more extensive prospective study involving 128 patients highlighted three instances

of surgically related hemorrhages but, aligning with Hong et al’s findings, no infections

associated with the sensor’s placement [69]. Similarly, an evaluation of the Raumedic

Neurovent-P ICP monitor by Citerio et al. found no infections and only two instances of

hemorrhage among 99 patients, neither requiring intervention.

The Spiegelberg 3-PN sensor, a pneumatic strain gauge ICP monitor, employs an

air pouch at the sensor tip. This pouch maintains a constant pressure equivalent to the
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surrounding ICP. Through a transducer linked to the catheter tip, an ICP value is derived

[70]. Lang et al’s study, involving 87 patients using the Spiegelberg sensor, reported no

hemorrhages and identified incorrect measurements in three cases due to sensor leaks.

Unlike the previously mentioned fiber optic and strain gauge sensors, the Spiegelberg

sensor features the capability for hourly recalibration [71].

Transducer-based devices have shown to monitor ICP with a precision comparable to

that of EVD-based monitoring systems [72]. They offer the advantage of not requiring

a fluid coupling system, which reduces the risk of infection, as evidenced by the findings

of the aforementioned studies. However, unlike EVD-based systems, transducer-based

devices, with the exception of the Spiegelberg 3-PN sensor, cannot be recalibrated once

placed. They also do not offer the benefits of therapeutic CSF drainage, intrathecal drug

administration, or drainage of intraventricular hemorrhage.

2.3.3 Non-invasive monitoring

Transcranial Doppler

Transcranial Doppler (TCD) ultrasonography provides a noninvasive real-time measure-

ment of blood flow characteristics and cerebrovascular haemodynamics within the basal

arteries of the brain. TCD is predicated on the principles of the Doppler effect. Ac-

cording to the Doppler effect ultrasound waves emitted from the probe are transmitted

through the skull and reflected by moving red blood cells within the intracerebral vessels.

The difference in the frequency between the emitted and reflected waves is referred to

as the “doppler shift frequency”. The Doppler shift frequency is directly proportional

to the blood flow velocity [73]. Figure 2.5 depicts the application of TCD for measuring

cerebrovascular haemodynamics.

Through the use of spectral analysis, parameters which include the pulsatility index

can be extracted from the doppler signal [74].
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Figure 2.5: An illustration depicting measurement of venous transcranial doppler by using the
temporal window to insonate the vein of Rosenthal [75].

The pulsatility index has been found to correlate with invasively measured ICP. Voul-

garis et al. who investigated 37 patients with severe TBI (GCS > 8 on admission) found a

strong correlation between ICP and PI (r=0.82, p > 0.0001) for ICP values > 20 mmHg.

However, Voulgaris et al. report that at ICP values below 20 mmHg there was no sig-

nificant correlation between ICP and PI (p > 0.05) [76]. Similarly to Voulgaris et al’s

study, Bellner et al. also reported a significant correlation (p > 0.0001) between the ICP

and the PI with a correlation coefficient of 0.938. In the ICP interval between 5 to 40

mmHg the correlation between ICP and PI enabled an estimation of ICP from the PI

values with an SD of 2.5 (±4.2 mmHg). This small deviation was only applicable to ICP

values lower than approximately 30 mmHg. As ICP values increased so did the deviation.

Consequently accurate ICP measurements at elevated ICP values using TCD were not

possible [77].

TCD based ICP measurement as shown in the above studies is an unreliable technique

of ICP measurement across the pressure range. In addition to this TCD is prone to

intra and inter-observer variability [78]–[80]. Shen et al’s study concludes that without

regular practice, measurement accuracy and observer agreement is negatively impacted

[81]. Additionally TCD is non efficacious in 10-15% of patients due to the ultrasound

waves not being able to penetrate through the skull [82].
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Optic nerve sheath diameter

The optic nerve, is a component of the central nervous system. It traverses from the

intracranial space into the orbit, surrounded by subarachnoid space, specifically the dural

sheath. This sheath surrounding the optic nerve, contains CSF, linking the subarachnoid

space around the nerve closely with the intracranial subarachnoid space [77]. Elevated

ICP can increase pressure around the optic nerve, influencing the optic nerve sheath

diameter (ONSD) and leading to the development of papilledema. Dilation of the ONSD

has been shown to be an early indication of a rise in ICP [83], [84].

Several studies have established a correlation between invasive ICP measurements and

ultrasonographically gathered ONSD data [83]–[86]. Dubourg et al’s systematic review

and meta-analysis, which examined ultrasonography of the ONSD in 231 patients for

detecting raised ICP, reported a pooled sensitivity of 0.90 and a specificity of 0.85 [87].

Similar to the TCDmethod of ICP assessment, ONSDmeasurement is susceptible to intra-

observer variability. However, this variability is reportedly lower than that associated

with TCD measurements [88]–[90]. Nonetheless, various conditions, including tumors

and Graves disease, can influence the ONSD, potentially compromising the efficacy of the

ONSD method in monitoring ICP [91].

The ONSD is a non-continuous monitoring technique that although able to discern

between normal and increased ICP is not accurate enough to be used in place of an

invasive ICP monitoring method. Additionally, similarly to the TCD method, there is

reported inter-observer variance and similarly to the TCD monitoring technique requires

regular operator training in order to yield accurate results.

Optical & PPG ICP estimation

A growing body of research is exploring methods that leverage cardiac waveforms, such

as diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) data for

the non-invasive estimation of ICP.

An initial pilot study in 1997 investigated the use of NIRS to asses variations in

regional cerebral oxygen saturation (rSO2) in 8 patients with head injury. Half of the

patients assessed had an ICP > 25mmHg, the other half had an ICP < 25mmHg. The

study’s findings indicated that NIRS values in the group of patients with elevated ICP

were significantly lower than in the low ICP cohort. Furthermore, the rSO2 values where
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significantly lower in patients with elevated ICP compared to patients within the lower

ICP group and did not display a significant increase after hyperoxygentation. These

results indicated the possible utility of NIRS as a modality of assessing elevated ICP [92]

Further investigations by Ruesch et al. corroborated the findings of the initial pilot

study of 1997. Ruesch et al. induced variations in ICP via fluid injections using an intra-

ventricular catheter, mimicking a form of hydrocephalus within non-human primates. The

ICP was monitored using an intraparenchymal ICP sensor, and hemoglobin concentra-

tion changes were measured non-invasively using a NIRS optical sensor. The ICP values

were varied from 3 to 40 mmHg covering a significant range of ICP values from what

is considered a normal range to severely elevated values. The findings of this research

demonstrated a good correlation between hemoglobin levels collected using NIRS and

induced ICP, further suggesting the capability of NIRS for non-invasive ICP monitoring

[93].

In subsequent research, Ruesch et al. utilised PPG features from cardiac DCS pul-

sations along with MAP to predict ICP non-invasively within five non-human primates.

Similarly to their previous study an intraventricular catheter was used to induce changes

in ICP through the introduction of a saline solution. Elevated ICP levels were induced

reaching approximately 30 mmHg, each induced ICP level was maintained for approxi-

mately 90 minutes. From the cardiac pulsatile waveforms a number of morphological and

time series features which included peak height, prominence and half peak width were

extracted amongst others. These extracted features along with MAP were then used to

train a Random Forest (RF) regression model. The training and testing data was ran-

domly split in a 80:20 ratio. The predictive model yielded results achieving a Coefficient

of Determination (R2) of 0.92 and a root mean squared error (RMSE) of 3.3 mmHg [94].

This group expanded their work by investigating features extracted from near-infrared

PPG (NIR-PPG) in combination with MAP for ICP estimation. Inline with their previous

studies ICP was induced within eight non-human primates using a saline solution via a

intraventricular catheter. A NIRS system operating at 690 and 830 nm, was used to

measure cerebral hemoglobin concentration changes. Arterial blood pressure (ABP) was

recorded using an arterial line placed in the carotid artery. Induced ICP ranged between

5 and 60 mmHg. Predominantly morphological features such as peak height, width and

prominence amongst others were extracted. These features in combination with MAP

were used as features for their ICP estimation model. A RF model was trained and
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evaluated using 5 fold cross validation with a randomly sampled training and testing

dataset in a ratio of 80:20. The model resulted in a R2 to 0.937 and an RMSE of 2.703

mmHg [95].

Further studies have also shown the potential of using PPG waveform features to

correlate with ICP levels. A study simultaneously collected ICP and brain PPG signals

collected at 660 nm over each hemisphere of the brain from 12 patients. Invasive ICP

values were recorded using an extra-ventricular drain. From the PPG waveform, a number

of morphological features were extracted. A unspecified algorithm was developed using

an underscribed training and testing approach with findings indicating a R2 of 0.66 [96].

2.3.4 Summary

Invasive ICP monitoring techniques remain the most accurate method of monitoring ICP.

The EVD method of monitoring ICP remains the gold standard. Invasive ICP monitoring

techniques are expensive, require a high level of expertise to implant and are prone to

infection. There are no existing continuous, non-invasive ICP monitoring techniques that

are accurate across the pressure range in relation to invasive monitors.

Recent research efforts have focused on leveraging morphological and time-series fea-

tures derived from cardiac waveforms to estimate ICP non-invasively. While these studies

have yielded some encouraging results, their scope has predominantly been confined to

animal models, incorporating MAP as an additional variable. These studies utilised ran-

dom sampling cross-validation methods for training and evaluation. The relationship

between MAP and ICP is highly sensitive. MAP was found to be the strongest predictive

feature across all the studies which used it. The inclusion of MAP in combination with

the training and evaluation approach we suggest beneficially biases the results of these

studies, although the limited number of non-human primates within these studies is ap-

preciated. To the knowledge of the author one study aims to estimate ICP using cardiac

waveforms collected from patients however this study neither describes the model used

nor the training and testing approach.

This research, using the largest clinically collected ICP labelled dataset to date aims

to robustly investigate the relationship between NIR-PPG derived features and ICP and

the efficacy of predicting ICP using said features exclusively.
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2.4 Estimating Intracranial Pressure using Photoplethys-

mography

2.4.1 Introduction to PPG

PPG signals are non-invasive, cost-effective optical signals, easily obtained from the skin’s

surface using a light source and photodetector. PPG signals capture information about

blood volume fluctuations by detecting variations in light absorption or reflection, induced

by changes in blood volume. The growing interest in non-invasive physiological monitor-

ing, coupled with the paradigm shift in healthcare towards continuous and ubiquitous

patient monitoring rather than exclusive in-hospital care has triggered a substantial surge

in the adoption and exploration of PPG technology [97]–[99]. The magnitude of this inter-

est is underscored by the significant rise in search results related to PPG over the past two

decades which has seen an increase of 2392.72%, as evidenced by the search results of the

terms “Photoplethysmography” or “Photoplethysmogram” in PubMed, Europe PubMed

Central and Scopus from 2000 to 2022, as illustrated in Figure 2.6.

Figure 2.6: Bar chart depicting the annual number of articles indexed in PubMed from 2000 to
2022, using the keywords Photoplethysmography or Photoplethysmogram.

This same trend has led to the proliferation of non-invasive medical devices as well

as consumer-oriented wearable devices such as smartwatches and fitness trackers. Many

of these devices use PPG technology to enable non-invasive and continuous monitoring

of various physiological markers, including heart rate, blood pressure, oxygen saturation,

and sleep patterns [3].
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2.4.2 Basic working principle of PPG

PPG is a non-invasive optical technique that detects blood volume changes with each

cardiac cycle based upon the absoptivity of light. PPG sensors are comprised of two main

components: (i) photodiode and (ii) photodetector. In order to obtain a PPG signal

the tissue is irradiated by light emitted by the photodiode of which a certain amount is

absorbed by the tissue, the unabsorbed light being collected by the photodetector.

A cardiac cycle consists of two stages: (i) systole and (ii) diastole, representing the

periodic contraction and relaxation of the heart, respectively. This cycle is essential for

the effective pumping of blood throughout the body, ensuring the delivery of oxygen and

nutrients to tissues while facilitating the removal of carbon dioxide and other metabolic

wastes. Systole is the phase of the cardiac cycle during which the heart muscle contracts.

This contraction results in the ejection of blood from the heart chambers and increase in

blood volume throughout the body, including all the peripheral tissue sites. Diastole is

the phase during which the heart muscle relaxes after contraction. During this relaxation

phase blood volume decreases and the heart chambers fill with blood, preparing for the

next cycle of contraction.

The pulsatility of the PPG signal emerges as a consequence of the blood volume

changes between systolic and diastolic phases of the cardiac cycle. The systolic increase

in blood volume results in increased absorbance of light in tissue compared to the diastolic

state changing the amount of unabsorbed light being recorded by the photodetector. This

variation in light absorption and the corresponding detection by the photodetector gives

rise to the PPG pulsatile waveform which is synchronous with each heartbeat [99], [100].

Transmittance PPG sensors emit light through tissues such as a fingertip and measure

the amount of light that emerges on the opposite side. Conversely, reflectance PPG

sensors, emit light that reflects off the surface of thicker tissues such as the wrist or

forehead.

PPG waveform

The PPG waveform is composed of two elements: (i) the alternating current (AC) and (ii)

the direct current (DC) components. The DC component arises from the light absorption

by non-pulsatile tissues, such as muscles and bones. This component changes gradually

over time and is subject to variations influenced by physiological factors such as respiratory
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patterns and activity within the sympathetic nervous system.

Figure 2.7: The schematic of the PPG waveform produced due to the absorbance of light in
tissue, as a function of time. Light absorbance in the pulsatile tissue components produces the
pulsatile AC part in the PPG waveform. Absorbance in the nonpulsatile tissue components

contributes to the slowly varying DC part of the PPG waveform [99].

The pulsatile AC component which is superposed on the DC component is created

by the aforementioned variations in light absorption due to changes in blood volume

between the systolic and diastolic phases of the cardiac cycle. The repeated systole

and diastole of the heart result in a periodic PPG signal which for every cardiac cycle

includes one systolic and one diastolic peak. Figure 2.7 depicts the inverse relationship

between the intensity of the recorded PPG (I) and light absorbance (A) [99]. During

systole and the subsequent increased blood volume, more light is being absorbed and

less light is reaching the photodetector resulting in a lower light intensity represented as

a higher pulse amplitude on the PPG waveform. Conversely, during diastole, the blood

volume reduction leads to less light absorption and more light reaching the photodetector,

indicating higher light intensity but corresponding to a lower pulse amplitude on the

waveform. Thus, variations in light intensity detected by the PPG sensor inversely affect

the pulse amplitude observed in the PPG signal.

28



CHAPTER 2

2.4.3 Non-invasive intracranial pressure sensor

Monte-Carlo light-tissue interaction modelling

Roldan et al. performed a Monte-Carlo simulation of the interaction between near-infrared

(NIR) light and a multi layered tissue model of an adult human head. The simulation

aimed to investigate the relationship between emitter and photodetector separations and

subsequent variations in light absorption and penetration of the tissue layers. The study

investigated emitter-photodetector separations between 1 to 5 cm.

At all simulated separations the maximum and minimum absorbance were in the skull

and the subarachnoidal space, respectively. Additionally, as separation increased the

relative absorption of light decreased within the extracerebral layers which include the

scalp and skull. At the deeper layers of the tissue model which include the grey and

white matter, the inverse was apparent, the larger the separation the greater the resulting

absorption of light. The findings of this study suggest that a larger emitter-photodetector

separation especially above 3 cm facilitates a deeper interrogation of the head tissues

allowing for the collection of data from the white matter of the brain [101].

Description of non-invasive intracranial pressure sensor

This research is based upon data produced by an in-house, NIRS, reflectance, PPG sensor

for non-invasive estimation of ICP hereinafter referred to as the “nICP” sensor [102]. The

nICP sensor consists of four LEDs at four different wavelengths (770, 810, 855 and 880 nm)

and two photodiodes “proximal” and “distal” positioned at 10 mm and 35 mm from the

light source representing short-distance and long-distance data respectively. The sensor is

arranged as shown in Figure 2.8. The research focuses upon the 810 nm wavelength data

as it represents the isosbestic point. At the isosbestic point the absorption properties of

the oxy- and deoxyhemoglobin are the same allowing for an optical signal independent of

blood oxygentation, eliminating it as a confounding factor [103].
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Figure 2.8: A diagram showcasing the design of the non-invasive intracranial pressure sensor,
highlighting the placement of the photodiodes and the light source, as well as depicting the

spatial arrangement and distances between the proximal and distal photodiodes relative to the
light source.

Findings from the montecarlo simulation of the light-tissue interaction propose that

the data from the proximal photodiode corresponds to extracerebral data, while the data

from the distal photodiode represents a combination of extracerebral and cerebral data

[101].

Figure 2.9 shows the indicative placement of the non-invasive nICP sensor (indicated

by a green arrow) and the invasive sensor (indicated by a red arrow) on a patient. The

nICP sensor is positioned on the patient’s forehead, below the hairline.
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Figure 2.9: An image depicting the indicative placement of the non-invasive nICP sensor
(indicated by a green arrow) and the invasive sensor (indicated by a red arrow) on a patient.

2.4.4 Theory: Relationship between photoplethysmography and

ICP

Building upon the description of cerebral physiology and haemodynamics described in

Chapter 3, ICP is the pressure within the cranial vault, governed by the Monro-Kellie

hypothesis, which suggests that the cranial compartment’s volume is fixed, comprising

brain tissue, cerebral blood, and CSF [43]. Variations in ICP arise from changes in
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these components due to pathological conditions. Such changes can trigger compensatory

mechanisms aimed at preserving normal ICP levels.

Elevation in ICP can reduce CPP by increasing the resistance against arterial blood

entering the brain. This elevation in ICP and consequential reduction in CPP triggers

cerebral autoregulation, which adjusts the diameter of cerebral vessels. However, elevated

ICP may reduce CPP below a critical threshold causing cerebral dysregulation where

blood vessels cannot dilate sufficiently to counter the reduced driving pressure, leading to

a sustained drop in CBF.

The PPG morphology mirrors blood volume changes within each cardiac cycle based

upon the relative change in light absorbance between the systolic and diastolic phase.

Given the aforementioned influence of variations in ICP on CPP and its subsequent impact

on cerebral autoregulation mechanisms. It seems reasonable to suggest that increases in

ICP and the suspected change in flow dynamics and or decrease in cerebral blood volume

stemming from cerebral dysregulation, diminished CPP, and CBF alongside resultant

variations in light absorbance, will manifest in identifiable changes to PPG waveform

morphology.

2.4.5 Summary

PPG data reflects the changes in blood volume within each cardiac cycle. The presented

theory linking PPG and ICP describes how variations in ICP levels can affect cerebral

blood volume and general flow dynamics in the brain. The Monte-Carlo simulation in-

dicated that NIR light with certain photodiode-photodetector separations allows for the

collection of back scattered light from brain matter. Based upon these findings and design

of the nICP sensor it is suggested that the near infrared PPG data collected from the

distal photodiode of the sensor will provide information reflecting haemodynamic changes

in the brain which can be associated with ICP.
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Dataset and Pre-processing

This chapter introduces the dataset of which this research is based upon, it explains

the data collection protocol, recruitment of patients and the loading and structuring of

the data. In addition to this the chapter describes the data preprocessing including the

novel denoising algorithm which was designed and applied to the dataset. The denoising

algorithm detailed in this chapter resulted in a publication that describes and evaluates

its performance [104].

3.1 Dataset

3.1.1 Data collection

The non-randomised data collection was performed over a 78-week period between Jan-

uary 2020 and July 2021 (ClinicalTrials No. NCT05632302). Each patient had an im-

planted, invasive, intra-parenchymal (Raumedic® Neurovent-P) pressure probe which was

interfaced with a GE® monitor as part of their normal medical treatment. The nICP

sensor was affixed to the patient’s forehead below the hairline. Both the invasive and

non-invasive data was collected with a sampling frequency of 100 Hz. The non-invasive

and invasive data were collected synchronously. The nICP monitor was calibrated for each

patient through the adjustment of the LED intensity and amplification gain according to

patients’ characteristics and ambient light. Calibration was performed before recording

started. If the patient left the intensive therapy unit (ITU) for a scan or surgery, the

nICP monitor probe was disconnected and left in situ. We hereinafter refer to the data

collected from the nICP sensor as “NIR-PPG” and the data collected from the invasive
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ICP monitor as “ICP data”.

3.1.2 Participants

The dataset consists of data from 40 patients with a severe TBI diagnosis, recruited from

the ITU of the Royal London Hospital in the United Kingdom. Except for one individual,

all participants were in an unconscious state due to head injuries. The study also included

a conscious patient who was undergoing ICP monitoring as part of an assessment for

normal pressure hydrocephalus. Candidates were not considered for the study if they

were not expected to survive beyond 48 hours or if a personal consultee recommended

against their involvement. Individuals who had received a decompressive craniectomy

were not included due to the procedure’s adverse affects on signal quality. The average

age of the patients was 43.92 years, and the gender distribution was predominantly male,

with a ratio of 14:2.

Conscious participants signed written consent forms before joining the study. For those

unable to give consent themselves due to incapacitation, permission was obtained from

either a personal consultee or an independent healthcare professional when no consultee

was available, in alignment with the UK Mental Capacity Act of 2005.

Participants’ personal information was protected and handled according to the Data

Protection Act, NHS Caldecott Principles, The Research Governance Framework for

Health and Social Care, and the conditions of the Research Ethics Committee Approval.

3.1.3 Data loading and structure

The raw ICP and NIR-PPG data were loaded, resulting in three structured datasets for

the ICP measurements and NIR-PPG signals from both the proximal and distal pho-

todetectors, respectively termed as “proximal data” and “distal data”. Each dataset was

structured with columns uniquely representing each patient’s data.

During the data collection phase, two inconsistencies emerged: (i) the lengths of the

NIR-PPG data differed from those of the ICP data, due to variations in the recording

durations and (ii) some patients had multiple data files, each indicating the start of a new

recording session. This situation arose primarily due to patients leaving ITU for required

interventions or diagnostic scans.

To address these challenges, an assumption was adopted that the NIR-PPG and ICP
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recordings for each patient commenced simultaneously. This assumption guided the initial

data processing steps, where the raw data files for each patient were first synchronised

based on their lengths. The process involved trimming the longer of the two datasets

(NIR-PPG or ICP) to match the length of the shorter dataset, ensuring alignment.

Ensuring the datasets are trimmed for alignment is essential for the subsequent stages

of data analysis, especially when labeling the datasets. Alignment guarantees mutual

length and temporal correspondence between both the NIR-PPG and ICP signals is main-

tained. This alignment is vital for subsequent, accurate feature extraction and labeling,

as it ensures that the NIR-PPG data used to generate features corresponds accurately to

the same point in time in the ICP signal which is used to derive each label. Misalignment

could lead to incorrect associations between the features and their corresponding labels,

thereby compromising the integrity of the analysis.

For patients with multiple data files, each file was treated independently, undergoing

the length adjustment process to ensure consistency across all sessions. Subsequently, the

adjusted datasets from different files were concatenated, creating a unified dataset that

represented the entirety of a patient’s recorded data. This processing ensured that the

final data had a uniform length across datasets. Figures 3.1 and 3.2 demonstrate two

examples of the raw patient data.
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Figure 3.1: A figure consisting of two subplots depicting the raw data of a individual patient.
The top subplot depicts the loaded raw non invasive data collected from both the proximal
and distal photodiodes. The bottom subplot depicts the invasive intracranial pressure data.

Figure 3.2: A figure consisting of two subplots depicting the raw data of a individual patient.
The top subplot depicts the loaded raw non invasive data collected from both the proximal
and distal photodiodes. The bottom subplot depicts the invasive intracranial pressure data.
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3.1.4 Handling of erroneous intracranial pressure values

Prior to the denoising of the dataset, an additional step was taken in order to handle

erroneous ICP values. The assumption was made that values of ICP ≥ 60 mmHg or < 0

mmHg, could be erroneous or biologically implausible. Consequently, these instances were

removed from both the ICP and NIR-PPG data. Values above 60 mmHg may indicate po-

tential measurement errors, while negative values are physiologically implausible. Figure

3.3 depicts an example of recorded ICP with erroneous data points both above 60 mmHg

and below 0 mmHg. In cases which Figure 3.4 illustrates were there are sustained ICP

values outside of the biologically feasible bounds it seemed reasonable assume there was

a invasive measurement error and subsequently the data of these patient’s was excluded.

Figure 3.3: A figure depicting the invasive intracranial pressure data recorded from a patient
which includes assumed erroneous values above 60 mmHg and below 0 mmHg.

Figure 3.4: A figure depicting the invasive intracranial pressure data recorded from a patient
which includes assumed erroneous elevated values with a mean ¿ 100 mmHg.
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3.1.5 Data exclusion

For each patient, ICP data was saved in a ASCII (.asc) file format. The LabVIEW

software was used for NIR-PPG data acquisition. The NIR-PPG data was stored in a

LabVIEW (.lvm) file for each patient. To facilitate data analysis, both .asc and .lvm files

were converted to Comma-Separated Values (.csv) format.

Initially, the dataset consisted of 40 patients. During the conversion process, the ICP

data of 4 patients were identified as missing, and the NIR-PPG data for 2 patients was

absent after conversion. Consequently, the data of these 6 patients were excluded from

further analysis. Subsequent analysis of the ICP data identified that the ICP data of an

additional 4 patients was erroneous. Characterised by an average ICP value exceeding 60

mmHg. These patients were also excluded.

Furthermore, visual inspection of the NIR-PPG data revealed that 4 patients exhibited

unreliable pulsatility. This was characterised by data where the majority did not display

a clearly identifiable pulsatile component. Since this research relies on features extracted

from the pulsatile aspect of the NIR-PPG signal, these patients were excluded to ensure

the reliability of the analysis. Figure 3.5 provides an illustrative comparison between

a reliable and unreliable pulsatile NIR-PPG signal. The unprocessed data from the 27

patients used in this research totaled 1190.73 hours of NIR-PPG recordings, with an

average of 44.10 hours per patient.

Figure 3.5: Comparison of pulsatile data: A figure containing two subplots. The subplot above
demonstrates normal pulsatile data, characterised by consistent PPG waveform patterns. In
contrast, the subplot below shows a segment of data from a patient where pulsatile signals

were deemed unreliable for further analysis.
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3.2 Signal pre-processing

3.2.1 Envelope-Based PPG Denoising Algorithm

Introduction

PPG signals are inherently vulnerable to various forms of noise that can distort the signal,

posing challenges in obtaining reliable and accurate information. Among the sources of

noise are power line interference, low and high-frequency noise, baseline drift, motion

artifacts, and saturation of the photodiode by light [105]. The prevalence of such noise

underscores the importance of data denoising approaches for both retrospective and real-

time signal processing and analysis. Addressing these challenges, a novel envelope-based

denoising algorithm, hereinafter referred to as the “Envelope PPG Denoising Algorithm”

(EPDA), was developed, designed to accomplish two objectives: (i) the identification and

removal of anomalous data while preserving the indices of the removed data, and (ii) the

assurance of computational efficiency, recognising the practical constraints of real-time

processing and resource utilisation. The EPDA was applied to the NIR-PPG dataset,

to identify and remove anomalous regions in the non-invasive data, the same anomalous

regions were also removed from the ICP data.

Existing PPG denoising algorithms

We distinguish between two main approaches to denoising: (i) anomaly detection denois-

ing and (ii) filter-based denoising. Anomaly detection denoising refers to methods that

identify and eliminate unwanted anomalous data points or indexes within a dataset. On

the other hand, filter-based denoising involves modifying the frequency content of a signal

by selectively allowing or attenuating specific frequency components.

Within these definitions, the EPDA is classified as an anomaly detection denoising

approach. Anomaly detection-based denoising proves particularly valuable when dealing

with continuously labelled datasets, where maintaining synchronisation between the data

and the label source is crucial. This approach involves storing the indexes of anomalous

data, facilitating the removal of anomalous data points from both the data being denoised

and the corresponding indexes from the label source, thus preserving data-label integrity.

There is a dearth in research focusing on non-filter based PPG denoising. Recently

there has been a rise in the use of machine learning (ML) techniques for denoising. Lee
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et al. introduced a Bidirectional Recurrent Auto-Encoder (BRDAE) for PPG denoising,

showcasing a 7.9 dB improvement in signal-to-noise ratio for noise-augmented data during

validation [106]. Kwon et al. proposed a transformer-based deep generative model to

eliminate noise within PPG signals [107]. Mohagheghian et al. developed a convolutional

autoencoder approach for noise reduction, reducing the average detected heart rate (HR)

and RMSE by 45.74% and 23%, respectively, on arterial fibrillation and non-arterial

fibrillation data [108]. Xu et al. created a motion artifact removal Time-Delay Neural

Network (TDNN) that uses the signal envelope to normalise PPG signal amplitudes while

preserving other waveform features such as dominant frequency and pulse width [109].

There have also been alternative statistical approaches to denoising. Lin et al. introduced

a denoising method which characterises the signal through the calculation of features using

fiducial points (onset, peak, and offset points) and employs adaptive thresholds to classify

and remove anomalous segments of the signal [110]. Dao et al. presented a motion artifact

detection algorithm that utilises time-frequency spectral (TFS) features [111]. These

TFS features help distinguish between motion artifact-corrupted segments of data and

clean data segments. Substantial distinctions arise when comparing the EPDA to other

denoising algorithms. The EPDA, as a statistical approach, offers distinct advantages over

ML methods, primarily in terms of enhanced transparency and interpretability, aspects

inherently embedded within statistical methods but often lacking in ML approaches. ML

techniques for denoising often require a large amount of labelled data for effective training,

a resource that may not be readily accessible or easily generated. Furthermore, certain

denoising approaches attempt to reconstruct noise-contaminated PPG data, potentially

resulting in the loss of important features present in the uncorrupted PPG signal. Some

algorithms within this domain exclusively target the capture of HR and oxygen saturation

(SpO2) information, sidelining the importance of preserving the signal’s morphology and

amplitudes, which may be of significance for other physiological markers [112], [113].

While certain research utilises the signal envelope this usage typically occurs as a step

not central to the denoising itself. For instance, it is has been employed as a preprocessing

step for data normalisation or for identifying fiducial points within noisy data [109], [114].

To the best of the authors’ knowledge, there is no existing denoising approach that lever-

ages the envelope difference (calculated as the absolute difference between the upper and

lower envelope of the signal), as the foundational basis for denoising. Another attribute

of the EPDA, not prevalent in many denoising approaches is the preservation of the in-
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dices of identified anomalous data. This preservation becomes particularly valuable when

dealing with synchronised labelled data. Existing statistical approaches to denoising tend

to incur large computational costs through the calculation of spectral features, transfor-

mation of the data or the calculation of morphological features for each pulse cycle. It is

hypothesised that the EPDA through the efficient calculation of the envelope difference

and use of the envelope difference to characterise the signal incurs a lower computational

expense with respect to other denoising approaches which becomes important when con-

sidering the application of algorithms to large datasets retrospectively or for real time

use.

It therefore seems reasonable to suggest that the EPDA helps to address a research

gap in the development of easily implementable, computationally efficient, and inter-

pretable denoising approaches which are data efficient and which can preserve the indexes

of identified anomalous data for use in synchronised, labelled datasets.

Manifestation of noise

Within the non-invasive, NIR-PPG data, two main sources of noise are hypothesised to be

present: (i) motion artifacts, which are identified by irregular signal morphology or high

amplitude variance, and (ii) photodetector saturation, characterised by areas with little

or no amplitude variance referred to as “flat lines”. Figure 3.6 illustrates the presence of

suspected motion artifacts and photodetector saturation within the dataset.

Figure 3.6: PPG signal data with highlighted noise attributed to motion artifact and
photodetector saturation. Visual aids emphasise the presence of noise within the window.

41



CHAPTER 3

Envelope PPG denoising algorithm

The EPDA operates through a 6-step process: (i) the filtering and calculation of the

upper and lower envelopes of the signal, (ii) the calculation of the envelope difference,

(iii) the calculation of thresholds, (iv) detection of anomalous indexes, (v) the calculation

of segmentation points, and (vi) the removal of identified anomalous data. In the initial

step, a fourth-order bandpass Butterworth filter with cutoff frequencies set at 0.5 and 12

is applied to the data removing undesired frequency components from the signal. Once

the data has been filtered, the upper and lower envelopes of the signal are calculated. To

calculate the envelopes, the peaks and troughs of the signal are detected using Scipy’s

“find peaks” function [115]. The “distance” input parameter of the “find peaks” function

is set to 20% of the total length of the data window represented in seconds. This distance

definition optimises computational efficiency by reducing the number of detected peaks

and troughs. Consequently, fewer interpolation points are needed when computing the

envelopes whilst preserving the ability to effectively characterise the anomalous regions

of the signal. Once the peaks and troughs are identified, linear interpolation is used to

calculate the upper and lower envelopes of the signal. Linear interpolation is preferred

over other methods, such as spline interpolation, due to its computational efficiency. It

estimates values by creating a straight line between two adjacent data points, capturing

the relationships between points, and efficaciously representing anomalous segments of the

data. The envelope difference is obtained by taking the absolute difference between the

upper and lower envelopes. The envelope difference provides a simplified representation

of the signal while preserving and emphasising significant changes in amplitude aiding

in the characterisation of noise. Figure 3.7 visually demonstrates the detected peaks

and troughs, as well as the upper and lower envelopes, and the envelope difference. To

demonstrate the step wise progression of the EPDA, the same window of data is used

from Figure 3.7 to Figure 3.10.
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Figure 3.7: Figure with two subplots: The top subplot displays the raw data, peaks, troughs,
median of the raw data, and upper and lower envelope. The bottom subplot illustrates the
envelope difference, median of the envelope difference, and upper and lower thresholds.

The EPDA incorporates two distinct functions to effectively detect different types of

noise. One function targets the identification of motion artifacts, while the other focuses

on detecting flat line segments in the data. For motion artifact detection, the EPDA

dynamically establishes upper and lower thresholds based on the interquartile range (IQR)

of the data. The thresholds are calculated using the equations 3.1 and 3.2

upper = 75th percentile + (threshold * interquartile range) (3.1)

lower = 25th percentile - (threshold * interquartile range) (3.2)

The IQR is robust to outliers and provides a measure of the spread of data that is

less influenced by extreme values than measures like the standard deviation. By using

the IQR, we ensure that our thresholds are based on the central 50% of the data, making

them less sensitive to outliers and more representative of the typical data distribution.

The choice of percentiles, specifically the 25th (lower quartile) and 75th (upper quartile)

percentiles, is a common approach in statistics. These percentiles divide the data into
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quartiles, with the IQR representing the spread of the middle 50% of the data. By

setting the lower threshold at the 25th percentile and the upper threshold at the 75th

percentile, we are effectively capturing the central range of data where most observations

are expected to fall. This ensures that our thresholds are meaningful and relevant to the

majority of data points. By introducing a user-defined threshold multiplier we aim to

enable flexibility and adaptability in the anomaly detection process. By multiplying the

IQR with the user-defined threshold value, we enable users to adjust the strictness of the

thresholds according to their specific needs. A higher multiplier makes the thresholds

more permissive, while a lower multiplier makes them more stringent. This parameter

allows users to fine-tune the sensitivity of the algorithm to anomalies.

The user can define the threshold value, with a default value of 2 (within this study,

the default value of 2 was maintained across patient data). When detecting flat line

segments, both the line height threshold and line temporal threshold are user-defined.

The line height threshold determines the minimum required amplitude to be considered

a flat line, while the line temporal threshold specifies the duration for which data must

remain below the amplitude threshold to be identified as a flat line. Thus, if a segment

of data remains below the amplitude threshold for a duration equal to or longer than the

temporal threshold, it is identified as a flat line.

Within the function for motion artifact detection, all instances where a slope change

occurs within the envelope difference is calculated. Any instance of data with a slope

change that exceeds the upper threshold or falls below the lower threshold is identified as

an anomaly. Pseudocode 1 outlines the motion artifact anomaly detection algorithm.

Pseudocode 1 Motion artifact detection
1: slope change indexes← empty list ▷ Initialise an empty list to store slope change indexes

2: for i← 1 to length(envelope difference)− 1 do

3: diff prev← envelope difference[i]− envelope difference[i− 1]

4: diff next← envelope difference[i+ 1]− envelope difference[i]

5: if (diff prev ≥ 0 and diff next < 0) or (diff prev < 0 and diff next ≥ 0) then

6: slope change indexes.append(i) ▷ Add current index to the list

7: end if

8: end for

9: anomalies← empty list ▷ Initialise an empty list to store anomalies

10: for index in slope change indexes do

11: if envelope difference[index] > Upper Threshold or envelope difference[index] < Lower Threshold then

12: anomalies.append(index)

13: end if

14: end for
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In order to increase the computational efficiency of the denoising algorithm the motion

artifact detection ensures that not all instances of data between the first and last threshold

crossing points are defined as an anomaly. Instead, only instances of data where a slope

change occurs within this range are considered anomalies. This logic minimises unneces-

sary iterations when calculating the segmentation points for each detected anomaly and

substantially reduces the computational expense of the algorithm. Figure 3.8 depicts the

difference between the two approaches of detecting anomalies which amounts to a 5400%

difference between approaches for the example data.

Figure 3.8: Figure with two subplots: The left subplot shows the results of the optimised
anomaly detection approach (count: 28). The right subplot displays the results of the

unoptimised anomaly detection approach (count: 1540). A 5400% difference between the two
approaches

The logic for the detection of flat line segments of the data can be divided into two

steps. The first step involves applying the user-defined line height threshold and rep-

resenting the data as 0s and 1s. Values in the envelope difference that exceed the line

height threshold are set to 1. All values less than the line height threshold are set to 0.

This representation allows for the simple characterisation of the start and end points of

potential flat line segments in the data. Once the data is represented as 0s and 1s, flat

line segments are identified using the algorithm described in Pseudocode 2.
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Pseudocode 2 Flat line detection
1: flat line segments← empty list ▷ Defining a list to store the flat line segments of the signal

2: diffs← list ▷ A list containing the differences between adjacent elements in envelope difference

3: line height threshold← float ▷ A user defined height threshold

4: line temporal threshold← float ▷ A user defined temporal threshold

5: height detection← where(abs(data chunk filt) < line height threshold, 0, 1) ▷ Representing the data as either 0 or 1

6: segment indices← find non zero segments(diffs) ▷ Indices where the difference between adjacent elements is non-zero

7: segment indices← [0] + segment indices + [length(height detection)] ▷ Segment indices with the start and end indices

8: for i← 0 to length(segment indices)− 1 step 2 do

9: start index← segment indices[i]

10: end index← segment indices[i+ 1]− 1

11: if not any(height detection[start index : end index]) then

12: if (end index− start index + 1) ≥ (fs× line temporal threshold) then

13: if start index < 0 then

14: start index← 0

15: end if

16: if end index > length(envelope difference) then

17: end index← length(envelope difference)− 1

18: end if

19: flat line segments.append((start index, end index))

20: end if

21: end if

22: end for

The flat line detection code searches for 1s within the augmented data which indicate

the possible start and end points of flat line segments. If the distance between a start

and end point is ≥ to the user defined line temporal threshold, the segment is identified

as a flat line. The output of the flat line detection code is a list of indexes representing

the start and end indexes of the flat line segments in the data.

Once any motion artifacts and flat line segments are detected and their indexes

recorded, suitable segmentation points are calculated for each identified anomaly. These

segmentation points are determined based on the indexes where the envelope difference

and the median of the envelope difference intersect or closely align. Once these indexes

have been calculated the segmentation points for each anomaly is derived. The result

of the segmentation code is a list of indexes that represent the start and end points of

anomalous data. In the motion artifact detection algorithm, the crucial step of only con-

sidering instances of data that surpass a threshold and are indexes where slope change

occurs as anomalies plays a significant role in the calculation of segmentation points. By

focusing only on the instances where the slope change exceeds the threshold, the algo-

rithm can highlight potential areas of interest, which are most likely to contain anomalies

caused by motion artifacts. This approach reduces the number of iterations required
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and eliminates the computation of redundant segmentation indexes for the same identi-

fied anomaly. As a result, the computational complexity of the algorithm is significantly

reduced. The algorithm can process the data more efficiently, leading to faster anomaly

detection. This optimisation is important when dealing with large datasets, real-time pro-

cessing, or resource-constrained environments, as it helps improve the overall performance

of the motion artifact detection process.

Figure 3.9: Figure with two subplots: The top subplot presents the raw data, including peaks,
troughs, median values, upper and lower envelopes, anomalies, and calculated segmentation
points. The bottom subplot illustrates the envelope difference, median difference, upper and

lower thresholds, along with anomalies and calculated segmentation points

Before removing the index ranges between the calculated segmentation points for

each anomaly, the algorithm combines adjacent “segmentation sections” that are in close

proximity to create larger segmentation sections. This process serves two purposes, it:

i) reduces the computational complexity of the algorithm by minimising the number

of segmentation sections that need to be iterated, and ii) incorporates potential data

instances between segmentation sections that may not have been explicitly identified as

anomalies but exhibit poor morphological quality. Once the anomalous regions of the

data have been removed, the data is filtered using a lowpass 2nd order Butterworth filter

with a cutoff frequency of 10hz. Figure 3.10 present the data before and after denoising.
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Figure 3.10: Figure with two subplots: The top subplot presents the raw data. The bottom
subplot illustrates the denoised data

Algorithm evaluation

To evaluate the performance of the EPDA, an assessment was conducted using the NIR-

PPG dataset comprised of approximately 81,015.99 minutes or 1360.27 hours of data from

31 patients. In the absence of a “clean” reference dataset, the evaluation was carried out

through the calculation and analysis of 5 metrics. These included: (i) signal-to-noise ratio

(SNR), (ii) variance, (iii) total variation (TV), (iv) Shannon Entropy, and instances-per-

second (IPS)

SNR is used to quantify the strength of the signal relative to noise through the ratio of

the power of the signal to the power of the noise. Throughout the data collection process,

the patients were situated in hospital beds, the majority of patients were sedated. Given

this, the patients remained predominantly motionless during data collection, occasionally

being repositioned by nursing staff. As a result of this environment, it was inferred

that the primary sources of noise within the data were likely to be of higher frequency

outside of the typical frequency bands of the PPG. Given this context and the absence

of a standardised method to calculate the SNR a cutoff frequency of 10 Hz was deemed

appropriate inorder to isolate the morphology of the PPG using a lowpass filter and to

isolate higher frequency noises using a highpass filter. When calculating the SNR of the

data, the signal was filtered using a 2nd order, lowpass Butterworth filter with a cutoff
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frequency of 10 Hz. The noise within the signal was isolated using a 2nd order, highpass

Butterworth filter with a cutoff frequency of 10 Hz. The SNR equation:

SNR =
Psignal

Pnoise

(3.3)

Where Psignal is the power of the signal, calculated as the mean of the squared signal and

Pnoise is the power of the noise within the signal, calculated as the mean of the squared

isolated noise. A higher SNR value indicates a stronger, more distinguishable signal

compared to noise, whereas a lower SNR value indicates that the signal is relatively weak

compared to the noise. A desirable outcome after denoisisng would be the increase in

SNR, indicating effective removal or reduction of noise while retaining signal content.

Variance captures the spread or dispersion of data points around the mean, reflecting

the average squared difference of each data point from the mean value, formally repre-

sented as:

Var(X) =
1

N

N∑︂
i=1

(xi − x̄)2 (3.4)

Where N represents the total number of data points in the dataset and x represents

each individual data point in the dataset. TV measures the overall variations in signal

intensity across the entire duration by summing the absolute differences between adjacent

data points:

TV =
N−1∑︂
i=1

|xi+1 − xi| (3.5)

Where N represents the total number of data points in the dataset and x represents

each individual data point in the dataset. We hypothesise that a reduction in variance and

TV values before and after denoising signify smoother and less variable signals, indicating

efficacious noise suppression and enhanced signal regularity.

Shannon entropy characterises the complexity or randomness of a signal by quantifying

the average information required to describe the signal’s values:

H(X) = −
∫︂ ∞
−∞

f(x) log2(f(x)) dx (3.6)

Where f(x) denotes the probability density function (PDF) of the continuous random
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variable x, log2(f(x)) represents the logarithm base 2 of the probability density function.

A higher Shannon entropy value indicates greater complexity or randomness, while a lower

value suggests more predictability or regularity. We posit that a decrease in Shannon

entropy post-denoising indicates successful noise reduction.

These 4 metrics, which can be calculated without a “clean” reference dataset, capture

the dispersion, randomness and strength of a signal and thereby provide a credible means

to evaluate the efficacy of a denoising algorithm. To assess the statistical significance

of the differences in metrics calculated before and after denoising, a statistical testing

approach was employed. Firstly, the normality of the calculated metrics was evaluated

using the Shapiro-Wilk test. If the data in both groups exhibited a normal distribution

(p > 0.05), a parametric paired t-test (a = 0.05) was chosen for further analysis. In

cases where one or both groups displayed a non-normal distribution (p > 0.05), the non-

parametric Wilcoxon signed-rank test (a = 0.05) was opted for. This dual testing strategy

ensured a robust assessment of the statistical significance of the observed differences in

metrics. The choice of parametric or non-parametric test was based on the underlying

distribution of the data, enhancing the reliability and validity of the statistical analysis.

The computational speed of the EPDA was assessed by recording the run time of

the algorithm on each data sample. From this a 5th metric, instances-per-second was

derived which gives a representation of the speed of the EPDA. The analysis of the

algorithm’s speed enables an assessment of the EPDA’s suitability for big datasets and

real-time applications. This evaluation approach allows for a holistic understanding of

the denoising algorithm’s effectiveness.

Results

Figure 3.11 provides a representative example of the complete data of one patient, both

before and after denoising. Upon visual inspection, the data after denoising exhibits re-

duced extreme amplitude variations, which are believed to be associated with motion arti-

facts. Additionally, the range and dispersion of data following denoising appear narrower,

suggesting a more uniform distribution. These observations suggest that the denoising

process effectively mitigates motion-related artifacts and leads to a more consistent and

refined dataset.
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Figure 3.11: Figure with two subplots: The top subplot presents the raw data of an entire
patient. The bottom subplot illustrates the denoised data

Table 1 provides an overview of the EPDA’s impact on various metrics, namely the

SNR, variance, total variation, and entropy, for each patient. The data includes mea-

surements before and after denoising, along with the computation time of the denoising

algorithm and the derived metric IPS.

Examining the results, we observe the affects of the denoising algorithm on the data.

The SNR indicates an average improvement from 53.3 (SD: 8.62) to 74.69 (SD: 7.63)

after denoising. This represents a 40.16% increase in SNR suggesting that denoising

has significantly enhanced the signal power, leading to a more accurate representation of

underlying information.

Moreover, the variance, total variation, and entropy, which respectively capture the

amount of variability, structural complexity, and information content in the data, exhibit

a reduction of approximately 45.59%, 85.84%, and 2.16% on average after denoising. This

signifies a successful reduction in unwanted noise and random fluctuations in the data.

The observed reduction of approximately 85.84% in total variation after denoising

indicates a success in simplifying the data distribution and eliminating unnecessary vari-

ations.

Motion artifacts often introduce irregularities into the data usually manifesting within
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the signal as large amplitude variance. The decrease in total variation observed in our

results suggests that the EPDA has effectively reduced the impact of motion artifacts,

leading to a more uniform and smoother representation of the data. Motion artifacts

which cause sudden changes in the amplitude of the data lead to higher values of total

variation. When these artifacts are successfully removed, the abrupt changes caused by

the motion artifacts are replaced with smoother transitions, resulting in a reduction in

total variation.
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Patient SNR before SNR after Variance before Variance after Total variation before Total variation after Entropy before Entropy after Computation time (s) Instances per second

1 31.189 65.903 0.048 0.013 140773.859 10909.716 16.527 16.352 36.899 411135.192

2 47.007 65.737 0.386 0.235 21739.31 4100.025 16.506 16.2 37.388 411730.976

3 46.194 72.751 0.051 0.046 37075.196 5405.411 15.734 15.601 16.071 425686.583

4 61.008 78.478 0.343 0.084 9166.518 3364.145 16.16 15.897 31.84 339511.046

5 48.193 66.293 2.982 0.601 71059.79 6086.925 16.032 15.444 31.152 422664.52

6 60.696 73.918 1.036 0.795 23131.757 5004.932 16.575 16.194 41.182 409219.627

7 41.05 67.459 0.423 0.256 192933.432 19756.286 16.689 16.501 43.945 417796.334

8 54.202 73.708 0.324 0.277 10639.948 1929.227 15.449 15.312 14.546 417460.696

9 62.55 83.328 0.16 0.163 17511.129 7775.109 16.695 16.588 45.844 400679.008

10 44.915 72.867 0.445 0.394 83002.505 18462.602 16.642 16.458 38.469 449186.729

11 50.319 68.012 1.405 0.553 72820.156 10622.558 16.592 15.763 36.006 479913.608

12 44.613 69.338 1.009 0.551 171845.39 14079.652 16.568 16.259 38.774 441844.878

13 59.473 77.376 0.656 0.57 35550.527 6366.344 16.553 16.337 39.746 403186.178

14 56.559 72.382 1.719 0.956 31979.635 4606.092 16.558 16.004 47.846 359541.675

15 51.393 67.601 1.497 0.885 36806.149 10484.826 16.54 16.289 47.248 364712.38

16 45.931 62.772 2.355 0.702 144723.747 14598.065 16.459 15.975 36.288 476012.512

17 55.117 74.773 0.57 0.153 17258.795 3767.316 16.646 16.381 47.626 379509.037

18 62.904 84.446 0.026 0.026 17806.375 4194.915 16.639 16.512 43.365 390169.125

19 66.553 89.476 0.015 0.009 6909.931 1307.428 16.614 15.562 40.313 407831.278

20 61.429 91.887 0.016 0.008 28334.381 1578.581 16.668 16.268 42.294 410127.987

21 54.656 72.106 0.299 0.292 34702.886 11940.3 16.625 16.376 38.504 448506.658

22 43.825 71.005 0.215 0.185 192317.583 16779.758 16.652 16.501 40.587 425845.848

23 62.883 88.807 0.015 0.012 18877.106 2112.399 16.659 16.128 37.575 457268.441

24 51.973 70.694 0.356 0.159 29089.716 4875.059 16.633 15.723 45.736 372933.237

25 40.743 67.083 0.022 0.022 280400.591 13161.378 16.598 16.038 34.196 473043.35

26 62.51 74.459 0.223 0.208 35619.511 23093.016 16.628 16.257 30.057 559857.53

27 60.102 75.865 0.351 0.327 13403.344 7517.603 16.169 15.973 25.66 417419.782

28 59.835 86.582 0.027 0.021 18288.607 3848.823 16.663 16.535 42.04 410817.225

29 44.86 73.132 0.505 0.498 63663.937 5187.896 15.949 15.612 19.78 438663.051

30 59.41 76.07 0.122 0.085 31772.232 20243.942 16.656 16.476 46.778 371073.191

31 60.352 80.996 0.717 0.879 28295.027 8401.34 16.826 16.344 43.524 483475.432

Table 3.1: Table presenting the Signal-to-noise Ratio (SNR), Variance, Total variation, and entropy of the data for each patient before and after
denoising. The table also includes the computation time of the algorithm for each patient and the derived metric Instances-per-second.
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To assess the impact of denoising on the calculated metrics, a statistical analysis was

conducted. The normality of the data distribution for each metric was first evaluated

using the Shapiro-Wilk test. The results revealed that the data of the SNR was nor-

mally distributed with a p-value of 0.057 and 0.055 for the “before denoising” and “after

denoising” groups respectively. The data of the remaining 3 metrics was found to be non-

normally distributed. Therefore a non-parametric Wilcoxon signed-rank test was chosen

to determine if there were significant differences in all 4 metrics before and after denoising,

using a significance level of 0.05. By using a single non-parametric test for all the metrics,

despite the normality of one we ensure consistency across the analysis. Allowing for a

reliable comparison of the denoising effect across all the metrics while accommodating

potential data non-normality.

The Wilcoxon signed-rank test which compares the distribution of the differences

between paired observations suggests that there was a significant difference in the SNR

(p-value = 9.313225746154785e−10), variance (p-value = 9.955838322639465e−07), total

variation (p-value = 9.313225746154785e−10) and entropy (p-value = 9.313225746154785e-

10) before and after denoising. Showing a significant difference in all 4 metrics. Figure

3.12 contains the boxplots representing the values for each of the metrics before and after

denoising.

Figure 3.12: Figure with four subplots, each subplot contains 2 boxplots representing the
values for the signal-to-noise ratio, variance, total variation and entropy of the data before and

denoising.
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In addition to the analysis and interpretation of the 4 metrics, the IPS was also calcu-

lated for each patient’s data. The calculated average IPS value across patients amounted

to 421,833.003, signifying a substantive computational speed. This IPS can be presented

as processing 70.3 minutes of data per second which suggests the EPDA may have poten-

tial for real-time applications and scenarios necessitating efficient data processing such as

large retrospective studies.

This metric, when considered in conjunction with the analysis of the four other evalua-

tion metrics, provides a comprehensive assessment of the algorithm’s overall effectiveness.

These findings demonstrate significant improvements in SNR, variance, total variation,

and entropy metrics following denoising, as supported by both statistical summary of the

results, statistical testing through the use of Wilcoxon signed-rank test and visual analysis

of the boxplots.

Discussion

The evaluation of denoising algorithms in the absence of clean reference data is challeng-

ing. The evaluation through the use of SNR, variance, total variance, entropy and IPS

endeavours to capture the dispersion, randomness and strength of the signal before and

after denoising in addition to its computation speed to help evaluate the EPDA and its

utility.

While searching for applicable evaluation metrics we noted that there is a dearth

of research which focuses on PPG denoising evaluation, with some work on the quality

assessment of pulses through the use of a number of signal quality indexes [116]–[118].

These indices include, skewness, kurtosis and perfusion index (PI). We suggest that these

indices while they appear to be credible for the assessment of individual PPG pulses

may not directly capture the impact of denoising. We propose that while skewness,

which measures data asymmetry, and kurtosis, which measures peakedness or flatness, are

relevant for characterising the morphology of individual PPG pulses, they may not offer

meaningful insights into the effectiveness of denoising methods. Denoising techniques aim

to reduce noise in the PPG signal, but their success may not always be easily interpretable

using skewness and kurtosis alone. For instance, if a dataset contains substantial high-

amplitude noise at the beginning, causing overall skewing, and this noise is successfully

removed by denoising, it might appear as if the denoising was effective based on the
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restoration of symmetry. Conversely, if noise is distributed evenly throughout the dataset,

denoising might effectively reduce the noise without significantly impacting the overall

skewness. As a result, skewness and, similarly, kurtosis do not appear to be reliable

indices for evaluating the efficacy of denoising algorithms.

Motion artifacts in PPG signals can introduce high-amplitude variance, leading to

fluctuations in the signal that are not related to changes in perfusion. We posit that these

motion-related fluctuations may artificially increase the amplitude of the PPG waveform,

positively biasing the calculations of perfusion index (PI). PI is often calculated as the

ratio of the pulsatile blood flow to the non-pulsatile blood flow, and motion artifacts can

falsely elevate the pulsatile component, resulting in an inflated PI value. Therefore, when

evaluating denoising algorithms on PPG datasets containing motion artifacts, denoising

can effectively remove the noise and reduce the artificially inflated amplitude variance

caused by motion, leading to a counterintuitive reduction in PI. This reduction may be

misinterpreted as a deterioration in the signal quality, while in fact, it reflects the removal

of motion artifacts and the restoration of a more accurate representation of the underlying

physiological information.

The ability of the EPDA to return the indexes of identified anomalous data is impor-

tant when dealing with two datasets that are synchronously collected. In scenarios where

two datasets are collected simultaneously for purposes such as implementing supervised

predictive modeling, maintaining temporal synchronicity between the datasets is crucial

to ensure the production of reliable and accurate results. The EPDA’s capability to iden-

tify and provide the indexes of anomalous data allows users to remove the corresponding

indexes in the second dataset. By doing so, the temporal synchronicity between the two

datasets is preserved. This is particularly useful when using PPG data to predict physio-

logical biomarkers and constructing labeled datasets for supervised learning tasks to help

ensure the accuracy and reliability of the results obtained.

The proposed algorithm demonstrates potential although we acknowledge there are

avenues for improvement. One of these is the implementation of a sliding window ap-

proach. The sliding window approach in place of a fixed window size may provide the

calculation of more contextually relevant thresholds by considering short-term fluctua-

tions within each window. This is likely to facilitate the algorithm’s ability to changes in

signal characteristics and morphological quality resulting in a more robust approach.

A limitation of the study is the calculation of SNR without a “clean” reference and in
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the absence of a standardised approach the SNR calculations of this study were predicated

on a cutoff frequency of 10Hz under the assumption that due to the sedated or low

motion state of the patients during data collection the majority of noise present within

the data would be of higher frequency outside of the expected frequency band of the PPG.

Consequently, the proposed SNR calculation is suitable when comparing what is expected

to be within a normal PPG frequency range to higher-frequency noise. Which although

may be suitable for our dataset but may not be generalisable. We suggest that future

studies should be conducted to validate the EPDA on different datasets with a greater

presence of noise within the PPG frequency band. The collection of bilateral PPG signals,

with body movement added on one side could be collected to introduce motion artifacts

into the signal and offer a reliable reference for SNR calculations.

The denoising of PPG signals plays a pivotal role in advancing non-invasive physio-

logical monitoring. The “Envelope PPG denoising algorithm” is designed to accomplish

the dual objectives of identifying and removing anomalous data while ensuring computa-

tional efficiency. This algorithm contributes to the advancement of PPG signal processing

and its application in diverse healthcare domains, ultimately enhancing the potential for

accurate patient monitoring.

Conclusion

This study aimed to contribute to the field of PPG signal denoising, acknowledging its

importance in the context of non-invasive physiological monitoring. The investigation

focused on the development and evaluation of the “Envelope PPG Denoising Algorithm”.

The approach was shown to be efficacious in the denoising of PPG data, reporting signif-

icant differences in the SNR, variance, total variation and entropy after denoising. The

IPS of the EPDA was calculated as 421,833.003, which can be represented as processing

70.3 minutes of data per second.

The research has contributed a denoising algorithm, the EPDA, to the field of PPG

signal processing. The work augments the potential for non-invasive accurate patient

monitoring across various healthcare domains, ultimately helping to improve the impact

of non-invasive monitoring technologies, such as wearables, in enhancing patient care and

wellbeing.
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3.3 Summary

From the clinically collected data, both the invasive ICP and non-invasive NIR-PPG data

were significantly impacted from the presence of erroneous data and noise. The erroneous

ICP data was handled via the definition of reasonable and physiological bounds. Data

which fell outside of these bounds were subsequently removed from both the reference

and NIR-PPG data.

The PPG signal is affected by numerous sources of noise, which include motion ar-

tifact, power line interference and photodetector saturation amongst others. Given this

research is centered around the exploration of the relationship between PPG derived fea-

tures and ICP, the efficacious denoising of the NIR-PPG data was essential for the removal

of anomalous data which would enable the extraction of more reliable features and con-

sequentially more robust results. The EPDA was developed and applied to the dataset

as a reasonable and computationally efficient approach to denoising.
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Feature Engineering

Following the removal of erroneous ICP data and the application of the EPDA, the re-

sulting, final dataset consisted of 231,267,378 samples of data, represented as 38,544.56

minutes or 642.41 hours of data collected from 27 patients. This chapter introduces the

feature extraction, providing details on the window definition, fiducial point detection and

calculation of derivatives. All implementation of feature extraction was conducted using

the Python programming language.

4.1 Window definition

The NIR-PPG dataset was segmented into 1-minute windows, with the median ICP value

over each window being used as a label. This 1-minute window size was chosen considering

the possible clinical relevance and practicality of the prediction frequency. Longer window

durations may be less favourable in a clinical setting, and the goal was to use a window

size that maximises the amount of relevant data available for prediction while still being

clinically manageable.

4.2 Baseline wandering removal and data normalisa-

tion

In order to attempt to diminish the possible affect of calibration and baseline wandering

on the data collected from multiple patients the AC and DC components of each patient’s

signal data were isolated using a bandpass and lowpass filter respectively. The bandpass
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frequency band ranged from 0.4 to 10 Hz, the low pass cutoff frequency was set to 0.4 Hz.

By dividing the AC component of the signal by the DC component the aim was to minimise

the effects of the patient level calibration and provide a standardised representation of the

signal that is less influenced by calibration variations. Following this, each window’s data

were normalised to a range of 0 to 1 to account for inter-patient amplitudinal variance

and to aid in the creation of a shared distribution across patients in the feature space.

4.3 Fiducial point detection algorithm

Due to the presence of noise within the dataset and the lack of a reliable diacrotic notch

across patient and between patient’s data and in order to maximise the reliable detection

of pulses, the fiducial point algorithm was focused upon three fiducial points specifically

the pulse onset, peak and end.

The detection of the fiducial points is orientated around the moving average of the

input data. The moving average was calculated over a window size which matched the

sampling frequency. The crossing points between the moving average and the filtered data

were calculated.

These crossing points were used in pairs to detect either peaks or troughs within the

data. The mean of the data between two crossing points was compared against the mean

value of the moving average within the same interval. If the mean of the data segment

was higher than the moving average the location of the maximum value between crossing

points was classified as a peak. Vice versa if lower, the index of the data which had the

lowest value between points was classified as a trough. Figure 4.1 illustrates and described

the three major steps of the peak detection algorithm.

The derivatives of the signal were calculated using a Savitzky-Golay filter using a

polynomial of 7 and a window size of 101. Figures 4.2, 4.3 and 4.4 depict the pulse

detection on the original, first and second derivative of a one minute window of data.

60



CHAPTER 4

Figure 4.1: This figure illustrates the major steps of the peak detection algorithm. The process
begins with the calculation of the moving average and identification of the crossing points

between the moving average and the raw data. Next, the algorithm determines the maximum
and minimum values between each pair of crossing points, highlighted by green and red

arrows, respectively. Finally, each detected peak is linked to its corresponding pulse onset and
end, isolating individual pulses.
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Figure 4.2: A figure depicting the detected fiducial points on a one minute window of signal
data.

Figure 4.3: A figure depicting the detected fiducial points on a one minute window of first
derivative signal data.

Figure 4.4: A figure depicting the detected fiducial points on a one minute window of second
derivative signal data.
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In order to handle the presence of possible residual anomalous pulses within each

window a z-score outlier detection approach was developed and applied using three pulse

characteristics: (i) difference between consecutive peaks, (ii) pulse onset-peak difference

and (iii) peak-end difference. A z-score threshold of 3 was used. No features were extracted

from pulses which were detected as anomalous. Figure 4.5 depicts an example of pulse

detection with the identification of anomalous pulses.

Figure 4.5: A figure depicting identification of anomalous pulses within a 1 minute window of
signal data.

4.4 Extracted features

The aim and purpose of feature engineering and the subsequent feature extraction, was

to extract as much information from the pulsatile AC component of the signal aiming

to identify a broad spectrum of features potentially linked to haemodynamic changes

associated with variations in ICP. To accomplish this, features were derived not only from

the original signal (which captures blood volume fluctuations over time due to systolic

and diastolic phases) but also from its first and second derivatives. The first derivative

provides insight on the velocity of changes, and the second derivative contains information

describing the acceleration of these changes. For each window of data 141 morphological

and time-series features were extracted across the original signal and its first and second

derivative. A total list of the features and their description can be found in Table A1

in the appendix. Figures 4.6 and 4.7 depict the primary time series and morphological
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features extracted from the cardiac pulses. The feature representation for each window

was determined by computing the median of each feature across all pulses within that

window.

Figure 4.6: A figure illustrating the key time-series and morphological features extracted from
individual cardiac pulses. Within the figure, SW, DW, and PW represent systolic width,

diastolic width, and pulse width, respectively. The numerical value associated with SW, DW,
or PW indicates the position along the pulse prominence where the corresponding

measurement is taken.

Figure 4.7: A figure depicting the Area Under the Curve (AUC), along with the Diastolic AUC
and Systolic AUC. Additionally, the start and end datum areas are identified.

Linking back to Section 2.2 and Section 2.4.4, which introduce cerebral physiological

and haemodynamic components and the theory describing the relationship between PPG

and ICP, respectively, there are three major components that the extracted features aim

to characterise, which are closely associated with changes in ICP. These components are:

64



CHAPTER 4

(i) changes in blood volume, (ii) changes in the mechanistic properties of the vessels as a

consequence of variations in cerebral compliance, and (iii) features associated with blood

pressure. As noted in Section 5.4, as ICP increases and cerebral compliance reduces,

vascular resistance increases, triggering autoregulation and causing CPP to increase to

maintain CBF.

The first component the features aim to represent is possible blood volume changes

due to increases in ICP and subsequent drops in CBF as autoregulation maintains CPP.

It is well understood that the amplitude of the systolic peak of the PPG signal represents

relative levels of blood volume. During systole, the increased blood volume absorbs more

light, reducing the light reaching the photodetector, which is represented as a higher

pulse amplitude on the PPG waveform [119]–[123]. This change in blood volume may

also manifest in changes to the pulse width and area under the curve of the pulse. Pulse

width has been associated with vascular compliance [124]. A wider pulse width suggests

increased blood volume or vessel dilation, while a narrower pulse width indicates decreased

blood volume or vessel constriction. The pulse area indicates the total volume of blood

pumped by the heart during a cardiac cycle and has been linked to cardiac output [125].

The total area of the PPG waveform over time represents the total blood volume change.

Since cardiac output is the product of the blood ejected by the heart per beat and the

heart rate, a higher AUC typically corresponds to a higher blood volume. To characterise

these volumetric changes, the total, systolic, and diastolic pulse widths at 10, 25, 50, 75,

and 100 percent of the pulse amplitude were extracted, along with the total pulse area,

systolic and diastolic pulse areas, and the ratio between the systolic and diastolic areas.

The increase in ICP exerts pressure on the cerebral vessels, leading to a decrease

in cerebral compliance. This reduction in compliance is characterised by the vessels’

diminished ability to deform, becoming less elastic and “stiffer” as ICP increases. Pulse

width has been shown to be associated with vascular compliance [124] and increased

arterial stiffness [126]. In this research, it is proposed that aterial stiffness has a similar

effect to the reduction in vessel compliance due to increased ICP. Awad et al concluded

that the pulse width of finger and ear PPG pulses is sensitive to changes in vascular

resistance. Ferizoli et al’s results supported these findings, showing that pulse width

features and area-related features are closely associated with stiffness.

Ahn et al. investigated the concept of a vascular ageing index, where vascular ageing

is linked to atherosclerotic disorders, resulting in vessel stiffening and altered mechanistic
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properties [127]. Ahn et al.’s work utilised rise time and decay time (the time between

pulse onset and systolic peak, and the time between systolic peak and pulse end, re-

spectively) which has also provided insights into reactive hyperemia [128], along with

area-related features such as the ratio between the areas of the systolic and diastolic pulse

elements. Additionally, research by Takazawa et al. [129] and others [130] used the second

derivative of the PPG signal to measure vascular ageing and stiffness.

Therefore, the features previously described for characterising blood volume changes,

combined with rise and decay times, may also be useful for representing changes in cerebral

compliance. To describe possible changes in compliance, these features were extracted

across the first and second derivatives of the PPG signal, capturing the rate of change or

acceleration of blood volume due to the diminished ability of the vessels to deform during

systole and diastole. In addition, skew and kurtosis were also extracted, as they may

be associated with characterising effects on the mechanistic properties of vessels. The

work of Ferizoli et al demonstrated that skewness and kurtosis show stable increases with

increases in arterial stiffness.

MAP and consequently blood pressure (BP) are physiological markers closely associ-

ated with variations in ICP. As described in Section 2.2, MAP is a critical determinant

of CPP, which is defined as the difference between MAP and ICP. CPP is fundamental

to maintaining adequate blood flow to the brain, ensuring that cerebral tissue receives

sufficient oxygen and nutrients. Therefore, fluctuations in BP can directly impact CPP,

thereby influencing CBF. Variations in ICP can cause increases in vascular resistance,

which necessitates an increase in BP to maintain adequate CBF. Consequently, changes

in BP and subsequently CPP and CBF may be associated with changes in ICP, as au-

toregulation attempts to regulate cerebral perfusion in response to varying ICP.

Highlighting the association between BP dynamics and ICP variations, related research

has attempted to estimate ICP non-invasively using PPG signals in combination with BP-

derived features. These studies have consistently shown that continuous BP is among the

strongest predictive features for ICP estimation across various methodologies [94], [95].

Unlike these previous efforts, which focused on combining PPG signals with BP-derived

features, this work investigates the direct relationship between the PPG signal and ICP.

Extensive research has been conducted into the use of PPG for blood pressure estima-

tion [131]–[136]. Consequently, numerous features have been developed to estimate BP

from PPG signals, many of which have been utilised in this research. In particular, the
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studies by El Hajj et al. and Kurylyak et al. utilised features such as pulse width, sys-

tolic and diastolic pulse widths across multiple percentages of the pulse amplitude, pulse

rise time, and decay time for BP estimation [136], [137]. Additionally, the “upslope”,

defined as the slope of a straight line from the pulse onset to peak, has been introduced

as a useful feature for BP estimation [138]. Features derived from datum lines, such as

straight lines from the pulse onset to peak and peak to pulse end, have been linked to

systolic and diastolic blood pressure variations [139]. These features have been expanded

upon; for example, the “downslope”, the slope of a straight line from the pulse peak to

end, was also extracted. This was combined with several ratios such as the ratio between

the upslope and downslope, the ratio between the rise time and decay time, ratios of the

diastolic and systolic pulse width across the percentages of the pulse amplitude, and the

ratio between the pulse length and height, among others.

Given their associations with haemodynamics, it is hypothesised that these features

will demonstrate an association with ICP and prove valuable for non-invasive ICP esti-

mation.

4.5 Summary

This research aims to evaluate the relationship between NIR-PPG derived features and

ICP. Therefore, one of the principal components is the extraction of morphological and

time-series features from the signal. Previously we described the pre-processing of the

signal, the removal of anomalous ICP values and the application of the EPDA which re-

sulted in approximately 642 hours of data collected from 27 patients. In order to effectively

characterise the pulsatile element of the NIR-PPG signal, 141 features were extracted for

every one minute window of data across the original, first and second derivative.

To manage any residual noise within our data and to maximise the reliability of feature

extraction the fiducial point algorithm which the features are predicated upon focused on

the identification of three fiducial points, the pulse onset, peak and end. The efficacy of

the pulse detection is crucial for the extraction of reliable features which will subsequently

be utilised to determine the relationship between NIR-PPG derived features and ICP.
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Statistical Analysis

This chapter utilises the extracted features to statistically investigate the relationship

between NIR-PPG derived features and variations in ICP.

5.1 Introduction and hypotheses

As described in Chapter 3, elevation in ICP can reduce CPP by increasing the resistance

against arterial blood entering the brain. This elevation in ICP and consequential reduc-

tion in CPP triggers cerebral autoregulation. However, elevated ICP may reduce CPP

below a critical threshold causing cerebral dysregulation leading to a sustained drop in

CBF.

It was hypothesised in Chapter 5 that PPG may provide identifiable changes in its

morphology which mirror variations in haemodynamics caused by increases in ICP.

This statistical analysis investigates the relationship between NIR-PPG features and

variations in ICP and tests two primary hypotheses. Firstly, it examines whether alter-

ations in NIR-PPG derived features correspond to changes in ICP levels and secondly,

it explores whether these changes are more pronounced in features derived from long-

distance NIR-PPG data compared to short-distance NIR-PPG data.

5.2 Data preparation

To effectively evaluate our hypotheses, we refined the denoised dataset to only include

high-quality pulsatile data for statistical analysis, a procedure we termed the “6 hour pro-

tocol”. As outlined in section 4.1, we performed feature extraction on 1-minute windows
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of data, we therefore oriented our data selection around this window size. We developed

a “window selector” tool in Python using Tkinter, enabling the inspection of patient data

in 1-minute windows to categorise each as either “good” or “bad” quality, with instances

classified as “good” being recorded. Figure 5.1 illustrates the window selector interface.

This selection process entailed commencing at the beginning of the recording and labelling

6 hours of data per patient as “good”, or using all available “good” data if less than 6

hours were classified as “good”. ICP changes tend to occur gradually over time due to the

slow adaptation of the brain’s compartments to alterations in volume and pressure [140].

The period of 6 hours was deemed a reasonable duration which would encompass the nat-

ural fluctuations and trends in ICP. This assessment was conducted by the same person

across all patients using the distal NIR-PPG data, with the identified “good” instances

subsequently being extracted from the both proximal and reference datasets to ensure

temporal synchronicity. Although artifacts were present in both the proximal and distal

data, the distal data consistently exhibited more severe artifacts during these periods.

Therefore, the distal data was selected as the primary reference for guiding data labeling.

Figure 5.1: A figure showcasing the window selector interface, illustrating a one-minute
window of distal data. It displays the buttons provided for the user to categorise the data

segment as good or bad quality. Additionally, the interface presents an overview at the patient
level, indicating the volume of data analysed and the proportion of data classified as good.
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5.3 Statistical analysis

The study conducted two types of statistical analyses: correlation analysis and group

analysis, to explore the two hypotheses of this study: i) the relationship between alter-

ations in NIR-PPG derived features and changes in ICP levels, and ii) the comparative

prominence of these changes in features obtained from long-distance versus short-distance

NIR-PPG data. This analysis included data from both proximal and distal photodiodes,

referred to as “proximal features” and “distal features”, respectively.

To examine the relationship between individual features and the label, the Spear-

man correlation method was utilised. This choice was made over Pearson correlation

as Spearman correlation is capable of identifying linear, non-linear, and non-monotonic

relationships without assuming data linearity.

A group analysis was conducted to investigate the null hypothesis that there are no

significant differences in feature values across ICP groups. For the group analysis, the

study assessed the sampled feature data for normality using the Shapiro-Wilk Test and for

homogeneity of variance using Levene’s Test. If the data met the necessary assumptions,

a parametric, One-way ANOVA was employed. If not, a Kruskal-Wallis non-parametric

statistical test was applied.

If a significant difference was detected for any feature in the across group analysis, a

post hoc pairwise analysis was conducted to investigate the second null hypothesis that

there are no significant differences in feature values between any two ICP groups. The

post-hoc, pairwise analysis was conducted between groups using a Mann-Whitney U test

with a Bonferroni correction to control for multiple comparisons.

5.3.1 Group construction and data sampling protocol

The group analysis necessitated the formation of groups and the sampling of data for

each. Grouping started at an ICP of 0 mmHg, increasing in increments of 10 mmHg. If

the highest recorded ICP value was above 20 mmHg and the gap between this maximum

value and 20 mmHg exceeded 10 mmHg, an additional group was established, with its

upper boundary set at this maximum ICP level.

The criteria for group formation specified that groups must span at least 10 mmHg to

facilitate a meaningful comparison of feature variations across different ICP levels. This

threshold was based on the premise that meaningful physiological changes are likely to
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be observed across ICP intervals exceeding 10 mmHg. Moreover, the larger group size

allowed for the inclusion of data from more patients, especially in the underrepresented

tails of the ICP dixstribution.

Elevated levels of ICP is referred to as intracranial hypertension which is typically

defined as sustained ICP values greater than 20-25 mmHg [141]. Guidelines recommend

treating elevated ICP above 22 mmHg [51]. An interest of this study was to examine

feature changes across low, normal to moderate and elevated ICP values. In adults, normal

ICP levels are typically between 10 to 15 mmHg [18]. The employed group construction

methodology establishes reasonable bounds for low, normal to moderate, and high ICP

ranges.

ICP dynamics vary between patients, particularly at the clinically scarce elevated ICP

values. To strike a balance between the stratified sampling of patients’ data and the

power of the statistical test being conducted, a “bounded stratified sampling” approach

was performed. The size of each group was determined based on the availability and

eligibility of patient data within each group. Within each group, the number of data

points available per patient was counted. To ensure meaningful statistical power and

maintain a reasonable balance of representation between patients, only patients with a

minimum of 20 data points (equivalent to 20 minutes of data) were considered eligible for

sampling. The maximum number of samples that could be drawn from a single patient was

limited to 60 data points, preventing any one patient from being disproportionately over-

represented. The size of each group was then calculated by summing the contributions

of eligible patients. To maintain consistency, the number of samples in each group was

adjusted to match the size of the smallest group, ensuring uniformity in the analysis.

Once a group size had been defined, the sampling procedure involved iteratively and

randomly drawing samples from the eligible patient data until the required number of

samples for each group was reached. Figures 5.2 and 5.3 depict the number of patients

sampled for each group and the number of samples collected from each patient for each

group, respectively.
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Figure 5.2: This bar chart depicts the number of patients sampled for each intracranial
pressure (ICP) group, categorised by the ranges of ICP values: 0-10 mmHg, 10-20 mmHg, and
20-39 mmHg. The chart highlights the distribution of patients within each group, with 17
patients in the 0-10 mmHg group, 25 patients in the 10-20 mmHg group, and 11 patients in

the 20-39 mmHg group.

Figure 5.3: A figure containing 3 bar charts depicting the number of samples collected from
each patient within the defined ICP groups. The charts illustrate the distribution of samples

across individual patients for the groups: 0-10 mmHg, 10-20 mmHg, and 20-39 mmHg.
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5.4 Results

The findings affirm the two hypotheses under investigation, which we now examine se-

quentially. Initially, the outcomes from both the correlation and group analyses reinforce

the hypothesis that variations in features derived from NIR-PPG correspond to changes

in ICP levels. The correlation analysis revealed that the majority of the 141 features

exhibited significant correlations (p < 0.05) with the label in both datasets. Notably, 109

(77.30%) and 112 (79.43%) of the features demonstrated significant correlations with the

label for proximal and distal features, respectively. Table 5.1 presents the ten features

with the smallest p-values for both proximal and distal feature sets. Due to the extensive

number of features analysed, this discussion is concentrated on the top 10 most significant

features, alongside aggregate metrics summarising the overall results.

PROXIMAL DISTAL

Feature Coefficient Feature Coefficient

start datum difference -0.1943 ds ratio 75 (deriv 1) -0.2149

max start datum difference -0.1699 kurt -0.2132

skew 0.1527 systolic width 50 -0.2064

systolic width 25 (deriv 2) 0.1499 diastolic width 75 (deriv 1) -0.2051

ds ratio 75 (deriv 1) -0.1472 ds ratio 50 (deriv 1) -0.2051

pulse width 25 (deriv 2) 0.1466 skew 0.2038

kurt -0.1337 ds ratio 75 0.2033

pulse width 50 (deriv 2) 0.1319 skew (deriv 1) 0.2003

ds ratio 75 (deriv 2) -0.1276 pulse width 75 (deriv 1) -0.2001

systolic width 25 -0.1275 ds ratio 50 0.1941

Table 5.1: Table containing the top 10 correlated features sorted by ascending p-value for both
short-distance, proximal and long-distance, distal NIR-PPG derived features. The Coefficient
column represents the Spearman correlation coefficient, which ranges from -1 to 1. A value of 1

indicates a perfect positive correlation, -1 indicates a perfect negative correlation, and 0
indicates no correlation. Larger absolute values signify stronger relationships between features

and the label.

For the significant features, the mean absolute correlation coefficients were 0.0729 and

0.0930 for proximal and distal features, respectively. Within the subset of the 10 most

correlated features, these averages increase to 0.1481 for proximal and 0.2046 for distal

73



CHAPTER 5

features. Excluding seven features (start datum difference, max start datum difference,

skew, skew of the first derivative, and kurtosis) from the top 20 features across both

proximal and distal datasets the remaining 65% of the features are related to pulse width.

The group analysis reinforces the findings of the correlation analysis and provides

additional support for the initial hypothesis. The sampled data for all features did not

meet the assumptions of normality and/or homogeneity of variance, as assessed by the

Shapiro-Wilk and Levene’s tests, respectively. Consequently a non-parametric Kruskal-

Wallis test was employed to identify changes in the distributions of feature values across

the ICP range. Figure 5.4 illustrates the distribution of ICP values within the dataset.

Figure 5.4: A histogram illustrating the distribution of intracranial pressure values within the
dataset.

The dataset’s maximum ICP value was 39 mmHg. Following the logic for constructing

groups, three groups were formed: (0-10), (10-20), and (20-39) mmHg. The smallest

group, encompassing data from 20 to 39 mmHg, comprised 429 instances, equating to

approximately 7.15 hours of data. To ensure uniformity, the other groups were sampled

to match this size. The results of the group analysis indicate that 115 (81.56%) and 107

(75.89%) features exhibited significant changes (p < 0.05) across ICP groups for proximal

and distal features, respectively. Table 5.2 presents the top 10 features sorted by lowest

p-value for both proximal and distal datasets.
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PROXIMAL DISTAL

Feature P-Value η2 Feature P-Value η2

skew (deriv 1) 7.14E-37 0.128 skew (deriv 1) 1.04E-32 0.113

skew 7.51E-30 0.103 ds ratio 75 (deriv 1) 3.51E-30 0.104

ds ratio 75 (deriv 2) 7.20E-29 0.099 ds ratio 50 (deriv 1) 1.08E-28 0.099

ds ratio 50 9.15E-28 0.095 skew 6.61E-28 0.096

ds ratio 75 1.01E-25 0.088 diastolic width 75 (deriv 1) 1.15E-27 0.095

kurt 1.47E-25 0.088 kurt 1.09E-25 0.088

AUC Ratio 1.22E-24 0.084 diastolic width 50 (deriv 1) 1.30E-25 0.088

datum area ratio 8.40E-24 0.081 ds ratio 100 1.53E-25 0.087

end datum difference (deriv 1) 1.34E-23 0.080 pulse width 75 (deriv 1) 2.00E-25 0.087

ds ratio 100 5.76E-23 0.078 ds ratio 75 1.39E-24 0.084

Table 5.2: Table containing the top 10 features which changed most significantly with
variations in ICP values. The NIR-PPG derived features were sorted by ascending p-value for
both short-distance, proximal and long-distance, distal data. The associated p-value and η2 for

each feature is also presented.

Figure 5.5 illustrates the top 10 distal features arranged by descending p-value re-

turned by the Kruskal-Wallis analysis. The presented box plots provide a comparative

analysis of feature values across ICP ranges for proximal (orange box plots) and distal

(blue box plots) data. The presented box plots provide a comparative analysis of feature

values across ICP ranges for proximal (orange box plots) and distal (blue box plots) data.

Each box plot represents the distribution of a specific feature within a given ICP range.

The boxes illustrate the interquartile range (IQR), containing the middle 50% of the data

points. Inside each box, the red line indicates the median of the data, providing a measure

of central tendency. The whiskers denote the range within 1.5 times the IQR from the

quartiles. The box plots include annotations indicating the results of the overall group

Kruskal-Wallis tests, which compare the distributions across different ICP groups. Addi-

tionally, the associated results of the post hoc pairwise analysis are annotated, indicating

which pairs showed significant changes.

A visual examination of the boxplots indicate that the features derived from NIR-

PPG data show statistically significant variations with changes in ICP. Across ICP groups,

most of the examined features demonstrate significant changes in median values and IQR.
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Notably, the majority (approximately 70%) of the top 10 most significant features exhibit

an inverse relationship with ICP, indicating that as ICP increases, the values of these

features tend to decrease.

Focusing specifically on features within the top 10 that directly describe aspects of

pulse width without referring to ratios of systolic to diastolic pulse widths, we observe

consistent trends. Features such as the pulse width at 75% of pulse prominence (1st

derivative), diastolic width at 50% of pulse prominence (1st derivative), and diastolic

width at 50% and 75% of pulse prominence (1st derivative) all display a robust inverse

relationship with ICP. These findings suggest that as ICP values rise, the width of the

cardiac pulse decreases. Notably, the diastolic width emerges as one of the features under-

going the most significant changes, implying that the reduction in width may primarily

stem from a decrease in the diastolic segment of the pulse.

Furthermore, along with the narrowing of width, a significant inverse correlation be-

tween skewness, kurtosis, and the ratio of diastolic to systolic width at different percent-

ages of pulse prominence with ICP is observed.

Furthermore, along with the narrowing of pulse width, a significant relationship be-

tween skewness, kurtosis, and the ratio of diastolic to systolic width at different per-

centages of pulse prominence with ICP is observed. The observed decrease in kurtosis,

increase in skew, and decrease in the ratio between the systolic and diastolic pulse width

of the pulse may collectively indicate that the pulse is becoming more rounded. A de-

crease in kurtosis suggests that the pulse distribution is becoming less peaked and more

flattened, implying a broader, more rounded shape. An increase in skew indicates a shift-

ing or diminishing of the systolic peak, suggesting that the peak is either becoming less

pronounced or moving away from the left hand side of the pulse, contributing to a more

symetrical and rounded pulse shape. Additionally, a decrease in the ratio between the

systolic and diastolic pulse indicates that the difference between these two phases is re-

ducing, further supporting the idea that the pulse profile is losing its sharp systolic peak

and becoming more uniformly rounded.

The majority (60%) of the top 10 features of the distal dataset which we posit includes

“cerebral” information were first derivative features. The first derivative representing the

velocity/rate of change over time. Within this context the first derivative may provide

information about the velocity of blood volume changes happening within the cerebral

vasculature.
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A post hoc pairwise analysis was conducted using a Mann-Whitney U test with a

Bonferroni correction if a significant change was detected across groups from the Kruskal-

Wallis test. This approach led to the post hoc analysis of 115 and 107 features for the

proximal and distal data, respectively.

In the proximal dataset, 80.87% and 86.09% of the features changed significantly be-

tween the 0-10 and 20-39 mmHg groups and the 10-20 and 20-39 mmHg groups, respec-

tively. Similarly, in the distal dataset, 85.047% of features changed significantly between

these same pairs. A minority of pairwise statistical changes were identified between the

0-10 mmHg and 10-20 mmHg groups. In the proximal and distal datasets, these changes

accounted for 40% and 21.5%, respectively. These findings align with our expectation

that the majority of features would show significant differences when comparing groups

with low ICP (0-10 mmHg) and normal/moderate ICP (10-20 mmHg) to those with high

ICP (20-39 mmHg).
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Figure 5.5: Boxplots illustrating the the variation in feature values of the 10 features with the
most significant differences in a Kruskal-Wallis analysis on distal feature data. They display

distributions for both proximal and distal feature data. The central line represents the median,
the box encompasses the interquartile range (IQR), and the whiskers denote the range within

1.5 times the IQR from the quartiles.
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The findings partially validate the second hypothesis, indicating that alterations in

features are more prominent in long-distance NIR-PPG data compared to short-distance

NIR-PPG data. Although there is a non-significant difference in the number of signif-

icantly correlated features (2.75%) and significant differences across groups (7.21%) be-

tween the proximal and distal datasets, the correlation analysis shows that the absolute

average correlation coefficient of all features and significantly correlated features in the

distal dataset is 25.76% and 24.24% higher, respectively, than in the proximal dataset.

This suggests that distal, long-distance NIR-PPG pulse features may be more closely

related to changes in ICP compared to proximal, short-distance features.

5.5 Discussion

To the best of the authors’ knowledge, this paper represents the first attempt to investigate

variations in time-series and morphological features derived from NIR-PPG in response

to changes in ICP, using clinically collected data from 27 patients. The initial hypotheses

of this study were twofold: first, to ascertain whether alterations in NIR-PPG derived

features correlate with fluctuations in ICP levels, and second, to determine whether these

changes are more pronounced in features derived from long-distance NIR-PPG data com-

pared to short-distance NIR-PPG data. The results of this investigation provide support

for both hypotheses. The findings indicate that a majority of features derived from both

short and long-distance NIR-PPG data exhibit significant changes in response to varia-

tions in ICP. Although there is a non-significant difference in the number of significantly

correlated features and significant differences across groups between the proximal and

distal datasets the distal dataset yielded a meaningfully higher absolute average correla-

tion coefficient of all features and significantly correlated features in-comparison to the

proximal dataset which supports the proposition by Roldan et al. that data from the prox-

imal photodiode corresponds predominantly to extracerebral data, whereas data from the

distal photodiode represents a combination of extracerebral and cerebral data [101].

In section 2.4.4, we introduced our hypothesis regarding the relationship between cere-

bral hemodynamics and changes in NIR-PPG morphology. We describe how elevations

in ICP correspond to compression of cerebral vessels altering their mechanical properties,

causing a reduction in cerebral compliance, increase in vascular resistance and subsequent

reductions in CPP. This process initiates cerebral autoregulatory mechanisms aimed at
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maintaining CPP and normalising CBF to the brain. However, when elevated ICP dimin-

ishes CPP below a critical threshold, cerebral autoregulation may fail, resulting in blood

vessels being unable to vasodilate sufficiently to counter the reduced CPP, leading to a

sustained drop in CBF. We contend that the NIR-PPG signal may offer insights into these

variations in cerebral compliance and CBF. Our findings indicate that the majority of the

most significant changes in distal features affected the pulse width. We hypothesise that

the recorded changes in pulse width may reflect alterations in blood flow and vessel elas-

ticity. As ICP increases, cerebral compliance decreases reducing CPP below the critical

threshold and consequently diminishing CBF, less blood volume per cardiac cycle reaches

the brain. We acknowledge that the normalisation of the NIR-PPG data prior to analysis

does not enable us to determine if the changes in pulse width are as a consequence of

shorter cycle duration or changes in amplitude. Despite this, we hypothesise a narrower

pulse width may signify a shorter duration of blood volume change, potentially associated

with decreased compliance or lower CBF. Decreased cerebral compliance may result in

an increase in the velocity of blood volume changes due to the vessels’ reduced ability to

accommodate changes in blood volume, reducing the first derivative’s pulse width.

The results also suggest that as ICP increases, pulses become more rounded, indicated

by a decrease in kurtosis and the ratio of diastolic to systolic width at different percentages

of pulse prominence coupled with an increase in skewness. This rounding of the pulse may

also be associated with a dampening effect caused by reduced compliance. We posit that

the diminished ability of vessels to deform during systole and diastole with decreased

compliance attenuates the pulse wave creating the rounding effect.

The study conducted by Cardoso et al [142] analysed the CBF pulse wave and its

relationship with ICP in 15 patients suffering from hydrocephalus, benign intracranial

hypertension or head injury. Our findings and hypothesis are in line with the outcomes

of this study which found that increases in ICP is accompanied by an increase in the

amplitude of the cerebrospinal fluid pulse wave which in values above 20 mmHg first

become rounded and, at higher ICP values acquires a pyramidal shape.

Additionally, the majority of the most significant distal feature changes were observed

in the first derivative, particularly within the distal dataset, which we believe encompasses

“cerebral” information. The first derivative, representing flow velocity. An increase in

ICP can compress cerebral vessels, thereby diminishing CBF. This constriction not only

reduces the volume of blood that can flow through these vessels but may also affect the
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velocity of blood flow, likely captured by changes in the first derivative of the NIR-PPG

signal. Consequently, a reduction in the width of the first derivative may signify a faster

transit time of blood perhaps indicating compensatory mechanisms reacting to maintain

cerebral perfusion under elevated ICP. Understanding these changes in features related to

blood flow velocity appear crucial in describing ICP dynamics via NIR-PPG data.

While acknowledging the preliminary nature of these findings, we believe that they

offer a credible foundation for further exploration of the dynamic interplay between ICP

and NIR-PPG morphology.

5.6 Summary

The results of this study support both hypotheses, demonstrating significant correla-

tions between the extracted features and ICP levels. Significantly 77.30% and 79.43%

of the features exhibited significant correlation with the label for the distal and proxi-

mal datasets, respectively. Moreover, the Kruskal-Wallis group analysis underscores the

consistency of these findings, indicating that 81.56% and 75.89% of the features show-

cased significant changes across the ICP range. Notably, the mean absolute correlation

of significant long-distance derived features surpassed short-distance features by 24.4%.

These findings underscore the potential of NIR-PPG based devices as non-invasive tools

for estimating dynamic changes in ICP. These findings are clinically relevant and support

the work within this domain which strives to utilise NIR-PPG data and derived features

to estimate ICP non-invasively providing a reference for demonstrating the sensitivity of

NIR-PPG waveform features to alterations in ICP. The positive findings indicate promise

in the area of NIR-PPG driven non-invasive ICP monitoring.
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Classical Machine Learning

Algorithms

Machine learning is a field of study that gives computers the ability to learn without be-

ing explicitly programmed. A computer program is said to learn from experience E with

respect to some task T and some performance measure P, if its performance on T, as

measured by P, improves with experience E [143]. One of the broad methods of grouping

machine learning approaches is whether or not they are trained with supervision. The

type of supervision can be broken into two major categories: (i) supervised and (ii) unsu-

pervised learning. In supervised learning, the algorithm also referred to as the “model”

is trained on labeled data, meaning the desired outputs are predefined in the dataset,

allowing the model to learn a function that maps input variables (independent variables)

to the desired outputs (dependent variables). Conversely, unsupervised learning involves

unlabeled data, where the model must identify patterns and derive new representations

without supervision.

This research is predicated upon a supervised learning dataset. As mentioned in

section 4.1 the NIR-PPG data was collected synchronously with reference ICP data. The

dataset was segmented into 1-minute windows and the median ICP value over each window

was used as a label. For each window of data 141 feature were extracted and the feature

representation for each window was determined by computing the median of each feature

across all pulses within the window. In this research, each 141 input features is associated

with an output label which is the median ICP value over the same duration.

Supervised learning addresses either classification or regression tasks. Classification
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involves predicting discrete outcomes. In contrast, regression aims to predict continuous

values. In this project, the ICP values are continuous, defining the task as a regres-

sion problem under supervised learning. In this chapter the classical machine learning

regression models applied to predict ICP values are introduced and explained.

6.1 K-Nearest Neighbours (KNN)

K-Nearest Neighbours (KNN) [144] regression is a non-parametric method that, approxi-

mates the association between input features by looking directly at the observed, training

data. When a KNN model is defined, there a number of key parameters, including:

number of neighbours, weighting method, search algorithm and distance metric. These

parameters define how many neighbours will be used to make predictions, how their in-

fluence is weighted, how neighbours are searched for and how distance between points is

measured.

Unlike other models, the KNN model doesn’t learn a mapping function from input

to output. Instead, the training data is stored in a structured way to enable the effi-

cient searching for neighbours for a given input feature set. KNN calculates the distance

between the input features and those of every training instance, using the chosen dis-

tance metric in order to find the “nearest” instances of the training data referred to as

neighbours. A common distance metric is the Euclidean distance which measures the

straight-line distance between two points in Euclidean space. The formula for Euclidean

distance between two points A and B, where A has coordinates (a1, a2, . . . , an) and B has

coordinates (b1, b2, . . . , bn) in an n-dimensional space is given by:

d =
√︁

(a1 − b1)2 + (a2 − b2)2 + . . .+ (an − bn)2 (6.1)

Based on the derived distances, the model identifies the n number of nearest neighbours

in the training dataset to the new data point. Once the n nearest neighbours are identified,

the prediction for the new input is then based on these neighbours’ output values. The

derived output for the new input values is dependent upon the weighting method. Usually

the weighting method is either “uniform” or “distance” based. The final predicted output

is an average of the neighbours’ output value. If the weighting method is uniform, each

neighbour’s output value contributes equally to the final prediction. If it is distance based
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the contributions of the neighbours are weighted by the inverse of their distance to the

new input, giving more influence to closer neighbours.

A significant advantage of KNN is its adaptability to new data, as it requires no

explicit training. However, this also makes it computationally demanding and memory-

intensive, especially as the size of the dataset grows, since it must compute distances to

all training samples for each new instance. Additionally, KNN struggles with the “curse

of dimensionality”, where high-dimensional feature spaces lead to data sparsity. In such

sparse spaces, it becomes challenging for the KNN algorithm to find close and relevant

neighbours as all points appear almost equally distant from each other leading to the loss

of the concept of “nearest” which subsequently affects the effectiveness of the algorithm.

6.2 Support Vector Regression

Support Vector Regression (SVR) [145] extends upon the principles of Support Vector

Machines (SVM). SVR aims to fit the best possible function within a tolerance level from

the actual data points. The SVR algorithm uses kernel functions to project training data

into a higher dimensional transformed feature space in which linear regression can be

applied to solve non-linear problems. Among these kernels, the Radial Basis Function

(RBF) kernel is common for non-linear datasets. In this research, the SVR model was

implemented using an RBF kernel function.

Assuming the use of a RBF kernel, when initialising an SVR model, there are three

key parameters which are typically defined: (i) C, (ii) ϵ and (iii) γ. The parameter C is

a regularisation parameter which balances the trade-off between achieving a low error on

the training data and maintaining a simple model to avoid overfitting. A higher C value

tries to fit the training data as well as possible (at the risk of overfitting), while a lower

C pushes for a less complex model. The epsilon parameter (ϵ) sets a margin of tolerance

where predictions within this margin are not penalised. The gamma (γ) influences the

curvature of the decision boundary. A high γ value creates a more complex, tightly fitting

model, while a low γ results in a smoother, broader fit.

The SVR algorithm can handle both linear and non-linear data. In order to handle

non-linear tasks and to fit non-linear decision boundaries a kernel function (such as RBF)

enable the SVR to operate as if the data has been transformed into a higher-dimensional

space without explicitly performing the transformation. This “kernel trick” is performed
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by calculating the similarity between pairs of data points in the original input space al-

lowing the algorithm to find a linear separating hyperplane in the new higher-dimensional

space representation, even though the data in the original space is not linearly separable.

The RBF kernel function is defined as:

K(xi, xj) = e−γ∥xi−xj∥2 (6.2)

Where K(xi, xj) represents the kernel function’s output applied to pairs of input vec-

tors xi and xj. The parameter γ affects how quickly the similarity measure decreases as

the distance between the points increases. A larger γ makes the similarity drop off faster

with distance, meaning the model pays more attention to smaller differences. The Eu-

clidean distance between points xi and xj is represented as (∥xi − xj∥). The exponential

function transforms the distance into a similarity score. By using the exponential func-

tion, distances are converted such that closer points have a high similarity score (close to

1), and points further away have a decreasing similarity score (close to 0).

Figure 6.1: A diagram of Support Vector Regression where the data points are plotted in
space. The hyperplane (in red) best fits the data with a certain margin (epsilon, ϵ), and the
support vectors are the data points closest to the hyperplane. The points outside of the
margin are marked with variables (ξ), indicating the tolerance for errors in the model.

Figure 6.1 illustrates the basic functioning of the SVR algorithm. The red line repre-

sents the optimal hyperplane, which is the function that SVR has learnt to predict the

label. On either side of the hyperplane, represented as two dashed lines is the margin of

tolerance defined by the ϵ parameter. The data points, that fall outside of these margins
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are considered as errors and are associated with a cost, proportionate to their distance

from the margin indicated as ξ. The data points that fall on the margin or beyond

contribute to the determination of the hyperplane and are termed support vectors.

SVR, with the use of the kernel trick and the ability to choose different kernels, offers

a flexible approach to regression. It can handle complex, non-linear relationships without

explicitly transforming the data, which saves computational resources. However SVR can

be computationally intensive, which limits its scalability and practicality for use with

large datasets.

6.3 Random Forest

Random Forest (RF) [146] is an ensemble learning method which builds multiple decision

trees and combines the predictions of each tree to produce a more robust overall prediction

and mitigate overfitting. Each tree in the “forest” is created using a random subset of

the training data, referred to as a bootstrap sample. This randomness helps in building

diverse trees which aims to produce more reliable and stable overall predictions.

The construction of each decision tree in a RF begins at the root node. Here, the

algorithm chooses the best feature (the features that best describes the data points, such

as pulse amplitude or width) to split the data into groups that are as homogeneous as

possible within each group and as heterogeneous as possible between groups. This splitting

is done to organise the data into “branches”, which lead to more nodes. At each node,

this splitting process is repeated until a terminal node or criteria is reached. This could

be a defined maximum number of splits allowed or when further splitting is no longer

meaningful.

Each end of the branch, known as a leaf node, represents a group of training instances

that are similar to each other. When a prediction is being made on a new data point,

it travels down the tree branches, dictated by the features it exhibits, until it reaches a

leaf. The prediction for this new instance is then made by averaging the label values of

the training instances within that leaf.

The overall performance and behavior of a Random Forest can be adjusted using var-

ious parameters. These parameters include, the “maximum depth” of the trees, which

prevents them from becoming overly complex and learning noise from the training data.

The number of “estimators” which controls how many trees the forest has. More trees
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generally lead to better performance because errors in individual trees are likely to be

averaged out. However, having many trees can make the model computationally expen-

sive. Lastly, parameters that define the minimum number of samples required to split

the data further or to define a leaf node help in ensuring that each decision made by the

tree captures enough information to be relevant whilst avoiding overly specific rules that

prevent model generalisation. These parameters help in achieving a balance, ensuring the

model is neither too simple nor too complex.

Figure 6.2: An illustration of a Random Forest model showing how an input sample is
processed through multiple decision trees (Tree 1 to Tree N). Each tree independently makes a
prediction, and the final output is the average of these predictions, forming the Random Forest

regression result.

As illustrated in Figure 6.2, when a new input instance is introduced to the RF model,

it is evaluated by each tree in the “forest”. Each tree independently provides a prediction

and the final prediction from the model is derived by averaging all the predictions from

individual trees. This method of averaging acts to smooth out the variations among the

predictions but also offers a more generalised estimate, avoiding the dependence on a

single decision tree.

The RF mitigates the risk of overfitting and increases model robustness by averaging

predictions across multiple trees. Additionally, it can quantify the importance of different

features in predicting the target variable and does not assume a specific data distribution

allowing it to handle both linear and nonlinear datasets. Despite these strengths, the RF

algorithm due to its structural complexity can lead to significant computational demands.
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6.4 Gradient Boosting Machines

Gradient Boosting Machines (GBM) [147] are ensemble machine learning models that,

like Random Forests, use decision trees to make predictions. However, GBMs construct

their ensemble sequentially, with each new tree focused on correcting the errors made

by the previous ones. This approach is based on the principle of “boosting”, wherein

multiple simple models (referred to as “weak learners”) usually shallow decision trees are

combined to create an accurate ensemble model.

The process of gradient boosting is centered around three main components: a loss

function (which in the case of regression is usually MSE) that the algorithm aims to

minimise, weak learners that individually make predictions, and an additive approach

that incrementally builds the model by incorporating one learner at a time, each addition

aims to reduce the overall prediction error.

Figure 6.3: A graph illustrating the iterative process of boosting in Gradient Boosting
Machines. Each point represents a stage of the algorithm, where the addition of a weak learner
aims to reduce the overall prediction error. The error decreases with each iteration, as more

weak learners are added, demonstrating the model’s improvement over time.
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As the model progresses, each new tree focuses on the residual errors (the differences

between the predicted and actual values). These errors guide the training of each new

tree, ensuring that the ensemble pays more attention to the harder-to-predict instances

of data. The final prediction for any given instance is the sum of the predictions from

all individual trees. As depicted in Figure 6.3 the theoretical aim of GBMs is that as

the algorithm adds trees, each one adjusts according to the gradient of the loss function

minimising the error as the number of trees increases.

Gradient boosting has been extended into more specialized forms with Light Gradient

Boosting Machine (LGBM) and Extreme Gradient Boosting (XGB), each introducing

unique features that enhance performance and efficiency.

In both LGBM and XGB, several parameters play a key role in tuning the models for

optimal performance. Among others these include the maximum tree depth, the number

of trees and the learning rate. Similarly to the RF algorithm, the maximum depth of each

tree in the model can be set to controls the complexity of the decision boundaries. A

deeper tree can model more intricate patterns but risks overfitting if too deep. Number of

iterations or estimators, refers to the the number of trees used in the model and indicates

how many times the boosting process is repeated. More iterations allow the model to

continually improve its accuracy at the risk of overfitting if too many trees are used.

Learning rate affects the contribution of each tree to the final model. A lower learning

rate requires more trees to converge to a robust model, typically leading to a more gradual

but stable learning process. Each of these parameters helps manage the trade-off between

model complexity and overfitting.

6.4.1 Light Gradient Boosting Machine

The LGBM algorithm [148] aims to enhance GBM by implementing two main optimisa-

tions: (i) Gradient-based One-Side Sampling (GOSS) and (ii) Exclusive Feature Bundling

(EFB). The GOSS sampling strategy selectively samples instances with large errors dur-

ing training to optimise memory usage and focus model training on more challenging

instances of data. EFB groups features that are exclusive or nearly exclusive. This

bundling reduces the feature dimensionality thus lowering the computational complexity,

allowing the algorithm to run faster and more efficiently.

These enhancements make LGBM particularly suited for handling large datasets and
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complex feature spaces more efficiently than traditional GBM.

6.4.2 eXtreme Gradient Boosting

XGB [149] is another optimised implementation of gradient boosted trees. Firstly, XGB

implements parallel processing, which enables the ability to build trees concurrently during

training, rather than sequentially. This parallelisation can be leveraged using multi-core

computing architectures, significantly increasing the training speed of the model.

Secondly, XGB includes a regularisation in its objective function helping to mitigate

overfitting by penalising overly complex models aiding in the models ability to generalise

to unseen data.

6.5 Summary

This chapter provides a foundational overview of the classical machine learning models

that have been used within this research to predict ICP values using features derived

from NIR-PPG data. The basic functionality of each model has been outlined and their

respective strengths and weaknesses discussed. Key parameters crucial for tuning these

models have also been detailed. This introduction is important as the model optimisation,

evaluation, and the analysis of results is presented in the the forthcoming chapter.
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Evaluation of Machine Learning

Models

Following the introduction of the classical machine learning models used within this re-

search. This chapter introduces the methodology of the hyperparameter optimisation and

model training and evaluation in addition to an analysis of results The work outlined in

this chapter culminated in a publication that describes the implementation, optimisation,

and evaluation of the models [150].

7.1 Data partitioning

As depicted in Figure 7.1 the proximal and distal NIR-PPG datasets were both segmented

into two distinct datasets: (i) evaluation and (ii) optimisation. In order to create the

optimisation and evaluation datasets, the aggregate dataset of both the proximal and

distal NIR-PPG data was split by patient in a ratio of 70:30. Patients were randomly

sampled, the patient data of 19 patients and 8 patients made up the evaluation and

optimisation sets respectively. In order to effectively evaluate the models’ ability for

continuous monitoring the temporal order of the windows was maintained. The data of

the same 19 and 8 patients comprised the evaluation and optimisation datasets for both

the proximal and distal data.
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Figure 7.1: Partitioning of NIR-PPG Dataset for model optimisation and evaluation. The
complete NIR-PPG dataset was divided into two subsets for both proximal and distal data:

one for optimisation and the other for evaluation. The data was split according to a 30:70 ratio
by patient count, with 8 patients’ data allocated for optimisation and 19 for evaluation. This
partitioning was consistent across both proximal and distal datasets to maintain comparability.

7.2 Feature selection

7.2.1 Collinearity test and feature elimination

A significant amount of the features within the feature sets were colinearly related due to

being derived from similar or the same morphological elements of the pulse. In order to

perform feature selection whilst dealing with the presence of colinearly related features

a three step feature selection process was performed. Initially the maximum information

coefficient (MIC) was calculated for each feature against the label. MIC captures lin-

ear, non-linear and non-monotonic relationships offering a more precise representation of

complex dependencies between features and the label.

To address the issue of collinearity among variables, pairs of features were identified

which exhibited a Pearson correlation coefficient ≥ 0.9. Within each of these pairs, the

feature with the lower MIC score was removed, prioritising the retention of features with

higher potential predictive power.
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7.2.2 Feature selection via Recursive Feature Elimination

Following the identification and removal of colinearly related features, Recursive Feature

Elimination with Cross-Validation (RFECV) was implemented to further refine the selec-

tion of predictive features. When conducting the RFECV a group-wise holdout method

was employed in the cross-validation. This approach involves dividing the data into dis-

tinct groups where each group corresponds to a single patient’s data. During each iteration

of the RFECV process, entire groups (patients) are held out from the training set and

used for validation. This method prevents data leakage, as the model is trained and vali-

dated on entirely separate patient groups, preserving the independence of the validation

process, preventing any patient’s data from simultaneously appearing in both training and

validation sets. The group-wise holdout method was used to prevent bias in the feature

selection process whilst attempting to maximise the generalisability of selected features

to new, unseen patient data.

The RFECV technique employed a random forest regression model as the estimator.

The minimum number of features to be selected was set to 1, with a step size of 1, meaning

that RFECV iteratively removes features one-by-one until only one feature remains. For

each set of features, the random forest regression model is evaluated. Using a group-

wise holdout approach, the model’s performance is assessed in a cross-validation scheme,

ensuring that the model is validated against each patient’s data separately. The evaluation

of model performance during feature selection was conducted using the negative root mean

squared error (neg RMSE). By maximising the neg RMSE, RFECV identifies feature sets

which effectively minimise the RMSE, thereby reducing prediction errors.

7.2.3 Feature selection results

Within the proximal and distal datasets, 377 and 162 correlated feature pairs were iden-

tified. Once the features with the lower MIC score were removed and a unique set of the

remaining features was taken, the resultant feature sets had a length of 52 and 61 features

for the proximal and distal sets respectively. With the resulting features, RFECV was

applied to the feature subsets to determine the most predictive features.

Figure 7.2 illustrates the results of the RFECV for both proximal and distal datasets.

The x-axis represents the number of features selected, while the y-axis shows the neg RMSE.

The blue lines indicate the mean neg RMSE, calculated by averaging the neg RMSE val-
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ues obtained across all validation folds (held out patients) for each number of features.

Error bars around the blue lines represent the variability in model performance, show-

ing one standard deviation above and below the mean neg RMSE. The red dashed lines

denote the optimal number of features, determined by the maximum mean neg RMSE

value.

Figure 7.2: A figure with two subplots illustrating recursive feature elimination plots applied
to a subset of features. The plots demonstrate the variation in negative Root Mean Squared
Error as the number of features changes. A dashed red line represents the number of features
with support returned by recursive feature elimination. The left subplot corresponds to the

proximal dataset, while the right subplot corresponds to the distal dataset.

The RFECV approach identified 48 features and 3 features yielded the best perfor-

mance on the wrapped, random forest regression models across validation folds for the

proximal and distal datasets respectively. The identified 3 features for the distal dataset

led to underfitting. To counteract this, the number of features which returned the second

highest neg RMSE for the distal dataset was selected (n=18). Table 7.1 contains the se-

lected features for both the proximal and distal datasets. Within the table, feature names

are followed by a number if they have an association with the pulse prominence such as

“pulse width 100” or “diastolic width 50 (deriv 1)”. These numbers indicate the specific

percentage of the pulse prominence at which the feature was extracted. For instance,

“pulse width 100” means that the feature was measured at 100% of the pulse prominence,

representing the full width of the pulse. Similarly, “diastolic width 50 (deriv 1)” means

that the feature was extracted at 50% of the pulse prominence.
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Proximal Distal

onset-end slope (deriv 1) pulse width 100

ds ratio 25 kurt (deriv 2)

std ibi (deriv 2) pulse width 10

rise time - decay time ratio (deriv 1) diastolic width 50 (deriv 1)

systolic width 100 systolic width 75

upslope rise time - decay time ratio

kurt rise time - decay time ratio (deriv 1)

rise time - decay time ratio max end datum difference

pulse length - height ratio ibi (deriv 2)

std ibi skew

ds ratio 25 (deriv 1) ds ratio 50 (deriv 2)

kurt (deriv 1) start datum difference

systolic width 10 kurt (deriv 1)

systolic width 75 (deriv 2) zcr

max start datum difference (deriv 2) skew (deriv 1)

zcr ds ratio 50 (deriv 1)

ds ratio 75 (deriv 2) skew (deriv 2)

skew systolic width 25 (deriv 2)

end datum difference (deriv 1)

downslope length (deriv 2)

onset-end slope (deriv 2)

pulse length - height ratio (deriv 2)

end datum difference (deriv 2)

max start datum difference

start datum area (deriv 1)

end datum area (deriv 1)

systolic width 100 (deriv 1)

max end datum difference

ds ratio 10

downslope

downslope (deriv 1)

std ibi (deriv 1)

systolic width 25 (deriv 2)

end datum difference

onset-end slope

zcr (deriv 2)

ds ratio 25 (deriv 2)

start datum difference (deriv 2)

skew (deriv 1)

ds ratio 75

max end datum difference (deriv 1)

start datum difference (deriv 1)

diastolic width 10 (deriv 1)

end datum area (deriv 2)

diastolic width 75 (deriv 2)

pulse width 10 (deriv 2)

systolic width 10 (deriv 1)

diastolic width 10

Table 7.1: Table containing the selected features for both the the proximal and distal datasets.
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7.3 Bayesian optimisation

The hyperparameters of the five regression models were optimised using the optimisation

dataset exclusively.

Hyperparameter optimisation was conducted using the Optuna library, a Bayesian

optimisation framework, using the Tree-structured Parzen Estimator (TPESampler) al-

gorithm [151]. Bayesian optimisation operates by constructing a probabilistic model that

maps hyperparameter values to a target objective function. This probabilistic model is

then used to estimate the performance of hyperparameters, helping to steer hyperparam-

eter selection to evaluate in the actual objective function. In contrast to methods such

as grid or random search, which search the hyperparameter space either systematically

or randomly, Bayesian optimisation uses prior knowledge from previous evaluations to in-

form its search strategy. This approach enables a more efficient search of hyperparameter

spaces, often resulting in superior hyperparameter solutions.

The hyperparameters were optimised using the RMSE across leave-one-patient-out

cross-validation (LOPOCV). In LOPOCV, the model is trained on the data from all but

one patient and validated on the data from the left-out patient.The reason for adopting

LOPOCV for both optimisation and future evaluation of the models was to optimise and

evaluate the model’s for robustness to inter-patient variability. By mirroring a real-world

scenario where the model must make predictions on new patient data, LOPOCV serves

as a robust test of the model’s generalisability whilst minimising the possible positive bias

of including data from the same patient in the training and testing dataset. In scenarios

where the ultimate goal is to apply the model across different individuals, the ability to

generalise well to unseen patients’ data is crucial.

For each model 50 hyperparameter optimisation “trials” were performed. To mitigate

the risk of overfitting to the training dataset during model optimisation, the hyperparam-

eter search spaces were tuned. Initially, the hyperparameter search spaces encompassed

broader ranges, but as the optimisation progressed if any instances of overfitting to the

training data were seen the search space was refined. This involved narrowing the range of

specific hyperparameters, implementing stronger regularisation penalties, and adjusting

learning rates to encourage improved generalisation. The primary objective was to strike

a balance, achieving good performance on the training data while ensuring the model’s

effectiveness in generalising to the validation data. The hyperparameter search spaces for
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each model are outlined in Table 7.2. The hyperparameter optimisation was carried out

twice, once for both the proximal and distal optimisation datasets.

Model Hyperparameter Search Space
Optimised Hyperparameters

(Proximal)

Optimised Hyperparameters

(Distal)

RF

max depth = 15 to 25

number of estimators = 100 to 500

min samples split = 10 to 20

min samples leaf = 10 to 15

max depth = 18

number of estimators = 101

min samples split = 13

min samples leaf = 11

max depth = 17

number of estimators = 196

min samples split = 10

min samples leaf = 11

KNN

number of neighbours = 3 to 10

algorithm = [auto, ball tree, kd tree, brute]

metric = [euclidean, manhattan, chebyshev, minkowski]

number of neighbours = 10

algorithm = auto

metric = chebyshev

number of neighbours = 10

algorithm = auto

metric = chebyshev

LGBM

max depth = 5 to 10

number of iterations = 100 to 250

learning rate = 0.1 to 0.5

number of leaves = 25 to 35

extra tress = True or False

max depth = 10

number of iterations = 102

learning rate = 0.179

number of leaves = 28

extra tress = False

max depth = 8

number of iterations = 241

learning rate = 0.160

number of leaves = 35

extra tress = True

XGB

number of estimators = 10 to 20

max depth = 10 to 15

learning rate = 0.3 to 0.7

min child weight = 45 to 55

number of estimators = 19

max depth = 10

learning rate = 0.351

min child weight = 53

number of estimators = 18

max depth = 14

learning rate = 0.382

min child weight = 55

SVR

C = 10 to 50

gamma (DISTAL) = 5 to 10

gamma (PROXIMAL) = 1 to 6

epsilon = 0.0001 to 0.01

C = 10.855

gamma = 5.986

epsilon = 0.000164

C = 10

gamma = 9.972

epsilon = 0.002

Table 7.2: Table containing the defined search spaces for each regression model and the
resultant optimised hyperparameters.
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7.4 Model Evaluation

The mean squared error (MSE), RMSE, mean absolute error (MAE), coefficient of determination R2, the upper and lower Bland-Altman

limits of agreement as well as the correlation coefficient were calculated. The training and testing results are presented in Tables 7.3 and

7.4.

Distal Results (Evaluation)

Model RMSE Test MSE Test MAE Test R2 Test Bland-Altman Upper Test Bland-Altman Lower Test Bland-Altman Bias Test Test Corr Coef

KNN 5.529 32.735 4.445 -1.496 10.057 -9.202 0.427 0.021

LGBM 5.253 29.902 4.233 -1.217 9.220 -8.862 0.179 -0.016

RF 5.030 27.364 4.067 -1.046 8.782 -8.487 0.147 -0.007

SVR 5.473 32.148 4.404 -1.370 9.266 -9.348 -0.041 0.027

XGB 5.379 30.986 4.338 -1.354 9.372 -9.154 0.109 0.001

Proximal Results (Evaluation)

Model RMSE Test MSE Test MAE Test R2 Test Bland-Altman Upper Test Bland-Altman Lower Test Bland-Altman Bias Test Test Corr Coef

KNN 5.734 35.212 4.650 -1.766 10.055 -8.995 0.530 -0.052

LGBM 5.627 33.680 4.634 -1.677 9.414 -8.661 0.376 -0.022

RF 5.538 32.969 4.538 -1.555 9.423 -8.598 0.413 -0.026

SVR 5.640 33.268 4.608 -1.701 9.289 -9.159 0.065 -0.020

XGB 5.689 34.444 4.663 -1.729 9.625 -9.025 0.300 -0.013

Table 7.3: Table containing the results (test) for the 5 regression models, estimating intracranial pressure. The table contains the mean squared
error (MSE), root mean squared error (RMSE), mean absolute error (MAE), coefficient of determination (R2), the upper and lower Bland-Altman

limits of agreement as well as the correlation coefficient (Corr Coef) values for each model.
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Distal Results (Evaluation)

Model RMSE Train MSE Train MAE Train R2 Train Bland-Altman Upper Train Bland-Altman Lower Train Bland-Altman Bias Train Train Corr Coef

KNN 3.063 9.387 2.011 0.625 6.021 -5.986 0.017 0.792

LGBM 2.993 8.961 2.121 0.642 5.866 -5.866 0.000 0.807

RF 2.709 7.341 1.854 0.707 5.316 -5.303 0.006 0.861

SVR 3.203 10.267 1.986 0.590 5.965 -6.542 -0.288 0.772

XGB 2.573 6.625 1.816 0.735 5.041 -5.045 -0.002 0.862

Proximal Results (Evaluation)

Model RMSE Train MSE Train MAE Train R2 Train Bland-Altman Upper Train Bland-Altman Lower Train Bland-Altman Bias Train Train Corr Coef

KNN 3.613 13.058 2.586 0.478 7.128 -7.034 0.047 0.696

LGBM 3.052 9.316 2.198 0.628 5.981 -5.981 0.000 0.798

RF 2.556 6.540 1.738 0.739 5.019 -5.002 0.008 0.877

SVR 2.427 5.892 1.199 0.765 4.474 -4.985 -0.256 0.880

XGB 2.643 6.991 1.876 0.721 5.177 -5.184 -0.003 0.855

Table 7.4: Table containing the results (train) for the 5 regression models, estimating intracranial pressure. The table contains the mean squared
error (MSE), root mean squared error (RMSE), mean absolute error (MAE), coefficient of determination (R2), the upper and lower Bland-Altman

limits of agreement as well as the correlation coefficient (Corr Coef) values for each model.
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Extrapolating from the results presented in Table 7.3, an examination of the predic-

tive performance is conducted, focusing on four key metrics: RMSE, MAE, correlation

coefficient and Bland-Altman limits of agreement. MAE assesses the average absolute

errors between predicted and actual values. Unlike MSE, MAE does not square errors

meaning it does not amplify the influence of outliers or large errors. By not penalising

large errors, MAE offers a balanced view of model performance.

On the other hand, RMSE also gauges the discrepancy between predicted and actual

values. In contrast to MAE, RMSE calculates the square root of the average of squared

errors. Squaring the errors gives more weight to larger errors, meaning they have a pro-

portionally greater impact on the RMSE. This makes RMSE sensitive to outliers and large

errors, emphasising their importance. It is suggested that in the context of estimating ICP,

the clinical implications of errors can vary significantly. Larger errors in ICP prediction

can have critical consequences for patient care and safety. For instance, underestimating

ICP might lead to inadequate intervention, risking patient health. Therefore, prioritising

the reduction of larger errors is crucial to enhance the clinical utility and safety of the

model. RMSE aligns well with this objective. Given this, the feature selection process

using RFECV and model hyperparameter optimisation were centred around minimising

squared errors as the primary cost function. RMSE, being the square root of MSE, allows

for a more intuitive interpretation of the model’s performance as it brings the evaluation

metric back to the original units of the target variable. Both MAE and RMSE are pre-

sented in the same units as the target variable (mmHg), facilitating easier comprehension

and comparison.

Figure 7.3: A bar chart presenting the root mean squared error of each model for both the
short and long distance near-infrared spectroscopy data.
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Although it is appreciated and understood that a comparison between the proximal

and distal results can be challenging due to the variance in feature and hyperparameter

selection. Overall the models developed using distal features performed better than model

developed using proximal features. The mean MAE and RMSE across models developed

using distal features were 4.297 and 5.333 mmHg, approximately 5.7% and 7.2% lower

than the mean MAE and RMSE across models developed using proximal features. Of the

models developed using distal data, the best performing model with reference to RMSE

and MAE was a RF model which returned a mean RMSE and MAE across the testing

folds of LOPOCV of 5.030 and 4.067 mmHg respectively. The worst performing distal

model with reference to RMSE and MAE was a KNN model which produced an RMSE

and MAE of 5.529 and 4.445 mmHg.

Figure 7.4: A bar chart representing the Bland-Altman upper and lower limits of agreement
for each model, calculated at the 95% confidence level. The bars in the chart indicate the
upper and lower limits of agreement, representing the range within which most of the

differences between predicted and actual values lie with 95% confidence.

To complement the RMSE and MAE the correlation coefficient and Bland-Altman

limits of agreement of the developed models are also discussed. Figure 7.4 depicts the

Bland-Altman limits of agreement for each developed model. Bland-Altman is a statistical

technique used to assess the agreement between two quantitative measurements. The

Bland-Altman plot provides insights into the extent of agreement and any potential biases

between the predicted and actual values. The limits of agreement, marked in the plot,

illustrate the range within which most of the differences between predicted and actual

values lie. Specifically, they represent the mean difference between the predicted and

actual values, with 95% confidence intervals meaning that 95% of the differences fall

101



CHAPTER 7

within this range, offering a valuable indication of the agreement’s reliability.

The mean upper and lower limits of agreement of the distal and proximal derived

models are 9.334 and -9.011 and 9.561 and -8.888 mmHg accordingly. The limits of

agreement between the models trained using distal and proximal data are similar. Both

groups of models returned negligible mean biases of 0.337 and 0.164 mmHg suggests a

minimal systematic difference between the predicted and actual ICP values. This implies

that, on average, the ICP predictions from the models are within approximately 8 mmHg

of the actual values.

In the case of ICP prediction a preferable correlation coefficient would be a strong

positive correlation with label. The mean correlation coefficient returned by both the

distal and proximal derived models are very low. The distal derived models returned

a mean correlation coefficient of approximately 0.005, 118.5% greater than the mean

correlation coefficient returned by the proximal derived models. The higher and positive

mean correlation coefficient of the distal derived models apposed to the mean negative

correlation coefficient of the proximal derived models suggests that distal features may

be more useful for the prediction of ICP. Despite this, the correlation coefficients remain

low.

7.5 Discussion

This study has investigated the effectiveness of non-invasive ICP monitoring using NIR-

PPG derived features. Five classical machine learning models were optimised and evalu-

ated on both short distance and long distance NIR-PPG data.

Despite appreciating the challenges of comparison due to the variance in feature and

hyperparameter selection. From the models developed, the distal models returned lower

RMSE and MAE errors on average than the models developed using proximal derived

features. This supports our hypothesis that long distance NIR-PPG data is associated

with changes in ICP. Additionally although both groups of models returned low correlation

coefficients the distal models returned a higher mean correlation coefficient in comparison

to the proximal models which returned a mean negative correlation coefficient.

The low correlation coefficients and wide limits of agreement observed in our analysis

suggest that the models struggled to generalise to new, unseen data. It is hypothesised

that this challenge is primarily attributable to noise within the data and inter-patient
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data heterogeneity. Specifically, variances in the distribution of ICP among patients may

impact model performance.

Moreover, the presence of inter-patient feature data heterogeneity and the consequen-

tial challenge of creating a shared distribution exacerbates the difficulty in achieving

optimal model generalisation. This heterogeneity can stem from diverse patient char-

acteristics, disease severity, and treatment responses among others. This coupled with

varying distributions of ICP levels among the patients, can impair the model’s ability to

learn underlying patterns effectively thereby resulting in wider limits of agreement.

Addressing these challenges could involve increasing the dataset, particularly with

more data collected at the high and low ends of the ICP distribution as well as increasing

the the diversity of the patient population which comprise the dataset. A larger and

more diverse dataset could help in reducing the observed wide limits of agreement by

enabling the model to better learn and predict the outcomes for patients with less common

characteristics.

Animal studies have investigated the estimation of ICP non-invasively using NIRS,

features extracted from DCS pulsations and NIR-PPG cardiac waveforms [93]–[95]. The

approaches within these studies have demonstrated significant agreement with ICP re-

turning R2 of up to 0.937 and MSE lower than < 3 mmHg. Despite this, these studies

use MAP as an additional feature for model development and a random sampling cross-

validation evaluation approach. MAP was found to be the strongest predictive feature

across both studies [94], [95]. Although the small subject size of these studies is under-

stood, it is suggested that the inclusion of MAP and the evaluation methodologies of

these studies may positively influence the results of these studies. This study aimed to

investigate the efficacy of predicting ICP non-invasively using NIR-PPG morphological

and time-series features exclusively.

The evaluation and optimisation methodology could be optimised further. The fea-

ture selection and model optimisation were performed using the optimisation dataset

exclusively to minimise potential data leakage. Model optimisation utilised the aggregate

RMSE across LOPOCV. Following hyperparameter optimisation, model evaluation oc-

curred through LOPOCV on the evaluation dataset. This methodology was chosen over

nested cross-validation to strike a balance between performance and computational effi-

ciency. Despite this choice, there remains a possibility of bias in the models towards the

optimisation set’s data. The 30% of patients’ data constituting the optimisation dataset

103



CHAPTER 7

was deemed a reasonably representative sample. Even if the models exhibit bias towards

the optimisation dataset, they do not positively bias the evaluation results; if anything,

they could negatively impact them. This approach was considered reasonable and serves

to prevent data leakage and provide a robust evaluation of model performance.

The evaluation and optimisation methodology could be optimised further. The fea-

ture selection and model optimisation were performed using the optimisation dataset

exclusively to minimise potential data leakage. Model optimisation utilised the aggre-

gate RMSE across LOPOCV. Following hyperparameter optimisation, model evaluation

occurred through LOPOCV on the evaluation dataset. This methodology was chosen

over nested cross-validation to strike a balance between performance and computational

efficiency. However, this approach does have some limitations.

There remains a possibility of bias in the models towards the optimisation set’s data.

Although the 30% of patients’ data constituting the optimisation dataset was deemed

a reasonably representative sample, it may not capture the full diversity of the entire

dataset. This could lead to models that perform well on the optimisation dataset but less

so on the new, unseen data.

The use of the optimisation dataset exclusively for feature selection and model optimi-

sation might result in an overfitting risk. The selected features and hyperparameters are

tailored to the specific characteristics of the optimisation dataset, which could limit the

generalisability of the model when applied to the evaluation dataset. Even if the models

exhibit bias towards the optimisation dataset, they do not positively bias the evaluation

results; if anything, they could negatively impact them.

Nested cross-validation would have allowed for the simultaneous optimisation of model

parameters and feature selection while evaluating model performance in an unbiased man-

ner across different folds. However, nested cross-validation could result in each fold having

different hyperparameters and selected features. In contrast, the chosen approach ensures

that the same hyperparameters and features are used across all patients during evalua-

tion reflecting a real-world scenario where a single model is deployed universally across

different patients.

The chosen approach ensures consistent model parameters and selected features across

all evaluated patients, balancing computational efficiency with a robust evaluation of

model performance.
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7.6 Summary

This study aimed to assess the potential of non-invasive ICP monitoring using NIR-PPG

derived features. Five classical machine learning models were optimised and evaluated on

both short distance and long distance NIR-PPG data. The results indicated that distal

models returned better results than models developed using proximal features returning

a higher mean RMSE, MAE and correlation coefficient. The best peforming model was a

RF model which returned a mean RMSE and MAE across the testing folds of LOPOCV

of 5.030 and 4.067 mmHg respectively with Bland-Altman limits of agreement of approx-

imately 8.5 mmHg and a low correlation coefficient of -0.007.

This research provides insights to non-invasive ICP monitoring through the investiga-

tion of the largest clinically collected NIR-PPG ICP labelled dataset from patients with

severe TBI. The outcomes of this study provide solid foundation for future research within

this domain especially the investigation of the causes of possible inter-patient heterogenity.

The search for non-invasive alternatives to ICP monitoring is significant. The potential

of NIR-PPG technology to change TBI diagnosis and ICP monitoring arises as a promising

prospect. NIR-PPG based monitoring offers the potential for an inexpensive, easy-to-use,

safe, and real-time alternative. Moreover, a NIR-PPG device as a consequence of its

non-invasive nature and simplicity of use could make an ideal point-of-care monitor in

various settings, from emergency rooms and ambulances to sports events and remote

locations. The cost-effectiveness of NIR-PPG further improves its appeal, as it offers a

more affordable approach to TBI diagnosis and ICP monitoring.
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Discussion and Conclusion

8.1 Discussion

8.1.1 Summary of thesis and findings

The aim of this research was to explore the dynamic relationship between PPG derived

features and variations in ICP levels. This work contributes to the nascent research field

of non-invasive ICP monitoring. It provides insights derived from the largest, clinically

collected PPG dataset labelled with invasive ICP data, to-date. The research was predi-

cated upon the data collected by the nICP sensor. The nICP sensor’s design was based

upon the results of a Monte-Carlo simulation of light-tissue interaction which indicated

certain photodiode-photodetector separations in which NIR light penetrated deeper into

the head tissues allowing for the collection of data from the white matter of the brain

[101]. The subsequent sensor shown in Figure 2.8 consisted of two photodiodes “prox-

imal” and “distal” positioned at 10 mm and 35 mm from the light source representing

short-distance and long-distance data respectively. It was hypothesised that the data

collected from proximal photodiode contained extracerebral information and the distal

contained both extracerebral and cerebral information. This research focused upon the

810nm wavelength data as it represents the isosbestic point allowing for an optical signal

independent of blood oxygenation, eliminating it as a confounding factor [103].

Using the nICP sensor a data collection was performed over a 78-week period from

40 patients from the ITU of the Royal London Hospital who had received a severe TBI

diagnosis. Data from the nICP sensor and from a gold standard, invasive ICP monitor

was collected synchronously for an average of approximately 42 hours for each patient.
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There were significant challenges associated with the data collected. Firstly, although it

was assumed that the invasive and non-invasive data began collection synchronously in

many cases one data source was of a different size to the other or the data of patients

were made up of multiple different recordings which could have been caused by the need

to remove sensors for routine scans or interventions. When loading and structuring the

raw data files, assumption had to be made in order to deal with these discrepancies.

Once the raw NIR-PPG and ICP data had been loaded it became apparent that there

was a significant amount of noise and hypothesised measurement errors present within

both signals. There were a number of patients which had either physiologically implausible

ICP values or clear measurement errors, as depicted by Figures 3.4 and 3.3. In order to

handle this, data from patient’s with hypothesised measurement error were excluded. The

remaining data was handle through the definition of physiologically plausible bounds of

ICP. Any data indexes which fell below or above these bounds were identified and removed

from both the reference ICP data and the NIR-PPG data. On investigation of the NIR-

PPG there was a significant presence of noise within the data as shown in Figure 3.6. This

noise served as a major challenge which underpinned this research. The noise within the

data was primarily characterised by high amplitudinal variance which is often associated

with motion artifact and flat lines which are associated with photodetector saturation.

In order to minimise the presence of noise within the data without onerously having to

label large quantities of the dataset in order to develop machine learning models a novel,

statistical PPG denoising algorithm was developed and applied to the dataset named the

Envelope PPG Denoising Algorithm. The EPDA was evaluated and statistically shown

to reduce the noise present within the signal across four metrics.

Following the denoising and the removal of patient’s with missing or erroneous data the

dataset was comprised of approximately 38,544.56 minutes or 642.41 hours of data from 27

patients. Feature extraction was then performed using this data. The data of each patient

was segmented into 1 minute windows of data. From each one minute window of data 141

time-series and morphological features were extracted from the original signal as well as

the first and second derivatives. Considering that the derived NIR-PPG features underpin

this research and given the significant presence of noise within the signal three decisions

were made in an effort to maximise the reliability of the extracted features: Firstly a

z-score outlier detection algorithm was developed using three pulse characteristics. This

was done in an effort to identify and ignore possible residual anomalous pulses which may

107



CHAPTER 8

be present within a window of data. Secondly, all extracted features were predicated upon

three fiducial points, the pulse onset, peak and end. This decision was made due to the

lack of a reliable diacrotic notch across patients and the presence of noise in the data.

It was assumed focusing the detection and subsequent feature extraction around three

“easier” to detect fiducial points would yield more reliable features. Finally, the first and

second derivatives were calculated using a Savitzky-Golay filter, this again was done due

to the noise within the data. The filter’s polynomial smoothing affect was hypothesised

to result in more efficacious fiducial point identification and subsequently more robust

feature extraction, the Figures 4.3 and 4.4 depict the pulse detection on the calculated

first and second derivatives of a window of data.

Once the features had been extracted from both the proximal and distal NIR-PPG

data, the three central hypotheses of the research could be tested. These included: (i)

if alterations in PPG features correlate with changes in ICP levels, (ii) if the association

between PPG features and variations in ICP levels is stronger in long-distance NIR-PPG

data compared to short-distance NIR-PPG data, and (iii) if PPG-derived features can

accurately estimate ICP non-invasively.

In order to test the first two hypotheses a statistical analysis was conducted. In order

to increase the robustness of the statistical analysis, a data selection protocol was de-

fined. A graphical user interface was developed as shown in Figure 5.1 which enabled the

classification of “good” and “bad” windows of data for each patient. For each patient, 6

hours of data was classified as good or the end of a specific patient’s data was reached

before stopping. This meant that the data of which the statistical analysis was based

upon was of “good” quality meaning the subsequent extracted features should also be

more reliable. Given the slow changing nature of ICP it was assumed that 6 hours of

data represented a reasonable representative sample for each patient. The findings of the

correlation and group analysis conducted using Spearman correlation and Kruskal-Wallis

affirmed the first two hypotheses. The results demonstrated significant correlations be-

tween the features and ICP levels. Specifically, 77.30% and 79.43% of features significantly

correlated (p < 0.05) with the label in distal and proximal datasets, respectively. The

Kruskal-Wallis analysis revealed that 81.56% and 75.89% of features changed significantly

(p < 0.05) across ICP groups. Although there is a non-significant difference in the number

of significantly correlated features (2.75%) and significant differences across groups 7.21%

between the proximal and distal datasets, the correlation analysis shows that the absolute
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average correlation coefficient of all features and significantly correlated features in the

distal dataset is 25.76% and 24.24% higher, respectively, than in the proximal dataset.

Furthermore the findings indicate that many of the most significant changes in features

affected the pulse width. It is hypothesised that the recorded changes in pulse width may

reflect alterations in blood flow and vessel elasticity. As ICP increases, reducing CPP

below the critical threshold and consequently diminishing CBF, less blood volume per

cardiac cycle reaches the brain. A narrower pulse width may signify a shorter duration

of blood volume change, potentially associated with decreased compliance or lower CBF.

The majority of the most significant feature changes were observed in the first derivative,

particularly within the distal dataset, which is believed to encompass “cerebral” informa-

tion. The first derivative, representing flow velocity. An increase in ICP can compress

cerebral vessels, thereby diminishing CBF. This constriction not only reduces the volume

of blood that can flow through these vessels but may also affect the velocity of blood

flow, likely captured by changes in the first derivative of the PPG signal indicating that

understanding these changes in features related to blood flow velocity may be significant

in describing ICP dynamics via PPG data.

In order to test the final hypothesis if NIR-PPG derived features can be used to es-

timate ICP non-invasively, five classical machine learning models were developed. To

perform feature selection, model optimisation and evaluation, both the proximal and dis-

tal NIR-PPG datasets were partitioned by patient in a ratio 70:30, as shown in Figure 7.1

creating an evaluation and optimisation dataset for both the proximal and distal data.

Feature selection was conducted for both the proximal and distal optimisation datasets

using RFECV employing LOPOCV and 10 fold cross validation. The feature selection,

hyperparameter optimisation and evaluation were conducted using LOPOCV to optimise

and evaluate the model’s for robustness to inter-patient variability. By mirroring a real-

world scenario where the model must make predictions on new patient data. Following

the feature selection the models hyperparameters’ were optimised using Bayesian opti-

misation. Following this each model was evaluated separately on both the proximal and

distal data. The lowest MAE and RMSE were obtained using features derived from long-

distance data. A RF model achieved the lowest RMSE and MAE of 5.030 and 4.067 mmHg

respectively. The RF exhibited wide limits of agreement with the reference method. This

was reflected in the 95% Bland-Altman limits of agreement, ranging from 8.782 to -8.487

mmHg. It is hypothesised that the ICP estimation is primarily challenged by the noise

109



CHAPTER 8

within the data, inter-patient data heterogeneity and ICP distribution. Despite this the

findings present novel insights. This research area is nascent and evolving and future

work is required. The outcomes of this research provide a promising foundation for future

research within this domain.

8.1.2 Comparison with other related works

The field of ICP monitoring using non-invasive physiological data is in its early stages and

is developing. The initial pilot study in 1997 demonstrated the potential of NIRS data as

a viable method for assessing elevated ICP. Subsequent studies exploring the link between

PPG derived features and ICP have been conducted (with the exception of a small and

opaque study) with the use of non-human primates [93]–[95], [152]. Notably, this body

of research, to the best of the author’s knowledge has focused almost exclusively on a

limited set of morphological and time-series features derived directly from the original

signal, without the analysis or incorporation of features from the derivative of the signal.

Additionally, these studies have relied on continuous, invasively collected ABP derived

features, which has consistently been shown to be the strongest predictive features across

all the studies which used it [94], [95]. The majority of predictive models developed in this

domain have utilised the RF algorithm [94], [95], achieving promising outcomes, such as

a R2 of 0.937 and a RMSE of 2.703 mmHg [95]. Despite this and whilst appreciating the

small sample size of these studies the methodological approach of using random sampling

for cross-validation raise concerns about the generalisability of these findings. Random

cross-validation can introduce a positive bias by including data from the same subjects

in both training and testing datasets, potentially inflating the performance metrics.

Direct comparisons with related literature are challenging due to differences in data

sources and evaluation methodologies. This research distinguishes itself by leveraging the

largest clinically collected dataset and the most extensive set of extracted PPG features

to date for this application. It also marks a significant difference from previous studies

by exclusively utilising NIR-PPG derived features and implementing a more rigorous

LOPOCV approach for model evaluation. It is the first to perform a comprehensive

statistical analysis explicitly examining the relationship between PPG features and ICP

and evaluating a broad group of machine learning models for this predictive task.
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8.2 Strengths and limitations

8.2.1 Strengths

• The dataset used in this study is the largest clinically collected dataset of its kind

to-date. NIR-PPG signals labelled with invasive ICP data were collected from

40 patients. When denoised and refined the dataset consisted of approximately

38,000.00 minutes or 640 hours of data from 27 patients.

• A novel, effective and efficient PPG denoising algorithm was developed. When

evaluated on a subset of the NIR-PPG data it demonstrated its efficacy by yielding

significant differences (p < 0.05) for all evaluation metrics before and after denoising.

• A significant number of features (141) were extracted from the original signal and

its first and second derivatives. The feature extraction was conducted from both

short-distance (proximal) and long-distance (distal) datasets.

• Using both short and long distance NIR-PPG derived features a robust investigation

of the dynamic relationship between the derived features and ICP was conducted.

• A robust feature selection methodology was carried out and the largest group of

machine learning models to-date were implemented and evaluated, for this predictive

task.

8.2.2 Limitations

• A significant challenge of this research was the noise and measurement errors present

within the NIR-PPG and ICP data. The presence of noise within the NIR-PPG led

to challenges in maximising efficacious detection of fiducial points from which the

subsequent features were based upon and which drove this research. Although a

substantial number of features were extracted, a higher quality signal could enable

the detection and extraction of more features such as feature derived from the

diacrotic notch. This was not done within this research due to data integrity and

inter-patient variability and in an attempt to make feature extraction more reliable.

Additionally, although reasonable bounds were defined to remove erroneous ICP

data, more reliable ICP data and/or narrower bounds for ICP removal could lead

to better ICP estimation results.
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• The developed and implemented denoising algorithm was effective at removing noise

present across the signal which significantly aided the preprocessing of the data. De-

spite this, the algorithm was not focused on pulse level quality assessment. A pulse

level anomaly detection was implemented at the time of feature extraction, which

although effective was predicated upon the characteristics of the pulses within each

window. This anomalous pulse detection approach therefore is limited in moments

where poor quality pulses make up the entire window.

• The developed pulse detection algorithm, tailored specifically for this dataset, was

qualitatively assessed through visual inspection of the detection on NIR-PPG data

during its development rather than through quantitative evaluation. We acknowl-

edge that the absence of a quantitative assessment may lead to potential errors

in pulse detection and subsequent feature extraction. However, we are reasonably

assured of the accuracy of the extracted features for the included data. This assur-

ance stems from the fact that the pulse detection algorithm’s results were visually

inspected and verified during the data selection process outlined within the method-

ology of the statistical analysis discussed in Chapter 8. Thus, despite the potential

limitations, we believe the qualitative assessment provided a satisfactory verification

of the algorithm’s performance for our purposes.

• The implemented classical machine learning models do not inherently consider the

temporal structure of the data. They generally treat each instance of data as in-

dependent, without accounting for potential temporal dependencies between ob-

servations. As a result, they might fail to capture trends, seasonality, and other

time-related dynamics which may prove important for the estimation of ICP.

Using a group holdout approach for feature selection and model optimisation with a

subset of the entire dataset presents limitations. The assumption that the optimisa-

tion subset is representative of the entire dataset may not hold true, increasing the

risk of overfitting. This method can result in the selection of features and hyper-

parameters that are overly specific to the characteristics of the subset, potentially

limiting the model’s ability to generalise to new, unseen data.
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8.3 Conclusion and future work

An important area for future research involves the collection of a new and more compre-

hensive dataset. The current dataset, as described in Section 3.1, was limited by being a

single-center collection and included data from 27 patients after data exclusion. This rela-

tively small sample size and the single-arm nature of the study poses possible limitations.

A small sample size and single-center study may limit the generalisability and reliability

of the findings. Factors such as patient demographics and treatment protocols can vary

significantly across different regions and centers. Data collected from a smaller sample

from a single center might not capture the variability seen in a more diverse, multi-center

study.

Additionally, the dataset suffered from considerable noise, both in the non-invasive

NIR-PPG and the invasive ICP data. An attempt to mitigate the noise present within

the data was taken through the implementation of a novel PPG denoising algorithm, the

“EPDA” described in Section 3.2.1 and by identifying and removing invasive ICP values

based on physiologically feasible bounds.

Moreover, the dataset lacked stratified demographic and medical information, such as

medication usage and skull thickness which could potentially serve as important features

for non-invasive ICP estimation. Due to effective clinician intervention another limitation

of the dataset was the scarcity of elevated and valuable ICP data above the clinically

significant threshold of circa 20 mmHg.

To address these challenges, a larger and multi-center data collection would be useful

to increase the sample size and diversity. A focus should be placed on collecting more data

above the 20 mmHg threshold to possibly improve the robustness of the ICP estimation

models and statistical analysis. A revised data collection protocol, which may involve

shorter but more supervised collection periods, could help ensure higher data quality.

Furthermore, potential modifications to the non-invasive NIR-PPG sensor could enhance

the quality of the NIR-PPG signals collected.

Another important direction for future research involves the quantitative evaluation

of the PPG peak detection algorithm. The developed pulse detection algorithm, specifi-

cally tailored for this dataset, was assessed qualitatively through visual inspection of the

detection on NIR-PPG data during its development, rather than through a quantitative

evaluation. This qualitative approach, while useful, may not fully capture the algorithm’s
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accuracy and robustness.

The absence of a quantitative assessment introduces potential limitations, as it may

lead to errors in pulse detection and subsequent feature extraction. Such errors could

affect the reliability of the findings and the overall performance of the non-invasive ICP

estimation model. While reasonably assured of the accuracy of the extracted features

owing to the visual inspection and verification of the pulse detection algorithm during the

data selection process, as outlined in the methodology of the statistical analysis discussed

in Chapter 8, this assurance is limited by the subjective nature of visual inspection.

To enhance the reliability and validity of the pulse detection algorithm, future work

should focus on developing and implementing a quantitative evaluation framework. This

framework could use a labelled version or subset of the dataset and assess how many pulses

are correctly identified. Additionally, validation with other datasets and comparison with

existing pulse detection algorithms could provide further insights into its accuracy and

generalisability.

Enhancing the machine learning and feature selection process represents another sig-

nificant area for future work. The classical machine learning models implemented and

evaluated in this research do not inherently consider the temporal structure of the data,

treating each data instance as independent without accounting for potential temporal

dependencies between observations. This limitation may result in the failure to capture

trends, seasonality, and other time-related dynamics, which are potentially important

for accurate ICP estimation. To address these limitations, future research could explore

the implementation and evaluation of time series-specific models, such as recurrent neu-

ral networks (RNNs) or long short-term memory networks (LSTMs) designed to handle

temporal dependencies and can more effectively model the sequential nature of the data.

The exclusive use of the optimisation dataset for feature selection and model hyper-

parameter optimisation using a group holdout approach has its limitations. Although

the data constituting the optimisation dataset was deemed a reasonably representative

sample, it may not capture the full diversity of the entire dataset. Subsequently the se-

lected features and hyperparameters might overfit to the optimisation dataset, potentially

limiting the generalisability of the model when applied to new, unseen data.

Nested cross-validation offers a more rigorous and unbiased method for model evalu-

ation and optimisation. This approach involves an inner loop for hyperparameter tuning

and feature selection and an outer loop for model evaluation. Each fold in the outer loop
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uses the inner loop to find the best model configuration, ensuring that the evaluation

process does not influence the model optimisation. By performing feature selection and

hyperparameter tuning within the inner loop, nested cross-validation reduces the risk of

overfitting to a specific subset of the data perhaps enhancing the model’s generalisability.

Despite its computational expense implementing nested cross-validation in future re-

search may lead to the development of more robust, generalisable models for ICP estima-

tion.

TBI represents a significant global health concern with an estimated annual incidence

ranging between 50 to 69 million cases worldwide. The burden of TBI disproportionately

affects LMICs, where incidences are reported to be significantly higher than in HICs. As

regions with the lowest resources bear the highest disease burden its seems reasonable to

suggest that the incidence of TBI is also under-reported. The main monitoring modality

for severe TBI is ICP monitoring. The current gold standard is invasive, high-risk, requires

a high level of expertise, is expensive and only accessible within a hospital setting. In

addition to this the overwhelming majority of TBI cases are mild, the implications of

which can be serious and long-term. Current gold standard monitoring is only used in

severe cases, the diagnosis of mild TBI remains challenging due to its subjective nature

and the reliance on self-reported symptoms. Currently there is no existing, non-invasive

monitoring approach which is accurate and continuous.

There is a substantial and pressing need for the development of a continuous nonin-

vasive, easy-to-use, inexpensive and efficacious monitoring device. Such a device would

reduce the barrier to entry for ICP monitoring across all severities, providing immediate

diagnosis of elevated ICP whilst effectively serving the currently undeserved majority of

TBI cases. PPG signals are non-invasive and cost-effective. The wider body of research

investigating the use of PPG signals for ICP monitoring is emerging and expanding. This

work provides a credible and encouraging foundation for further research in this domain.



Appendix
Features

AUC

Systolic AUC

Diastolic AUC

Ratio between the systolic and diastolic AUC

Rise time (samples between the pulse onset and peak)

Decay time (samples between the pulse peak and end)

Ratio between the rise time and decay time

Number of beats

Inter-beat interval

Standard deviation of the inter-beat interval

Prominence

Upslope (slope between pulse onset to peak)

Downslope (slope between peak to pulse end)

Onset-end slope (slope between pulse onset and end)

Ratio between the upslope and downslope

Ratio between the pulse length and height

Start datum area

(area between a straight line between the pulse onset

and peak and pulse data between those points)

End datum area

(area between a straight line between the pulse peak

and end and pulse data between those points)

Ratio between the start datum area and end datum area

Max start datum difference

(maximum element-wise difference between a straight line between

the pulse onset and peak and pulse data between those points)

Max end datum difference

(maximum element-wise difference between a straight line between

the pulse peak and end and pulse data between those points)

The median of the element-wise difference between a straight line between

the pulse onset and peak and pulse data between those points

The median of the element-wise difference between a straight line between

the pulse peak and end and pulse data between those points

Pulse width at 10% of the pulse prominence (in samples)

Pulse width at 25% of the pulse prominence (in samples)

Pulse width at 50% of the pulse prominence (in samples)

Pulse width at 75% of the pulse prominence (in samples)

Pulse width at 100% of the pulse prominence (in samples)

Systolic width at 10% of the pulse prominence (in samples)

Systolic width at 25% of the pulse prominence (in samples)

Systolic width at 50% of the pulse prominence (in samples)

Systolic width at 75% of the pulse prominence (in samples)

Systolic width at 100% of the pulse prominence (in samples)

Diastolic width at 10% of the pulse prominence (in samples)

Diastolic width at 25% of the pulse prominence (in samples)

Diastolic width at 50% of the pulse prominence (in samples)

Diastolic width at 75% of the pulse prominence (in samples)

Diastolic width at 100% of the pulse prominence (in samples)

Ratio between the diastolic and systolic pulse width at 10% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 25% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 50% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 75% of the pulse prominence

Ratio between the diastolic and systolic pulse width at 100% of the pulse prominence

Variance of the pulse data

Skew of the pulse data

Kurtosis of the pulse data

Zero-crossing rate of the pulse data

Table A1: Table containing the list of features extracted from the original, first derivative and
second derivative of the signal.
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