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Abstract

The retina confers upon us the gift of vision, enabling us to perceive the world in a manner unparalleled by any other tissue.
Experimental and clinical studies have provided great insight into the physiology and biochemistry of the retina; however, there
are questions which cannot be answered using these methods alone. Mathematical and computational techniques can provide
complementary insight into this inherently complex and nonlinear system. They allow us to characterise and predict the behaviour
of the retina, as well as to test hypotheses which are experimentally intractable. In this review, we survey some of the key theoretical
models of the retina in the healthy, developmental and diseased states. The main insights derived from each of these modelling
studies are highlighted, as are model predictions which have yet to be tested, and data which need to be gathered to inform future
modelling work. Possible directions for future research are also discussed.

Whilst the present modelling studies have achieved great success in unravelling the workings of the retina, they have yet
to achieve their full potential. For this to happen, greater involvement with the modelling community is required, and stronger
collaborations forged between experimentalists, clinicians and theoreticians. It is hoped that, in addition to bringing the fruits
of current modelling studies to the attention of the ophthalmological community, this review will encourage many such future
collaborations.
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1. Introduction

The retina is a complex and highly structured tissue. Cover-
ing the inner surface of the back of the eye, it captures incident
light, generating electrochemical signals, which, after some ini-
tial processing, are transmitted to the brain via the optic nerve,
giving rise to visual perception. As such, it is arguably the most
important means by which we gain information about the world
around us.

The last two decades have seen a rapid increase in the use
of mathematical and computational modelling techniques in the
biological sciences, due, in part, to an increase in computational
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resources. These methods have been applied to a plethora of
systems, across a range of spatial and temporal scales, from the
ecological, through to the molecular scale and from the evo-
lutionary timescale to the rapid firing of neurons (Keener and
Sneyd, 2009a,b; Murray, 2002, 2003). As a consequence, a
wealth of insights have been generated that would have been
difficult, and in many cases impossible, to achieve through the
use of experimental or diagnostic techniques alone.

Table 1: Table of nomenclature. Abbreviations of mathematical and biological
terms used within the text are defined.

Mathematical Terms
Term Definition
ODE Ordinary Differential Equation
PDE Partial Differential Equation
1/2/3D One-/Two-/Three-Dimensional

Biological Terms
Term Definition
ADP Adenosine Diphosphate
AMD Age-related Macular Degeneration
ATP Adenosine Triphosphate
BM Bruch’s Membrane
CC Choriocapillaris
CNV Choroidal Neovascularisation
DA Dark Adaptation
E • Embryonic day •
ILM Inner Limiting Membrane
IPL Inner Plexiform Layer
IS (Photoreceptor) Inner Segment
LA Light Adaptation
MMP Matrix Metalloproteinases
MSS Mutant Steady-State
Ngb Neuroglobin
OPL Outer Plexiform Layer
OS (Photoreceptor) Outer Segment
P • Post-natal day •
PDGF-A Platelet-Derived Growth Factor A
POS Photoreceptor Outer Segment
RdCVF Rod-derived Cone Viability Factor
RP Retinitis Pigmentosa
RPE Retinal Pigment Epithelium
RVP Retinal Vascular Plexus
VEGF(-A) Vascular Endothelial Growth

Factor (A)

The revolution in mathematical and computational biology
has not left eye and retinal research untouched, with a host
of models exploring the biomechanics of the eye (Burd and
Regueiro, 2015; Ethier et al., 2004; Grytz and Meschke, 2010;
Grytz et al., 2011; Ruberti et al., 2011), glaucoma (Band et al.,
2009; Burgoyne et al., 2005; Harris et al., 2013; Sigal and Ross Ethier,
2009), flow within the aqueous and vitreous humours (Siggers
and Ethier, 2012; Stewart et al., 2014) and the dynamics of the
tear film (Braun, 2012; Braun et al., 2015; King-Smith et al.,

2008). A number of models of the retina have also been de-
veloped, though modelling in this area has been less extensive
than that devoted to other aspects of the eye. The purpose of
this review is to highlight insights that have been gained from
theoretical studies of the retina and to stimulate further mod-
elling work and theoretical/experimental collaborations in this
area.

Whilst experimental and clinical studies can reveal many of
the physiological and biochemical details of the retina, there are
limits to the questions that can be answered using these tech-
niques alone. Mathematical and computational modelling al-
lows us to extend these horizons in at least three ways. Firstly,
it allows us to understand and predict the behaviour of systems
which involve nonlinearities, such as those generated by feed-
back mechanisms in biochemical reaction networks, or those
which arise in the mechanics of fluid flow (see Sections 3.3 and
5.1.1 for examples). The sensitivity of the system to alterations
in each component can be tested, and the range of qualitative
behaviours that it may exhibit, together with the conditions un-
der which they are realised, may be determined. Thus, by plac-
ing a problem in a modelling framework, we gain insight into
why a system behaves as it does, when it does. Secondly, mod-
elling allows us to isolate mechanisms, or manipulate a system,
in ways that may not be possible experimentally. An example
of this is discussed in Section 5.1.3, where oxygen toxicity is
assumed to be the only cause of photoreceptor death in retinitis
pigmentosa. Lastly, modelling allows examination of a wider
range of scenarios than would be possible experimentally, since
in silico (computer simulation) studies are not subject to the
same financial and time constraints as those performed in vivo
or in vitro. This is seen clearly in Section 5.2, where the ef-
fects of a range of inter-cell adhesivities on the progression of
choroidal neovascularisation are investigated.

How, then, can mathematical and computational models be
integrated with experimental and clinical studies? In Figure 1,
we sketch out the basic contours of this relationship. We begin
with the system to be modelled and all that is known about it.
Upon this foundation, and guided by a set of well-defined ques-
tions, we build our theoretical model. In so doing, we make
a series of simplifying assumptions, including only those fea-
tures of the system which are thought to be significant and of
relevance to the questions under consideration. The nature of
the system and the questions we bring to it will also influence
the type of model we develop (see Section 2 for a discussion
of model types). Having formulated our model, we use math-
ematical analysis and/or computational simulations to derive
solutions. Comparing these solutions with our current knowl-
edge, we find that the model is either successful or unsuccess-
ful in replicating its known behaviours. If unsuccessful, the
model is revised and fresh solutions generated; if successful,
the model is then used to make predictions that lie outside our
knowledge domain, in an attempt to answer our earlier ques-
tions. These predictions may then be tested experimentally. If
the experiments match with model predictions then we may
have some confidence that we have answered our questions,
whilst if they do not, then we must revise our model and com-
pare it once more with known system behaviour, returning to
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an earlier point in the modelling/experiment cycle. Insight is
gained at two main stages during this process. Firstly, insight is
gained at the benchmarking stage (see Figure 1), which reveals
whether or not the mechanisms included in the model are suffi-
cient to replicate known behaviour. Secondly, insight is gained
when experimental/clinical studies confirm model predictions
(see Figure 1).

The above description does not perfectly represent the ap-
proach taken in all of the modelling studies presented below,
but it serves as a basic framework. Depending upon what data
are available, it may be difficult to benchmark the model and
many modelling predictions are left to gather dust without ex-
perimental confirmation. It is important to note that it is unhelp-
ful to simply characterise models as either right or wrong, since
any model is a simplified representation of reality and hence al-
ways, in some sense, wrong. A more fitting way of classifying
them would be as useful or useless. A model is useful if it repli-
cates current data enabling us to make predictions, or if it fails
to replicate current data, but in such a way as helps us to iden-
tify missing or unwarranted features of the model. It is useless
if it fails in both of these respects.

The process of constructing a mathematical model is itself
informative, as it forces us to think about the biological system
in a new way, formalising and consolidating the questions being
addressed. Whilst the primary motivation for modelling arises
from questions raised by experimentalists, it is often not until
this stage, or those which follow, that many of the questions that
we wish to pose to the model occur to us; insights emerging
unexpectedly and unlooked for, as a result of this new way of
thinking.

The remainder of this paper is structured as follows. In Sec-
tion 2, we review some of the mathematical and computational
techniques used in the modelling studies discussed in this pa-
per. In Sections 3–5, we examine a set of retinal models from
across a range of healthy, developmental and diseased states. In
each case, we describe the problem, the model and the results
generated, comparing them with experimental and clinical data.
Testable model predictions are highlighted, as are areas where
more experimental data are needed to inform future modelling
studies. Lastly, in Section 6, we summarise the state of the field
and suggest directions for future research. See Table 1 for defi-
nitions of the abbreviations used within the text.

2. Mathematical and Computational Modelling

In seeking to mathematically describe a biological system,
we must choose between a range of model types. Whilst there
may be no unique best model, our selection will be guided by
the form of the system and the questions which we aim to ad-
dress. Each type of model has advantages and disadvantages
and will involve making simplifying assumptions. Table 2 pro-
vides an overview of the available options. In what follows, we
summarise some key model types. This is not intended as a
comprehensive overview; rather, it is tailored to the modelling
studies that are presented in the remainder of this paper.

Phenomenological models are designed simply to fit with
experimental data, and neglect the underlying mechanisms that

gave rise to them, whereas mechanistic models are designed to
describe the underlying processes, such that, if they are accu-
rate, behaviour consistent with the data will emerge naturally
from the system. (In practice, no model is fully mechanistic,
its components reducing at some level to the phenomenolog-
ical.) For example, suppose that we were modelling the pro-
duction of a chemical by a cell population, where the quantity
of the chemical increases linearly over time. A phenomenolog-
ical model might simply fit a straight line to the data, giving
y = at + b, where y is the chemical concentration, t is time,
and a and b are constants which are chosen to give a good fit to
the data. By comparison, a mechanistic model might describe
the various sub-cellular mechanisms which give rise to the pro-
duction of the chemical, such that, if the model is accurate, it
replicates the linear dynamics. The models presented below are
all mechanistic.

As the title of this paper indicates, we distinguish between
mathematical and computational models, though we note that
this is not a sharp distinction, there being areas of overlap be-
tween the two model types. Broadly speaking, computational
models require simulation to reveal their behaviours, whereas
the behaviour of mathematical models can be revealed by the
application of analytical techniques (see the discussion of ana-
lytical techniques below). Typically, mathematical models com-
prise only a few equations (the trophic factor model in Sec-
tion 5.1.1 contains no more than 4 governing equations), whilst
computational models involve either a large system of equa-
tions and/or an algorithmic component (see, for example, the
choroidal neovascularisation model in Section 5.2, where the
movement of cells is described algorithmically). Thus, compu-
tational models tend to be more comprehensive, whilst mathe-
matical models allow for a more intuitive understanding of the
system.

If a system is homogeneous or spatial variation is unim-
portant, then a well-mixed, spatially-independent model may
be used (this is the case in the trophic factor model in Sec-
tion 5.1.1, where the spatial distribution of rods and cones is
ignored), the focus being the temporal evolution of the system.
If, however, spatial structure is important, then either a com-
partmental or spatial model is required. Compartmental mod-
els decompose the system into a set of spatially homogeneous
compartments, with terms to describe how material may be ex-
changed between them (for instance, the toxic substance model
in Section 5.1.2 identifies each photoreceptor with an individ-
ual compartment, governed by its own equation), whilst fully-
spatial models allow for spatial heterogeneity within the same
compartment (see, for example, the models of retinal oxygen
distribution in Section 3.1, where the oxygen concentration is
allowed to vary across each model layer).

If we are interested simply in the resting state of a system,
then a steady-state model (in which the system does not change
with respect to time) can be used, whereas, if the dynamic be-
haviour of the system is important, then a time-dependent model
is needed (where the system evolves over time). For example,
the oxygen distribution models in Section 3.1 are of the steady-
state form, oxygen profiles being assumed to change very lit-
tle under normal conditions, whilst the photoreceptor models
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Figure 1: The experiment/modelling cycle. Mathematical and computational models are derived to answer questions arising from what is known about the biological
system. Model solutions are then compared with known data and refinements to the model are made where necessary. Once successfully benchmarked, the model
is used to make predictions which may then be tested experimentally. Further model refinements may be necessary at this stage. Agreement between modelling
predictions and experimental results gives us confidence that we have gained reliable new knowledge about the system.

in Section 3.4 are time-dependent, so that they can capture the
time variation in outer segment length.

If the objects being modelled (e.g. cells or molecules) are
numerous and small in relation to the spatial domain in which
the model is being solved, then cell populations may be treated
as continuous densities and chemicals as concentrations (see,
for example, the oxygen toxicity models in Section 5.1.3, where
photoreceptors are treated as densities and oxygen as concen-
tration). Continuum models may be analytically tractable, al-
lowing us to derive analytical solutions (see below) and hence
predict how a system will behave under different conditions.
If the above assumptions do not hold, then a discrete model
is appropriate. Discrete models may incorporate more details
than continuous models, but are more computationally expen-
sive, with computational costs increasing dramatically as the
number of objects is increased. For example, the retinal an-
giogenesis model in Section 4.1 treats blood vessels as discrete
entities, allowing it to capture their intricate spatial structure.

Lastly, a distinction may be made between deterministic
and stochastic models. Deterministic model simulations run
under the same conditions always produce the same solution
(see, for example, the choriocapillaris blood flow models in
Section 3.3), whilst stochastic models incorporate a probabilis-
tic element, capturing the ‘noise’ of a biological system, as a
result of which, each simulation is different (an example be-
ing the stochastic apoptosis of photoreceptors in the toxic fac-
tor model in Section 5.1.2, see de Vries et al. 2006 for a de-

scription of stochastic techniques). In recent years, continuous-
deterministic and discrete-stochastic models have been com-
bined in what are known as hybrid models (as in the retinal
angiogenesis model in Section 4.1).

Continuous-deterministic models are typically described in
terms of ordinary differential equations (ODEs) and partial dif-
ferential equations (PDEs). ODEs are used in well-mixed and
compartmental models, where they describe the evolution of the
system with time (e.g. Sections 5.1.1 and 5.1.2), and are also
used in one-dimensional (1D) steady-state models (e.g. Section
3.1). PDEs are used for dynamic spatial models in 1D, 2D or
3D and for steady-state models in 2D or 3D (e.g. Section 5.1.3).

In defining a problem, a number of factors must be taken
into consideration. Firstly, where the model is spatial, we must
describe the (1D/2D/3D) geometry of the domain (region in
space) on which the problem is to be solved. Governing equa-
tions must be imposed in the domain, and combined with ini-
tial conditions (to describe the state of the system at time t = 0)
and boundary conditions (to describe the behaviour of the prob-
lem at the domain boundaries). Lastly, values must be assigned
to the model parameters, using experimentally measured data
where possible.

Having defined a model, we may investigate its behaviour.
Typically, the models which arise from biological problems do
not admit explicit analytical solutions. That is, we cannot find
algebraic expressions for the dependent variables (e.g. cell den-
sity or chemical concentration) in terms of the independent vari-
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Table 2: Model types. Contrasting types of models are described and their advantages and disadvantages noted.

Model Type Description/Assumptions Advantages Disadvantages
Phenomenological vs Designed to match the experimental data Close fit to data Little insight
Mechanistic Designed to capture the underlying processes Insight generated Loose fit to data

Mathematical vs Fully described by a set of mathematical Analytically tractable Lacks detail
equations and generally
Relatively simple not computationally

expensive
Computational Require simulation to reveal their behaviour Detailed Not analytically

Typically complex tractable and
often computationally
expensive

Well-mixed vs Spatial structure and effects are neglected More tractable Spatial effects neglected
Compartmental/Spatial Spatial distributions and compartmentalisation Spatial effects captured Less tractable

are accounted for

Steady-state vs The system does not vary in time More tractable Dynamics lost
Time-dependent The system may evolve over time Dynamics captured Less tractable

Continuous vs The system is continuous in space and time More analytically Details lost
tractable and generally
not computationally
expensive

Discrete The system moves between discrete states Many details captured Less analytically
in space and time tractable and

often computationally
expensive

Deterministic vs Simulations run under the same conditions Substantial analytical Does not account
produce the same solution insight for noise

Stochastic The model contains a probabilistic component Accounts for noise Little analytical
Simulations run under the same conditions insight
produce different solutions

ables (space and time) together with the model parameters. In-
stead, we must proceed in one or both of the following two
ways. Firstly, we may solve our equations numerically. For
ODE and PDE models, this may involve methods such as the
finite difference method (or method of lines) and the finite ele-
ment method, which involve discretizing our equations in space
and time (see Morton and Mayers, 2005; Süli and Mayers, 2003,
for details). Secondly, we may use analytical methods to sys-
tematically reduce the governing equations to a simpler form.
Commonly used analytical methods include asymptotic analy-
sis, which reduces the system to its dominant components, and
steady-state and bifurcation analyses, which allow us to deter-
mine the stability properties of the system i.e. whether the sys-
tem behaviour is insensitive to small perturbations, and how
such responses vary as parameters are altered (see Howison,
2005; Strogatz, 1994, for details). Often, a combination of
numerical and analytical techniques is used to provide a more
complete picture, consistent results giving an added degree of

confidence in the model and solution methods. Lastly, since the
parameter values in our models are frequently estimated and of-
ten subject to variability, sensitivity analyses may be performed
to determine the effect of parameter variation on model predic-
tions.

3. Health

3.1. Retinal Oxygen Distribution
The mammalian retina has a multilayered structure consist-

ing of numerous cell types (see Figure 2). The outer retina con-
tains two cellular layers: the retinal pigment epithelium (RPE)
and the light-detecting photoreceptors, which can be charac-
terised as either rods or cones, whilst the inner retina also con-
tains two cellular layers: a layer consisting of bipolar, horizon-
tal, amacrine and Müller cells, and the ganglion cell layer. The
inner layers are responsible for preprocessing of visual informa-
tion and its subsequent transmission to the brain, via the optic
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nerve and are separated from the vitreous humour by the inner
limiting membrane (ILM).

Figure 2: Diagram of the human retina. The retina is composed of four cellular
layers: the outer retina contains the retinal pigment epithelium and photorecep-
tor layers, whilst the inner retina contains bipolar/horizontal/amacrine/Müller
glial cell and ganglion cell layers. The diagram is oriented such that the top
lies outermost and the bottom innermost in the eye. R: rod photoreceptor. C:
cone photoreceptor. H: horizontal cell. B: bipolar cell. M: Müller glial cell. A:
amacrine cell. G: ganglion cell. Figure reproduced, with permission and modi-
fications, from Swaroop et al. (2010), where modifications are reproduced, with
permission, from Roberts et al. (2015).

The retina consumes oxygen at a higher rate than most other
tissues in the mammalian body (Anderson, 1968; Anderson and
Saltzman, 1964; Wangsa-Wirawan and Linsenmeier, 2003; Yu
and Cringle, 2001). To meet this need, it is equipped with an ex-
tensive vasculature. The outer retina is supplied mainly by the
choroid, which lies outward from the retina, separated from the
RPE by Bruch’s Membrane, whilst the inner retina is supplied
by retinal capillary layers, of which there are typically two, one
deep and the other superficial (though this number varies be-
tween regions, see Chan et al., 2012; Kur et al., 2012; Michael-
son, 1954; Pournaras et al., 2008; Snodderly et al., 1992; Tan
et al., 2012, for more details). The magnitude of oxygen supply
and demand render the retina vulnerable to both hypoxia (oxy-
gen deprivation) and hyperoxia (toxically high oxygen levels).
Therefore, it is of interest to understand how the retina is main-
tained in normoxia (favourable oxygen levels) in health, and
how and why the oxygen profile changes in disease states such
as vascular occlusive diseases, diabetic retinopathy, retinopathy
of prematurity and retinitis pigmentosa (Wangsa-Wirawan and
Linsenmeier, 2003).

Oxygen sensitive microelectrodes have been used to mea-
sure the partial pressure of oxygen across the width of the retina,
from the ILM to the choroid, in a variety of mammals and under
a range of conditions (see Wangsa-Wirawan and Linsenmeier,

2003; Yu and Cringle, 2001, 2005; Yu et al., 2013, for reviews).
Whilst it is helpful to determine the oxygen profile (compar-
isons between profiles providing insight even in the absence of
a model), the measurement does not, by itself, help us to un-
derstand why the profile takes the shape that it does. In order
to explain the profile, we must determine the rates of oxygen
supply and demand, and how these vary across the retina.

A number of mathematical models have been developed to
describe and explain retinal oxygen measurements. These mod-
els typically assume that the system is at steady-state (i.e. not
varying with time) and are posed on a one-dimensional Carte-
sian geometry, across the width of the retina, perpendicular to
the wall of the eye. Using a Cartesian geometry, rather than
a spherical geometry, is justified, since the width of the retina
is much smaller than the radius of curvature of the eye. It is
further typically assumed that the rate of oxygen consumption
is piecewise constant across the retina. As such, the retina is
decomposed into a series of n discrete intervals 0 < x < L1,
L1 < x < L2,. . . , Ln−1 < x < Ln (see Figure 3), where x is the
distance from the choriocapillaris (CC, the innermost layer of
the choroid). Within each interval, the rate of oxygen uptake is
given by a constant, Qi (for i = 1,. . .,n). Therefore, invoking
Fick’s second law, these models reduce to the following ODEs:

D
d2c
dx2 = Qi, for i = 1,. . . ,n, (1)

where c(x) is the oxygen concentration and D is the diffusivity
of oxygen. These equations may be solved to give

c(x) =
Qix2

2D
+ Aix + Bi, for i = 1,. . . ,n, (2)

where the constants of integration, Ai and Bi (i = 1,. . .,n), are
determined by imposing boundary conditions at all external and
internal boundaries. As such, the profiles are piecewise linear
(for Qi = 0) and quadratic (for Qi , 0), where Qi > 0 indicates
a net uptake and Qi < 0 a net supply of oxygen.

To date, most models have restricted their attention to the
avascular outer retina (Dollery et al., 1969; Haugh et al., 1990;
Linsenmeier, 1986). Since the inner retinas of most mammals
are penetrated by deep and superficial retinal capillary beds,
it is not possible, using these models, to distinguish between
oxygen supply and consumption in this region. Two resolutions
to this problem have typically been considered: using animals
with avascular inner retinas such as the rabbit or guinea pig
(Cringle et al., 1996; Stefánsson, 1988), or occluding the retinal
capillaries (Braun et al., 1995; Dollery et al., 1969). In this
way, the models can be extended to describe the entire retina,
and the oxygen consumption of each layer determined. Other
authors include the inner retina without occlusion, but cannot
distinguish between supply and uptake in those layers in which
capillaries are present (Cringle and Yu, 2002).

In many theoretical studies, the number of model layers is
varied to determine the minimum number required to obtain a
good fit to experimental data, the number being increased until
the improvement in fit is deemed insignificant, or the model be-
comes sensitive to noise in the data
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Figure 3: Roberts et al.’s retinal oxygen distribution model. Bottom: diagram to show the model geometry. Oxygen is supplied to the tissue via the CC and retinal
capillaries, whilst the net-flux of oxygen at x = L8 is zero. The concentration and flux of oxygen is continuous across all other boundaries. The flux of neuroglobin
(Ngb) between layers is zero, except at those boundaries marked with stars, across which the concentration and flux of Ngb is continuous. In the case where Ngb is
not included, layers 6 and 7 may be combined, reducing the model to 7 layers. Top: simulation results showing the oxygen distribution in the healthy human retina
under LA and DA in the absence of Ngb. The spatial extent of the model layers is depicted by the dashed vertical lines. The oxygen concentration in the outer retina
(layers 1–5) and layer 6 is significantly lower under DA, due to the increased rate of oxygen uptake by the photoreceptor ISs. CC: choriocapillaris, RPE: retinal
pigment epithelium, ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer, NFL:
nerve fibre layer. Figure reproduced, with permission and modifications, from Roberts et al. (2015).

(Braun et al., 1995; Haugh et al., 1990; Linsenmeier, 1986).
The earliest such models are those of Dollery et al. (1969) who
used single layer models for the outer retina and the whole
retina. Later, Linsenmeier (1986) and Stefánsson (1988) de-
veloped two layer models for the outer retina and for the inner
and outer retina respectively. This was followed by a three layer
model of the outer retina (Haugh et al., 1990), to which a fourth
layer was later added, to encompass the inner retina (Braun
et al., 1995). The most detailed model of this type to date is that
due to Cringle and Yu (2002), who decompose the retina into
eight layers. Model layers representing either entire cellular

layers (e.g. the ganglion cell layer), or subcompartments within
cellular layers (e.g. the photoreceptor inner segment layer).

Once the number of model layers has been fixed, the mod-
els may be fitted to the experimental profiles by varying the Lis
(except Ln, the total retinal width), Qis and oxygen concentra-
tions on the external boundaries upon which Dirichlet bound-
ary conditions (at which the oxygen concentration is held at a
fixed value) have been imposed. In this way, one can determine
the (net) oxygen consumption in each layer of the retina and
thereby explain why the profile takes the shape that it does.

This approach has led to some important discoveries. For
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example, it has been shown that the photoreceptor inner seg-
ments (ISs) are the dominant oxygen consumers in the outer
retina, consuming approximately twice as much oxygen under
dark adaptation (DA) as under light adaptation (LA) (Haugh
et al., 1990; Linsenmeier, 1986). Meanwhile, the outer region
of the inner plexiform layer (IPL) dominates consumption in
the inner retina, exceeding that of the photoreceptor ISs (Cringle
and Yu, 2002). Other discoveries include an explanation for
how inner retinal normoxia is maintained when the oxygen con-
tent of inspired air increases, via increased uptake by the outer
plexiform layer (OPL) and the outer region of the IPL, and how
outer retinal anoxia (complete oxygen depletion) is prevented
under DA in the rat, through increased oxygen delivery from the
CC and deep retinal capillary layer (Cringle and Yu, 2002; Yu
and Cringle, 2002). (See Wangsa-Wirawan and Linsenmeier,
2003; Yu and Cringle, 2001, 2005; Yu et al., 2013, for detailed
reviews.)

Whilst the above models have proved fruitful, they have two
key limitations. Firstly, they do not distinguish between uptake
and supply in the vascular inner retina, and, secondly, they do
not account for the variation in oxygen uptake with local oxy-
gen concentration, this effect becoming significant in those re-
gions where the oxygen profile approaches hypoxic levels.

Roberts et al. (2015) have developed a model which ad-
dresses these limitations (see Figure 3, where layers 6 and 7 are
combined in this case, reducing the model to 7 layers). Uptake
and supply are distinguished by accounting for the retinal capil-
lary layers through boundary conditions between model layers,
whilst the dependence of oxygen uptake upon the local oxygen
concentration is accounted for by replacing the constant uptake
term, Qi, with a Michaelis-Menten term, Qic/(γ + c), so that
equation (1) becomes

D
d2c
dx2 =

Qic
γ + c

, for i = 1,. . . ,7, (3)

where γ, the Michaelis constant, is the oxygen concentration
at which the oxygen consumption rate is half maximal (Qi/2).
The model describes the mid-peripheral human retina (with seven
layers required to account for the spatial variation in oxygen
consumption and the presence of capillary layers), though it
could be adapted to model any mammalian retina by adjusting
the number and arrangement of layers and the boundary condi-
tions between layers. As with the previous studies, this model
could also be fitted to experimental profiles. Unlike equation
(1), equation (3) does not have an analytical (algebraic) solu-
tion and so must be solved numerically.

Mathematical analysis of Roberts et al.’s model reveals that
the earlier piecewise linear and quadratic models (equations
(1) and (2)) are valid, provided the oxygen concentration does
not approach hypoxic levels, oxygen levels below 1 mmHg be-
ing considered hypoxic (McGuire and Secomb, 2001; Roberts
et al., 2015). Quadratic approximations are also valid in hy-
poxic, or near-hypoxic regions; however, the coefficients must
be modified as described in Roberts et al. (2015). This analysis
therefore places the previous models on a stronger theoretical
foundation, whilst also enabling them to be extended to account
for a broader range of scenarios.

Whilst Roberts et al.’s model resolves some of the weak-
nesses in previous models, it has limitations. In particular, by
placing capillary layers along the boundaries between model
layers, it assumes that the capillaries lie in a plane. Whilst
this is reasonable for the two retinal capillary layers in the mid-
periphery of the human retina and in the retinas of many other
mammals, some capillary layers, such as the additional layers
found in the peripapillary area of the human retina, are more
diffuse (Chan et al., 2012; Kur et al., 2012; Michaelson, 1954;
Pournaras et al., 2008; Snodderly et al., 1992; Tan et al., 2012).
In these cases, it would be more appropriate to incorporate a
distributed oxygen source term into those layers that contain
capillary beds. Provided the capillary surface area, permeabil-
ity and oxygen concentration could be measured, it would still
be possible to distinguish between uptake and supply.

In addition to considering oxygen levels within the retina,
modellers have investigated oxygen transport within the reti-
nal vasculature. In particular, Liu et al. (2009) constructed a
model of the flow distribution and oxygen transport within a
2D retinal arterial network. The central retinal arterial geome-
try was reconstructed from an image of the human fundus and
the peripheral circulation added using a structured tree model,
allowing a prediction for the oxygen distribution within a retinal
network. Further, Ganesan et al. (2010a,b) created a network
model of the murine retinal vasculature, incorporating all three
layers (the superficial layer, containing veins and arterioles, and
the intermediate and deep capillary networks). The veins and
arterioles of the superficial layer were modelled directly using
data from the image analysis of the murine retina, whilst the
capillary layers were represented using uniformly distributed
meshes. This model produced a number of interesting further
results; for instance, it was found that the blood haematocrit
(the ratio of red blood cell volume to total blood volume) is
smaller close to the optic disc and greater toward the periphery.

Aletti et al. (2015); Arciero et al. (2013); Guidoboni et al.
(2014) and others have constructed both compartmental and 3D
models to describe the autoregulation of blood flow within the
retinal circulation (see, Harris et al., 2013, for a review). These
models help to explain and predict the effects of elevated in-
traocular pressure (an important risk factor for glaucoma) upon
retinal hemodynamics, and upon the distribution of oxygen and
carbon dioxide within the retinal vascular network. (See also
David and Moore, 2008, for a review of models of perfusion
and autoregulation in the cerebral vasculature.)

The above models either consider the oxygen distribution
across the retina, including the vasculature merely as a source
term or boundary condition, or describe conditions within the
retinal vasculature, ignoring the oxygen distribution in the sur-
rounding tissue. An early paper by Friedland (1978) considered
a simple model of transmural transport of oxygen to the retina,
in which a single cylindrical capillary exchanges oxygen with
a surrounding cylindrical block of retinal tissue (see also, Seth,
2012). More recently, Causin et al. (2015) have produced a
more comprehensive model, which couples a description of the
blood flow mechanics within the vasculature to a model of the
oxygen distribution within the surrounding retinal tissue. The
vascular model consists of two components: the arterioles and
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venules are represented by networks of discrete fractal trees,
whilst the capillary plexuses are represented using a simplified
‘lumped’ description, consisting of sets of parallel pipes which
connect the terminal arterioles and venules (the choroid is not
modelled explicitly). This is coupled to a six layer model of
the retinal tissue, spanning the width of the retina, between the
choroid and the ILM, where the number of layers is chosen to
account for variations in oxygen demand between layers and
the locations of the capillary plexuses. The model can be used
to predict the effects of changes in blood pressure, blood rheol-
ogy, arterial permeability to oxygen and tissue oxygen demand
upon the oxygen distribution within blood vessels and retinal
tissue. As yet, no models have been developed to couple the
blood flow mechanics within the choroid with the oxygen dis-
tribution in the retinal tissue; however, Zouache et al.’s (2015)
model, described in Section 3.3, represents a promising step in
this direction.

The oxygen distribution within a 2D or 3D block of tissue
containing a realistic vascular network can be solved computa-
tionally, using either the finite difference or finite element meth-
ods. However, this is computationally expensive, since very
fine meshes (discretizations of the domain into smaller regions,
at the corners of which solutions are calculated) must be used
to capture the steep spatial gradients in oxygen concentration.
Hsu and Secomb (1989) have developed a ‘Green’s function
method’ to overcome this problem, allowing the oxygen pro-
file within a tissue to be described as the superposition of the
oxygen fields produced by discrete sources distributed across
the vascular network. This method also overcomes a limitation
of the earlier Krogh cylinder model (Krogh, 1919), removing
the need to make a priori assumptions about the spatial ex-
tent of the region of tissue supplied by each vessel segment. In
its original formulation, the Green’s function method assumed
that oxygen consumption was uniform throughout the tissue,
required the imposition of (often unrealistic) boundary condi-
tions at the edge of the domain and assumed that the system
was at steady-state. These limitations have been successively
overcome in a series of subsequent publications (see Secomb,
2015; Secomb et al., 1993, 2004). The Green’s function method
has also been used by Safaeian and David (2013) to model the
oxygen supply to the brain and has great potential for use in
similar models of the retina.

In addition to the above retinal oxygen models, Filas et al.
(2013) have developed a model for oxygen transport and con-
sumption within the vitreous, accounting for the retina via a
boundary condition. It would be interesting to couple this model
to models for the oxygen distribution within the retina, such as
those developed by Causin et al. (2015); Cringle and Yu (2002)
and Roberts et al. (2015) discussed above.

Finally, we note that in order for models to accurately pre-
dict retinal oxygen distribution, it is important that the geom-
etry of the retinal vasculature be well-defined. A number of
imaging techniques and analyses have been utilised to capture
its architecture, including scanning laser ophthalmoscopy (Pel-
legrini et al., 2014), confocal scanning laser microscopy (Chan
et al., 2012; Tan et al., 2012; Yu et al., 2010), optical coher-
ence tomography (Hassenstein and Meyer, 2009; van Velthoven

et al., 2007), segmentation algorithms (Giachetti et al., 2014;
Pellegrini et al., 2014) and junction resolution algorithms (Al-
Diri et al., 2010). See Hassenstein and Meyer (2009); Keane
and Sadda (2014); Leontidis et al. (2014); van Velthoven et al.
(2007) and Yannuzzi et al. (2004) for reviews.

3.2. Neuroglobin
Given the retina’s extensive oxygen demand, any factor which

contributes to the supply of oxygen could be vital in preventing
hypoxia. It has been suggested that the protein neuroglobin
(Ngb), which is present in high concentrations in the retina,
could enhance the retinal oxygen supply (Burmester et al., 2000).
A number of lines of evidence indicate such a role, most notably
its similarity in structure and molecular mass to myoglobin;
however, opinion about its role remains divided (see Brunori
and Vallone, 2007; Burmester and Hankeln, 2004, 2009; Fago
et al., 2004; Pesce et al., 2002, for reviews).

In theory, Ngb could enhance the oxygenation of retinal
tissue via two distinct yet related processes, namely transport
and storage: Ngb could transport oxygen from regions where
it is plentiful to others where it is scarce and provide a tempo-
rary supply of oxygen during periods of decreased supply or
increased uptake. The first scenario (transport) is best consid-
ered using a steady-state (ODE) model, it being assumed that
retinal oxygen levels typically remain at steady-state, whilst the
second (storage) requires a time-dependent (PDE) model.

To date, only two modelling studies have been conducted to
investigate the oxygen transport and storage properties of Ngb.
Fago et al. (2004) developed a three layer model of the outer
retina, consisting of a central region that consumes oxygen and
contains Ngb, and two outer layers that do not consume oxy-
gen and are devoid of Ngb. The proportion of Ngb molecules
in their oxygen-bound and unbound states is assumed to be at
quasi-steady-state at all times (that is, the two species are in
equilibrium). Their results suggest that the concentration of
Ngb in the middle layer would need to exceed 100 µM for Ngb
to be effective in storage and to exceed 300 µM to be effective
in transport. Since they assume that the local Ngb concentration
could not exceed these values, they conclude that Ngb does not
play a significant role in transport and storage.

Given that the average Ngb concentration across the retina
has been estimated to lie in the range 100–200 µM, Roberts
et al. (2015) have argued that, since Ngb is confined to the cy-
tosol of retinal cells and since it is more highly concentrated in
some retinal layers than others, the local cytosolic concentra-
tions in some layers could significantly exceed 200µM. They
constructed an eight layer model, spanning the full width of
the (human) retina and relaxing Fago et al.’s quasi-steady-state
assumption (see Figure 3). The model confirmed that Ngb is
unlikely to play a significant role in oxygen storage, demon-
strating that whilst it will delay a drop in oxygen levels, it will
also delay recovery (Roberts, 2015). However, the model sug-
gests that Ngb could prevent hypoxia in the ISs and IPL via
transport, increasing oxygen uptake by up to 30–40% in these
regions. Further, it was demonstrated, using a simplified, single
layer model, that the lower affinity for oxygen of Ngb than myo-
globin may be advantageous for oxygen transport, contrary to
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the prevailing view (Burmester and Hankeln, 2004, 2009; Fago
et al., 2004). Indeed, many of the measured Ngb oxygen affini-
ties appear to be close to optimal.

3.3. Choriocapillaris

Zouache et al. (2015) have developed a model to describe
the blood flow within the choriocapillaris (CC). The CC is the
inner layer of the choroid, responsible for supplying the outer
retina with oxygen and other nutrients, and for removing waste
products. It is subdivided into independent tessellating polyg-
onal units known as lobules. These compartments are essen-
tially planar, and are supplied and drained by microvessels, ly-
ing deeper in the choroid, via inlets and outlets, which feed into
the outer surface of the lobules, perpendicular to their plane
(Zouache et al., 2015). Blood is supplied at the centre of each
lobule by an arteriole, and drained at the surrounding vertices
by venules. Whilst these compartments are not physically di-
vided from each other, neighbouring outlets are connected by
separatrices (streamlines which divide the flow into regions
with different kinds of motion) in the blood flow, on which the
residence time is long, forming an effective barrier between ad-
jacent lobules (Zouache et al., 2015). Lobules are interspersed
by avascular septal pillars, which stretch between the inner and
outer boundaries, interrupting blood flow. The pillars are ran-
domly distributed, with a uniform distribution (Zouache et al.,
2015).

Rather than model the entire CC, Zouache et al. (2015) con-
sider an individual lobule. The model is further simplified by
decomposing lobules into triangular prisms, with the inlet at
one vertex and outlets at the other two (see Figure 4(a)). For
simplicity, the triangle is assumed to be isosceles, the inlet be-
ing separated from the outlets by sides of equal length. The
internal angle at the inlet and the septae volume fraction (the
proportion of the domain occupied by septae) are varied to rep-
resent lobules at different geographical locations within the eye.

Since the height of a lobule is much smaller than the width
of the septal pillars, the component of the flow perpendicular
to the inner and outer boundaries can be neglected. Averaging
the fluid velocity across the height of the lobule, the model is
reduced to a planar (2D) flow. The flow is further assumed to
be passive, driven by the pressure gradient between the inlet
and outlets. Blood cells are not modelled explicitly, rather they
are assumed to be passive tracers.

The model is used to determine how the pressure drop (be-
tween the inlet and outlets) and average fluid particle residence
time (average time spent by blood corpuscles in the lobule) de-
pend upon the internal angle at the inlet and the septae volume
fraction.

In the absence of septae, a separation (stagnation) stream-
line divides the triangle in two, running from the inlet, to a
stagnation point on the opposite side of the triangle, midway
between the two outlets (see Figures 4(b) and (c)). The pressure
drop is minimised, and the average residence time maximised,
when the inlet angle is 90◦, whilst the pressure drop increases
and the residence time decreases as the inlet angle approaches
0 or 180◦. The residence time is lower along streamlines close

to the walls of the domain, and increases along streamlines ap-
proaching the stagnation streamline. As the septae volume frac-
tion increases, the pressure drop and bulk flow velocity increase
and the average residence time decreases (see Figures 4(d) and
(e)). However, the septae also increase the residence time in the
stagnation regions created on their surfaces where the stream-
lines separate.

As lobule geometry varies across the eye, so too does the
pressure drop, blood velocity and residence time. It may be
that this variation in geometry is the means by which the ex-
change of oxygen and other nutrients is modulated to match
supply with demand. This spatial variation could also help
to explain the geographical heterogeneity in vulnerability seen
in retinal diseases such as retinitis pigmentosa (RP) and age-
related macular degeneration (AMD) (Zouache et al., 2015). It
has been noted that drusen tend to form near venular openings
in AMD (Friedman et al., 1963). This model suggests a possi-
ble explanation, since it predicts that the residence time of fluid
particles is greatest here (Zouache et al., 2015).

Whilst this model provides a useful first step in mathemat-
ically describing the CC, it has several limitations. In particu-
lar, it does not capture the movement of fluid between the CC
and the retina, nor does it account for the three-dimensional
nature of the flow, which could have a significant effect on res-
idence time. Zouache et al. are now developing a 3D Navier-
Stokes, advection-diffusion model to address these limitations
(Zouache et al., 2015). A further interesting extension would
be to couple models of the CC to models of the retina in disease
states such as RP and AMD, where the supply of oxygen and
other nutrients may be critical in driving the disease progres-
sion.

Zouache et al.’s work has also served to highlight short-
comings in existing experimental data. In particular, the inte-
rior angle at the inlet has not been investigated and, as yet, only
one measurement for the pressure drop between inlet and outlet
has been published. Zouache et al.’s models show that both of
these features are of critical importance for blood flow within
the CC and, as such, their accurate measurement should present
a promising direction for future experimental research.

3.4. Photoreceptors
A number of models considering either individual photore-

ceptors or groups of photoreceptors in health have been devel-
oped. These models focus on processes such as retinal light
adaptation, phototransduction (see in particular Lamb and Pugh Jr.,
2004; Sneyd and Tranchina, 1989; Tranchina et al., 1991), pho-
toreceptor and horizontal cell interactions, circadian rhythms
(Camacho et al., 2004), information processing (Song et al.,
2009, 2012) and receptive fields. Many of these studies are re-
viewed in Keener and Sneyd (2009b), Chapter 22, to which the
reader is referred for further details.

Here we discuss more recent work by Macdougall (2015),
which provides a potential explanation for the observed diur-
nal variation in rod photoreceptor outer segment (OS) length.
Each rod OS is composed of a stack of approximately 700–
1200 membranous discs (Young, 1971). Discs are continuously
replenished from the base of the OS, where it meets the IS,
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Figure 4: Zouache et al.’s model of blood flow in the choriocapillaris. (a) diagram to show the model geometry, including septae (represented by circles). Lobules
are decomposed into isosceles triangular prisms, the inlet (top corner) being separated from the outlets (bottom corners) by sides of equal length (L). The internal
angle at the inlet is denoted by ω. Figure adapted from Zouache et al. (2015). (b) and (c) flow streamlines (showing the paths followed by fluid particles, (b)) and
pressure field (c) in the absence of septae (ω = 45◦). (d) and (e) flow streamlines (d) and pressure field (e) in the presence of septae (ω = 60◦). Figures (b)–(e)
reproduced, with permission, from Zouache et al. (2015).

whilst groups of discs at the outer tip of the OS are intermit-
tently shed and subsequently phagocytosed by the underlying
RPE, the most significant shedding event occurring at the on-
set of LA (Young, 1967, 1971, 1978; Young and Bok, 1969).
As a consequence, the OS is completely replaced over a period
of 9–13 days (as measured in the rhesus monkey and assumed
to hold true in humans, Young, 1971). Rod OS length varies
over a daily cycle, growing under DA and shrinking under LA,
indicating that the shedding and renewal rates vary with illumi-
nation (Abrámoff et al., 2013).

Macdougall (2015) construct three spatially-resolved con-
tinuum models, each testing a different hypothesis, proposed to
explain the observed differences in OS length under DA and
LA. The first model tests the hypothesis that the observed dy-
namics can be explained by changes in the oxygen landscape
between DA and LA, whilst the second tests the hypothesis
that the dynamics can be explained by changes in the phospho-
creatine shuttle-derived ATP concentration in the OS between
DA and LA. Both models fail in important respects (see be-
low). Therefore, the third model proposes that a combination
of changes in the oxygen and phosphocreatine shuttle-derived
ATP concentrations is sufficient to explain the OS dynamics.
All three models consist of PDEs and ODEs, where the PDEs
are defined on a 1D domain spanning the region between the
inner end of the IS and the outer end of the OS, the former
boundary being fixed in space and the latter free to move (see
Figure 5(a)). In each case, it is assumed that the choroid is the
sole supplier of oxygen.

The first model consists of a PDE for oxygen concentra-
tion and an ODE for OS length. Oxygen diffuses freely across

the photoreceptor and is taken up at a baseline level across
the domain, with an additional consumption term in the IS to
model mitochondrial uptake there, which increases under DA
(see Section 3.1). The OS length increases or decreases at a
rate proportional to the difference between a predefined thresh-
old concentration and the oxygen concentration at the inner end
of the IS. The length increases when the oxygen concentration
at the inner tip of the IS is above the threshold (i.e. in abun-
dance), and decreases when the oxygen concentration is below
the threshold (i.e. in short supply).

The model admits unique, positive, steady-state solutions
for OS length under both DA and LA. Simulations capture a 24
hour cycle, starting with the light adapted steady-state solution
at t = 0 hours, followed immediately by DA, switching to LA at
t = 12 hours. The only parameter which changes between DA
and LA is the rate of oxygen uptake in the IS. It is found that OS
length increases under LA and decreases under DA, behaviour
which is the reverse of that seen in vivo. This result is robust
under parameter sensitivity analysis and suggests that oxygen
cannot be the sole regulator of OS length.

The second model focusses on how the spatial distributions
of creatine phosphate, creatine, free phosphate, ATP and ADP
change over time and regulate OS length (see Figure 5(a)). ADP
combines reversibly with phosphate to form ATP. The dominant
source of ATP is assumed to be that formed by oxidative phos-
phorylation in the IS mitochondria, rather than that formed by
glycolysis throughout the photoreceptor. Consequently, ATP
production is neglected in the OS. Dephosphorylation is as-
sumed to be negligible in the OS under DA. However, the de-
mand for ATP in the OS increases under LA, such that dephos-
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Figure 5: Macdougall’s model of photoreceptor shedding and regrowth. (a) diagram showing the model geometry, the oxygen distribution, and the kinetics and
dynamics of the phosphocreatine shuttle. The photoreceptor IS has a fixed length, spanning the region between x = −LIS < 0 and x = 0, whilst the OS length
varies with time, t, spanning the region between x = 0 and x = LOS (t) > 0. Oxygen, phosphocreatine (CrP), creatine (Cr) and phosphate (P) diffuse freely across
the domain, whilst none of the species can leave the photoreceptor. Diffusive transport of ATP and ADP is neglected. ADP and P combine reversibly to form ATP,
whilst CrP and ADP react reversibly to form Cr and ATP. Larger arrows show the dominant direction of each reaction. (b) simulation results for the third (combined)
model, showing the growth and shrinkage of the OS over a 24 hour dark/light cycle, where the heat map represents the oxygen profile (in units of µM) internal to the
photoreceptor. The simulation is initiated at the LA steady-state, grows under dark conditions for the first 12 hours and shrinks under light conditions from 12 to 24
hours. (c) graph to show the evolution of the shedding rate over time for the simulation depicted in (b). Shedding is absent under DA, but occurs under LA, reaching
its highest rate shortly after the onset of LA. Figures (a) and (b) reproduced, with permission and modifications, from Macdougall (2015), where the diagram of the
photoreceptor in (a) is adapted from Young (1967). Figure (c) supplied by Macdougall and reproduced with permission.

phorylation occurs under LA. The diffusion rates of ATP and
ADP are slow and, hence, neglected. Therefore, in order for
IS-produced ATP to reach the OS, it must do so via the phos-
phocreatine shuttle: creatine binds ATP reversibly to form cre-
atine phosphate and ADP, the forward reaction being favoured
in the IS and the reverse in the OS. Creatine phosphate, crea-
tine and phosphate are all free to diffuse across the photorecep-
tor, resulting in a net flux of creatine phosphate from the IS to
the OS, and of creatine and phosphate from the OS to the IS.
Since the ATP and ADP concentrations evolve on a much faster
timescale than those of the other reactants, they are assumed to
be at quasi-steady-state, so the system comprises 3 PDEs for
phosphocreatine, creatine and phosphate. The OS is assumed
to grow at a constant rate and to shed discs only when the ATP
concentration at the outer tip of the OS falls beneath a thresh-
old value, corresponding to a critical OS length, at which point
shedding proceeds at a rate proportional to the amount by which
OS length exceeds this critical length.

Simulations for the 24 hour dark/light cycle predict that the
OS will shed discs under LA, causing it to shrink towards a
steady-state (after about 2 hours), in agreement with in vivo
observations. The OS length increases linearly under DA; how-
ever, it does not reach steady-state, growing unboundedly if DA
is maintained indefinitely. These results suggest that the phos-

phocreatine shuttle is sufficient to regulate OS length under LA,
but not under DA.

The third model combines the hypotheses of the two pre-
vious models. Simulations of the combined model show OS
growth under DA and shrinkage under LA, in agreement with
in vivo observations (see Figure 5(b)). The decrease in IS oxy-
gen consumption leads to growth under LA; however, rapid
shedding dominates growth at the onset of LA (as observed in
Young, 1978) leading to net OS shrinkage (see Figure 5(c)).
The shedding rate subsequently decreases, balancing growth,
such that the system approaches, and effectively reaches, steady-
state under LA. Growth under DA is both linear and bounded,
improving on both of the previous models; however, OS growth
does not reach steady-state until approximately 100 hours. Whilst
one would expect growth to stall earlier than this in vivo, these
results are supported by a study carried out by Bassi and Powers
(1990) on goldfish, which showed that OS length increases at a
constant rate when dark conditions are sustained for 7 days. In
an ordinary light/dark cycle, the onset of LA interrupts growth
under DA, such that continued growth beyond the physiological
norm is not realised.

Many retinal diseases (e.g. AMD and RP) are associated
with a decrease in OS length. One possible cause of decreased
OS length is mitochondrial inefficiency, or inefficiency in OS
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energy utilisation. This may be represented in the model by
decreasing the IS ATP production rate or increasing the ATP
threshold. Both changes decrease OS length, suggesting that
these factors are sufficient to explain the OS shrinkage observed
in diseased states. The above inefficiencies could also be rep-
resented by increasing the rate at which the ISs take up oxy-
gen or reducing the oxygen threshold; however, this has an in-
significant effect on OS length, since, although it decreases the
steady-state OS length, the steady-state is not reached during a
standard diurnal cycle.

The above study illustrates the way in which mathematical
models can be used to isolate mechanisms in a way that would
be difficult, if not impossible, experimentally; examining their
sufficiency in explaining observed behaviours. Future models
could incorporate the effects of Ngb in oxygen transport (see
Section 3.2), or signalling between the photoreceptor and the
RPE (Macdougall, 2015). The model could also be developed
to consider disease states. For example, it could be combined
with the oxygen toxicity mode for RP, described in Section
5.1.3, to account for the increased oxidative damage incurred
by the IS as they approach the choroid, following shrinkage of
the OS.

4. Development

4.1. Retinal Angiogenesis

The retinal capillary layers, also known as the retinal vas-
cular plexus (RVP), colonize the retina via the process of an-
giogenesis (the development of new blood vessels from pre-
existing vessels). Astrocytes migrate from the optic nerve, over
the surface of the inner retina, in response to a gradient in platelet-
derived growth factor A (PDGF-A), which is produced by the
underlying retinal ganglion cells. Astrocytes in turn guide the
formation of the RVP, producing vascular endothelial growth
factor A (VEGF-A), which attracts endothelial cells to move up
spatial gradients in its concentration, from the optic nerve, to-
ward the retinal periphery. Astrocyte migration begins shortly
before birth, whilst endothelial migration begins on post-natal
day 0 (P0), reaching the retinal periphery by P8 (Aubert et al.,
2011; McDougall et al., 2012; Watson et al., 2012).

Aubert et al. (2011); McDougall et al. (2012) and Watson
et al. (2012) have created a series of models, produced along-
side an accompanying experimental program, to capture the dy-
namics of the angiogenesis of the superficial RVP, in the devel-
oping murine (mouse) retina. The mammalian retina is an ideal
system for studying angiogenesis, since the vascular architec-
ture can easily be imaged using retinal whole mounts. Further-
more, development can be split into a well-defined sequence
of events and the vessel network has an ordered architecture,
facilitating comparisons between in vivo and in silico results.

In Aubert et al. (2011), two 1D PDE models are developed,
defined on a domain spanning the region between the centre of
the optic nerve and the position of the retinal periphery once
fully-grown, starting from P0 (for model 1) or E17 (embry-
onic day 17, or P-4, for model 2) and running to P8. The first
model focusses on capillary tip density, blood capillary density

(which follow behind the capillary tips) and VEGF-A concen-
tration, whilst the second accounts also for astrocyte density
and PDGF-A concentration.

In the first model, an initial VEGF-A gradient is imposed,
whilst in the second, the VEGF-A gradient is initially set to
zero, and evolves over time as it is produced by astrocytes and
consumed by endothelial cells, matching the in vivo situation
more closely. Sensitivity analysis of the first model shows that
chemotaxis has a significant influence upon RVP development,
confirming the importance of the more realistic chemotactic
gradients in the second model. The simulation predictions for
capillary tip and astrocyte migration from the second model are
in good agreement with the in vivo results, providing experi-
mental support for the model and showing that the factors ac-
counted for in the model are sufficient to explain the observed
dynamics.

In later work, a 2D hybrid model (containing both discrete-
stochastic and continuous-deterministic elements), posed on a
domain spanning the surface of the inner retina, was used to
simulate the complex, branched structure of the RVP (McDougall
et al., 2012; Watson et al., 2012). As before, PDEs are de-
fined for the astrocyte and endothelial cell densities (the distinc-
tion between capillary tips and blood capillaries being dropped
at the level of the PDEs) and for the PDGF-A and VEGF-A
concentrations. Four additional PDEs are also included to ac-
count for the density of the matrix-bound proteins vitronectin
and fibronectin, both of which are produced by astrocytes, and
the concentrations of astrocyte and endothelial cell produced
matrix degrading enzymes, which degrade vitronectin and fi-
bronectin respectively. Astrocytes and endothelial cells move
up adhesion gradients in vitronectin and fibronectin respectively,
via haptotaxis (see Figure 6(a)).

In order to capture the migration of individual astrocytes
and endothelial cells, and hence the formation of discrete cap-
illary vessels, the PDEs for these equations are discretized (so
that these quantities are described at discrete points in space and
time, rather than as a continuum). The direction of movement
of each individual cell is determined stochastically (randomly),
integrating the effects of diffusion (random movement), chemo-
taxis and haptotaxis. Both astrocytes and endothelial cells also
undergo stochastic branching, the probability of branching in-
creasing with increasing PDGF-A and VEGF-A concentrations
respectively, whilst anastomoses occur whenever a sprout tip
meets either another sprout tip or an existing capillary.

Blood is a biphasic fluid, composed largely of erythrocytes
and plasma. The model accounts for the separation of these
two phases at bifurcations in the vascular bed. The model also
accounts for changes in vessel radius due to wall shear stress,
intravascular pressure, conducted (acting upstream) and con-
vected (acting downstream) metabolic stimuli and a shrinking
tendency which dominates in the absence of growth stimuli.
The conducted and convected stimuli help to prevent shunt for-
mation by favouring the dilation of vessels that are part of ex-
tended flow pathways.

Lastly, the model contains PDEs to describe the oxygen dy-
namics in the tissues and within the blood vessels. It is also as-
sumed that erythrocytes are the only source of oxygen. Vessel
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Figure 6: McDougall and co-workers’ hybrid model of retinal angiogenesis (McDougall et al., 2012; Watson et al., 2012). (a) diagram summarising the key
components and processes included in the model. Pointed arrows indicate production or attraction, whilst flat-headed arrows represent degradation or inhibition.
Figure adapted from McDougall et al. (2012). (b) comparison between in silico (i) and in vivo (ii) vasculatures at P7.7 and P8 respectively (using the full model).
Brighter colour in the in silico image represents wider vessels, corresponding with the colour bar in (d)(i). The results are qualitatively similar, the main differences
being that, in silico, the vascular plexuses are slightly denser and the vessels remain dilated up to the growth front, rather than narrowing toward the periphery. Figure
reproduced, with permission, from Watson et al. (2012). (c) graph comparing the in vivo and in silico (neglecting perfusion) migration of astrocyte and endothelial
cell fronts. The in vivo results are represented by black triangles (upward: astrocytes, inverted: endothelial cells), whilst the in silico results are represented by red
(astrocytes) and green (endothelial cells) lines. The results show good agreement. (d) simulation results from the full model at P7.7 showing (i) vessel radii, (ii)
tissue oxygen concentration, (iii) haematocrit and (iv) vessel oxygen concentration. Figures (c) and (d) reproduced, with permission (and modifications in (c)), from
McDougall et al. (2012). PDGF-A: platelet-derived growth factor A, VEGF-A: vascular endothelial growth factor A, P: post-natal day, RVP: retinal vascular plexus.

pruning occurs when the oxygen concentration in the surround-
ing tissue and vessel age exceed critical thresholds and in the
absence of any flow-related stimuli.

Simulations including astrocyte and endothelial cell migra-
tion, but neglecting perfusion, produce cell front migratory dy-
namics that match well with in vivo experiments (see Figure
6(c)); however, they do not reproduce the highly structured vas-
cular trees seen in vivo. When perfusion, plexus remodelling
and oxygen delivery, without convected and conducted stimuli,
are included, capillary shunts develop, such that the haemat-
ocrit only takes non-zero values in the regions neighbouring
the optic nerve. As a result, oxygen delivery to the peripheral
retina is negligible. When convected and conducted stimuli are
included (see Figure 6(d)), the haematocrit is spatially hetero-
geneous, and the entire retina receives a reasonable supply of
oxygen, demonstrating the importance of these stimuli for ad-
equate oxygen delivery. Interestingly, the haematocrit is pre-
dicted to increase toward the retinal periphery, exceeding 0.75
in some regions around the periphery (this is as compared with
the input value of 0.45), in good agreement with Ganesan et al.
(2010a) (see Section 3.1) and being most highly concentrated
around dilated arterio-venous loops. This phenomenon is due to
phase separation (the separation of erythrocytes from plasma),
which causes the haematocrit to increase along the arterial side
of each bifurcation. In the absence of phase separation, the

peripheral retina would be oxygen starved. Also in agreement
with Ganesan et al. is the development of arterial inlet segments
that are narrower than those of the venous outlet segments. Vi-
sual comparison of in vivo and in silico vascular architectures
reveals that they are qualitatively similar, the main differences
being that in silico, the vascular plexuses are a little denser and
the vessels remain dilated up to the growth front, rather than
narrowing toward the periphery (see Figure 6(b)).

Having benchmarked their model against normal develop-
ment, it can be used to predict what would happen if one or
more developmental mechanisms were altered. For example,
increasing or decreasing the VEGF-A diffusion coefficient 10-
fold slows the rate of capillary growth, due to the loss of sharp
gradients in VEGF, suggesting that the usual isoform (VEGF-
A164) is more effective for retinal angiogenesis that its lighter
and faster diffusing (VEGF-A120), and its heavier and slower
diffusing (VEGF-A188) isoforms.

Increasing the input arterial haematocrit, or decreasing the
tissue oxygen consumption rate causes large capillary-free zones
and hyperoxia to develop, these effects being more extensive in
the latter case. The former case is equivalent to retinopathy of
prematurity and the latter to oxygen-induced retinopathy.

If capillary pruning is reduced, the spatial distribution of di-
lated vessels is not significantly affected, but phase separation
is reduced, causing haematocrit levels across the retina to be-
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come more heterogeneous, with erythrocytes being more con-
centrated around the dilated arteriolar segments. These results
suggest that capillary pruning is important in ensuring that all
regions of the retina receive an adequate supply of oxygen.

The above results illustrate how computational models can
be used to examine scenarios and isolate mechanisms in a way
that would be technically challenging, if not impossible, to re-
produce experimentally. This is particularly true for the simula-
tions in which the convected and conducted stimuli are switched
off.

Extending the hybrid mode to 3D would allow studies of
later developmental stages (between P8 and P16), during which
vertical sprouting from the superficial RVP leads to the forma-
tion of two additional RVP layers deeper within the retinal tis-
sue (McDougall et al., 2012; Watson et al., 2012). This would
require a fully 3D model. It would also be interesting to test
whether the model could be adapted to account for the curved
vascular arcades seen in humans (as opposed to the radial pat-
tern found in the murine retina). The effects of mechanical sig-
nalling upon vessel formation and maturation could also be in-
corporated. Lastly, the model could be adapted to study dia-
betic retinopathy and the critical developmental period in the
early stages of RP (Mervin and Stone, 2002), providing a tool
for testing potential treatment strategies.

Finally, we note that recent modelling studies have also con-
sidered angiogenesis within the (normally avascular) cornea,
where angiogenesis is induced either by inserting a pellet con-
taining angiogenic factor into the cornea or by cauterizing the
cornea to induce inflammation (see, Connor et al., 2015; Jack-
son and Zheng, 2010). The visibility and normally avascular
nature of the cornea make it a useful experimental model for
angiogenesis in other contexts, such as in tumours.

4.2. Retinal Mosaic Formation and Retinogenesis
A number of theoretical modelling studies have explored

the formation of retinal photoreceptor and ganglion cell mo-
saics, using a combination of phenomenological and mechanis-
tic approaches. Typically focussing on the processes of lateral
migration, cell fate and cell death, these studies seek to explain
how a regular arrangement of neurons emerges from an initially
random distribution. These studies are reviewed in detail in
Eglen (2006, 2012), to which the reader is referred for further
details.

More recently, Salbreux et al. (2012) have developed a com-
putational model to explain the ordered packing of cone pho-
toreceptors in the zebrafish retina, in terms of the coupling of
mechanical deformations and planar cell polarity. Their model
reproduces many behaviours observed during development in
vivo, as well as elucidating how this process may break down in
mutants. In addition, Jiao et al. (2014) have constructed a mul-
tiscale (spanning multiple spatial scales) model for the packing
of avian photoreceptors. The model indicates that short- and
long-range repulsive forces between photoreceptors are suffi-
cient to explain the observed patterns.

Barton and Fendrik (2015) have used a stochastic model to
explore vertebrate retinogenesis, the process by which differ-
ent retinal cell types derive from multipotent retinal progenitor

cells. The model, which assumes that a single factor regulates
both division and competency, reproduces the timings at which
different cell types are produced, as measured in rats, suggest-
ing that a single regulatory factor is sufficient to explain this
process.

5. Disease

The various diseased and damaged states of the retina have
received a significant proportion of the theoretical modelling
community’s attention. Models cover a range of topics includ-
ing laser-induced damage (Till et al., 2003), blast injury (Rossi
et al., 2012), retinal detachment (Jiann et al., 2015; Meskauskas
et al., 2012), proliferative retinopathy (Maggelakis and Savakis,
1996, 1999), retinitis pigmentosa and age-related macular de-
generation. In what follows, we focus on the latter two condi-
tions, where modelling studies are most highly concentrated.

5.1. Retinitis Pigmentosa
The term retinitis pigmentosa (RP) denotes a group of in-

herited retinal diseases which cause the progressive degener-
ation of photoreceptors and, hence, loss of vision. The most
common inherited retinal degeneration, RP is currently untreat-
able (Shintani et al., 2009). RP usually occurs as a rod-cone
dystrophy, in which rod function and number are diminished
earlier and more severely than for cones (Hamel, 2006). Cone-
rod dystrophies, in which cone loss precedes rod degeneration,
can also occur and, rarely, rod and cone loss may occur simul-
taneously (Hartong et al., 2006). Whilst the initial loss of rods
(or cones) may be attributed to genetic mutations, the cause of
the secondary loss of cones (or rods) is unknown.

Histological studies in humans and rats suggest that pho-
toreceptor degeneration initiates in patches, which presumably
spread and coalesce over time (Cideciyan et al., 1998; Garcı́a-
Ayuso et al., 2013; Ji et al., 2012; Lee et al., 2011; Zhu et al.,
2013). RP progression in animal models is largely homoge-
neous in space; however, in humans, photoreceptor loss has a
distinct spatio-temporal pattern, typically initiating in the mid-
periphery, with the central retina being the last region to degen-
erate (Hartong et al., 2006). While the phenomena driving this
pattern remain to be determined, three hypotheses have been
proposed to explain them: the trophic factor, toxic substance
and oxygen toxicity hypotheses. Mathematical modelling has
proven valuable in evaluating the strengths and weaknesses of
these hypotheses and in suggesting potential treatment strate-
gies.

5.1.1. The Trophic Factor Hypothesis
It has been suggested that rods may release chemicals that

are essential for cone survival (Fintz et al., 2003; Mohand-Saı̈d
et al., 1998, 2000, 1997). Rod loss would remove the source
of these factors, leading to cone degeneration. One such fac-
tor, rod-derived cone viability factor (RdCVF), identified by
Léveillard et al. (2004), has been shown to slow cone degen-
eration and to preserve cone function in chick, mouse and rat
models (Fintz et al., 2003; Léveillard et al., 2004; Mohand-Saı̈d
et al., 1998, 2000, 1997; Yang et al., 2009).
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Camacho, Wirkus et al. have developed a series of spatially-
averaged ODE models to investigate the role of RdCVF in both
the healthy and diseased retinas (Camacho et al., 2010, 2014;
Camacho and Wirkus, 2013; Colón Vélez et al., 2003).

Their first model considers the healthy retina. It consists of
3 ODEs, describing the dynamics of rod and cone OS number,
and RPE cell number (equivalent to the trophic pool, Camacho
et al., 2010, note that we use the interpretation given in the sub-
sequent papers). Their equations describe the shedding and re-
newal of the rod and cone OSs, where the renewal involves the
conversion of trophic pool (which is continuously replenished)
into new OS discs. Rods produce RdCVF, which is mathemat-
ically distinct from the trophic pool, at no cost to themselves
(that is, without affecting the rate of rod OS shedding and re-
newal), augmenting the supply of trophic factor to the cones and
thus increasing the rate of cone OS renewal (see Figure 7(a)).
The presence of RdCVF makes it possible for rods and cones
to coexist indefinitely, suggesting that this factor may be neces-
sary for their mutual survival (Camacho et al., 2010). We note
that earlier modelling work by Camacho and colleagues (Colón
Vélez et al., 2003) and experimental work by Mohand-Saı̈d and
colleagues (Mohand-Saı̈d et al., 1998, 1997) predicted the ex-
istence of such a factor, before its discovery by Léveillard et al.
in 2004.

Mathematical analysis and numerical simulations suggest
that, for certain parameter values, the system will exhibit mul-
tiple stable oscillatory solutions, of various amplitudes, corre-
sponding to the rhythmic shedding and renewal of photorecep-
tors observed in vivo (see Figure 7(b)). A solution is said to be
stable if the system always returns or remains close to it follow-
ing a small perturbation and is unstable otherwise. Outside this
parameter range, rods, cones and RPE cannot coexist. Within
this parameter regime, the period of oscillation ranges from 8–
9 hours, for small amplitude oscillations, to 26 hours, for large
amplitude oscillations. This oscillatory behaviour is more ro-
bust (that is, it is more likely to occur and to be maintained)
when rods produce RdCVF at a faster rate and when photore-
ceptors convert trophic factor into OS more efficiently.

The model further predicts that rod and cone OS lengths os-
cillate in phase (in synchrony). This has been observed in vivo,
but is not true of all species (see Camacho et al., 2010, and
references therein). It would be interesting to investigate ways
in which the model might be modified to induce out-of-phase
(asynchronous) oscillations, for example, by introducing an ex-
plicit time delay in the aid supplied to the cones via RdCVF,
capturing the in vivo delay (Camacho et al., 2010).

Camacho and Wirkus (2013) extended their model to de-
scribe the disease state of RP by distinguishing between nor-
mal and mutant rods, where both types of rod are genotypically
mutant, but only the latter type has had its functionality com-
promised (represented in the model by altered rates of shedding
and renewal of OS). Normal rods can become mutant, but not
vice versa, whilst both normal and mutant rods consume trophic
factor and contribute RdCVF to the cones. The RPE equation
is also modified so that, neglecting the terms involving photore-
ceptors, it obeys logistic (such that RPE cell numbers approach
a finite ‘carrying capacity’ over time), rather than exponential

(where RPE cell numbers increase unboundedly, at a rate pro-
portional to the current number of RPE cells) dynamics, the
number of RPE cells remaining bounded under all conditions
(see Figure 7(a)).

Mathematical analysis reveals that, for any given set of pa-
rameter values, there exist seven equilibrium (steady-state) so-
lutions, each corresponding to a different stage in the disease
progression, from healthy to completely degenerate. Numerical
simulations suggest that only one of these equilibrium solutions
is stable for any biologically realistic parameter set and that the
system will settle at the stable equilibrium solution. Four pa-
rameters, which are key in determining the form of the disease
progression, are identified, namely the ratios of shedding rates
to renewal rates in normal rods, mutant rods and cones, and the
carrying capacity of the RPE (the maximum number of RPE
cells that can be supported by the system in the absence of pho-
toreceptors). All of these parameters must remain fixed in order
for an equilibrium solution to remain stable, whilst changes in
parameter values can drive disease progression between the dif-
ferent equilibrium solutions.

The system switches between equilibrium solutions via tran-
scritical bifurcations, at which a change in parameters causes a
pair of equilibrium solutions, one stable and the other unstable,
to momentarily meet and exchange stability. As this happens,
the system transfers from the first equilibrium solution, which
is now unstable, to the second equilibrium solution, which is
now stable. Variation of parameters allows a variety of paths to
be traced to total blindness, passing through different combina-
tions of equilibrium solutions, corresponding either to the rod-
cone, cone-rod or simultaneous form of RP (see Figure 7(c)).

The above results suggest potential therapeutic strategies,
that could halt disease progression. For example, the model
predicts that progression of rod-cone RP requires a decrease in
the ratio of shedding to renewal in cones. Therefore, a treatment
designed to maintain this ratio might prevent disease progres-
sion in patients whose rods and cones are degenerating via this
pathway.

This model generated two other, noteworthy results. Firstly,
small changes in parameter values can lead to markedly differ-
ent pathways to blindness, helping to explain the differences
in disease progression seen in closely related patients with the
same mutation. For example, an increase in the ratio of shed-
ding to renewal in cones can change the disease progression
from one in which all photoreceptors are lost simultaneously,
to one in which cones are lost before rods. Secondly, the model
suggests that the reduction in photoreceptor OS length observed
in RP is an emergent property (a system-level behaviour that
arises through lower-level interactions between elements within
the system) of the nonlinear interactions between rods, cones
and RPE, rather than simply due to changes in shedding and
renewal rates.

Lastly, Camacho et al. (2014) modified their RP model to
include an RdCVF treatment term (see Figure 7(a)). Using
optimal control theory, they determined a treatment level that
will achieve the desired degree of cone preservation, whilst
minimising the RdCVF dose. This is important, since using
too large a dose of RdCVF could impair retinal function. A
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Figure 7: Camacho and Wirkus et al.’s trophic factor model of RP. (a) diagram showing the components and processes in the Camacho et al. (2014) model. (The
Camacho and Wirkus (2013) model does not include RdCVF treatment, whilst the Camacho et al. (2010) model includes neither treatment, nor the mutant rod
component and its associated processes.) Figure adapted from Camacho et al. (2010) and Camacho and Wirkus (2013). (b) stable limit cycle (oscillatory) solution of
the Camacho et al. (2010) model, demonstrating the rhythmic shedding and regrowth of rod and cone OS in the healthy retina. Figure reproduced, with permission
and modifications, from Camacho et al. (2010). (c) diagram showing two alternative paths (marked with arrows) that may be traced through parameter space, leading
to different cone-rod dystrophy forms of the RP disease progression, in the Camacho and Wirkus (2013) model. Lines without arrows demarcate the boundaries of
the stability regions, across which (transcritical) bifurcations occur. Path 1: E7→E6→E2. Path 2: E7→E5→E3→E2. Dm: ratio of shedding rate to renewal rate in
mutant rods, DT : RPE (trophic pool) carrying capacity, E7: healthy steady-state, E6: steady-state at which all cones are lost, E5: steady-state at which all normal
rods are lost, E3: steady-state at which all cones and normal rods are lost, E2: steady-state at which all photoreceptors are lost. Figure reproduced, with permission
and modifications, from Camacho and Wirkus (2013).

two week treatment period is considered for comparison with
Léveillard et al.’s (2004) experimental results. Simulations,
starting from different stages in the disease progression, reveal
that treatment will have a negligible effect on rod loss, but can
significantly reduce cone loss during the later stages of the dis-
ease (when all the rods have been lost), provided the treatment
is aggressive enough. It is also possible, using the model, to es-
timate the minimum treatment required to achieve the approxi-
mate 40% sparing of cones reported in Léveillard et al. (2004).

5.1.2. The Toxic Substance Hypothesis
Another mechanism by which photoreceptor cell death could

spread is via the release of toxic substances by dying photore-
ceptors. These substances are most likely released into the in-
terphotoreceptor matrix, where they are taken up by and, thus,
poison neighbouring photoreceptors. It has been suggested that
toxic substances may be transmitted between photoreceptors
via gap junctions; however, this hypothesis is now in doubt,
since disruption of gap junctions does not seem to affect dis-
ease progression (Kranz et al., 2013; Ripps, 2002).

Clarke et al. (2000) have suggested a one-hit model of neu-
ronal cell death, where the time at which a neuron dies is ran-
dom, for a variety of conditions including RP (see also Clarke
and Lumsden, 2005a,b; Clarke et al., 2001). This model arises

from experimental observations which suggest that the risk of
(photoreceptor) cell death is either constant or decreases expo-
nentially with age (Clarke et al., 2000).

This model can be justified at the biochemical level by the
mutant steady-state (MSS) hypothesis, which suggests that mu-
tations result in elevated levels of a pre-apoptotic compound,
placing it closer to a critical threshold, above which apoptosis
is induced (Clarke et al., 2001). Random fluctuations in the con-
centration of this compound may cause it to exceed this thresh-
old, resulting in cell death (Clarke et al., 2001).

Burns et al. (2002) incorporated the MSS hypothesis into
a 1D spatial model, consisting of a pair of PDEs, in which a
diffusible toxic factor, produced by dying photoreceptors and
released into the interphotoreceptor matrix, upregulates the pro-
duction of pre-apoptotic factors in the surrounding photorecep-
tors. Assuming that the rate of toxic factor uptake is linear (that
is, directly proportional to the toxic factor concentration), the
toxic factor PDE can be solved analytically, so that the problem
reduces to solving a single PDE for the pre-apoptotic factor.
Since the pre-apoptotic factor is unable to move between pho-
toreceptors, its PDE lacks terms for diffusion or transport, con-
taining only kinetic (reaction) terms. Thus, it may be split into
N spatially dependent ODEs, one for each of the N photorecep-
tors spanning the domain, where the ODEs’ spatial dependence
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arises through their dependence upon the toxic substance con-
centration.

In the absence of toxic factor, each of the ODEs is bistable,
such that the pre-apoptotic factor concentration can exist stably
at either of two steady-state values (see Figure 8(a)). The so-
lution with the lower value (zero) corresponds to the MSS, in
which all photoreceptors are assumed to start, whilst the upper
(strictly positive) value corresponds to the state in which a pho-
toreceptor is committed to apoptosis. These two stable steady-
states are separated by an unstable steady-state. Increases in
the concentration of the toxic factor above a critical threshold
cause the lower stable and unstable steady-states to approach
one another, coalesce and annihilate, such that the upper stable
steady-state becomes the attractor for the whole system. That
is to say, for any given starting point, the system will move to-
wards this steady-state. Provided the toxic factor concentration
remains elevated for long enough, the system will become irre-
versibly trapped in this steady-state’s basin of attraction (such
that it continues to move towards the steady-state), at which
point the photoreceptor is considered to be committed to apop-
tosis.

A stochastic simulation algorithm is used to determine when
a photoreceptor in the commitment state will undergo apopto-
sis, where the lifetime of each photoreceptor in the commitment
state is drawn from either a normal or an exponential distribu-
tion. Upon apoptosis, a photoreceptor releases toxic factor into
the extracellular space where it evolves over time according to
the analytical (algebraic) solution to its associated PDE. The de-
generation process is initiated by selecting a single photorecep-
tor to undergo apoptosis. When the lifetime in the commitment
state is normally distributed, the decline in photoreceptor num-
ber is slow and sigmoidal (with an ‘S’ shaped profile). How-
ever, when it is exponentially distributed, photoreceptors are
lost more rapidly, declining exponentially, in agreement with
the experimental studies mentioned above (Clarke et al., 2000,
2001). This suggests that photoreceptor lifetimes in the apopto-
sis commitment state are exponentially, rather than normally,
distributed. Simulations also demonstrated that when multi-
ple photoreceptors undergo apoptosis at points that are close
in space and time, the released toxic factors may have a syner-
gistic effect, committing more photoreceptors to apoptosis than
would occur if the initial releases of toxic factor had been more
distantly separated in space and/or time (see Figure 8(b)).

The model also predicts a patchy pattern of photoreceptor
loss, similar to that often observed in the early stages of RP
(see above), with patch diameters similar to those seen in vivo,
providing a potential explanation for these patterns (see Figure
8(c)).

More recently, Lomasko et al. (2007a,b) and Lomasko and
Lumsden (2009) have extended the work of Burns et al. (2002)
by constructing stochastic models of cytoskeleton-induced neu-
ron death. While these models were not developed specifically
for the retina, it is noteworthy that they replicate the exponen-
tial and sigmoidal patterns of cell loss measured by Clarke et al.
(2000).

5.1.3. The Oxygen Toxicity Hypothesis
The final hypothesis suggests that the initial loss of pho-

toreceptors results in a rise in oxygen levels, due to decreased
demand, creating a toxic environment for those that remain
(Stone et al., 1999; Travis et al., 1991; Valter et al., 1998).
These oxygen levels are maintained, since the CC, which is the
main source of oxygen for the photoreceptor containing outer
retina, autoregulates poorly in response to hyperoxia (Stone
et al., 1999; Yu et al., 2004; Yu and Cringle, 2005). An increase
in oxygen levels above normal physiological levels is harmful
to retinal tissue, since it upsets the redox potential, resulting
in increased production of reactive oxygen species which cause
damage to lipids, protein and DNA (Ames et al., 1993, 1995;
Kohen and Nyska, 2002; Shen et al., 2005).

Roberts (2015) has created a series of models examining the
oxygen toxicity hypothesis. The models are formulated as sys-
tems of PDEs, for oxygen concentration, photoreceptor density
(or rod and cone densities taken separately) and capillary (CC)
surface area per unit volume. The models incorporate the het-
erogeneous distribution of rods and cones, whilst a spherical
polar coordinate system (in which the coordinates are specified
in terms of the distance from the origin, r, the polar angle, θ,
and the azimuthal angle, φ) is used to capture the geometry of
the eye. For simplicity, the retina is assumed to be symmetric
in the azimuthal direction (for rotations about the axis, pass-
ing at a right-angle to the wall of the eye, through the foveal
centre) and hence the optic disc is neglected. Oxygen supplied
by the CC diffuses freely across the domain and is consumed
by photoreceptors at a rate proportional to their density, whilst
photoreceptors either remain at or approach their healthy local
density under normoxia (unless they are absent, in which case
their density remains at zero), but decay exponentially when
local oxygen levels rise above a defined hyperoxic threshold.
The CC dynamics follow those of the photoreceptors; however,
since their rate of decay and regrowth is generally slower than
that of the photoreceptors, their dynamics lag behind those of
the photoreceptors.

The first set of models are posed on a 1D domain, span-
ning the region between the centre of the fovea and the ora
serrata. Numerical solution and mathematical analysis of the
steady-state 1D problem without capillary loss reveals the con-
ditions under which a patch (corresponding to an annulus in
2D) of photoreceptor degeneration will spread or remain sta-
tionary. It is found that the retina may be divided into a series
of 5 concentric stability regions, centred on the fovea (see Fig-
ure 9(a)). Starting from the centre of the retina these regions
are: the central unstable region, the near-central stable region,
the para/perifoveal unstable region, the mid-peripheral stable
region and the peripheral unstable region. Wide patches (with
width greater than about one-hundredth of the width of the do-
main) remain stationary, provided both boundaries lie within a
stable region, and will expand otherwise. Therefore, provided a
patch can be classified as wide, its stability properties do not de-
pend upon its width, only the position of its boundaries. Narrow
patches (with width less than about one-hundredth of the width
of the domain, that is, less than about 40 photoreceptors across)
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Figure 8: Burns et al.’s toxic substance model of RP. (a) graph showing how the time rate of change of pre-apoptotic factor concentration, ∂s/∂t, evolves with
increasing PACF (photoreceptor apoptosis commitment factor), c, concentration. When c = 0 (i), the system has three steady-states; two stable steady-states, s0

1
(corresponding to the MSS) and s0

3 (corresponding to the apoptosis commitment state), separated by an unstable steady-state, s0
2. As c increases past ccrit (iii), s0

1 and
s0

2 meet and annihilate, such that only s0
3 remains for c > ccrit (iv). When the system becomes irreversibly trapped by s0

3’s basin of attraction, it is considered to be
committed to apoptosis. (b) graph showing the recruitment of photoreceptors to apoptosis, following three bursts of PACF release, at close points in space and time.
PACF is released at (x, t) = (200, 0), (400, 10) and (600, 5). The light grey surface shows the evolution of PACF concentration in space and time, whilst the dark
grey surface is the c(x, t) = ccrit plane. The black curve on the c(x, t) = 0 plane delimits the photoreceptors which have committed to apoptosis. The PACF bursts act
synergistically, such that more photoreceptors are recruited to apoptosis than in the case where the bursts are more distantly separated in space and time. (c) stochastic
simulation in which photoreceptors in the apoptosis commitment state undergo apoptosis after a time drawn from an exponential distribution. Upon undergoing
apoptosis, a photoreceptor releases a burst of PACF, committing neighbouring cells to apoptosis. Grey regions represent photoreceptors committed to apoptosis and
black regions represent photoreceptors which have undergone apoptosis. The recruitment cascade is initiated by a single PACF burst at (x, t) = (250, 0). The results
demonstrate a patchy loss of photoreceptors, similar to that which is often seen in the early stages of RP. Figures reproduced, with permission (and modification in
(a)), from Burns et al. (2002).

are stationary within the ‘stable’ regions, and are also stationary
within ‘unstable’ regions, provided they are sufficiently narrow.

Simulations of the dynamic (time-dependent) 1D problem
without capillary loss and with an initial patch of photoreceptor
loss, together with mathematical analysis, reveal that the wave
speed of photoreceptor degeneration is a decreasing function of
the photoreceptor density local to the degenerating wavefront.
This prediction awaits experimental/clinical confirmation.

Numerical solution and mathematical analysis of the steady-
state 1D problem including capillary loss, reveals the counter-
intuitive result that a patch of capillary loss must be essentially
coincident with a patch of photoreceptor loss in order to sta-
bilise it, in those cases where it would otherwise be unstable
(given the assumption that the capillary loss does not extend
beyond the degenerate photoreceptor patch). This is surprising,
as it would have been natural to assume that a substantial region
of capillary loss, within a patch of photoreceptor loss, would be
sufficient to prevent further hyperoxia-driven photoreceptor de-
generation. However, the above result suggests that this is not
the case. This prediction could be tested experimentally in an

animal model by using a laser to ablate the choroid within a
patch of photoreceptor loss and also suggests a potential treat-
ment strategy to arrest the progression of the disease in humans.

Dynamic simulations including capillary loss in 1D demon-
strate that capillary loss may prevent, halt, delay or partially re-
verse (in the sense of restoring photoreceptor vitality, given that
new photoreceptors cannot be generated) photoreceptor loss.
Further experimental work is required to quantify the rate of
CC degeneration and hence to determine its effect on photore-
ceptor degeneration.

The second set of models extends the previous models to
2D, spanning the region between the centre of the fovea and the
ora serrata, whilst assuming that the capillary density remains
constant. Simulations of the dynamic 2D problem demonstrate
the spatio-temporal patterns of degeneration that the oxygen
toxicity hypothesis can give rise to. In addition to the initial re-
moval of annulus and disc shaped patches of photoreceptors,
the hyperoxia-independent mutation-induced degeneration of
either rods and/or cones is also included in some simulations,
to represent the rod-cone, cone-rod and simultaneous forms of
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Figure 9: Roberts’ oxygen toxicity model of RP. (a) diagram to show the arrangement of stable and unstable regions within the retina. (b) diagrams to show some
of the in vivo patterns of visual field loss. Scotomas (blind spots) are shaded and areas of preserved vision are shown in white. (c) in silico results. Graphs show
the photoreceptor density at earlier (left) and later (right) stages (the calibration of the heat map is given by the colour bar on the right, where 1 corresponds to
1.11 × 105 photoreceptors/mm2). The problem is solved on a spherical surface and projected onto the x-y plane for visualisation. Pattern 1B and the later stage of
pattern 3 are replicated; however, pattern 2 cannot be replicated (in the example shown, a partially degenerate disc recovers fully, in the sense of regaining vitality),
the retina being resistant to the spread of photoreceptor degeneration in the mid-peripheral stable region. Figures reproduced, with permission and modifications,
from Roberts (2015).

RP. The patterns formed are compared with those classified by
Grover et al. (1998) in their study of visual loss in RP patients.
Grover et al. identified three characteristic patterns or visual
field loss: pattern 1 involves concentric loss of visual field,
sometimes accompanied by a perifoveal or parafoveal ring sco-
toma (blind spot); pattern 2 begins with a nasal or temporal
restriction, out from which an arcuate (bow shaped) scotoma
winds through the mid-periphery; lastly, pattern 3 starts with a
mid-peripheral ring scotoma, which expands either temporally
or inferiorly, leaving a U- or n-shaped peripheral visual field,
the arms of which retract until peripheral vision is lost (see Fig-
ure 9(b)). In all cases, central vision is best preserved, though
it is eventually lost unless preceded by patient mortality.

It is found that mutation-induced rod degeneration results
in pattern 1 degeneration, including a para/perifoveal ring sco-
toma (see Figure 9(c)(top)), whilst patch loss in, or overlapping,
the para/perifoveal region may also spread to form a para/perifoveal
ring scotoma. Patch loss near the ora serrata spreads around the
periphery of the retina, mimicking the latter stage of pattern
3 degeneration (see Figure 9(c)(bottom)). Mutation-induced
cone loss results in degeneration of the central retina and may in
some cases also result in degeneration of the peripheral unstable
region. These results are consistent with the cone-rod dystro-
phy degeneration patterns described by Hamel (2007). It is not
possible, with this model, to stimulate preferential loss from the
middle of the mid-periphery associated with the intermediate
stage of pattern 2 and the initial stage of pattern 3 (see Figure
9(c)(middle)). By isolating the oxygen toxicity mechanism, in
a way that would not have been possible experimentally, these

models highlight the strengths and weaknesses of this hypoth-
esis. The replication of patterns seen in vivo demonstrates the
sufficiency (though not the necessity) of this mechanism to gen-
erate certain patterns of degeneration, whilst the failure to repli-
cate other patterns indicates that other mechanisms are likely to
be at play here. This provides a useful insight for the develop-
ment of future treatment strategies.

Both 1D and 2D models predict that treatment with antiox-
idants and/or trophic factors could prevent, halt, delay or par-
tially reverse (in the sense of restoring photoreceptor vitality)
photoreceptor loss, depending upon the strength and timing of
the treatment. Since the analysis and simulations indicate that
the para/perifoveal and peripheral unstable regions are the most
susceptible to hyperoxic degeneration, this suggests that, if pos-
sible, treatment should preferentially target these regions.

A natural way to extend this modelling work would be to
adapt the modelling framework, with its incorporation of the
distribution of rods and cones, to consider the dynamics of dis-
ease progression under the trophic factor and toxic substance
hypotheses. These models could perhaps explain the other ob-
served patterns of photoreceptor loss in RP. The latter hypoth-
esis has particular potential to explain the preferential loss of
photoreceptors from the middle of the mid-periphery seen in
progression patterns 2 and 3, as it is here that the toxin produc-
ing rods are most densely packed. This could then be followed
by more comprehensive models which combine the three RP
hypotheses. Following sufficient benchmarking, such models
could be used to inform treatment decisions, parametrising the
model to make it patient specific.

20



Perhaps the most useful data, for informing future mod-
elling studies, could be derived from a detailed longitudinal
clinical study, measuring the precise positions of the bound-
aries of degenerate photoreceptor, RPE and CC patches, at reg-
ular intervals throughout the disease progression, together with
the rod and cone densities across the retina at each stage, in
a range of patients. This could be done using optical coher-
ence tomography and adaptive optics scanning light ophthal-
moscopy (Liu et al., 2014; Murakami et al., 2008). Combining
this with visual field tests, multi-focal electroretinograms and
autofluorescence imaging would enhance these studies still fur-
ther (Robson et al., 2006). This would yield better parametrised
models, which have the potential to more accurately predict the
pattern and speed of degeneration. Present studies tend to focus
on the patterns of visual field loss, rather than changes in the
photoreceptor density, making it difficult to determine precise
measurements for the retinal locations affected. In addition, the
early stages in the disease progression are often not recorded
(largely because symptoms tend not to manifest until later in
life) and the intervals between measurements are too long (it
would be helpful if observations could be made on at least an
annual basis).

5.2. Choroidal Neovascularisation
Choroidal neovascularisation (CNV) is a process which oc-

curs during the advanced stage of neovascular (wet) AMD (Jager
et al., 2008). It involves the growth and spread of the choroid
past Bruch’s membrane (BM), which in health forms a barrier
between the choroid and the RPE, into the retina. The choroidal
vessels penetrating the retina are abnormally permeable and
fragile, leading to the build-up of fluid and subsequent damage
to the retina. The physiological and biochemical mechanisms
underlying CNV are not well understood, whilst present treat-
ment strategies show limited success (Coleman et al., 2008).

Flower et al. (2001) have constructed a model which re-
lates the blood flow in the CNV to that in the underlying CC.
The CC is modelled as a (2D) planar porous medium, with a
set of sparsely distributed inflows and outflows (arranged ac-
cording to the histology of a sample human eye), which supply
and drain blood from deeper within the choroid, whilst the CC
is connected to the CNV via capillary-like vessels. The model
predicts that reducing the blood flow in an arteriole/venule, feed-
ing/draining the CC, by as little as 50% could be sufficient to
significantly reduce or halt blood flow in an overlying CNV,
whose penetrating vessels neighbour the arteriole/venule.

The model has clear implications for potential treatment
strategies. Flower et al. (2001) suggest that it may be bet-
ter to target the underlying choroid, rather than destroying the
CNV, which often results in recurrence. At present, treatment
only targets arterioles, whereas the model suggests that ablat-
ing venules could be just as effective. If the model could be
tailored to individual patients, then it could potentially be used
to determine which arterioles and venules to target, optimising
treatment.

Shirinifard et al. (2012) have developed a 3D computational
model of the choroid and outer retina in which they investigate
the role played by adhesion in CNV progression. The model is

of the cellular Potts type, where each model ‘cell’ is composed
of a set of (simply) connected points on a pre-defined lattice.
The model ‘cells’ may either represent biological cells, parts of
cells or fluid-containing regions, their positions being updated
stochastically over time, subject to energy (e.g. adhesion ener-
gies) and other constraints. The model accounts for vascular
cells (of the CC), stalk cells (of the CNV), tip cells, RPE cells,
photoreceptor OS cell parts, photoreceptor IS cell parts, BM,
medium (which fills the spaces unoccupied by cells or BM),
oxygen, VEGF and matrix metalloproteinases (MMP).

Each simulation begins either with or without a single tip
cell (an endothelial cell which leads other endothelial cells upon
activation of sprouting angiogenesis), which degrades the BM
via the secretion of MMP, allowing it to penetrate the retina. In
each case, the simulation time covers a year’s disease progres-
sion, the first three months of which are regarded as the early
phase and the last three months of which are denoted the late
phase.

In both the early and late phases, one of three patterns of
vascularisation may occur: type 1 (sub-RPE) CNV, with a vas-
cular layer between BM and the RPE; type 2 (sub-retinal) CNV,
with a vascular layer between the RPE and the photoreceptors;
and type 3 (combined pattern) CNV, which combines both of
the above vascular layers. The model accounts for the adhesion
between RPE cells and BM (RPE-BM), between neighbouring
RPE cells (RPE-RPE) and between RPE cells and photorecep-
tor OSs (RPE-POS, see Figure 10(a)). All three pairings involve
labile adhesion (without junctional structures), whilst the first
two also involve plastic coupling (with junctional structures).
The combination of these two types of adhesion is known as
junctional adhesion. This gives rise to five adhesion parame-
ters, corresponding to each of the adhesion types between each
sort of structure. By varying these parameters, the effects of ad-
hesion failure upon disease progression can be determined (see
Figure 10(b)).

A total of six scenarios are observed, as judged by the pat-
tern of vascularisation at the early and late phases: stable type
1 (early and late type 1), early type 1 to late type 2 (see Figures
10(c) and (d)), early type 1 to late type 3, stable type 2 (early
and late type 2), early type 2 to late type 3, and stable type 3
(early and late type 3). It is found that the combination of the
presence of a tip cell and the occurrence of adhesion failures
are both necessary and sufficient for CNV to initiate, and that
severe impairment of any one of the three adhesion pairings can
independently induce CNV. In particular, reduced RPE-BM ad-
hesion results in early type 1, reduced RPE-RPE or RPE-POS
adhesion results in early type 2, and simultaneous reduction of
RPE-RPE and RPE-BM results in either early type 1 or early
type 2, which may often progress to late type 3. Simulations
also reveal that the plastic coupling strengths have a relatively
minor effect on the ability of the retina to resist CNV, with labile
adhesion playing the most important role.

Many previous studies have suggested that CNV results ei-
ther from the overexpression of VEGF or holes in BM (Shirini-
fard et al., 2012). Simulations demonstrate that overexpression
of VEGF increases the probability of CNV initiation, but that
the early and late vascular patterns do not change, whilst holes
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Figure 10: Shirinifard et al.’s model of CNV. (a) diagram showing the adhesive coupling between retinal components. Plastic coupling involves junctional structures,
whilst labile adhesion does not. Junctional adhesion is the combination of plastic coupling and labile adhesion. (b) sensitivity analysis showing the dependence of
the CNV initiation probability upon the strength of the RPE-POS, RPE-BM and RPE-RPE adhesive coupling. Red corresponds to a probability of 1 and purple to a
probability of 0. The black region (top-front corner) demarcates the locus of normal adhesion. The isosurfaces correspond to initiation probabilities of 025, 0.5 and
0.75, from front to back. (c) and (d) snapshots from a simulation showing type 1 (sub-RPE) to type 2 (sub-retinal) CNV progression. PIS and POS are light purple,
RPE is brown, stalk cells are green, vascular (CC) cells are red and BM is light blue. (c) 3D snapshot at month 6. The open arrow indicates a location at which stalk
cells have migrated into the sub-retinal space. (d) 2D snapshot at month 12. The black arrow marks the sub-RPE capillary network, whilst the open arrows mark
the sub-retinal capillary network. PIS: photoreceptor inner segment, POS: photoreceptor outer segment, RPE: retinal pigment epithelium, BM: Bruch’s membrane,
RBaL: basal lamina of the RPE, RBaM: basement membrane of the RPE, CC: choriocapillaris. Figures reproduced, with permission (and modifications in (a) and
(b)), from Shirinifard et al. (2012).

in BM are insufficient to initiate CNV when all the adhesions
are normal. In addition, neither the threshold for RPE hypoxia,
nor RPE hypoxic signalling, affects the results. Thus, the model
provides important insights into CNV.

Simulations show good agreement with experimental and
clinical data, though there are some discrepancies. For exam-
ple, the type 1 to type 2 progression has not been observed clin-
ically. It may be that this progression does occur, but that it is
difficult to detect, requiring more frequent observations over a
longer period of time (Shirinifard et al., 2012).

Future modelling work could include blood flow and its ef-
fect on capillary development in a similar way to McDougall

et al. (2012) and Watson et al. (2012) (Section 4.1) and per-
haps also blood flow within the CC as in Zouache et al. (2015)
(Section 3.3, noting that Shirinifard et al.’s model assumes that
oxygen levels are constant throughout the blood vessels). Ad-
ditionally, basal deposits such as hard and soft drusen, together
with fibrosis (the formation of extracellular matrix) could also
be included in future models (Shirinifard et al., 2012).

Experimental quantification of the adhesivities between the
cells of the retina and how these change under pathological con-
ditions would allow more effective validation of the model, to-
gether with more clinically accurate predictions. Shirinifard
et al. suggest that these measurements could be made non-
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invasively by examining changes in RPE and CC morphology,
or changes in autofluorescence due to lipid accumulation.

In time, and following extensive trials, this model, or a re-
fined version thereof, could become a useful clinical tool, al-
lowing for more accurate determination of each patient’s pathol-
ogy and, hence, inform the selection of the most appropriate
treatment strategy (i.e. personalised medicine). Further, Shirini-
fard et al. suggest that the model could be continuously im-
proved using data from each clinical or experimental case to
which it is applied (e.g. using machine learning).

6. Perspective and Future Directions

The mathematical and computational models discussed in
this paper have uncovered a wealth of insights into retinal phys-
iology and biochemistry, across a range of scenarios, spanning
the healthy, developmental and diseased states. Whilst models
are developed with a particular state in mind, it is often the case
that they may be adapted to examine one or both of the other
two states. In particular, many of the models of the healthy and
developing retina can be used to explore pathological scenarios.

In the healthy state, theoretical models have enabled us to
explain the retinal oxygen distribution in terms of the varia-
tion in oxygen demand between different retinal layers, allow-
ing the identification of the chief oxygen consumers and an
investigation of how consumption varies between light adap-
tation and dark adaptation. Further, it has been demonstrated
that the protein neuroglobin may play an important role in the
prevention of hypoxia within the retina, through its ability to
transport oxygen from regions where it is rich to those where
it is poor, its oxygen affinity being near-optimal for this pro-
cess. Modelling of blood flow within the choriocapillaris has
demonstrated the effect of lobule geometry upon the flow prop-
erties within each lobule, suggesting how blood flow will vary
across the eye with geographical variation in lobule geome-
try. This may also be a factor in the spatially heterogeneous
progression of diseases such as retinitis pigmentosa (RP) and
age-related macular degeneration (AMD). Lastly, it has been
demonstrated that the diurnal variation in photoreceptor outer
segment (OS) length may be regulated by the oxygen and phos-
phocreatine shuttle-derived ATP landscape within the photore-
ceptor, but that neither of these factors in isolation is sufficient
to explain this variation. It is shown that inefficiencies in mi-
tochondrial function or OS energy utilisation give rise to OS
shortening, a phenomenon observed in many retinal diseases
such as RP and AMD.

In the developing state, mathematical and computational
models of retinal angiogenesis have captured the in vivo dy-
namics of retinal vascular plexus formation with a remarkable
degree of accuracy. The importance of perfusion, plexus re-
modelling, and convected and conducted stimuli for the devel-
opment of highly structured vascular trees is demonstrated. The
model is also used to predict the effect of various parameter val-
ues and model components upon development. For example, if
the input arterial haematocrit is increased, or the rate of tissue
oxygen consumption is decreased, hyperoxia develops, leading
to the formation of large capillary-free zones. The former case

is equivalent to retinopathy of prematurity and the latter to oxy-
gen induced retinopathy, producing similar predicted outcomes
to those seen in these conditions.

In the diseased state, mathematical and computational mod-
els have been used to investigate RP and choroidal neovascular-
isation (CNV). In RP, models have explored the trophic factor,
toxic substance and oxygen toxicity hypotheses. Trophic fac-
tor models demonstrate the rhythmic shedding and renewal of
photoreceptors seen in vivo. The ratios of cone, normal rod and
mutant rod shedding to renewal rates, and trophic factor carry-
ing capacity are found to be key in determining the advance-
ment of RP through various disease states, providing potential
clues to treatment. The toxic substance model is able to repli-
cate the exponential decline in photoreceptor number seen in
experiments, together with the patchy photoreceptor loss seen
in the early stages of RP. The oxygen toxicity model suggests
that this mechanism is sufficient to explain some, but not all
of the in vivo spatio-temporal patterns of degeneration, demon-
strating the strengths and weaknesses of this hypothesis. Lastly,
the CNV model demonstrates that adhesion failures between
outer retinal components, together with the presence of a tip
cell, are necessary and sufficient conditions for CNV to initiate.

The above studies demonstrate the power of mathematical
and computational modelling in investigating the structure and
function of the retina. Despite the advances which have been
made, theoretical modelling has yet to achieve its full potential
in this area, current work representing merely the tip of the ice-
berg, given the possibilities which have yet to be explored. In
the healthy state, much work remains to be done in modelling
processes such as the visual cycle, photoreceptor-RPE interac-
tions, pre-processing of visual information by the retina and
aging of the retina. In development, there is scope for exten-
sive work targeted at understanding how the complex layered
structure of the retina arises, including retinal mosaic forma-
tion, together with the establishment of the full 3D structure of
the retinal capillary layers. Many retinal diseases start to take
effect during the developmental stage, therefore extensive mod-
elling of retinal development will be required in order to fully
understand these pathologies. Substantial further work remains
for RP and AMD, whilst other disease states such as diabetic
retinopathy, retinopathy of prematurity and retinoblastoma are
largely untouched. Ultimately, the aim would be to produce a
collection of validated models, individually detailing an impor-
tant aspect of the retina, which can subsequently be coupled, as
required, to enable retinal modelling that can encompass devel-
opment, health and the full range of disease states. These could
then be used as clinical tools, to inform personalised treatment
strategies.

In order to achieve these aims, greater attention to this area
is required from the mathematical and computational modelling
communities, together with an increase in ophthalmic clini-
cians and experimentalists ready to work with theoreticians to
parametrise and validate their models and to test model predic-
tions (thus completing the experiment/modelling cycle, see Fig-
ure 1). At present, whilst a lot of data are available on the retina,
many of the parameters which are key to forming accurate mod-
els have yet to be precisely measured, despite advances in ex-
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perimental, diagnostic and imaging techniques rendering these
measurements tractable. As experimental/theoretical collabo-
rations increase, so too will the insights which can be obtained
into the retina, making possible discoveries which neither set of
disciplines could have achieved on its own.
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