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A B S T R A C T

We consider the effect of network structure on the evolution of a population. Models of this kind typically
consider a population of fixed size and distribution. Here we consider eco-evolutionary dynamics where
population size and distribution can change through birth, death and migration, all of which are separate
processes. This allows complex interaction and migration behaviours that are dependent on competition. For
migration, we assume that the response of individuals to competition is governed by tolerance to their group
members, such that less tolerant individuals are more likely to move away due to competition. We look at
the success of a mutant in the rare mutation limit for the complete, cycle and star networks. Unlike models
with fixed population size and distribution, the distribution of the individuals per site is explicitly modelled
by considering the dynamics of the population. This in turn determines the mutant appearance distribution
for each network. Where a mutant appears impacts its success as it determines the competition it faces. For
low and high migration rates the complete and cycle networks have similar mutant appearance distributions
resulting in similar success levels for an invading mutant. A higher migration rate in the star network is
detrimental for mutant success because migration results in a crowded central site where a mutant is more
likely to appear.
1. Introduction

Migration is one of the drivers of evolutionary processes. One of the
ways in which the effect of migration can be captured is to consider a
subdivided population. Each subdivision is a unit of space that can be
occupied by one or many individuals. In ecology such models are used
to study species in fragmented habitats (Hanski, 1998) such as the fritil-
lary butterfly (Wahlberg et al., 2002). In evolutionary game theory this
enables modelling interactions between subsets of individuals (Broom
and Rychtář, 2012). Individuals can either migrate freely between these
sites as in the classical island model (Wright, 1943), or can be restricted
to geographically adjacent sites as in the stepping stone model (Kimura
and Weiss, 1964). From a population genetics perspective, such models
are used to study the effect of population subdivision on the fixation
of a mutant type in a resident population. Maruyama (1970, 1974)
showed that for certain assumptions the fixation probability is indepen-
dent of the population subdivision. In this model, each subdivision is of
infinite size. Evolutionary graph theory (EGT) (Lieberman et al., 2005)
theoretically restricts migration using networks. Network structure was
shown to affect the evolutionary dynamics by amplifying or suppressing
the fixation probability of a mutant (Lieberman et al., 2005; Broom and
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Rychtář, 2008; Hadjichrysanthou et al., 2011; Hindersin and Traulsen,
2015), and it also affects the time it takes to reach fixation (Frean
et al., 2013; Hindersin and Traulsen, 2014; Tkadlec et al., 2019). In
EGT, each subdivision has a fixed and finite size of one individual and,
more recently, the case with subdivisions of size greater than 1 has been
considered (Yagoobi and Traulsen, 2021). Our objective is to construct
an ecologically relevant model that allows us to consider the case where
subdivisions have variable and finite size.

Migration in EGT occurs through replacement events where birth,
death and migration are all combined such that an offspring replaces an
individual in an adjacent site. Birth, death and migration can be com-
bined to give different replacement dynamics (Shakarian et al., 2012).
Ecologically relevant dynamics can be obtained by considering non-
replacement dynamics where birth and death are decoupled allowing
for variable population size. The individual-based model of Cham-
pagnat et al. (2006) is an example of this, where the time-scale of
individual level processes can be changed to consider different types of
evolutionary models. For example, the evolution of RNA viruses (Gren-
fell et al., 2004) where evolutionary and ecological timescales overlap.
In Pattni et al. (2021) network structure was incorporated into the
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Table 1
Summary: Notations for framework, and their definitions and descriptions.
Notation Definition Description

𝑁 ≥ 1 Number of distinct sites.
𝑊 𝑊𝑚,𝑛 ≥ 0 Weighted 𝑁 ×𝑁 matrix representing network of sites.
 ⊂ R𝑙 𝑙 real-valued phenotypic traits of an individual.
 = {1,… , 𝑁} Set of sites an individuals can occupy.
𝑖 = (𝑈𝑖 , 𝑋𝑖) for 𝑈𝑖 ∈  and 𝑋𝑖 ∈  The traits of an individual.
𝐼𝑖 An individual with traits 𝑖.
 = {𝑖𝑚(𝑖) ∶ 𝑖 ∈ , ⊆  × } Multiset that gives the state of the population, where 𝑚 ∶  → Z+ is

the multiplicity (number of occurrences) of 𝑖.
𝑛 = {𝑖 ∈  ∶ 𝑋𝑖 = 𝑛} Individuals present in site 𝑛, therefore, 𝑛 ⊆ .
𝑑(𝑖,) ≥ 0 Death rate of 𝐼𝑖 in state .
𝑏(𝑖,) ≥ 0 Birth rate of 𝐼𝑖 in state .
𝜇(𝑖) ≥ 0 Probability that an offspring of 𝐼𝑖 carries a mutation.
𝑀(𝑢, 𝑣) ≥ 0 Probability that offspring has mutated trait 𝑣 when parent has trait

𝑢.
𝑚(𝑖, 𝑥,) ≥ 0 Migration rate of 𝐼𝑖 to site 𝑥 in state .
𝜙 ∶  → R Real-valued bounded function that acts on the state of the system.
 Markov process generator, it describes how the expected value of 𝜙

changes for an infinitesimal time interval.
ℎ() ∈ [0, 1] Probability of starting in state  and hitting state in set .
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model of Champagnat et al. (2006) such that death is separate but
birth and migration are coupled. Using this model it was shown that
most EGT replacement dynamics can be obtained in limiting cases.
This shows that replacement dynamics models represent special cases
of models with non-replacement dynamics. For those replacement dy-
namics that could not be obtained, it suggests that a different kind
of non-replacement dynamics may be required. The next logical step,
which we consider in this paper, is a model where death, birth and
migration are all uncoupled.

Depending upon how migration is defined allows us to consider
different ecological processes. When migration is coupled with birth,
this is akin to dispersal in plants (Fournier and Méléard, 2004) or the
spread of infection (Rosenquist, 2010). Uncoupled migration, where in-
dividuals can freely move between sites, allows us to consider complex
behaviours such as animal migration (Bauer and Klaassen, 2013). It also
enables the study of social dilemmas (Santos et al., 2006; Broom et al.,
2019) where assortment or grouping is required to achieve a social
outcome (Fletcher and Doebeli, 2009). Density-dependent migration is
one way of capturing this kind of migratory behaviour as it explains
a wide variety of ecological aggregations (Liu et al., 2016). From a
mathematical perspective, various complex migration behaviours can
be constructed that can depend upon the history of individuals (Broom
and Rychtář, 2012; Kölzsch et al., 2018). In this paper we consider an
example of migration behaviour that is dependent upon the tolerance to
other individuals, such that for low group tolerance individuals prefer
being alone.

We start by explaining the framework in Section 2, where the rare
mutation limit evolutionary scenario is described. In Section 3 we
provide an example of a birth–death-migration model derived from
the framework. We consider the trivial case with one site, the low
migration limit and a general migration rate. For the general migration
rate we investigate the effect of migration rate and how this compares
to the low migration limit.

2. Modelling framework

A general description of the modelling framework used that is based
on the model of Champagnat et al. (2006) is given (see Table 1 for
summary of notation). In this model individuals have a continuous
number of traits and reproduce asexually. In Pattni et al. (2021) net-
work structure was incorporated into this model such that individuals
in the population are spread over a fixed network of distinct but
connected sites that can have no, one or many individuals at a given
time. The modelling framework here is updated so that migration is a
separate event from birth and death. The population can now change in
four distinct ways: birth without mutation, birth with mutation, death
2

d

and migration. The population size and composition can change due
to birth and death, whereas the distribution of individuals across the
network of sites can change due to birth, death and migration.

The framework allows modelling the evolution of multiple traits. It
therefore describes what is the current composition of the population
in terms of these different traits. As individuals can move between
different sites, the composition of different traits in each site need to be
accounted for. This is described mathematically as follows. Individuals
can have 𝑙 real-valued traits contained within the set  ⊂ R𝑙. The
sites that individuals can occupy is given by set  = {1,… , 𝑁}. The
haracteristics of an individual are given by 𝑖 = (𝑈𝑖, 𝑋𝑖), where 𝑈𝑖 ∈ 

and 𝑋𝑖 ∈  . An individual with characteristics 𝑖 is denoted by 𝐼𝑖. The
tate of the population is given by a multi-set , which means that for

each individual with characteristics 𝑖 there is a copy of 𝑖 in . Formally
e write this as {𝑖𝑚(𝑖) ∶ 𝑖 ∈ , ⊆  × } where 𝑚 ∶  → Z+ is the
ultiplicity (number of occurrences) of 𝑖. Individuals in the same site

re given by set 𝑛 = {𝑖 ∈  ∶ 𝑋𝑖 = 𝑛}.
The framework specifies how the different sites are connected to

ach other allowing individuals to move between them. It accounts
or the direction of migration between sites and also the likelihood of
igration between sites. Formally this is described as follows. The con-
ections between sites are given by a directed and weighted network
epresented by a matrix 𝑊 with entries 𝑊𝑚,𝑛 ≥ 0. An individual can

move from site 𝑚 to 𝑛 if site 𝑚 is connected to site 𝑛; that is, 𝑊𝑚,𝑛 > 0.
In the framework the state of the population can change through

birth, death and migration. All these processes are separate and in-
dependent of each other. In the case of birth it specifies whether a
mutation occurs and what kind of mutation the offspring carries. For
migration, it needs to specify where an individual migrates to de-
pending upon its current position. Mathematically these processes are
described as follows. Individuals are assumed to reproduce asexually
such that they place their offspring on the same site. The rate at which
individual 𝐼𝑖 gives birth is given by 𝑏(𝑖, ,𝑊 ). If there is no mutation,
the offspring of individual 𝐼𝑖 has characteristics 𝑖 = (𝑈𝑖, 𝑋𝑖). With
robability 𝜇(𝑖), individual 𝐼𝑖 gives birth to an offspring with mutation.
n this case, the probability that 𝐼𝑖 gives birth to an offspring with trait
is 𝑀(𝑈𝑖, 𝑢) such that all mutations are contained within  , that is,
(𝑈𝑖, 𝑢) = 0 if 𝑢 ∉  . The rate at which individual 𝐼𝑖 dies is given by

(𝑖, ,𝑊 ). The rate at which individual 𝐼𝑖 migrates to site 𝑥 is given by
(𝑖, 𝑥, ,𝑊 ). Since the network structure 𝑊 is assumed to be fixed, we
se 𝑏(𝑖,), 𝑑(𝑖,) and 𝑚(𝑖, 𝑥,) for the birth, death and migration rate
espectively.

Finally, the processes of birth, death and migration need to be put
ogether to describe how the state of the population changes over time.
ne way to think about this is that there are separate clocks counting

own each of these processes. If, for example, the clock for death
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reaches zero first, the population is updated through a death event.
The clocks then reset and the process carries on. Mathematically, the
framework describes the evolution of the population using a continuous
time Markov process. The generator  that acts on real bounded
functions 𝜙() that describes the infinitesimal dynamics of the state of
the population at time 𝑡 is given by

𝜙() =
∑

𝑖∈
[1 − 𝜇(𝑖)]𝑏(𝑖,)[𝜙( ∪ {𝑖}) − 𝜙()]

+
∑

𝑖∈
𝜇(𝑖)𝑏(𝑖,)∫R𝑙

[𝜙( ∪ {(𝑢,𝑋𝑖)}) − 𝜙()]𝑀(𝑈𝑖, 𝑢)𝑑𝑢

+
∑

𝑖∈
𝑑(𝑖,)[𝜙(∖{𝑖}) − 𝜙()]

+
∑

𝑖∈

∑

𝑥∈
𝑚(𝑖, 𝑥,)[𝜙( ∪ {(𝑈𝑖, 𝑥)}∖{𝑖}) − 𝜙()].

(1)

The first line describes birth without mutation, the second line de-
scribes birth with mutation, the third line describes death and the
fourth line describes migration.

Now that we know how the evolution of the population is described,
we want to be able to say what the expected behaviour is of this system.
In particular, we are interested in the expectation of reaching a certain
state of the system given the initial conditions. This is known as the
hitting probability. Using the infinitesimal dynamics in Eq. (1), the
probability ℎ() of starting in state  and hitting a state in set  is
calculated as follows

ℎ() = 0 (2)

with boundary condition ℎ() = 1 for  ∈  (see Pattni et al. (2021),
Appendix A).

2.1. Evolution in the rare mutation limit

The modelling framework can be used to construct models of vary-
ing complexity where different types of mutations can overlap with
one another, that is, there is clonal interference. Models related to
EGT typically assume no clonal interference and therefore, to enable
comparisons with these models, we consider the rare mutation limit.
In the rare mutation limit we assume that 𝜇(𝑖) = 𝜇 → 0 ∀𝑖 so that
the population evolves through adaptive sweeps (Gerrish and Lenski,
1998). This means that, prior to a mutation arising, the population
is homogeneous with all individuals having the same traits. This is
because, when a mutation appears, either all individuals with the mu-
tation (referred to as mutants and denoted 𝑀) die out or all individuals
without the mutation (referred to as residents and denoted 𝑅) die out
prior to another mutation arising. There can therefore be at most two
types in the population, a type 𝑅 and a type 𝑀 . Let  = {𝑅,𝑀},
then the set of states where all individuals are residents is given by
 = { ∶ 𝑈𝑖 = 𝑅, ∀𝑖 ∈ }; similarly the set of all states with mutants
is given by  = { ∶ 𝑈𝑖 = 𝑀, ∀𝑖 ∈ }. The dynamics of the system
can therefore be described without the mutation step; that is, Eq. (1)
simplifies to

𝜙() =
∑

𝑖∈
𝑏(𝑖,)[𝜙( ∪ {𝑖}) − 𝜙()]

+
∑

𝑖∈
𝑑(𝑖,)[𝜙(∖{𝑖}) − 𝜙()]

+
∑

𝑖∈

∑

𝑥∈
𝑚(𝑖, 𝑥,)[𝜙( ∪ {(𝑈𝑖, 𝑥)}∖{𝑖}) − 𝜙()].

(3)

When the population is in a homogeneous state with all residents
prior to a mutant arising, i.e.  ∈ , we are interested in determining
the state in which a mutant appears. Let 𝜋() be the probability that the
population is in state . This can be calculated using Eq. (3) as follows

𝜋() = 0,  ∈  (4)

with normalising condition

1 =
∑

𝜋(). (5)
3

∈ 𝑚
The probability 𝑝𝑥, that a mutant appears in site 𝑥 in state  is
proportional to the number of individuals in site 𝑥; that is,

𝑝𝑥, =
|𝑥|

||
𝜋(). (6)

Note that whether a unique solution to 𝜋() exists depends upon the
definition of birth, death and migration.

Once a mutation arises, the type that remains is said to have fixated
in the population, and we are interested in the probability of mutants
fixating. This is calculated by solving the hitting probability using
Eq. (3) as follows

ℎ() = 0 (7)

with boundary conditions ℎ() = 1 for  ∈  and ℎ() = 0
for  ∈ . To be precise with terminology, we refer to the fixation
probability as the probability of one initial mutant fixating. Since there
are multiple states with one mutant, we calculate the average fixation
probability as follows

𝜌 =
∑

∈

∑

𝑥∈
𝑝𝑥,ℎ( ∪ {(𝑀,𝑥)}) (8)

where 𝑝𝑥, is the mutant appearance distribution, i.e. the probability
that a mutant appears in site 𝑥 when the population is in state .

3. Birth–death-migration model

To apply the modelling framework, we consider a birth–death-
migration model that we can use to calculate the fixation probability.
The birth rate is considered to be fixed and depends only on the type
of individual:

𝑏(𝑖,) = 𝛽𝑈𝑖
. (9)

he death rate is given by

(𝑖,) = 𝛿𝑈𝑖
+

∑

𝑗∈𝑋𝑖 ⧵{𝑖}
𝛾𝑈𝑖 ,𝑈𝑗

(10)

here 𝛿𝑢 is the natural death rate of a type 𝑢 individual and 𝛾𝑢,𝑣 is
he death rate of a type 𝑢 individual when competing with a type 𝑣
ndividual.

We assume that individuals move with migration rate 𝜆 > 0. Where
hey move to will depend upon the structure of the network given by

. We assume that 𝑊𝑥,𝑥 = 0 and ∑

𝑦∈ 𝑊𝑥,𝑦 = 1 ∀𝑥 ∈  ; that is,
ll diagonal elements of 𝑊 are zero and 𝑊 is right-stochastic. This
eans that 𝑊𝑥,𝑦 is the probability of migrating from site 𝑥 to 𝑦. It is

ssumed that the networks are strongly connected so that every site
s reachable from every other site. This means that individuals can
igrate throughout the network ensuring that all states of the system

an be obtained. In terms of fixation, this ensures that it is possible for
mutant to fixate in the population.

One way to determine the migration of individuals is to use positive
ensity-dependent migration where the rate of migration increases with
he number of individuals due to exploitation and interference (Bowler
nd Benton, 2005). We consider an extreme version of this where
ndividuals have low group tolerance (LGT) such that they will migrate
hen in a group but stay when they are alone. This is defined as

ollows,

LGT(𝑖, 𝑥,) =

{

𝜆𝑊𝑋𝑖 ,𝑥 |𝑋𝑖
| > 1,

0 |𝑋𝑖
| = 1.

(11)

or comparison, we consider the other extreme where individuals have
igh group tolerance (HGT) such that individuals are insensitive to the
roup they are in so they migrate regardless of being in a group or not.
he migration rate in this case is given by,
HGT(𝑖, 𝑥,) = 𝜆𝑊 . (12)
𝑋𝑖 ,𝑥
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Fig. 1. Networks considered in this paper. Each node represents a site. 𝑁 is the total
umber of sites. Each edge represents an incoming and outgoing weighted edge whose
eights are given by 𝑊 . Edges represent the permitted migration routes of individuals.

n the star network site 1 is called the centre and sites 2 to 𝑁 are called leaf sites.

.1. Example of birth–death-migration model

As an initial application of the birth–death-migration model, we
onsider a simple example that enables us to obtain analytical results in
ertain limiting cases. The simplifications used are described as follows.

Different types of individuals differ in terms of their birth rate only
nd cannot die naturally. We set the birth rate of a resident to 𝛽𝑅 = 1
nd mutant to 𝛽𝑀 = 2, unless specified otherwise. No natural death
eans that 𝛿𝑢 = 0 for 𝑢 ∈ {𝑀,𝑅}. This assumption is not part of the

fundamental framework but specific to this example considered here.
In particular, it is a convenient way of preventing a population from
going extinct. An alternative way of dealing with extinction events is to
reseed the population, however, we avoid this technicality. Individuals
therefore die due to competition with an identical rate for all paired
types, i.e. 𝛾𝑢,𝑣 = 𝛾, ∀𝑢, 𝑣.

The complete (𝑊 ∙), cycle (𝑊 ◦) and star (𝑊 ⋆) networks will be
onsidered, they are illustrated in Fig. 1. For each network, 𝑊 ∙

𝑖𝑖 = 𝑊 ◦
𝑖𝑖 =

⋆
𝑖𝑖 = 0 ∀𝑖 ∈  and the non-zero weights are as follows

Complete: 𝑊 ∙
𝑖𝑗 = 1∕(𝑁 − 1), 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈  ,

Cycle: 𝑊 ◦
𝑖,𝑖+1 = 𝑊 ◦

𝑗,𝑗−1 = 𝑊 ◦
1,𝑁 = 𝑊 ◦

𝑁,1 =
1
2
, 𝑖 = 1,… , 𝑁 − 1 and 𝑗 = 2,… , 𝑁,

Star: 𝑊 ⋆
1,𝑖 =

1
𝑁−1

, 𝑊 ⋆
𝑖,1 = 1, 𝑖 = 2,… , 𝑁 − 1.

⎫

⎪

⎬

⎪

⎭

(13)

Due to the properties of the networks chosen, they will provide us with
a base understanding of the birth–death-migration model without the
need to run lengthy simulations across a wide range of networks. The
complete network is the benchmark case where migration is possible
between all sites. The complete and cycle networks have the property
that the incoming and outgoing weights for each site are the same,
i.e. ∑

𝑖 𝑊𝑖,𝑗 =
∑

𝑗 𝑊𝑗,𝑖 ∀𝑖, 𝑗 ∈  . This will allow us to compare the
omplete and cycle networks for similarities due to this property. On
he other hand, the star network is an extreme example where a central
ite is connected to all other sites.

Details regarding the simulation of the birth–death-migration model
xample are given in the appendix. The simulations were carried out
sing the HTCondor distributed computing system (Thain et al., 2005).

.2. Special case with single site

We first consider the case where there is one site. This will allow us
o understand the intra-site dynamics. For the birth–death-migration
odel we can analytically calculate the stationary distribution of a
omogeneous population (i.e. all residents or all mutants). Let 𝜋𝑢

𝑛 =
P( = {(𝑢, 1)𝑛}) be the probability that there are 𝑛 individuals of type 𝑢
n the population. Recall that the population cannot go extinct because
e have assumed that the natural death rate is zero in this example

death only occurs by competition). The homogeneous population is
herefore described by a reversible Markov process and we can obtain
𝑢
𝑛 using the detailed balance equations, which states that the transition
4

ates do not change when time is reversed. In particular, the rate at s
hich we transition from state 𝑛 to 𝑛 − 1 due to a death event is the
ame as transitioning from state 𝑛 − 1 to 𝑛 due to a birth event. In a
tate with 𝑛 individuals each individual dies with rate 𝛾(𝑛− 1) and in a
tate with 𝑛 − 1 individuals each individual gives birth with rate 𝛽, so
or 𝑛 ≥ 2 the detailed balance equations give

𝛾(𝑛 − 1)𝜋𝑢
𝑛 = (𝑛 − 1)𝛽𝑢𝜋𝑢

𝑛−1

hich simplifies to

𝑢
𝑛 = 1

𝑛
𝛽𝑢
𝛾
𝜋𝑢
𝑛−1

and through recursion we obtain

𝜋𝑢
𝑛 =

(𝛽𝑢∕𝛾)𝑛−1

𝑛!
𝜋𝑢
1 . (14)

Using the fact that the stationary probabilities sum to 1 (i.e. 1 =
∑∞

𝑛=1 𝜋𝑛) and, setting 𝑥 = 𝛽𝑢∕𝛾 for brevity, we have that

=
∞
∑

𝑛=1

𝑥𝑛−1

𝑛!
𝜋𝑢
1 =

𝜋𝑢
1
𝑥

∞
∑

𝑛=1

𝑥𝑛

𝑛!
=

𝜋𝑢
1
𝑥

(

−1 +
∞
∑

𝑛=0

𝑥𝑛

𝑛!

)

=
𝜋𝑢
1
𝑥

(−1 + 𝑒𝑥) ,

hich gives

𝑢
1 =

(𝛽𝑢∕𝛾)
𝑒𝛽𝑢∕𝛾 − 1

.

Substituting 𝜋𝑢
1 into Eq. (14) gives us the stationary probability,

𝜋𝑢
𝑛 =

(𝛽𝑢∕𝛾)𝑛

𝑛!
1

𝑒𝛽𝑢∕𝛾 − 1
.

Using the stationary probability we calculate the expected type 𝑢
population size as follows
∞
∑

𝑛=1
𝑛𝜋𝑢

𝑛 = 1
𝑒𝛽𝑢∕𝛾 − 1

∞
∑

𝑛=1
𝑛
(𝛽𝑢∕𝛾)𝑛

𝑛!
=

(𝛽𝑢∕𝛾)𝑒𝛽𝑢∕𝛾

𝑒𝛽𝑢∕𝛾 − 1
=

𝛽𝑢∕𝛾
1 − 𝑒−𝛽𝑢∕𝛾

.

The appearance of a mutant is proportional to the number of resident
individuals in a given state. The probability that an initial mutant
appears in a state with 𝑛 residents is therefore given by

𝜇Init
𝑛 =

𝑛𝜋𝑢
𝑛

∑∞
𝑖=1 𝑖𝜋

𝑢
𝑖
= 𝑛

(𝛽𝑅∕𝛾)𝑛

𝑛!
1

𝑒𝛽𝑅∕𝛾 − 1

/

(𝛽𝑅∕𝛾)𝑒𝛽𝑅∕𝛾

𝑒𝛽𝑅∕𝛾 − 1
=

(𝛽𝑅∕𝛾)𝑛−1

(𝑛 − 1)!𝑒𝛽𝑅∕𝛾
.

Using this probability, the average fixation probability of a mutant in
a single site is then given by

𝜌Single =
∞
∑

𝑛=1
𝜇Init
𝑛 ℎ({(𝑅, 1)𝑛, (𝑀, 1)}). (15)

In this case, the hitting probability can be calculated by solving Eq. (7)
when we limit the birth rate as follows

𝑏(𝑖,) =

{

𝛽𝑈𝑖
|| < 𝐾,

0 || ≥ 𝐾
(16)

here 𝐾 is chosen to be large enough so that P(|| ≥ 𝐾) = 0. This
eans that the maximum population size is 𝐾 and the total number of

tates is (𝐾 + 1)2, because these are the total number of combinations
f mutants and residents that sum to ≤ 𝐾.

Fig. 2 shows the effect of competition rate on the fixation probabil-
ty of a mutant in a single site (𝜌Single), which is calculated by solving
or ℎ using Eq. (7). To understand the behaviour here, we look at a com-
arable model with fixed population size. In models with fixed popula-
ion size the population state is updated by choosing two individuals,
ne for birth and one for death. The offspring of the birth individual
hen replaces that of the death individual. Different update rules can be
btained by having natural selection act on birth or death. For death–
irth (dB) dynamics, an individual is randomly chosen for death and

s then replaced by an offspring of an individual who is selected for
irth proportional to their fitness (hence the uppercase in dB indicates

election). The fixation probability for dB EGT dynamics (Kaveh et al.,
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Fig. 2. Fixation probability of a mutant in a single site. Exact fixation probability is
iven by ‘Analytic’ plot, which is calculated using Eq. (15). Approximation using dB
GT dynamics is given by ‘dB’ plot, calculated using Eq. (18).

015; Hindersin and Traulsen, 2015) is given by

dB(𝑁, 𝑟) = 𝑁 − 1
𝑁

1 − 1
𝑟

1 − 1
𝑟𝑁−1

= 𝑁 − 1
𝑁

𝜌Moran(𝑁 − 1, 𝑟) (17)

here 𝑁 is the number of individuals, 𝑟 is the relative fitness of a
utant to a resident and 𝜌Moran is the Moran probability (Moran, 1959).
s we will explain, we find that the dynamics in a single site for the
irth–death-migration model resemble dB dynamics. By specifying a
alue for 𝑁 and 𝑟, we can use 𝜌dB to approximate 𝜌Single. We set the

relative fitness to 𝑟 = 𝛽𝑀∕𝛽𝑅; this was selected because the different
types differ in terms of their birth rate. To set 𝑁 , we assume that with
probability 𝜇Init

𝑛 a mutant arises in a population with 𝑛 residents, so
𝑁 = 𝑛+ 1. The maximum resident population size is set to 𝐾 such that
having a population size ≥ 𝐾 tends to 0. Putting this together gives,

𝜌Single
𝑀 ≈

𝐾
∑

𝑛=1
𝜇Init
𝑛 𝜌dB(𝑛 + 1, 𝛽𝑀∕𝛽𝑅). (18)

In Fig. 2 we see that, even though there is some discrepancy, similar
behaviour is observed with both dB dynamics and the birth–death-
migration model. The discrepancy between the two is due to fluctuating
population size in the birth–death-migration model, which allows the
population to be updated via a birth or death. With dB dynamics,
the population size is fixed and can only be updated via a death–
Birth event. Note that the discrepancy increases as the population size
increases (competition rate decreases). Further insight can be obtained
by looking at the components of 𝜌dB. The component (𝑁 −1)∕𝑁 in 𝜌dB

is the probability that the initial mutant is not chosen to randomly die.
This component dominates when the population size is small since the
chance of the initial mutant randomly dying is higher. The component
𝜌Moran(𝑁 − 1, 𝑟) captures the probability that the initial mutant fixates
provided it does not randomly die. This component dominates as the
population size gets larger since the probability of the initial mutant
randomly dying decreases. This captures the behaviour observed for
the single site case as follows. As the competition rate increases, the
population size decreases and, therefore, the ability to survive this
competition determines the fixation probability of a mutant. For a
high competition rate the expected resident population size converges
to 1, and 𝜌Single converges to 1

2 as both resident and mutant are
equally likely to survive this intense competition. As the competition
rate decreases, which increases the population size, the likelihood of
surviving competition increases. The ability to reproduce therefore
starts playing a more important role. The dip and recovery we see in
𝜌Single observed in Fig. 2 is due to the birth rate of mutants we have
chosen (𝛽 = 2). Changing the birth rate can alter this behaviour.
5

𝑀

3.3. The low migration limit

We now return to the multiple site case and consider the low
migration rate limit (𝜆 → 0). In this case, an initial mutant that appears
n a site will die out or fixate before a migration event happens and
herefore each site can be viewed as either a resident or mutant site
rior to another migration event. The probability that a mutant fixates
s then a two-step process. First, an initial mutant appears and fixates
n a single site. Second, mutants then spread until they fixate in the
opulation. The probability in the first step is given by 𝜌Single for both
ow and high group tolerance. For low group tolerance we can obtain
n analytic expression for the probability in the second step, but it
s difficult for high group tolerance as we can have empty sites. We
roceed by deriving an analytic expression for low group tolerance.

The rate 𝐽 𝑢
𝑥,𝑦 at which a type 𝑢 individual migrates from site 𝑥 to

𝑦, is proportional to the expected number of individuals in site 𝑥 who
can migrate multiplied by the migration rate. In the case of low group
tolerance (Eq. (11)), the rate 𝐽 𝑢

𝑥,𝑦 is given by

𝐽 𝑢
𝑥,𝑦 = 𝜆𝑊𝑥,𝑦

∞
∑

𝑛=2
𝑛𝜋𝑢

𝑛,𝑥 = 𝜆𝑊𝑥,𝑦

(

𝛽𝑢∕𝛾
1 − 𝑒−𝛽𝑢∕𝛾

−
𝛽𝑢∕𝛾

𝑒𝛽𝑢∕𝛾 − 1

)

= 𝜆𝑊𝑥,𝑦𝛽𝑢∕𝛾.

(19)

Note that 𝜋𝑢
𝑛,𝑥 = 𝜋𝑢

𝑛 where the subscript for the site is included for
clarity. To calculate the fixation probability of a type 𝑢 immigrant
arriving in site 𝑥, we need to account for the number of individuals
currently present in site 𝑥. With probability 𝜋𝑣

𝑛,𝑥 there are 𝑛 type
𝑣 individuals present in site 𝑥 and, therefore, the average fixation
robability of a type 𝑢 immigrant in site 𝑥 is

Mig
𝑢,𝑥 =

∞
∑

𝑛=1
𝜋𝑣
𝑛,𝑥ℎ (𝑢)({(𝑣, 𝑥)𝑛, (𝑢, 𝑥)})

=
∞
∑

𝑛=1

(𝛽𝑣∕𝛾)𝑛

𝑛!
1

𝑒𝛽𝑣∕𝛾 − 1
ℎ (𝑢)({(𝑣, 𝑥)𝑛, (𝑢, 𝑥)}) (20)

where 𝑣 ∈ {𝑀,𝑅} ⧵ {𝑢} and  gives the state that we fixate in, that
is,  (𝑀) =  for mutant fixation, and  (𝑅) =  for resident fixation.
Similar to obtaining the solution of 𝜌Single, in 𝜌Mig we can solve ℎ using
Eq. (7) by limiting the birth rate (Eq. (16)). Let 𝑠 ⊆ {1,… , 𝑁} = 
represent a state of the population such that site 𝑥 where 𝑥 ∈ 𝑠 is a site
occupied by mutants and a site 𝑦 where 𝑦 ∉ 𝑠 represents a resident site.
We can now define the probability that mutants fixate at the site level
for low group tolerance and in the low migration limit as follows

𝜌Low Mig
𝑠 =

∑

𝑠′⊂

𝑄𝑠𝑠′

𝑞𝑠
𝜌Low Mig
𝑠′ (21)

with boundary conditions 𝜌Low Mig
∅ = 0 and 𝜌Low Mig

 = 1, where 𝑄𝑠𝑠′ is
he transition rate from state 𝑠 to 𝑠′, which is given by

𝑄𝑠𝑠′ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑥∉𝑠
𝐽𝑅
𝑥,𝑦𝜌

Mig
𝑅,𝑦 if 𝑠′ = 𝑠 ⧵ {𝑦} for 𝑦 ∈ 𝑠,

∑

𝑥∈𝑠
𝐽𝑀
𝑥,𝑦𝜌

Mig
𝑀,𝑦 if 𝑠′ = 𝑠 ∪ {𝑦} for 𝑦 ∉ 𝑠,

0 otherwise,

and 𝑞𝑠 is the rate of transitioning away from state 𝑠, that is

𝑞𝑠 =
∑

𝑠′⊆
𝑄𝑠𝑠′ .

The average fixation probability of a mutant for low group tolerance
and in the low migration limit is then given by

𝜌LGT =
∑

𝑥∈
𝑝𝑥𝜌

Single
𝑀,𝑥 𝜌Low Mig

{𝑥} (22)

where 𝜌Single
𝑀,𝑥 = 𝜌Single

𝑀 , but have included site index for clarity, and 𝑝𝑥

is the probability a mutant appears in site 𝑥, which is proportional to
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Fig. 3. Plots for the low migration case. (a) Fixation probability of a mutant for low group tolerance (LGT). (b) Fixation probability of a mutant for high group tolerance (HGT).
In (a–b), ‘Analytic (LGT)’ is analytically calculated by Eq. (25). In (a), ‘Anlaytic star (LGT)’ is analytically calculated by solving Eq. (22) using the formula of Broom and Rychtář
(2008). (c) Inter-site fixation probability of mutants in circulation networks for low group tolerance, that is, probability of fixating in entire population given that mutants have
already fixated in one site. (d) The forward bias for mutants in circulation networks for the low group tolerance case.
t
c
s
a

the expected number of individuals on a site, that is,

𝑝𝑥 =
∑∞

𝑛=1 𝑛𝜋
𝑅
𝑛,𝑥

∑

𝑦∈
∑∞

𝑛=1 𝑛𝜋𝑅
𝑛,𝑦

= 1
𝑁

.

Note that the intra-site dynamics are homogeneous, i.e. 𝜋𝑅
𝑛,𝑥 = 𝜋𝑅

𝑛,𝑦 ∀𝑥, 𝑦,
o the mutant appearance distribution is uniform. Since we have homo-
eneous intra-site dynamics, this simplifies the calculation of 𝜌Low Mig

as now the network structure determines the complexity of the cal-
culation. In particular, we can use the property where the sum of
the incoming weights and the sum of the outgoing weights are the
same to further simplify the calculation. In our case this would be the
complete and cycle networks, and in general such networks are known
as circulation networks (Lieberman et al., 2005). Circulation networks
have constant forward bias for all transitory states (both residents and
mutants exist). For a transitory state 𝑠 the forward bias 𝑓 is given by the
ate of mutants increasing divided by the rate of residents decreasing;
hat is,

=

∑

𝑥∈𝑠 𝐽
𝑀
𝑥,𝑦𝜌

Mig
𝑀,𝑦

∑

𝑥∉𝑠 𝐽𝑅
𝑥,𝑦𝜌

Mig
𝑅,𝑦

. (23)

For constant forward bias, the closed form version of 𝜌Low Mig (Eq. (21))
is the Moran probability (Lieberman et al., 2005; Pattni et al., 2015),
that is,

𝜌Moran(𝑁, 𝑓 ) =
1 − 1

𝑓

1 − 1
𝑓𝑁

, (24)

where 𝑁 is the number of sites and 𝑓 is the forward bias. Therefore,
in the case of circulation networks, we can substitute 𝜌Low Mig with
6

{𝑥}
𝜌Moran(𝑁, 𝑓 ) for all 𝑥, so Eq. (22) simplifies to

𝜌LGT Circ = 𝜌Single
𝑀 𝜌Moran(𝑁, 𝑓 ). (25)

For the star network, 𝜌LGT (Eq. (22)) can be calculated using the
formula in Broom and Rychtář (2008).

For low group tolerance, Fig. 3(a) shows that an increasing compe-
tition rate decreases the fixation probability for a low migration rate
in all networks considered. We use the two components of 𝜌LGT Circ to
understand why this is the case. The first component, 𝜌Single

𝑀 , describes
he intra-site dynamics, which we have already explained. The second
omponent, 𝜌Moran, describes the inter-site dynamics, or how mutants
pread once they have fixated on a single site. The inter-site dynamics
re shown in Fig. 3(c), where we see that 𝜌Moran is a sigmoid shaped

curve whose shape is explained by the forward bias (𝑓 ) that is shown
in Fig. 3(d). For a decreasing competition rate we see that

lim
𝛾→0

𝑓 ≈ ∞ ⇒ 𝜌Moran → 1 ⇒ lim
𝛾→0

𝜌LGT Circ ≈ lim
𝛾→0

𝜌Single. (26)

This means that for a low competition rate a mutant fixating on one
site is sufficient to guarantee that it goes on to fixate in the entire
population. For an increasing competition rate we see that

lim
𝛾→∞

𝑓 ≈ lim
𝛾→∞

(𝛽𝑀 ∕𝛾)2

2!
1

exp(𝛽𝑀 ∕𝛾)−1
(𝛽𝑅∕𝛾)1

1!
1

exp(𝛽𝑅∕𝛾)−1
1
2

(𝛽𝑅∕𝛾)2
2!

1
exp(𝛽𝑅∕𝛾)−1

(𝛽𝑀 ∕𝛾)1
1!

1
exp(𝛽𝑀 ∕𝛾)−1

1
2

=
𝛽𝑀
𝛽𝑅

⇒

lim
𝛾→∞

𝜌LGT Circ ≈ 1
2
𝜌Moran(𝑁, 𝛽𝑀∕𝛽𝑅) (27)

where when calculating 𝑓 we have assumed that there are two individ-
uals when a migration event happens and that an immigrant arrives to
a site with one individual only so fixates with probability 1 . Note that
2
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Fig. 4. Fixation probability of a mutant plotted against the migration rate of individuals for different competition rates. Each network has 7 sites and birth rate of mutants is 2.
Figures (a–d) there is low group tolerance (LGT). Figures (e–g) there is high group tolerance (HGT).
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in this case the forward bias converges to the relative birth rates of the
individuals (𝛽𝑀∕𝛽𝑅 = 2), which means that each site can be viewed as

single individual as in the case of EGT.
In the star network for low group tolerance Fig. 3(a) shows that it

ollows a similar pattern to the complete and cycle networks. However,
he fixation probability in the star network is higher for high com-
etition rates but converges as the competition rate decreases. Since
→ 0, mutants are likely to appear on leaf sites in a star network as the

combined number of individuals on leaf sites is higher than the centre
site. Appearing on leaf sites is beneficial because the way in which 𝑊 is
defined for the star network (Eq. (13)) allows leaf sites to act as source
sites, i.e. are net exporters of individuals. This is because the outgoing
weight from a leaf site to the centre is 1 whereas the outgoing weight
from the centre site to a leaf site is 1∕(𝑁 −1), and therefore individuals
are more likely to migrate from a leaf site to the centre site than vice
versa. For low competition rate, convergence occurs since the intra-
site dynamics are identical for all networks and, as explained earlier,
if a mutant fixates on one site, it is essentially guaranteed to fixate
in the entire population. On the other hand, as the competition rate
increases, which gives residents a better chance to prevent invasion, the
divergence in the fixation probability between the star and circulation
networks becomes more apparent.

For high group tolerance, Fig. 3(b) shows a similar pattern to low
group tolerance where fixation probability decreases as the competition
rate increases. High group tolerance allows empty sites, however, when
competition rate is low, the likelihood of empty sites decreases and the
intra-site dynamics would be similar to that of low group tolerance. The
fixation probabilities are therefore identical to the low group tolerance
case for low competition rate. As the competition rate increases, the
chance of having empty sites increases, changing the behaviour ob-
served. In particular, the population starts converging to a population
size of 1 as individuals start dying off when they meet. This means
that as the competition rate increases the fixation probability starts
converging to 1

2 as the likelihood that a mutant appears in a population
with one resident increases. Overall, the fixation probability starts
decreasing then increasing again as the competition rate increases.

3.4. General migration rate

In this section we consider the case for a general migration rate
(𝜆 > 0). The fixation probability in this case is calculated via simulation.

3.4.1. Effect of increasing migration rate
Migration allows individuals to escape competition as shown in

Fig. 4 where the fixation probability increases with the migration
rate. The way in which this plays out depends upon the competition
rate, network structure and group tolerance. The effects of these are
explained in the following.

For low group tolerance, Fig. 4 (a–d) shows that as the migration
rate increases the fixation probability starts increasing and plateaus
earlier for low competition than high competition. However, as 𝜆 → ∞
there would be a larger overall increase in the fixation probability
for high competition. In the initial growth and plateau phases of
the fixation probability, the complete and cycle networks follow each
other closely and are indistinguishable. As the growth in the fixation
probability accelerates, there is higher acceleration in the complete
network than the cycle network. The key factor here is local correlation
between groups on neighbouring sites on the cycle. For low migration
rates fixation probabilities are low and similar for both cycle and
complete networks. New individuals are likely to be born into bigger
groups, as there are more potential parents, but cannot move on,
so face increased competition. As they hardly move, network does
not matter. For intermediate migration rates fixation probabilities are
intermediate, but differ for the two types. New individuals are born to
bigger groups, but there is some dispersal so they face an intermediate
level of competition. Here dispersal happens to some extent, and so the
8

Fig. 5. Fixation probability in the neutral case (𝛽𝑅 = 𝛽𝑀 = 1). This plot was generated
using 106 simulations.

network does matter. For high migration rates fixation probabilities are
high and similar for the two types. New individuals are born in bigger
groups but then there is rapid dispersal so they live in ‘average’ groups.
As migration is so far they mix well, so network does not matter. To
illustrate this point further, Fig. 5 shows the fixation probability in the
case of a neutral mutant, i.e. 𝛽𝑅 = 𝛽𝑀 = 1. If there is no correlation
etween the sites, the fixation probability would be identical for the
omplete and cycle networks. There is correlation as we see a difference
n the fixation probabilities, which happens for intermediate migration
ates. For the star network, as 𝜆 increases we see that there is an initial

dip in the fixation probability before it starts increasing. This is because
increasing the migration rate results in the number of individuals in
the centre site becoming larger than a leaf site. This increases the
likelihood of a mutant appearing in the centre site which is a sink,
i.e. a net importer of individuals as individuals are more likely to die
than reproduce, which adversely affects the fixation probability. This
dip happens earlier for a lower competition rate and, after this dip,
the fixation probability remains below that of the complete and cycle
networks.

For high group tolerance Fig. 4 (e–h) shows that the behaviour
observed is similar to low group tolerance when competition rate is low
but vastly different for a higher competition rate. For low competition
rate, the intra-site dynamics are similar in high and low group toler-
ance. In particular, for a low competition rate the likelihood of there
being empty sites is low even as the migration rate increases. On the
other hand, for a high competition rate the likelihood of empty sites
increases. This means that a mutant arises in a population with fewer
individuals than in the low group tolerance case. This is observed in
Fig. 4(g) and (h). In (g), the star network has a higher fixation probabil-
ity for all migration rates than the complete and cycle networks. This is
because individuals are more likely to meet in the centre site resulting
in death due to competition, which drives the population size down.
This effect is substantial for a high competition rate as seen in (h). As
the migration rate increases, the fixation probability in all networks
swiftly converges to 1

2 since the population size is converging to 1.

Fig. 6 shows the effect of migration rate as the number of sites
increases. Fig. 6(a) considers the low migration limit for low group
tolerance in circulation networks. We see that for a low competition
rate (𝛾 = 0.1), the fixation probability remains the same as the number
of sites increases. This was previously explained using Eq. (26), where
fixating in one site was sufficient to guarantee fixation in all sites.
This effect carries over for higher competition rates, but the number
of sites required to guarantee fixation increases. We observe that the
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Fig. 6. Effect of increasing the number of sites on the fixation probability. Figures (a–d) are for low group tolerance (LGT) and figures (e–f) are for high group tolerance (HGT).
Figure (a) is analytically calculated using Eq. (25) for Circulation networks, and figure (b) is calculated using the analytical formula for the star network. Figures (c–f) are generated
using 105 simulations. For the cycle network, the plot starts from 4 sites as fewer than 4 sites classifies as a complete network. For the star network, the plot starts from 3 sites
as this is the minimum number of sites required to construct a star network.
fixation probability initially starts to decrease as the number of sites
increases, but once we reach the point where the number of sites
guarantees fixation, the fixation probability will flatline. For example,
we see that for a high competition rate (𝛾 = 100) the fixation probability
flatlines after approximately 7 sites, that is, fixating in 7 sites guar-
antees fixation in the entire population. This effect is also evident in
circulation networks for low group tolerance and high group tolerance
with a relatively low migration rate of 1 as seen in Figs. 6 (c) and
(e). However, when the migration rate is increased (𝜆 = 10), for both
9

low and high group tolerance there is a slight dip as the number of
sites increases, but recovers to the one site level as seen in Figs. 6 (d)
and (f). This is because the population effectively behaves as one big
unit when the migration rate is high, with this being more pronounced
with a higher number of sites as there are more individuals. In the
star network (Fig. 6(b)), for low competition the effect of increasing
the number of sites is the same as for circulation networks i.e. fixating
in one site guarantees fixation in the entire population. For a higher
competition rate, the fixation probability increases with the number of
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sites. This is because we are adding a leaf site each time the number of
sites increases, which increases the likelihood of a mutant appearing
on a leaf site. As explained earlier, leaf sites are source sites and
therefore beneficial for a mutant. As the migration rate increases to 1,
the fixation probability decreases in the star network with an increasing
number of sites for low group tolerance (Fig. 6(c)). This is because
the higher migration rate results in an increased number of individuals
in the centre site, which increases the likelihood of the initial mutant
appearing in the centre site. As the centre site is a sink, it is less
beneficial for mutants. This does not happen for high group tolerance
(Fig. 6(e)), as most leaf sites are likely to remain empty with most of the
population being present in the centre site. The population therefore
behaves as one large unit clustered in the centre site. As the migration
is increased to 10, for both low and high group tolerance (Fig. 6(d) and
(f)), the fixation probability in the star network remains constant as
the number of sites is increased. This is because individuals are mixing
with each other much more, nullifying the effect of network structure
in both cases.

3.4.2. Comparison to low migration limit
For low group tolerance Fig. 7 (a–c) shows that there is initially

similar behaviour to the low migration limit, but gradually breaks down
as the migration rate keeps increasing. The fixation probability in the
complete and cycle networks are higher than in the low migration
limit as migration enables escaping competition. This difference is less
apparent for high competition as it requires a much larger migration
rate to make a significant difference. In the low migration limit, the
star network has a higher fixation probability than the complete and
cycle networks, and converges as the competition rate decreases. Here,
the star network initially has a lower fixation probability for a low
competition rate. As the competition rate increases this difference
gradually diminishes and eventually the fixation probability surpasses
that of the complete and cycle networks. This behaviour is explained by
the decreasing likelihood of a mutant appearing in the centre site. When
the competition rate is low, there are more individuals in the centre site
than there are on a leaf site, thus there is an increased likelihood of
a mutant appearing on the centre site. However, this likelihood starts
decreasing as the competition rate increases, which reduces the number
of individuals in the centre site. Since the centre site acts as a sink, i.e. it
is a net importer of individuals, it suppresses the fixation probability.

For high group tolerance Fig. 7 (d–f) shows that the fixation prob-
ability decreases then increases as the competition rate increases. This
behaviour is significantly different to that observed in the low migra-
tion limit. For low competition rate (𝛾 ≤ 1) the behaviour is similar to
that of low group tolerance (Fig. 7 (a–c)), this means that the intra-
site dynamics are similar for both cases. That is, even though high
group tolerance allows for empty sites in their intra-site dynamics, this
is unlikely when the competition rate is lower. As the competition
increases (𝛾 > 1), empty sites are more likely as a death is more
likely to occur whenever moving individuals come into contact with
one another. This drives the population size down. We observe that
as the competition rate increases, the fixation probability turns and
starts to increase, eventually converging to 0.5. This implies that the
entire resident population prior to a mutant arising is converging to
1. When comparing between networks, the fixation probability in the
star network turns first and converges faster to 0.5. This is because
individuals are more likely to meet in the centre site in a star network
which drives the population size down faster than the complete and
star networks.

4. Discussion

In this paper we have proposed an evolutionary framework where
the population is updated through individual birth, death and migra-
tion. This is based on the individual-based framework of Champagnat
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et al. (2006) which we have adapted to allow migration between a
network of sites. An alternative to a network of sites is to consider
continuous spatial structure (Champagnat and Méléard, 2007). The
approach we have used here based on discrete space allows us to un-
derstand the effect of migration on an evolutionary process for different
network topologies, which have been shown to amplify the effect of
selection in the evolutionary graph theory (EGT) framework (Lieber-
man et al., 2005; Broom and Rychtář, 2008; Shakarian et al., 2012;
Hindersin and Traulsen, 2015; Yagoobi and Traulsen, 2021). In EGT
population size and distribution is fixed, which is achieved by coupling
migration with birth and death. Here, migration is a separate process
and not coupled with birth or death therefore allowing for demographic
fluctuations (e.g. changes in population size and distribution) that are
shown to affect trait fixation (Czuppon and Gokhale, 2018). The frame-
work allows for overlapping evolutionary and ecological timescales
but in this paper we focus on the rare mutation limit. This means
the population evolves in adaptive sweeps (Gerrish and Lenski, 1998)
where a mutant either fixates or goes extinct prior to another mutant
arising. This allows the effect of network structure on evolution to be
measured in terms of the fixation probability of a mutant. Considering
a simplistic model initially allows us to identify and understand the
parameters that are of interest. We can then consider more biolog-
ically relevant models with continuous mutations where alternative
measures of mutant success are required such as the mutation-selection
equilibrium (Yagoobi et al., 2018; Sharma and Traulsen, 2022).

To control the migration of individuals we have provided an ex-
treme example of a positive density-dependent migration regime where
individuals move only when they are in a group. In general, non-
linear effects can be assumed due to there being varying effects at
different densities (Bowler and Benton, 2005). We can also have nega-
tive density-dependent migration where individuals migrate when the
number of individuals on a site falls, which can be explained by in-
creased predation (Kuussaari et al., 1996). Migration plays a significant
role when complex strategies are involved such as in the evolution of
cooperation (Ichinose et al., 2013; Erovenko et al., 2019). In our case,
individuals only differed in terms of their birth rate, so we employed
a simplistic migration regime where individuals move only when in a
group or move regardless of group composition. This in turn enabled
us to obtain analytical results in the low migration limit and allows
us to make comparisons with models with fixed population size where
all sites are always occupied (Lieberman et al., 2005; Yagoobi and
Traulsen, 2021).

By considering a model with variable population size and distribu-
tion we can capture effects that are not present in models with fixed size
and distribution. In particular, variable population size and distribution
affects the mutant appearance distribution which impacts the fixation
probability. To enable comparisons with models with fixed and finite
population size, we need to obtain a comparable mutant appearance
distribution. Models with fixed size and distribution can use a uniform
distribution or an alternative such as the temperature-weighted mu-
tant appearance distribution (Allen and Tarnita, 2014). In a uniform
distribution, a mutant is equally likely to take the place of a resident.
In a temperature-weighted distribution, a mutant takes the place of a
resident proportional to their temperature, which is their likelihood of
being replaced. One way to artificially apply either of these schemes
in populations with variable size and distribution is to fix the initial
state and then replace one resident with a mutant using the uniform
or temperature weighted distribution. This approach is sufficient for
specific purposes, for example, understanding how EGT dynamics can
be derived from a model with eco-evolutionary dynamics (Pattni et al.,
2021). The approach used here, considers all the states of the system
prior to a mutation arising and have therefore had to resort to other
options to obtain a mutant appearance distribution that is close to
models with fixed size and distribution. To obtain a distribution that
is akin to the EGT framework (Lieberman et al., 2005) where each

site is occupied by one individual, we assumed a high competition
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Fig. 7. Fixation probability in the cycle, complete and star networks plotted against the competition rate 𝛾 for different migration rates. Figures (a–c) have low group tolerance
LGT). ‘Analytic (LGT)’ plot is calculated using Eq. (25), which represents the low migration limit. Figures (e–f) have high group tolerance (HGT).
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ate so that competition would kill off all but one individual in a site
nd assumed that individuals have low tolerance so only move when
hey are in a group resulting in all sites being occupied. Even then the
utant appearance distribution is slightly different as EGT does not

ake into account the competition faced by a mutant to take over a
ite. The mutation dynamics (the process of a mutant appearing in the
opulation) are simpler in EGT as a mutant simply replaces a resident
nd does not compete for that site as it will break the fixed population
ize assumption (in a population size of 𝑛, the population size has to
emporarily be 𝑛 + 1 to account for the appearance of a mutant). The
ffect of this is that the fixation probability with mutation dynamics in
ur model is weighted by the probability of an initial mutant competing
11

a

or a space within the population. Whilst this is a feature of our model,
his can be considered in EGT when defining the mutant appearance
istribution.

In models with fixed population size and distribution a network’s
ffect is dependent upon the mutant appearance distribution used
Tkadlec et al., 2019; Allen et al., 2021; Yagoobi and Traulsen, 2021).
n particular, the mutation appearance distribution chosen can increase
r decrease the chances of a mutant appearing on beneficial sites. In the
irth–death-migration model considered here, the mutant appearance
istribution changes with the migration rate. Having the mutant ap-
earance distribution change within the model allows investigation of
wider range of behaviours such as the optimal mutation strategy for



Journal of Theoretical Biology 572 (2023) 111587K. Pattni et al.

w

l

h

bacteria that take into account migration and spatial structure (Dena-
mur and Matic, 2006). This is because the effect of networks in terms
of amplifiers or suppressors becomes more fluid as they can switch
between the two. We observed that the star network switches from
an amplifier to suppressor as the migration rate increases. We also
uncovered subtle differences between networks with shared properties.
Networks where every site has a balanced inflow and outflow of in-
dividuals are shown to have identical fixation probability (Maruyama,
1970, 1974; Lieberman et al., 2005; Yagoobi and Traulsen, 2021). In
our case, the complete and cycle networks that satisfy this property
were shown to have subtle differences for intermediate migration rates
but were otherwise similar in behaviour. Such subtleties can play a key
role in neutral mutations, for example, low network connectivity can
increase a population’s susceptibility to neutral virus strains (Marquioni
and De Aguiar, 2021).

In summary, we have presented a network-structured population
evolution framework where birth, death and migration are uncoupled.
We study the effect of network structure in the rare mutation limit and
have shown how the mutant appearance distribution affects the success
of an invading mutant. Future work will move away the rare mutation
limit so that overlapping evolutionary and ecological timescales can be
considered in the context of network structure.
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Appendix. Simulation details

The evolutionary process is simulated using the Gillespie algo-
rithm (Gillespie, 1976, 1977). Recall that the infinitesimal generator
(Eq. (1)) describing the evolutionary process is as follows

𝜙() =
∑

𝑖∈
[1 − 𝜇(𝑖)]𝑏(𝑖,)[𝜙( ∪ {𝑖}) − 𝜙()]

+
∑

𝑖∈
𝜇(𝑖)𝑏(𝑖,)∫R𝑙

[𝜙( ∪ {(𝑢,𝑋𝑖)}) − 𝜙()]𝑀(𝑈𝑖, 𝑢)𝑑𝑢

+
∑

𝑖∈
𝑑(𝑖,)[𝜙(∖{𝑖}) − 𝜙()]

+
∑

𝑖∈

∑

𝑥∈
𝑚(𝑖, 𝑥,)[𝜙( ∪ {(𝑈𝑖, 𝑥)}∖{𝑖}) − 𝜙()].

For this process, let 𝑇 (𝑘) and 𝑆(𝑘) respectively be the time and state
after 𝑘 events. The simulation follows the following steps:

1. The time, 𝑇 (𝑘 + 1), when the next event happens is given by

𝑇 (𝑘 + 1) = 𝑇 (𝑘) −
ln(Unif(0, 1))

𝜆𝑘
where Unif(0, 1) is uniformly distributed random number in the
range (0, 1) and

𝜆𝑘 =
∑ ∑

𝑏(𝑖, 𝑆(𝑘)) + 𝑑(𝑖, 𝑆(𝑘)) + 𝑚(𝑖, 𝑥, 𝑆(𝑘)).
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𝑖∈𝑆(𝑘) 𝑥∈
2. The next state, 𝑆(𝑘 + 1), is determined by:

• Birth without mutation: The probability that 𝐼𝑖 gives birth
to an offspring with the same type is

[1 − 𝜇(𝑖)]
𝑏(𝑖, 𝑆(𝑘))

𝜆𝑘

then 𝑆(𝑘 + 1) = 𝑆(𝑘) ∪ {(𝑈𝑖, 𝑋𝑖)}.
• Birth with mutation: The probability that 𝐼𝑖 gives birth to

an offspring with type 𝑤 is

𝜇(𝑖)𝑀(𝑈𝑖, 𝑤)
𝑏(𝑖, 𝑆(𝑘))

𝜆𝑘
.

then 𝑆(𝑘 + 1) = 𝑆(𝑘) ∪ {(𝑤,𝑋𝑖)}.
• Death: The probability that 𝐼𝑖 dies is

𝑑(𝑖, 𝑆(𝑘))
𝜆𝑘

then 𝑆(𝑘 + 1) = 𝑆(𝑘) ⧵ {𝑖}.
• Migration: The probability that 𝐼𝑖 migrates to site 𝑛 is

𝑚(𝑖, 𝑛, 𝑆(𝑘))
𝜆𝑘

then 𝑆(𝑘 + 1) = 𝑆(𝑘) ∪ {(𝑈𝑖, 𝑛)} ⧵ {𝑖}.

3. Repeat steps 1 and 2 as required.

For the birth–death-migration model to simulate the hitting probability
(Eq. (7)),

ℎ() = 0

ith boundary conditions ℎ() = 1 for  ∈  and ℎ() = 0 for
∈ , we first need to determine the initial state in the rare mutation

imit. To do this, we set 𝑇 (0) = 0, 𝜇(𝑖) = 1−4 ∀𝑖, 𝑀(𝑅,𝑀) = 1 and choose
𝑆(0) ∈  such that 𝑆(0) is at the carrying capacity in the deterministic
system. This is an added step taken to ensure that the stochastic system
is fluctuating around its carrying capacity prior to a mutant arising. The
deterministic system is obtained by assuming that, rather than there
being a discrete number of individuals, the number of individuals is
continuous. Let 𝑒1(𝑡),… , 𝑒𝑁 (𝑡) be the number of residents at time 𝑡 in
each site. For low group tolerance (Eq. (11)), we want the solution to
the system (dropping 𝑡 for brevity)

d𝑒𝑥
d𝑡 = 𝛽𝑅𝑒𝑥 − 𝛾𝑒𝑥(𝑒𝑥 − 1) +

∑

𝑦
𝜆(𝑒𝑦 − 1)𝑊𝑦,𝑥 − 𝜆(𝑒𝑥 − 1)𝑊𝑥,𝑦 = 0, (28)

where the first term accounts for birth, second term death, third term is
immigration and fourth term is emigration. Note that migration takes
place only if the number of individuals on a site is > 1. Similarly, for
igh group tolerance (Eq. (12)) we want the solution to

d𝑒𝑥
d𝑡 = 𝛽𝑅𝑒𝑥 − 𝛾𝑒𝑥(𝑒𝑥 − 1) +

∑

𝑦
𝜆𝑒𝑦𝑊𝑦,𝑥 − 𝜆𝑒𝑥𝑊𝑥,𝑦 = 0, (29)

the terms are as in the low group tolerance case but migration in this
case happens when the individuals on a site is > 0. After obtaining
𝑒1(𝑡),… , 𝑒𝑁 (𝑡), we round up to the nearest integer and set 𝑆(0) to this.
We then repeat steps 1 and 2 as outlined above until a mutant appears.
Once a mutant appears, we use this as the initial state to calculate the
hitting probability. To continue the simulation, we set 𝜇(𝑖) = 0 ∀𝑖 and
continue the simulation until we hit a state in  or . This is one run
of the simulation which we repeat to generate multiple simulations.
Note that initialising the population in this way takes into account the
mutant appearance distribution (𝑝𝑥, ) since a mutant is more likely to
appear in a site with more individuals. The average fixation probability
of a mutant is then given by 𝑁mut∕𝑁sim where 𝑁sim and 𝑁mut are the
total number of simulations and the number of simulations that hit 

respectively.
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