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Abstract

This work investigates nonrational iterative learning and searching in a
stochastic setting, where the nature of the stochasticity is unknown. Such
problems are difficult because at each iteration, the decision making model
strives to make the best decision and simultaneously develops its repre-
sentation of the underlying stochasticity. Outside of a nonrational context,
Q-learning or stochastic approximation provide well-known methods for
solving such problems subject to restrictions on the speed of learning rate
decay and with the use of an infinite time horizon.

The nonrational context proposed here departs from the usual Q-learning
approaches by stipulating that the learning rate decays exponentially. Addi-
tionally, a search technique named Constrained Single Unconstrained Double
perturbation stochastic approximation (CSUD) is introduced. CSUD com-
prises a probabilistic hybrid of double- and single-sided simultaneous per-
turbation stochastic approximation, and is able to constrain not only input
updates but also input perturbations. Using performance criteria targeting
loss functions and input constraints, a nonrational CSUD search strategy is
developed, in the sense of producing not globally unique but only satisfic-
ing outcomes.

Normal versus ventromedial prefrontal cortex (vmPFC) impaired re-
sults reported in the Iowa Gambling Task (IGT) are used to calibrate with
CSUD search, a series of single-state exponential learning rate decay Q-
learning models, culminating in the burst learning model, where the learn-
ing rate can be reset via an ‘emotion’ mediated signal. The key results ob-
tained from the automatic calibration of the Q-learning models consist of:
(1) high learning rate decay produces vmPFC impaired behaviour, and (2)
for Q-learning models to match human IGT outcomes, exploration must be
very high. The presence of high exploration is validated in corresponding
human IGT outcomes by introducing an entropy based exploration index
(EI). Four different Q-learning architectures including ε-Greedy and Boltz-
mann exploration are considered, and it is found that no single exploration
architecture can alone adequately explain human exploration.

Finally, the performance of nonrational CSUD in tuning a (rational) ar-
tificial neural network (ANN) is assessed. For a complex network, nonra-
tional search strategy validation accuracy exceeds random search tuners,
but lags behind that of Gaussian-mixture Bayesian tuners.
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“The reason for valuing choice is both conditional and relative. It is conditional
because the value of my response as a predictor of my future satisfaction depends on
the nature of the question, my capacities of discernment, and the conditions under
which my response is elicited. It is relative because it also depends on the reliability
of the available alternative means for selecting the outcomes in question.”

Scanlon (2000)

“In a world where not all risks are known, statistics and logic are not sufficient -
additional tools, such as heuristics, are needed.”

Gigerenzer and Gaissmaier (2015)
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Chapter 1

Introduction

This work proposes two new approaches in computational technology; these
new approaches are inspired by the role of emotion in decision making and
by heuristic decision making theory. On a mathematical and algorithmic
level, single-state model-free reinforcement learning (RL) Q-learning learn-
ing variants with exponentially decaying learning rate, and a constrained
perturbations, gradient driven automatic model tuner are proposed. Method-
ologically, human Iowa Gambling Task (IGT) (Bechara et al., 1994) outcomes
are used to automatically calibrate a series of Q-learning models, where this
calibration is conducted using Constrained Single Unconstrained Double
stochastic approximation (CSUD) as the model tuner; the stochastic approx-
imation technique introduced in chapter 12.

The fundamental concepts are introduced in chapter 3. Chapters 5 to
10 present the calibration and discussion of the single-state Q-learning vari-
ants. It is shown that high exponential learning rate decay reproduces the
performance of ventromedial prefrontal cortex (vmPFC) impaired human
subjects in the Iowa Gambling Task (IGT) (Bechara et al., 1994). Interest-
ingly, it is also shown that for Q-learning models to match the IGT outcomes
of normal and vmPFC impaired human subjects, exploration must be very
high. The high exploration finding is discussed in the context of the No Free
Lunch theorems, which state that in the space of all problems and all algo-
rithms, no algorithm is better than random search (Wolpert & Macready,
1997). It is proposed that in the presence of incomplete information and un-
certainty, algorithmic exploration can be interpreted in a heuristic context
as a defence against algorithmic specificity.

The IGT and its variants employed in this work are discussed in detail in
chapter 4. Bechara et al., 1994 introduces the IGT as a clinical psychological
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test capable of identifying ventromedial prefrontal cortex (vmPFC) impair-
ment, which leads to forward looking planning deficits (Goel et al., 1997).
The original IGT, proposed by Bechara et al., 1994, consists of a four deck
card game played with virtual money. The length of the task consists of 100
card draws from any deck, but this length is unknown to the participant.
Each card draw yields a fixed reward with a random punishment (fine), but
the net yield, that is reward− f ine may be positive or negative. Unknown
to the participants, two good decks produce on average positive net yields,
while the remaining bad decks produce on average negative net yields. The
participants must determine which decks are the good decks; however ini-
tially, the bad decks look good and this further complicates discovery of the
good decks. Variants of the IGT discussed here retain the 4 deck structure
but differ in the incidence and frequency of the gains and losses. Appendix
A presents the IGT yield structures used in this work.

Chapter 12 presents in detail the constrained perturbations, gradient
driven automatic model tuner, which is named constrained single uncons-
trained double perturbation stochastic approximation (CSUD), and com-
prises a probabilistic hybrid of double-sided (Spall, 1992) and single-sided
(Chen et al., 1999) simultaneous perturbation stochastic approximation (SPSA).
Chapter 13 then presents a short comparison of CSUD versus well-established
industrial-scale artificial neural network (ANN) tuners such as asynchronous
successive halving algorithm (ASHA) based approaches (L. Li et al., 2020).

This work possesses interdisciplinary character and draws from cogni-
tive science, psychology, decision making, optimisation theory, and com-
puter science, in particular from generative machine learning, where the
term generative is used to indicate computational technologies with gener-
alised models, which are then trained and tuned via interaction with data
to produce outcome behaviours with desirable qualities. For example in the
context of Q-learning or reinforcement learning (RL) models, such desir-
able behaviour may comprise an optimised choice selection policy (Tsitsik-
lis, 1993). While this work has interest in human behaviour, the focus here
is to introduce computational approaches inspired by human behaviour. Of
course, it is of interest to ask if the resulting algorithms would then in turn
receive support from human behaviour? That is, could human behaviour
indeed result from such algorithms being employed at some level by the
organism itself?

In recent years both in decision making theory and psychology, there
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has been interest to find support for the type of optimisation and trade-offs,
which occur in computational reinforcement learning (RL) (O’Doherty et
al., 2006; Olschewski et al., 2024). Such efforts investigate support for RL
models by employing fitted models, where a model and its settings are esti-
mated by fitting reinforcement learning model parameters using maximum
likelihood (Wilson & Collins, 2019).

The journey from observed outcomes to (fitted) model parameters is
much more perilous, involves long inference chains, for example, such as
in Bayesian hierarchical estimation (Piray et al., 2019), and consequently
requires much stronger statistical assumptions, typically consisting of para-
metric distributions. Further, given the RL exploitation-exploration trade-
off, when fitting outcome data to RL model parameters, it is sometimes dif-
ficult to derive sensible exploration and learning rate combinations, with
a-priori constraints on learning rate and exploration being applied (Daw,
2011). In constrast with generative modelling, it is easier to assess outcomes
because such outcomes consist of behavioural choice metrics. Hence, gen-
erative models can be compared on the basis of simulated, or real-life, per-
formance. In this work, models are assessed on the basis of simulation out-
comes.

In fitted modelling, however, comparing model performance is not straight-
forward. Due to limitations of sample size and subject patience, model per-
formance can only be compared in the context of low volume small sample
realizations. Model comparison assessment measures inevitably compare
the same outcome data across multiple models, and this raises the risk of
over-fitting, leading to multiple mitigation techniques such as the Bayes In-
formation Criterion (BIC), the confusion matrix, or others discussed in Wil-
son and Collins, 2019. The current work proposes an alternative generative
workflow, where the researcher models hypotheses in terms of a loss func-
tion (CSUD), assessed via outcome realizations. Such a workflow makes it
easier to search through relevant RL model setting combinations subject to
the prior information introduced by any loss function. Section 5.3.2 presents
an example of how to specify such a loss function. By using such loss func-
tion constructs, rapid prototyping of the model (algorithm) space may be
achieved, and the resulting information may be used to inform on any phys-
ical experiment design.

Statistically CSUD, as a probabilistic hybrid of double- and single-sided
SPSA, has the properties of a robust algorithm, requiring finiteness of the
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1st and 2nd loss function error moments; the loss function error, in fact, may
possess a non-zero mean. CSUD searches through the model space by using
random perturbations. Unlike in SPSA, however, these perturbations may
be constrained without affecting the statistical robustness of the method.
Consequently, CSUD offers the possibility of clean model space decomposi-
tion.

Another difficulty, which is unavoidable in RL is the selection of the ex-
ploration method. In psychology and the decision making literature, the ex-
ploration methodology of choice is the Boltzmann, or soft-max, rule, where
exploration is conducted in proportion to some value metric such that ad-
vantageous choices are chosen more frequently (Erev et al., 2010). Boltz-
mann exploration, however, by normalising choice selection, produces uni-
modal choice selection distributions, and such an a-priori imposition may
not always be justifiable. Indeed, while it is not undertaken here, one must
question when a Gaussian likelihood function is implemented in the pres-
ence of a Boltzmann rule, as to what extent model fitting results reflect a-
priori imposed regularised outcomes. When model fit errors look nice, the
researcher may assume that the model is a good fit, but it is possible that the
obtained fit had been already imposed a-priori. In this work given the key
criterion, as noted for example in section 6.4 Table 6.7, where normal and
vmPFC impaired patients should produce outcomes where the null hypoth-
esis of an equal outcome fails to be rejected; this expected result does not
obtain under Boltzmann exploration. This results raises the question as to
whether and to what extent the Boltzmann rule can actually model human
exploration. Here, four competing exploration methods are assessed: ε-
Greedy, Boltzmann, adaptive ε-Greedy, and decaying ε-Greedy exploration.
Based on generative simulations, no single exploration model emerges as a
clear description of human exploration in the IGT.

From an RL algorithmic perspective, for exploration to work towards
the discovery of an optimal policy, the sampled outcome process must be
ergodic; that is given an infinite time horizon, it must be possible to sample
all outcomes eventually. Psychological tests of human exploration schemes
tend to be ergodic by design as such experiments typically involve two
choices one of which must be sampled (Erev et al., 2010). Further, human
exploration is decomposed into directed exploration and fully random ex-
ploration (Wilson et al., 2014). Elsewhere it is suggested that human ex-
ploration may be inherently randomised due to transcoding errors during
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learning (Findling et al., 2019). Such results on human exploration do in-
deed suggest that the simple exploration schemes, including the popular
Boltzmann rule, employed here may not adequately model human explo-
ration. In the burst learning model in Chapter 10, however, it is demon-
strated for example in Fig. 10.10 and Table 10.6 that the burst learning ε-
Greedy exploration scheme does produce simulation results, which (1) sat-
isfy the finding that high exponential learning rate decay produces vmPFC
impairment, and (2) support the normal and vmPFC impaired human re-
sults on the original and re-shuffled IGT variants (Bechara et al., 1994; Fel-
lows & Farah, 2005). Hence, even if none of the simple exploration schemes
used here fully capture human exploration, with the burst learning model,
it appears that ε-Greedy exploration may produce a simple catch-all repre-
sentation for exploration with systematic and random components.

Comparing models with differing exploration strategies remains chal-
lenging. Often the immediate effect of an exploration setting is not imme-
diately obvious. For example, in the case of the Boltzmann rule, it is not
easy to see how varying the temperature would influence actual outcomes.
In section 4.2.3, this work introduces an entropy based measure called the
Exploration Index (EI). This exploration index yields a value of 100 for ran-
dom search, and 0 for fully deterministic search. EI comprises, however, a
measure of implied exploration, in the sense that exploration is estimated
based on the subject’s choices over a specific time interval. For example, if
a subject systematically chose each one of available 5 options over a period
of 10 trials, then the EI would produce a score of 100. In other words, fully
systematic exploration is also capable of producing a score of 100, which
is obtained from random search. In sum, while the EI cannot distinguish
between a-priori directed and random exploration, it is helpful in terms of
scoring the amount of exploration in terms of choice variability in the actual
observed outcomes.

Related to the question of exploration are the issues of decisions from
risk versus decisions from experience. It has been observed that human
beings appear more risk averse towards rare adverse outcomes from de-
scription than towards rare adverse outcomes from experience (uncertainty)
(Hertwig et al., 2004). In this work, such a distinction has not been coded
into RL model behaviour. In all Q-learning simulations, software agents
start with 0 initialised Q-values, and must then build up a value representa-
tion of outcomes. For example, it might have been possible to code adverse
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outcome risk as negative initial Q-values; this was not investigated here, but
forms an interesting investigative possibility.

The present study also differs from psychological experiments on risk
and uncertainty in one other key aspect, and that is the use of the IGT.
In Hertwig et al., 2004 for example, subject choices are limited to two op-
tions, the discovery of which are carefully controlled to produce laboratory
test conditions. The IGT presents a substantially different environment: the
subject has four choices, the subject is essentially being tricked and must see
through this; finally the subject does not know when the task ends (Bechara
et al., 1994). In this work, from a probabilistic perspective, a choice task
with only two options was deemed to be too simple an environment: since
the probabilities are normalised, working out the likelihood of one choice
is sufficient to solve the a choice problem. An environment with multi-
ple choices was desired to develop a better understanding of probabilis-
tic choice. Further, the IGT provides a task substantially closer to living
experiences, where effective learning involves disambiguation of multiple
influences; such a task was deemed interesting for training and testing the
proposed Q-learning and automatic tuning algorithms. Finally, high expo-
nential learning rate decay can act as a frequency filter, attenuating the value
feedback of any choice after a certain number of iterations (section 10.1.2),
and this could therefore in an RL context generate vmPFC type behaviour.
Based on this supposition, this work proposes as a heuristic model an ex-
ponential learning rate decay Q-learning architecture, and the IGT with its
vmPFC subject outcomes provides a suitable calibration platform. Such cal-
ibration was performed automatically via CSUD, and then verified via small
grid-searches.

In the discussion of any algorithm, it remains a challenge to develop
a verbal vocabulary to adequately describe the rationale and operation of
the algorithm. The development of such a verbal vocabulary inevitably in-
volves compromises. The vocabulary in this work is no exception. With this
caveat in mind, some important verbal concepts are introduced next.

Here the term rational describes probabilistically astute and infinitely
lived oracle based models, which devise structures to resolve imperfections
resulting from uncertainty and incomplete information. Such optimisers are
commonly used in engineering, however, where they are not referred to as
being rational. Gigerenzer and Gaissmaier, 2015 have suggested the term
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nonrational or heuristic to refer to models, which use simple local approx-
imations to deal with limitations of information, time, and lack of certainty.
For example in bounded rationality (Lorkowski & Kreinovich, 2018), the
actor foregoes optimization, and instead satisfices, a term which describes
a choice strategy of choosing the first alternative fulfilling selection criteria
(Simon, 1956). Nonrational or heuristic decision making models may use
domain specific selection shortcuts (Gigerenzer & Gaissmaier, 2015). For
example, in order to catch a fly ball, a baseball player adjusts his running
speed towards the ball while looking at the ball at a constant angle.

The term iterative learning optimisers refers to tools capable of learn-
ing and optimising over time. Problems requiring such tools have been typ-
ically formulated in engineering control theory or in economic social plan-
ning. In the form of artificial neural networks and reinforcement learning,
such tools are also fast becoming the mainstay of decision making automa-
tion in machine learning (Kochenderfer, 2015).

Here iterative learners are said to optimise directly a set of behaviour
input variables, called parameters, subject to a set of performance tuning
variables called hyper-parameters. The parameters and hyper-parameters
are estimated in two separate stages per learning iteration. Further in each
such iteration, iterative learners also approximate the objective functions,
which form the basis of parameter and hyper-parameter selection.

In this work, the term nonrational describes a class of iterative decision
making models, which comprise a subset of the bounded rationality and
heuristic decision making ecosystem. The nonrational models proposed re-
lax the typical assumptions of rational optimisation in two specific ways:
(1) by inducing a sub-infinite time horizon, and (2) by using targeted ex-
ploratory search.

A sub-infinite time horizon is induced via exponential learning rate de-
cay, which in and of itself does not comprise a new concept in the optimi-
sation literature, but the use of which cannot lead to theoretical statistical
convergence guarantees obtained for example in Tsitsiklis, 1993. CSUD is
used to produce targeted exploratory search; however, perturbation con-
straints and custom loss function targets (which may be unattainable), lead
to a gradual modification of statistical SPSA convergence guarantees from
global uniqueness to a local best result. This gradual transformation from
a rational to a nonrational satisficing context is discussed in propositions
12.2.1, 12.3.1 and 12.4.1 in chapter 12.
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1.1 Criticism, Limitations, and Considerations

This work attempts to port key rational decision making concepts into a
nonrational context. One might ask, "Why attempt this when rational mod-
els provide well-established solutions?"

In a rational context, it is only in the limit and subject to regularity as-
sumptions that iterative learners can be guaranteed to optimally converge
(Hall et al., 2014; Yin & Kushner, 2003). Among other conditions, a finite
mean and variance are required. By construction, the central tendency and
deviation are generally well-behaved, however, this good behaviour may
obscure any poor, or extraordinary results, which may obtain in the relevant
probability distribution’s tail. Further, from an individual’s or a software
agent’s point of view, when faced with a limited number of choice trials
with entry, execution, and exit costs and benefits, the concept of probability
of success is difficult to enumerate. Given such difficulties in population
as well as individual experiential sampling, it might make more sense to
forego rational optimisation, and instead conduct flexible iterative searches,
which can be varied over decision iterations according to some customised
rules. Such approaches are discussed in Volz and Hertwig (2016) for single-
period problems. The proposed CSUD search technique can be seen as a
multi-period version of such searches.

Finally, in the (generative) IGT simulations in chapters 6 to 10, a rep-
resentative agent architecture is used. Further, to calibrate representative
agent behaviour, normal and vmPFC impaired mean human IGT outcomes
are employed. In contrast in psychology, reinforcement learning (RL) model
fitting aims to fit for each individual participant the most plausible model
settings for that particular individual’s observed data (Daw, 2011). The
use of a representative agent may be critiqued not only as being a rational
hold-over, but also as being an unrealistic individual modelling approach.
Both critiques raise valid points. When a representative agent is used with
quadratic loss for example, the abstract form (3.1) can be implemented as
recursive least squares, where the learning rate at iteration t is 1/t (Powell,
2011, pp. 422-423). Here, however, as proposed in section 3.5, the usage
of exponential learning rate decay can be used to switch into a nonrational
context. While individual modelling is an interesting approach, the aim
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here is to investigate RL model behaviour, and for that purpose using a rep-
resentative agent provides the best approach for analysing model and IGT
interaction, as any differences in individual simulation outcomes are solely
driven by IGT (data) stochasticity.

1.2 Structure

Chapter 2 presents the literature review. Chapter 3 introduces the math-
ematical treatment of nonrational learning from repeated sampling, and
presents the general learning framework, which separates the iterative learn-
ing task into choice selection via behavioural parameters, and tuning via
performance hyper-parameters.

This is followed in chapter 4 by a discussion of the Iowa Gambling Task
(IGT). Chapter 4 quantifies the human behavioural outcomes, which are
used to calibrate software agents.

Using exponential learning rate decay, chapter 5 develops a nonrational
single-state Q-learning model with the initial learning rate, learning rate
decay, and exploration as tunable hyper-parameters. Chapter 6 to chapter
8 present IGT applications, where software agents are calibrated using the
simple model introduced in chapter 5.

Chapter 9 presents a discount rate and trace decay augmented nonra-
tional RL model with IGT applications. Subsequently chapter 10 presents
the nonrational burst learning RL model, where an emotion signal may re-
set the exponentially decaying learning rate.

Chapter 11 presents future directions suggested by the application of the
CSUD search tool to IGT environments.

Next, chapter 12 introduces the theoretical foundation for CSUD and the
CSUD search strategy. This chapter also compares and contrasts the ratio-
nal and nonrational approaches to iterative decision making. This technical
CSUD chapter is followed by a further application using CSUD search to
tune a convolutional Fashion MNIST (Xiao et al., 2017) artificial neural net-
work (ANN). Finally chapter 14 summarises and presents conclusions.
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Chapter 1. Introduction

1.3 Summary of Contributions

• Nonrational modelling is achieved via exponential learning rate de-
cay, loss function driven searches, and the proposed CSUD algorithm,
which probabilistically hybridises double- and single-sided SPSA, while
allowing for update and perturbation constraints.

• Using single-state Q-learning models and IGT variants, it is shown
that vmPFC impairment can be modelled by high exponential leaning
rate decay. Further it is found that for simulated Q-learning model
results to match corresponding human outcomes, exploration must
be high.

• The entropy based Exploration Index (EI) is introduced for compar-
ing exploration resulting from different model simulation, and human
IGT outcomes.

• It is shown that Boltzmann exploration cannot account for original
and re-shuffled variant IGT human outcomes, whereas ε-Greedy ex-
ploration can do so.

• In a nonrational context, it is shown that CSUD search can produce
results consistent with the "satisficing" criterion (Simon, 1956).

10



Chapter 2

Literature Review

The literature review is divided into sections, each covering a separate com-
ponent of this work’s research context.

2.1 Psychology

As discussed in the introduction, the main contextual considerations relat-
ing to the psychology literature in decision making consist of risk versus
experience (uncertainty) (Erev et al., 2010; Hertwig et al., 2004), the role
of exploration (Findling et al., 2019; O’Doherty et al., 2006; Wilson et al.,
2014), the individual fitting and plausibility testing of RL model parameters
(Daw, 2011; Piray et al., 2019); and appropriate experiment design (Wilson
& Collins, 2019).

The major contextual points have been already covered in the introduc-
tion. However, the concept of "rare events," experiment design, and RL
specific considerations need to be discussed further. Hertwig et al., 2004
define a rare event as one that has probability at or below 0.2, and addition-
ally study rare events with probabilities of 0.1 and 0.025. The authors find
that a-priori description of risk structure leads to overweighting, while ex-
periential discovery leads to under-weighting of the probability of the rare
event. In the IGT, which is used in the RL simulations here, subject instruc-
tions do not include a description of the risk structure; subjects are only told
that some card decks produce net yields worse than others (Bechara et al.,
2000). In this sense, the IGT constitutes an experiential task, where the par-
ticipant faces uncertainty in terms of deck net yield means and probabilistic
yield structures. In the Soochow Gambling Task (SGT) (Lin et al., 2009),
where the rare event gain or loss frequency is 0.2, human participants gen-
erally perform worse than random search; this result supports the findings
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in Hertwig et al. Further in the SGT, as discussed in chapter 8, the RL models
are challenged as well, displaying during grid search verification, at varying
exploration settings, intersecting outcome valuation contours. Interestingly,
these intersections appear to occur at or near the vicinity of corresponding
human IGT outcomes, raising the possibility that the heuristic humans are
using has evolved well to extract rare event information.

Regarding decision making experiment design, Olschewski et al., 2024
highlight the current gap between decisions from risk versus decisions from
experience experiments under controlled conditions, and realistic decision
making problems. In general in the laboratory environment, a choice be-
tween two options must be made, and the subject faces clearly defined sig-
nals, even if some signals occur rarely. The authors call for a need to develop
more realistic test scenarios. The IGT and its variants, albeit unwittingly, ful-
fil such a need. In the IGT, the subject must choose from four card decks, and
each choice may yield a gain and a loss. Further, the original IGT attempts
to trick the subject into believing that the on average negative net yield bad
decks are actually good (Bechara et al., 1994). The original, re-shuffled, and
random IGT variants exhibit identical steady state net yields, but reveal dif-
fering human behaviour between normal and vmPFC impaired subjects.
This discrepancy suggests each card deck exhibits card sequencing effects.
This in turn suggests that IGT participants may develop card deck value
representations based on only a small number of samples. Here it is pro-
posed that in RL modelling such card sequencing effects may be achieved
by an exponentially decaying learning rate.

As is the case here, in the psychology decision making literature, com-
putational RL models are generally implemented as single-state Q-learning
constructs (Daw, 2011). In such models, the key parameters consist of the
learning rate and exploration. The learning rate determines the contribu-
tion of the current outcome to the overall value representation, whereas ex-
ploration insures continued sampling of all choices. Unlike the approach
discussed in Daw, 2011, where the learning rate is constant, here the learn-
ing rate exhibits exponential decay as defined in (3.8). While it is difficult to
estimate from individual outcome data a variable learning rate using max-
imum likelihood, the RL models proposed here pair an initial learning rate
with learning rate decay, and therefore produce only one additional param-
eter to be estimated. A test of the simulation results obtained here via maxi-
mum likelihood model fitting to human outcomes constitutes an interesting
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future prospect. However, the focus in this work is on generative modelling
with models being assessed via simulation outcomes.

2.2 Semantics: Rational, Nonrational, and Irrational

Precise understanding of the words rational, nonrational, and irrational is re-
quired. This precision is needed since the word rational can have different
meanings in different contexts. The Oxford Dictionary defines rational as
"based on or in accordance with reason or logic, able to think sensibly or
logically."1 This is a good definition for everyday usage, but does not give
voice to the disillusionment inherent in post-modern thinking regarding rea-
son and rationality. For example, Alexander (2013) coins the phrase "the
dream of reason,"2 and describes it as "the image of rationally perfected life
in thought, but of course not a reflection of ‘real,’ material life alone."3

According to Alexander (2013), the dream of reason is driven by "logical
positivism", which believes that "any thought worth thinking could be re-
duced to rational and eventually mathematical propositions."4 It is in this
sense that Von Neumann and Morgenstern (1944) used rational to refer to a
person who acts to optimise a utility function, and who is capable of deal-
ing with risk, where the term risk is used to indicate that choice probabilities
are known or can be reliably estimated. Von Neumann and Morgenstern’s
approach laid the foundation in economics for later, more complex multi-
period models with increasing modelling sophistication, using for example,
stochastic difference or differential equations (Lucas & Sargent, 1981), dy-
namic programming (Samphantharak & Townsend, 2013), or robust control
(Hansen & Sargent, 2008). Of the three mentioned techniques, robust con-
trol allows for divergence from an underlying true model, and formulates
a mathematical notion for "good enough." Such a notion of "good enough"
also provides the rationale for the CSUD search strategy.

Robust control makes allowance for the main philosophical criticism of
rational decision making, namely that it has become a proscriptive ideology.
Indeed post-modern defenders of rationality de-emphasize the proscriptive,

1rational. Concise Oxford English Dictionary, 2008.
2Alexander, 2013, p. 10.
3ibid., p. 10.
4ibid., p. 10.
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and instead highlight the descriptive aspect of the concept. In this view, ra-
tionality is normative and describes what should be or could be. The pur-
pose of rationality is to approximate reality as closely as is possible (Wedg-
wood, 2017). In a decision making context, it does not matter that one uses
a fantasy or made-up model, which might be underpinned by unrealistic or
unverifiable assumptions. What matters is whether the model can be suc-
cessful in its respective problem domain. When rationality is viewed from
this perspective, similarities between rational and heuristic approaches be-
come evident: both approaches make approximations, and both approaches
focus on specialised problem domains.

Gigerenzer and Gaissmaier (2011) define a heuristic as "a strategy that
ignores part of the information, with the goal of making decisions more
quickly, frugally, and/or accurately than more complex methods." So by
definition, a heuristic strives for some form of simplicity. For lack of a bet-
ter term, heuristic models are also referred to as nonrational (Gigerenzer &
Gaissmaier, 2015), or have also been described under the term bounded ra-
tionality (Simon, 1956).

How does one classify a model as being rational or nonrational? This dif-
ficult question has motivated Gigerenzer (2016) to present the case for a "ra-
tional theory of heuristics." In this work, nonrational modelling is clearly de-
fined by an exponentially decaying learning rate (in Q-learning modelling)
and a satisficing search strategy (CSUD).

A unified decision making theory must also be willing to admit the irra-
tional. This is necessary to allow for decision making processes to be driven
by substance abuse, pathology, erroneous beliefs, or simply for instituting a
paradigm shift. Smith (2020) argues that irrationality cannot be eradicated,
and it must instead be accepted as the dual of rationality. There is "con-
tinuous movement between the two poles of rationality and irrationality."5

Hegelian dialectic, where thesis is followed by anti-thesis, which is then fol-
lowed by synthesis, already contains the seeds of the irrational. For exam-
ple, how is the evolution of an anti-thesis possible without irrational rebel-
lion?6 However, there is also a pernicious type of irrationality "of knowing
what the best thing to do is while instead doing the opposite."7

5Smith, 2020, p. 14.
6Consider for example The Rebel by Camus (1962).
7Smith, 2020, p. 273.
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Here it is proposed that models of decision making should be able to
accommodate irrational behaviour. In general, the class of iterative learning
models is capable of inducing irrational behaviour by learning rate modifi-
cation. For example, exponential learning rate decay can induce computa-
tional convergence prior to statistical convergence. Alternatively too big a
learning rate could overshoot any optimum, or consistently diverge from it.
In such models the learning rate controls the contribution of new informa-
tion to the already existing information. Further, the proposed CSUD con-
strained search specification can restrict behavioural parameter and perfor-
mance hyper-parameter ranges, and consequently define input value ranges
where rational or irrational behaviour may be obtained.

The concept of a decision making theory must be broad enough to be
able to model good, poor, and realistic decision making. In particular, with
iterative learning models, one needs approaches that acknowledge finite-
ness, incomplete information, can move from a poor to a good decision,
and that can alternate between poor and good decision making.

Consider for example, the earnest transformative learning experience
shared in Smith (2020), "In the writing of this [his] book, mostly between
2016 and 2018, I [the author, Smith] quit drinking, I bought a Fitbit and
a blood-pressure monitor, I closed my Facebook account (a plague on hu-
manity worse than any drug), I finally committed to being fully honest with
everyone in my life, and I got my long-sloppy finances in order. I pulled
myself together, wised up: finally carried out the ’impossible syllogism’ and
realized I’ve got only a finite amount of time to do everything I want to do.
I got rational, in my limited and relative way."

Smith’s experience summarizes the human experience with the rational:
an excess of the rational brings about an excess of the irrational, yet when
rationality is applied with an understanding of its limitations, decision mak-
ing improves. This is what this work strives to achieve, and this perhaps is
what Gigerenzer (2016) wishes to achieve with a theory of "rational heuris-
tics."

The terms rational, nonrational, and irrational may be ill-suited to de-
scribe decision making. An alternate classification system consisting of the
terms causal, correlational, and acausal may make more sense. The primary
goal of any decision is to affect a causal relationship between decision and
outcome. Hence one strives for decisions, which produce causal results.
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In the absence of sufficient accumulated information, a correlational deci-
sion, where there is high correlation between decision and outcome could
be the next best option. When one knows nothing, or when one aims to
disassociate decision and outcome, an acausal approach, such as a random
selection, or doing what one wants anyhow, comes to mind. The cognitive
science driven decision making models discussed in section 2.4, as well as
this work, can account for poor as well as good decisions, and provide a
more rounded, humanistic decision making approach.

2.3 Emotion and Neuroscience

The Q-learning model IGT calibrations are inspired by the role of the vmPFC
in emotion valuation and consequently in decision making. Section 2.3.1
below presents a short summary of major emotion models, and reviews as-
pects of emotion considered interesting from a decision making point of
view. This is followed by a discussion on the role of the vmPFC.

2.3.1 Emotion

A unified decision making theory should have some mechanism for ad-
dressing non-verbal reasoning such as emotion (Plutchik, 2001) or emo-
tional intelligence (Goleman, 2005). But what role could emotions play in
decision making? If heuristics are the Swiss army knife or adaptive toolbox
of decision making,8 then emotions are the Swiss army knife of heuristics.
When it comes to decision making, emotion plays a key and heuristic role.
When people reason, they "take different scenarios apart and . . . perform a
cost / benefit analysis of each of them."9 However, this process takes time,
and without emotion, making a decision will "[a]t best, . . . take an inordi-
nately long time."10

Expanding on the Swiss army knife role of emotions, Böhm and Pfister
(2008) propose that emotions provide four contributions to decision making:
information, speed, relevance, and commitment. Emotions motivate one to
search for information, to decide as quickly as possible, to focus on relevant
details, and to persist in the face of uncertainty.

8Gigerenzer and Gaissmaier, 2015, p. 912.
9Damasio, 2006, pp. 170-171.

10Damasio, 2006, p. 172.
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From a psycho-evolutionary viewpoint, Plutchik (2001) proposes that
the aim of emotions is to activate behaviours to ensure achievement of an
equilibrium or target. From a behavioural and neuroscience perspective,
Rolls (2013, Ch. 2, p. 4) defines emotions as, "states elicited by rewards
and punishers, that is, by instrumental reinforcers," where an instrumen-
tal reinforcer is any cognitive input, which can influence stimulus-response
associations.

There exist many additional definitions and theories of emotion. For
the sake of completeness, some of the major emotion theories are briefly
introduced. Based on facial expressions, Ekman (1992, p. 550) proposes
that there are six basic emotions, consisting of "happiness, surprise, fear,
sadness, anger, and disgust combined with contempt." Ekman’s model has
been very popular in computer science and automated facial emotion recog-
nition. However, the link between facial expressions and emotions remains
contested (Heaven, 2020). Based on cross-cultural surveys, Plutchik (2001)
develops a complex emotion classification system known as the emotion
circumplex, where emotions are grouped into bipolar opposites and addi-
tionally vary in intensity. Another well-known classification based system
is the cognitive Ortony et al. (1990, OCC) model, where emotions are gener-
ated by cognitions elicited from outcome perceptions, taking into account
consequences, attribution, and attraction. The OCC model can generate
and classify many multiples of emotions. Finally, the pleasure, arousal,
and dominance (PAD) model generates, according to Floyd, 1997, emo-
tions along "three independent bipolar dimensions: pleasure-unpleasant,
arousal-unaroused, and dominant-submissive."11

The above models all form good candidates for modelling emotion. This
work, however, focuses on decision making, and for that reason, employs
the Rolls (2013) and Plutchik (2001) definitions, which readily lend them-
selves to decision making and iterative learning. The Plutchik (2001) defini-
tion suggests that evolutionary processes have produced behaviour adap-
tation, that is, learning mechanisms, where emotions guide learning be-
haviour. This approach is employed in the burst learning model in chapter
10. The Rolls (2013) definition on the other hand produces a link between
behavioural reinforcement learning and computational reinforcement learn-
ing, by creating a conceptual framework where outomes produce emotions,

11Floyd, 1997, p. 85.
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which accrue over time and are valued in the sense of reward and punish-
ment to produce behavioural adaptations.

While irrationality and emotion are introduced as important concepts
in decision making, this does not imply that there is a causal link between
emotion and irrationality. Nor can it be assumed that rational decision mak-
ing is superior to emotion mediated decision making.

The notion that emotion is irrational or inferior to rational thinking re-
sulted from combining Descartes’ dualistic separation of mind and body
(Damasio, 2001) with the subsequent James-Lange theory, which attributed
emotions to the body (Rolls, 2013, Ch. 2, pp. 32-35). This implication cou-
pled with the mind-over-body belief produced a connotation that emotion
is inferior to rational thinking. However, this view is not supported by sci-
entific and clinical research. Damasio (2006) states, "[w]hen emotion is en-
tirely left out of the reasoning picture, . . . , reason turns out to be even more
flawed than when emotion plays bad tricks on our decisions."12

Neuroscience, where the link between emotion and decision making is
being forged, is considered next.

2.3.2 Neuroscience

The connection between emotion, intelligence, and decision making, has de-
veloped from work in clinical human and animal studies (Ernst & Paulus,
2005; Hornak et al., 2003; Kringelbach, 2005; Rolls, 2000). In their discussion
of emotional intelligence and the brain, Hogeveen et al. (2016), identify in
humans the ventromedial prefrontal cortex (vmPFC), the insula, the ante-
rior cingulate cortex, and the amygdala as the key brain areas where emo-
tion generation and processing takes place. They further propose that as
the four mentioned areas are additionally implicated in general intelligence,
emotional and general intelligence are intertwined, with emotional intelli-
gence itself "measuring individual differences in one’s ability to integrate
emotions into cognitive operations (e.g., using reward valuations to drive
the items held in working memory, using inhibitory control to regulate aver-
sive emotional reactions)."13 The ventromedial prefrontal cortex (vmPFC) is
also known as the orbitofrontal cortex (OFC) and has been abbreviated in
the initial IGT literature as VMF (Bechara et al., 1994). Krawczyk (2002, pp.

12Damasio, 2006, p. xviii.
13Hogeveen et al., 2016, p. 703.
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633-635) provides a detailed discussion of the terms VMF and OFC. This
work retains the use of the term vmPFC throughout.

From a decision making perspective, reward valuation and working
memory are of interest. Reward (and punishment) valuation permits value
aggregation and comparison across alternative choices, while working mem-
ory implicitly suggests a limit on input information.

Ever since the tragic yet remarkable case of Phineas Gage14 in 1848 (Teles,
2020), in clinical terms, vmPFC impairment patients generally present with
good intellectual ability, however, are unable to engage in decisions requir-
ing forward planning tasks, with this deficit leading to a serious decline in
personal and professional relationships (Damasio, 2006; Goel et al., 1997).
Such patients perform well on the usual battery of psychological tests (e.g.
the Wisconsin Card Sorting Test), and can even acknowledge or verbalize
poor decisions, but they cannot learn from any poor outcomes (Bechara et
al., 1994; Damasio, 2006).

In what has proved to be a pivotal contribution, Bechara et al. (1994)
introduce a clinical test, now known as the Iowa Gambling Task, or IGT,
which is capable of identifying vmPFC impairment. The premise of the
test is simple: the participant faces four card decks, two of which produce
on average winning net yields, while the other two produce on average
losing net yields. Each net yield consists of a positive payout and a negative
penalty, that is a reward and a punishment. At each turn, the participant
must draw a single card from any deck, and observe the net yield achieved.
The participant is tasked with winning as much as is possible, and faces two
unknowns: (1) the net yield evolution of each deck, and (2) the length of the
task. The participant is expected to discover the good decks.

The assessment tool provided by the IGT has lead to the development of
a large area of research, which has produced further IGT variants, has ap-
plied these variants to wider patient populations, and has proposed models
and heuristics, which may explain observed IGT behaviour. Bechara et al.
(2000) discuss a non-stationary IGT version, where card rewards and pun-
ishments change every 10 turns. Lin et al. (2009) discuss a variant called

14Phineas Gage was a railroad worker who as a result of an accidental explosion suffered,
and yet survived, a one meter long iron bar impalement to his skull, damaging his frontal
lobes. He is the first known case presenting with vmPFC impairment. Teles (2020) presents
a detailed account of Phineas Gage’s case.
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the Soochow Gambling Task (SGT), where deck yields are adjusted to pro-
duce expected value and gain-loss frequency effects observed in healthy
IGT participants. The IGT has been applied to substance abuse (Ahn et
al., 2014; Wood et al., 2005), gambling addiction (Ciccarelli, 2017), mental
illness (Sevy et al., 2007), neurological illness (Busemeyer & Stout, 2002),
as well as older adult populations (Wood et al., 2005). Using the IGT, Fel-
lows and Farah (2003, 2005) investigate reversal learning, where an initially
learned stimulus-response association is extinguished and re-learned. The
large body of work on the IGT has also produced a large healthy participant
data set available for research (Steingroever et al., 2015).

The IGT has generated a large body of work focusing on decision mak-
ing. The exact physiological mechanisms driving normal and vmPFC im-
paired emotion valuation outcomes, however, continue to be debated. The
somatic marker hypothesis (SMH) discussed in Bechara et al. (1997) and
Damasio (1998), proposes an involuntary feedback mechanism where a phys-
ical or virtual body sensation is associated with a particular emotion. This
feedback mechanism develops with decision making experience and can
pre-empt or influence decisions. The SMH has been criticised for its com-
plexity and proximity to the James-Lange theory of emotions, with rever-
sal learning, which has been introduced above, proposed as an alternative
(Dunn et al., 2006; Maia & McClelland, 2004, 2005). It has been suggested
that vmPFC impairment in turn leads to reversal learning impairment (Fel-
lows & Farah, 2003). Therefore vmPFC lesions leading to vmPFC impair-
ment provide a direct and simpler alternative explanation to the SMH (Fel-
lows & Farah, 2005).

In relation to decision making, the debate on the physiological mecha-
nism of vmPFC impairment continues (Reimann & Bechara, 2010). Never-
theless the discourse around the IGT has contributed to the development
of many cognitive decision making models. Section 2.4 presents key cog-
nitive decision making models. Emotions are not explicitly formulated in
these models. These models, however, have a distinctly different flavour
than the rational models surveyed in section 2.5. In particular, the formula-
tion of cognitive models allows for decision making shifts, which could be
attributed to the result of vmPFC driven emotion valuation.
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2.4 Cognitive Iterative Decision Making Models

This section surveys cognitive iterative decision making models, which can
be considered as having nonrational tendencies as discussed in section 2.2.
The models presented do not require infinite knowledge or lifespan to guar-
antee a good decision, and may even produce a poor decision.

The following sections aim to unify notation as much as is possible.
Greek lettering is used for commonly occurring hyper-parameters. Time
is always represented as discrete time, and α is always used to denote the
learning rate. While this approach introduces some divergence from the re-
spectively cited authors’ notations, it is hoped that this unified notation will
make it easier to compare and contrast the various models discussed.

2.4.1 The Expectancy Valence Model

Busemeyer and Stout (2002) discuss, among other models, a version of the
Expectancy Valence (EV) model, where valence results from reward and
punishment scoring, and decisions are made on the basis of expected va-
lence, which is discovered over time. Choices are probabilistic and use a
Boltzmann rule15, with the choice with the highest expected valence having
the highest probability of being chosen. The EV model produces a prob-
abilistic choice strategy subject to three critical performance determining
hyper-parameters: (1) the attention weight a, which determines the relative
contribution of the reward and punishment to valence vt, (2) the update rate
(learning rate) α, which determines the relative contribution of the current
valence score, and (3) the iteration dependent sensitivity c, which adjusts
the greediness of probabilistic choice with higher sensitivity leading to in-
creasing the probability of choosing the highest valence. In the EV model,
sensitivity can increase or decrease over time, leading to exploration de-
crease or increase respectively.

15To be precise, choice probabilities are determined by the softmax activation function,
which is a normalised version of the Boltzmann distribution. The term "Boltzmann rule",
however, is commonly used and this practice is continued here without loss of any gener-
ality as the two concepts only differ by the specification of a normalisation constant. Please
see Bishop (2006, p. 198 and p. 387) for details.
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The formulation of the EV model with cost ct and reward rt arising from
choice i at iteration t thus becomes

vt = (1− a)rt − act (2.1a)
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where vi
t is called the valence of choice i, and Et denotes the conditional

expectation. Note that the learning rate α, the attention weight a, and the
sensitivity g do not change over time. Note that 0 < a, α < 1 and g ∈ R.

In the IGT literature, costs are denoted in negative numbers. However,
to simplify comparison with future models, here the convention is adopted
that costs are positive and hence must be subtracted from rewards. The
notation here reflects this convention. In symbols ∀i, t, rt > 0 and ct > 0.

Is the EV model described in (2.1) rational or nonrational? Is it causal,
correlational, or acausal? The EV model has strong structure regarding the
evolution of valence vt, and on that basis, it appears causal. However, due to
the probabilistic choice mechanism (2.1c), it is considered to be correlational.

Given the expectations terms in (2.1b), the EV model appears rational.
It is however nonrational. This stems from the paradoxical application of
stochasticity and its resolution via the expectations operator. Firstly, the na-
ture of stochasticity is not very clear. For example, does it arise from cost ct

and reward rt, or is it a result of measurement error built into valence deter-
mination in (2.1a), or both? Secondly, if expectations can be computed, then
the relevant probability density distributions must be known ex-ante. But if
this were the case, the problem, rationally speaking, could be formulated as
an n-armed bandit problem, introduced in section 2.5.1, as bandit problems
comprise the best way to choose among i alternatives when means are con-
ditionally known. On the other hand, if expectations must be learned over
time, then (2.1b) with a constant learning rate α cannot theoretically lead to
expectations convergence.

Hence, the expectations operator in (2.1b) is interpreted as an abridged
shorthand for a limited ability to filter uncertainty, and on that basis, the EV
model is considered as being nonrational. The primary strength of the EV
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model is in its formulation of performance hyper-parameters: potential loss
aversion via the attention weight a, a potentially limited learning horizon
via the learning rate α, and intertemporal exploration effects via sensitivity
g.

With the help of these three performance hyper-parameters, the EV model
can generate a range of choices, poor as well as good. Using maximum like-
lihood, Busemeyer and Stout (2002) fit Iowa Gambling Task (IGT) outcomes
generated by healthy, Huntington and Parkinson’s affected participants to
the EV model. The IGT outcomes are scored by the percentage of cards
chosen from good, that is on average positive net yield, decks. The experi-
ment results show that the percentage of cards chosen from the good decks
increase throughout the 100 turns of the test for healthy controls, and to a
smaller extent for Parkinson’s patients. However, for Huntington’s patients,
the percentage of cards chosen from the good decks declines. The EV model
receiving support from the Huntington’s poor decision making outcomes
in the IGT is hyper-parametrised with a negative sensitivity value, and a
relatively high learning rate, which in combination lead to increasing explo-
ration and high emphasis on the most recent outcome. In sum, the EV model
is a nonrational model with some performance hyper-parameters leading to
configurations, which can generate poor as well as good decisions.

2.4.2 The Prospect Valence Model

Ahn et al. (2008) present results from fitting IGT and Soochow Gambling
Task (SGT) outcomes to Expectancy and Prospect Valence model variants.
They present a large study, whose full scope goes beyond this review. Here
only Prospect Valence (PV) model variants are reported. The primary dif-
ference between the Expectancy and Prospect Valence models is the intro-
duction of the prospect utility function, attributed largely to Kahneman and
Tversky (1979).

The prospect utility function can be seen as a non-linear scoring filter,
and captures not only loss aversion as noted in the EV model above in sec-
tion 2.4.1, but also accommodates gain-loss frequency effects. Gain-loss fre-
quency effects refer to a heuristic where a gain or loss, which occurs fre-
quently is commensurately emphasized more in relation to a gain or loss of
a larger amount occurring rarely.
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Retaining notational conventions, including the convention that rt, ct >

0, the Prospect Valence model is summarised for cost ct and reward rt aris-
ing from choice i at iteration t as

vt =

(rt − ct)
b , if rt − ct ≥ 0

a |rt − ct|b , otherwise
(2.2a)

Et

[
vi

t

]
=

Et−1
[
vi

t−1
]

+ α di
t
(
vi

t − Et−1
[
vi

t−1
])

, if Rescorla-Wagner

αEt−1
[
vi

t−1
]

+ di
t vi

t, if decay-reinforcement

(2.2b)

di
t =

1, if vt from choice i

0, otherwise
(2.2c)

Probt+1 [i] =
exp

(
Et
[
vi

t
]

st
)

∑i exp
(
Et
[
vi

t
]

st
) , st =

(t/10)g , if iteration dependent

3g − 1, if iteration independent

(2.2d)

where vi
t is called the valence of choice i, and Et denotes the conditional

expectation. Note that the learning rate α, the attention weight a, utility
shape b, and the sensitivity g do not change over time. Note that 0 < α < 1
and a, b ∈ R. When b → 0, the functional shape expressed in (2.2a) in-
creasingly becomes step-like. Further when iteration dependent, g ∈ R;
however, when iteration independent g ∈ [0, 5]. In the iteration indepen-
dent case, when g = 0, 3g − 1 = 0, and the softmax choice rule weights each
choice i equally leading to fully random choice selection.

The Rescorla-Wagner expected utility update rule (Rescorla & Wagner,
1972) in (2.2b) is also used in (2.1b) above. The Rescorla-Wagner rule de-
scribes the well-known parameter update form employed in many branches
of stochastic approximation (Spall, 2003, pp. 23-30). In contrast to Rescorla-
Wagner updating, the decay-reinforcement update rule, discussed in Erev
and Roth (1998), increases emphasis on the most recent outcome while geo-
metrically discounting past outcomes.

Choice in the PV model is also conducted via the Boltzmann, or soft-
max, rule (2.2d). The iteration dependent sensitivity rule has already been
discussed above in the EV model. The iteration independent sensitivity rule
optionally implements exploration, which remains constant throughout it-
erations.
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The PV model exhibits in the expectation term, the same difficulties,
which have already discussed with the EV model. If expectations are known,
then better rational formulations exist. If expectations are not known, then
a constant learning rate cannot theoretically guarantee expectations conver-
gence. Hence, as with the EV model, the PV model is classified as a nonra-
tional correlational model.

The main contribution of the PV model to nonrational decision making is
the addition of the gain-loss frequency parameter b. The gain-loss frequency
is an important heuristic aiming at capturing the simple observation that it
is hard, perhaps impossible, to learn the population density function of rare
events. In that context, decision makers will score with higher emphasis
more frequently occurring gains or losses.

Ahn et al. (2008) fit the discussed PV model variants to IGT and SGT out-
comes obtained from healthy participants, and conclude that the PV model
provides better fits and prediction quality than the EV model.

2.4.3 The Outcome-Representation Learning Model

Haines et al. (2018) present a decision making model, referred to as the
outcome-representation learning model (ORL), which addresses not only
expected value assessment and gain-loss frequency, but also choice perse-
veration and reversal learning. Choice perseveration is a term used to de-
scribe the exploitation versus exploration trade-off, and also to refer to the
related win-stay/lose-shift heuristic (Worthy & Maddox, 2014). Reversal
learning, as previously discussed, refers to unlearning a previously learned
response and re-learning in its place an alternative response. Reversal learn-
ing is engaged when the initial choice stops being advantageous (Fellows &
Farah, 2003).

Owing to its integration of four different heuristics, the ORL model is
complex and consists of six equations. However, the main contribution of
the ORL model is not its combination of four heuristics, but rather its use of
distinct learning rates for positive and negative yields to model loss aver-
sion. The use of dual learning rates is motivated by results from neuro-
science indicating that positive and negative outcomes may be processed
by different receptors (Cox et al., 2015).

Retaining notational conventions, including the convention that for any
choice i, ri

t, ci
t > 0. First define for any choice i with cost ci

t and reward ri
t at
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iteration t

xi
t = ri

t − ci
t (2.3a)

α =

α+, if xi
t ≥ 0

α−, otherwise
(2.3b)

α′ =

α−, if xi
t ≥ 0

α+, otherwise
(2.3c)

C =

1, if count(i) = 1

count(i)− 1, otherwise
(2.3d)

where xi
t in (2.3a) denotes net yield, and the learning rate α in (2.3b) may

take two distinct values α+, or α− depending on whether the net yield is 0 or
more, or negative respectively. α′ in (2.3c) is used for scoring reversal learn-
ing in (2.4c) below, and reverses the aggregation logic in (2.3b). Note that
(2.4c) below applies to all actions j, which have not been selected. Hence, the
reversal of the learning rates in (2.3c) provides a mechanism for reducing the
usage count contribution of actions, which were previously advantageous.
C in (2.3d) is a constant, which reflects the number of choices, which were
not chosen, and which is used in calculating reversal learning cost.

Next the outcome-representation learning model is summarised for i
choices with net yield xi

t at iteration t as

Et

[
vi

t

]
= αxi

t + (1− α)Et−1

[
vi

t−1

]
(2.4a)

Et

[
f i
t

]
= α · sgn

(
xi

t

)
+ (1− α)Et−1

[
f i
t−1

]
(2.4b)

Et

[
f j
t

]
= α′ · −sgn

(
xi

t

)
/C + (1− α′)Et−1

[
f j
t−1

]
, j 6= i (2.4c)

pi
t =

3−g, if i

3−g pi
t−1, otherwise

(2.4d)

Vi
t = Et

[
vi

t

]
+ dEt

[
f i
t

]
+ f pi

t (2.4e)

Probt+1 [i] =
exp

(
Vi

t
)

∑i exp
(
Vi

t
) (2.4f)

where the performance determining hyper-parameters consist of the net
gain learning rate, 0 < α+ < 1, the net loss learning rate, 0 < α− < 1,

26



Chapter 2. Literature Review

choice perseverance decay, g ∈ [0, 5], frequency effects aggregation weight,
d ∈ R, and choice perseverance aggregation weight, f ∈ R.

(2.4a) reflects standard net yield aggregation seen in reinforcement learn-
ing. (2.4b) and (2.4c) use the sign of the net yield xi

t to generate a usage score
based on choice frequency. The usage score increases for a repeatedly se-
lected net gain, and decreases for a repeatedly selected net loss (2.4b). The
usage scores for all alternatives foregone equally increase for any choice
yielding a net loss, and equally decrease for any choice yielding a net gain
(2.4c). Choice perseverance in (2.4d) is specified as a simple trace decay.
When a choice is selected, its trace decay weight is reset to the highest level.

(2.4e) provides aggregation of the expected value (2.4a), the frequency
and learning reversal effects (2.4b)-(2.4c), and the choice perseverance effect
(2.4d). Finally, choice is affected via the basic Boltzmann rule in (2.4f).

In the nomenclature introduced, the ORL also comprises a nonrational
correlational model. If the time horizon could be extended to infinity, sub-
ject to some stochastic process and learning rate decay restrictions, then in
a rational iterative learning setting (2.4a) would be sufficient to generate a
clear choice strategy based on unconditional net yield means. However, the
reality of human existence, knowledge and time constraints make the infi-
nite view impossible.

The one criticism facing the ORL model is that it is highly structured and
complex. The model was specifically built to generate and assess observed
human IGT outcomes. In spite of this criticism, when applied to human
data sets, the five performance hyper-parameters, α+, α−, g, d, and f appear
to have statistically significant effects, and produce good one-step-ahead
prediction and simulation results (Haines et al., 2018).

The ORL model concludes the review of cognitive iterative learning and
decision making models. The RL model with learning rate decay, presented
in chapter 5, is also capable of generating limited expectations and loss aver-
sion in terms of greedy choice, gain-loss frequency effects, choice persever-
ation and reversal learning. These effects are achieved with three perfor-
mance hyper-parameters as opposed to five in the ORL. In chapter 5, the
pathways for achieving the discussed heuristic effects are different. Further,
owing to the lower number of hyper-parameters, the RL (Q-learning) model
is not able to attribute heuristic performance on a per parameter basis.

Finally, as a motivating factor for the development of the CSUD algo-
rithm, the use of Parameter Space Partitioning (PSP) employed, in the IGT
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outcome comparison of the EV and PV models (Steingroever et al., 2013),
is mentioned. PSP can map the performance hyper-parameter value ranges
associated with any classification scheme (Pitt et al., 2006). For example, in
the IGT, the selection of more cards from the good decks could be a classifi-
cation criterion. PSP is a Monte-Carlo based search method, where in order
to establish performance ranges, hyper-parameter space is sampled statisti-
cally. CSUD is also a search method, but contracts grid search via the use of
a loss function gradient.

2.5 Rational Iterative Learning Models

The models reviewed in this section have their origins in statistics, engi-
neering, and control theory. In the respective literatures, the word rational
is rarely used to describe these models. Here, the word rational is used to
highlight that these classes of models have strong probabilistic and tempo-
ral assumptions or requirements, which would appear unrealistic from a
strictly heuristic perspective. Whilst heuristically unrealistic, the main aim
of the below models is to precisely engage in a type of reasoning or decision
making, which humans cannot do. It will also be seen that model assump-
tions, which make engineering sense, may in a social science context lead to
unintended complications such as using infinity to smooth out time horizon
constraints.

2.5.1 N-Armed Bandits

Given i stochastic net yield streams {xi
t}, n-armed or multi-armed bandit

problems aim to learn the process with the best yield. The term bandit origi-
nally referred to a single lever slot machine with a negative net yield (Sutton
& Barto, 2018, p. 18). Bandit problems seek to balance exploitation, using
what is known, with exploration, searching for new information. The aim
in bandit problems is to minimise loss, known as regret, which given T it-
erations, measures the loss arising from the difference between the best and
the selected choices. Bubeck and Cesa-Bianchi (2012) discuss bandit prob-
lems with various implementations of regret. They define pseudo-regret,
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alternatively known as total expected regret (Kuleshov & Precup, 2014), as

LT = T max
i

Exi −
T

∑
t=1

Exi(t) (2.5)

where LT denotes loss after T iterations, maxiExi denotes the choice with
highest expected yield, and Exi(t) is the expected net yield of the actual
choice in iteration t. That is the second term in (2.5) is the sum of the ex-
pected net yields of the T choices actually made.

In specifying (2.5), {xi
t} are assumed to be independently and identically

distributed (i.i.d.) with finite means and variances. This in turn means that
the {xi

t} comprise stationary and ergodic processes. Stationarity indicates
that yield distributions do not change over time, while ergodicity means
that repeated measurements will ensure that one will eventually have vis-
ited sufficient outcomes so as to be able to characterise each yield process
accurately.

The simple bandit problem with strong assumptions, as in (2.5), proves
surprisingly difficult to solve, and constitutes a major research area in de-
cision making theory (Guha et al., 2010). Bubeck and Cesa-Bianchi (2012)
discuss versions of the bandit problem where the strong assumptions un-
derlying (2.5) are relaxed, for example as in adversarial bandits, where the
net yield processes are set by an adversary. Gittins and Glazebrook (2011)
focus on Markovian bandits, where yields are generated by Markov pro-
cesses, which relax the i.i.d. assumption above.

Bandit problems remain difficult to solve because (1) iterations are lim-
ited, (2) when expectations are not known they must be discovered, and (3)
when expectations are known a forecast for the next iteration must be con-
structed. Further difficulties arise when the maximum iteration budget T is
less than the number of choices count(i). In such cases, some of the choices
must be ignored, but which ones should be ignored?

One solution to the pseudo-regret problem posed in (2.5) has been pro-
posed by Auer et al. (2002) and is referred to as the upper confidence bounds
(UCB) algorithm. According to Kuleshov and Precup (2014) in the UCB,
each choice is initially chosen once. Following this initial directed explo-
ration period, given i choices with actualised net yields xi

t per iteration, at
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iteration T the best choice would be described by

iT = arg max
i

(
1
ni

T−1

∑
t=1

xi
t +

√
2lnT

ni

)
(2.6)

where ni denotes the number of times choice i has been chosen up to iter-
ation T, T > 1, and ∑i ni = T − 1. The first term on the right hand side of
(2.6) denotes estimated sample net yield while the second term constitutes
an exploration premium, and increments relatively more, the sample means
of less frequent choices. Note that the exploration premium is independent
of actual observed yields, and is only a function of the current iteration T
and the number of times choice i has been chosen, ni. The exploration pre-
mium term is derived from the Chernoff-Hoeffding bound and estimates
the bounds of a one-sided confidence interval, which would contain the un-
observed true net yield for choice i with "overwhelming probability."16

While humans are unlikely to consciously perform in real-time, the math-
ematical operations driving bandit problem solutions, Costa et al. (2019) test
rhesus monkey performance in an n-armed bandit task, where novel op-
tions requiring exploration are introduced over time. They find that two
key subcortical regions are involved in the exploitation versus exploration
trade-off. Exploration involves the amygdala while exploitation involves
the ventral striatum. In corresponding simulations, the authors use a par-
tially observed Markov decision making process (POMDP), which produces
a choice strategy with an exploration premium, in principle similar to the
second term in (2.6); however, encapsulated in Boltzmann activation as seen
in (2.4f). This raises the question whether the monkeys, at a biological level,
use a computational approximation comparable to a bandit algorithm.

In sum, while at a higher mental level real-time conscious use of ban-
dit algorithms remains unlikely, it is possible that evolutionary mechanisms
have lead to the development of an automatic sub-cortical scoring mecha-
nism, which handles exploration of novelty.

Despite their complexities, bandit algorithms likely comprise the best
approach for making the best choice among ergodic net yield processes.
Note that due to the presence of exploration, bandit algorithms are con-
sidered to be rational correlational decision making algorithms.

16Auer et al., 2002, p. 237.
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2.5.2 Dynamic and Approximate Dynamic Programming

There are two major differences between n-armed bandits and the appro-
aches discussed in this section: (1) bandit problems focus on the use of a
specific loss function called regret, and (2) dynamic (DP) and approximate
dynamic programming (ADP) approaches are capable of outputting for the
problem in question, a complex action or choice selection profile called a
policy, typically denoted by π.

The decision making space is broken into learning iterations (i.e. time),
states of the world, outcomes, and possible choices (actions). The purpose
of the DP or ADP algorithm, is to score choice outcomes over time and
states, and then produce an optimal policy of actions, π∗. Enumeration of
time, state, outcome, and choice space, however can lead to the exponen-
tially explosive proliferation of possibilities, a problem known as the the
curse of dimensionality. Approximate dynamic programming is an effort to
mitigate the curse of dimensionality by means of techniques, which bring
about dimensionality reduction (Bertsekas, 2012; Powell, 2011). Reinforce-
ment learning (RL), a machine learning technique (Sutton & Barto, 2018),
can be seen as an ADP technique, where scoring is conducted of the basis
of a stochastic net yield stream {xi

t}, measured in response to the choices
taken. In DP, ADP, and RL problems, the scoring (objective optimisation)
function can itself be learned over time.

Given a sequence of loss functions {Lt}, the fundamental decision mak-
ing problem is specified as selecting policies π to minimise expected loss
over the planning horizon

min
π

E

[
T

∑
t=0

γtLt (st, at)

]
(2.7)

where st, at denote the state, and action (choice) at iteration t. Lt is an out-
come scoring function. γt denotes a discount rate, which reduces future out-
come scores, that is, indicates a preference for the present over the future.
It should be noted that both action and state could be vectorised. However,
for ease of exposition, scalar notation is employed. Finally note the expec-
tations operator, an implication of which is that expectations of stochastic
output variables can be taken, and that transitions from one state of the
world into the next can be enumerated probabilistically.
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In general (2.7) can be expressed iteratively in the Bellman equation form
as a forward looking value equation

Vt (st) = min
at

(Lt (st, at) + γEt [Vt (st+1)]) (2.8)

where Et indicates conditional expectations. (2.8) assumes that the produc-
tion of st constitutes a Markov process. Given assumptions on state transi-
tion dynamics, (2.8) can be solved backwards from the final period T. When
the discount rate γ < 1, then (2.8) can also be solved for an infinite time
horizon. (2.8) seems to imply that one can forecast the future relatively well,
and that one paradoxically knows the future before one knows the present.
However, (2.8) is better seen as a strategic plan answering the question,
"which actions must be taken to achieve the lowest cost outcome in T pe-
riods from now?" For example, given aviation congestion risks, Kochender-
fer (2015, pp. 249-276) presents an ADP application for automated airborne
collision avoidance.

Q-learning initially proposed by Watkins (1989) constitutes an approx-
imation to (2.8), where one can step forward through time (Kochenderfer,
2015, p. 122). Similar to the arms of a bandit, and the best choice bandit
algorithm presented in (2.6), in Q-learning, the world is divided into state-
action pairs, which are scored, and at each iteration, the best possible action
is chosen. Given states st, st+1, and action at, Q-learning is formulated as

Qt+1 (st, at) = αt

(
Lt (st, at) + γ min

at+1
Qt (st+1, at+1)

)
+ (1− αt) Qt (st, at)

(2.9)
where the minimisation term proposes that once state st+1 is observed, the
action with the least approximated accumulated loss should be chosen prior
to updating accumulated loss scores.

Tsitsiklis (1993) shows that under certain regularity assumptions, when
T → ∞, Q-learning converges to an optimal policy π∗ = {at, . . . , aT}. Note
that just like bandit algorithms, the Q-learning algorithm also requires some
form of exploration. This is typically implemented as Boltzmann explo-
ration as seen in (2.4f), or as ε-Greedy exploration as will be discussed in
section 5.2.2.

Note that (2.9) is similar in structure to (2.1b), the Rescorla-Wagner branch
of (2.2b), and (2.4a). The EV, PV, and ORL models discussed in sections 2.4.1,
2.4.2, and 2.4.3 respectively, share the theme of approximating the central
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tendency of a decision making value by stepping forward in time.
Q-learning and RL techniques have attracted the attention of neurosci-

entists as plausible computational mechanisms underlying choice selection
in humans and primates. For example, Schultz et al. (1997) propose that
dopamine release encodes the temporal difference error, that is the discrep-
ancy between predicted and realised Q-values. Further serotonin release
modulates the discount rate γ, acetylcholine modulates the learning rate αt,
and noradrenaline controls exploration (Doya, 2002). These neuro-transmitter
correlates suggest that both computational bandit and RL models may have
biological implementations.

DP requires a model or knowledge of state transition probabilities. In
both ADP and RL, knowledge of the state transition and the value function
(2.8) is not required. Provided sufficient samples have been obtained, the
state transition and value functions can both be iteratively estimated from
simulated or realised outcomes. RL methods such a Q-learning (2.9) sample
both time and states, and comprise "model-free"17 approaches. In the pro-
posed nomenclature, DP, ADP, and RL methods remain as rational correla-
tional. It could be argued that DP methods in particular with their strong
probabilistic assumptions could be considered as rational causal methods.
However in stochastic environments, the use of the term causal should be
qualified either with a confidence interval or a test statistic.

2.5.3 Gaussian Mixture Models

Gaussian mixture models can be seen as an application of non-parametric
statistics, where the parameters describing a statistical distribution are al-
lowed to go to infinity. Gaussian refers to population density functions,
which have a Gaussian kernel

k(x) =
1√
2π

e−x2/2 (2.10)

where, by construction∫
k(x)dx = 1, E [k(x)] = 0, 0 < Var [k(x)] < ∞ (2.11)

17Kochenderfer, 2015, pp. 121-124.
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that is, k(x) is a normalized, mean zero, finite variance process, where the
functional form in (2.10) places some restrictions on tail decay behaviour
(Wasserman, 2006).

A (suitably normalised) Gaussian mixture model consists of multiple
(parametrised) Gaussian kernels, which in principle can even be infinite
in number. Gaussian mixture models can therefore by construction repre-
sent multi-modal distributions, and in that manner address one of the short-
comings of central limit theorems, which asymptotically produce unimodal
distributions (McKean, 2014).

In general given iteration t, and letting Kt(xt|µti, σ2
ti) denote a suitably

normalized Gaussian kernel with mean µti and variance σ2
ti, the Gaussian

mixture is formulated as

pd ft(xt) = ∑
i

vtiKt

(
xt|µti, σ2

ti

)
(2.12)

where vti are the mixing weights, ∑i vti = 1, vti ∈ [0, 1], and scalar nota-
tion is used for simplicity. In practice (2.12) is solved using the Expectation
Maximization algorithm (Bishop, 2006, pp. 430-455).

Gaussian mixture models (GMM) have been used in artificial neural
networks for automated hyper-parameter optimisation (Nogueira, 2014–;
Stander & Craig, 2002). Agostini and Celaya (2010) apply GMM techniques
to Q-learning with continuous state-action spaces. They formulate joint
Gaussian probability density functions (pdfs) consisting of scalar action,
vector state, and scalar Q-value components. The Gaussian pdfs are com-
bined in a variable unit mixture model and Q-value updates for state-action
tuples are derived from the incrementally estimated (marginal) means of
the Gaussian mixture model. Using GMMs allows calculation of Q-value
variances, which in turn contribute to exploration, consisting of a variance-
contributed and a fully random term. Pinto (2021) presents a GMM driven
deep Q-learning model, which subject to tuning, can learn from a single
pass through data.

Mori et al. (2022) train a neural network to output GMM parameters
for predicting future behavioural states of C. elegans, a type of nematode
(worm). Next they use the estimated GMM together with virtual nema-
todes in a reinforcement learning setting, where the virtual nematodes are
induced to move towards a goal point. Finally, they extract the successful
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virtual behaviour policy, apply it to real nematodes, and find that the pol-
icy can successfully direct real nematode behaviour. That is, the authors
are able to summarise and predict nematode behaviour with a GMM. This
shows that a GMM, when augmented with reinforcement learning, can pre-
dict for any given stimulus, its expected response. Hence a GMM can pro-
vide predictive decision making output.

Evolving Gaussian mixture models (GMMs) of the form shown in (2.12)
can be seen in a Bayesian context with each iteration producing an updated
posterior pdf. GMMs are considered to be rational correlational models.
Of the rational models discussed, GMMs encapsulate the highest amount
of prior information. This prior information is in the form of initial mixing
coefficients, means, covariance structure, and tail decay behaviour.

This is more prior information than what would be required in a classical
Bayesian setting. However in practice, the multi-modal form and control of
tail behaviour is extremely useful in modelling results of machine learning
simulations, where decision criterion output often exhibits multiple optima,
and due to simulation limitations, tail data may be scarce. When tail data
is scarce, fitting different GMMs, or more generally, kernel mixture models,
can produce sensitivity analyses regarding tail decay effect on hypothesis
testing.

2.6 Emotion in Iterative Learning

Because emotion is a complex phenomenon (Rolls, 2013), the introduction
of emotion into computational decision making constitutes a difficult un-
dertaking. In section 2.3.1 major emotion models, which have been auto-
mated, have already been discussed. Here proposals are considered, where
a rational model produces some intermediate output, which in turn is used
for emotion synthesis. The resulting emotions may then lead to amended
choices.

Broekens et al. (2015) present joy-distress and hope-fear labelled emo-
tions, which are synthesized from the reinforcement learning value function
(2.8). However, the synthesized emotions are not input into the decision
making problem. Their emotion synthesis approach is reviewed here, as it
provides a good introduction. They specify at iteration t with net yield xt

J(st−1, at−1, st) = (xt + V(st)−V(st−1)) (1− Prob(st−1, at−1, st)) (2.13a)
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H(st) = max (−V(st), 0) (2.13b)

where J > 0 denotes joy, J < 0 represents distress, H ≥ 0 is the hope-fear di-
mension. The term (1− Prob(st−1, at−1, st)) in (2.13a) is the complement of
the last observed transition probability, and scales the (undiscounted) tem-
poral difference error (xt + V(st)−V(st−1)). For example, a high (positive)
temporal difference error and low state transition probability will generate
higher joy due to the realisation of a better than probabilistically anticipated
outcome. Hope in (2.13b) is constrained to be high when the value function
is negative. Hence in the Broekens et al. (2015) model, hope increases with
adversity.

The Broekens et al. (2015) model in (2.13) highlights two key difficulties
faced in computational emotion synthesis. Firstly when multiple emotions
are generated from transformations of a single or very few feedback sig-
nals, this could in principle lead to identifiability problems. For example,
if all emotions were synthesized from linear transformations of the same
value signal, essentially only a single emotion continuum would exist. Sec-
ondly, emotion labels, such as happy, sad, angry, and so on are anthropo-
morphisms, and therefore largely arbitrary. The same model could be de-
veloped with alternative terminologies.

Antos and Pfeffer (2011) present a utility function based model where
utility across goals is summed. The value of each goal is in turn determined
by three components: relative importance, priority, and degree of achieve-
ment. Their model labels five emotions: hope, fear, boredom, anger, and
sadness, each activated by a specific activation function. Emotion activation
modulates goal priorities and indirectly influences utility maximisation. In
5-armed bandit simulations, the authors find that the emotion agent’s accu-
mulated net yield is only surpassed by an all-knowing and an optimal index
agent, both of which possess substantial additional environmental knowl-
edge. In sum, their emotion heuristic approach achieves good results with
minimum environmental knowledge.

Moerland et al. (2018) survey 52 papers, published between 1998 and
2016, modelling emotion modulated reinforcement learning agents, where
emotion is synthesised from net yields, from internal appraisals such as the
temporal difference error, from homoeostatic drives such as energy level, or
from hard-wired emotion mechanics. Emotion activation modulates deci-
sion making via net yield, state, action, or hyper-parameter alterations.

36



Chapter 2. Literature Review

Given the difficulty with emotion labelling, and the possibility of ac-
ceptable alternative terminologies, this work uses emotion labels sparingly.
Chapter 5 initially presents a reinforcement model, without labelled emo-
tion; however, which strictly speaking under the Moerland et al. system
could be considered as a hyper-parameter modulated emotion model. Chap-
ter 10 then extends this initial model to the two emotion burst learning
model.

While dealing with emotion in computational decision making is chal-
lenging, emotions can act as decision making heuristics. Further, as humans
are emotional beings, computational use of emotion, be it synthetic or imita-
tive, can be useful in establishing affective connections in human interaction
(Damiano et al., 2012). The models discussed here fall into the nonrational
causal (in a mechanical automation sense), or nonrational correlational cat-
egories.
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Learning from Repeated Sampling

This chapter presents a learning from repeated sampling framework, which
can be rational context compliant; however, which is extended to formalise
nonrational contexts. Two extensions producing a nonrational context are
suggested: (A) an exponentially decaying learning rate, and (B) a custom
loss function.

Being able to learn by means of repeated sampling requires that the sam-
pled outcomes provide accurate and relevant information relative to the de-
cision making control variables. Or, if that is not the case, that at least such
accurate and relevant information can be obtained eventually as a result of
following a learning process. This chapter initially assumes that such dy-
namics, as stipulated in rational models, are achieved. Another important
consideration, as discussed in section 2.5.1, where multi-armed bandits are
reviewed, is how to allocate existing resources to assess (sample) N poten-
tial courses of action. Hence, the basic problem in repeated sampling is to
assess N options in T iterations, where T is as small as possible, even when
N is large. Throughout this chapter it is assumed that estimation must be
done sequentially across time.

In general, this is a difficult problem. However, in some cases, one of
the most effective solutions is the 1/N heuristic, where for example, in an
investment context 1/N of funds are allocated to N assets. Zhou and Palo-
mar (2020) show that over a 10 year period, the 1/N heuristic exhibits one of
the lowest maximum drawdown (MDD) outcomes, where maximum draw-
down refers to the distance between an asset portfolio’s previous peak and
the subsequent trough. While MDD is a forensic, retrospective measure,
the 1/N heuristic was only bettered by portfolio rules where funds were
allocated in inverse proportion to volatility. However such inverse volatil-
ity rules require substantially more computational resources, and they also
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require that samples across time are collected.

3.1 General Framework

The approach employed in this work consists of using a known loss func-
tion Y(·) to score an intractable objective function R(·). The framework intro-
duced here belongs to the class of multi-stage estimator frameworks. Such
a technique is used in Widrow and Hoff (1960), whose work has formed
the basis of the back-propagation algorithm (LeCun et al., 2012; Rumelhart
& McClelland, 1987; Rumelhart et al., 1986). A similar two-stage iterative
bootstrapping strategy is employed by the expectation-maximisation algo-
rithm (Bishop, 2006, pp. 435-441). Further, the gradient approximation tech-
nique CSUD proposed later in chapter 12 adds to the class of Simultaneous
Perturbation Stochastic Approximation (SPSA) (Spall, 1992) algorithms. On
a conceptual level, CSUD loosens typical rational model guardrails, which
guarantee via assumptions that the result desired from the outset is actu-
ally achieved. The desire to remove such guardrails may appear unusual
from a rational view point; however, it is believed that loosening rational
assumptions may assist in exploring model input space.

In the proposed framework, analytical derivatives are not required. The
loss function Y(·) and the objective function R(·) may each have its own
selection logic. The loss function Y(·) scores the objective function R(·) indi-
rectly by means of a reductive performance statistic M(·), which is sampled
from repeated applications of the chosen objective function, and is subse-
quently fed into the loss function. Problem space inputs are decoupled into
behavioural parameter and performance hyper-parameters. The loss func-
tion may be arbitrarily specified in performance parameters, and then these
performance parameters may be tuned via the approximated loss gradient.

Under appropriate assumptions, the framework proposed is fully ratio-
nal model compliant. When such assumptions are presented, always the
simplest case is presented. In a rational context, the proposed technologies
have been implemented in computational artificial neural network tuning
(Liaw et al., 2018). Here such tuning technologies are formally expressed
as multi-stage estimators. The aim here is to present a theoretical frame-
work, which may unify rational and nonrational modelling, and which can
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help assess the exploitation versus exploration performance of rational and
nonrational learning models.

3.2 General Framework Specification

At iteration t, let Ψt and Θt denote behavioural parameters and perfor-
mance tuning hyper-parameters respectively. Let Rt(Ψt, Θt) : (Rq, Rp) →
Ro, (p, q, o ≥ 1, 2, · · ·), be a vector valued stochastic function, mapping the
(p + q)-dimensional parameter and hyper-parameter inputs (controls) into
o-dimensional outputs. Ideally Rt is to be optimised jointly with respect to
Ψt and Θt. However, the structure of Rt is such that joint optimisation is not
analytically feasible. For example, Rt may be linear in the parameters but
non-linear in the hyper-parameters making derivation of an analytical form
impossible.

One could optimise Rt directly via Monte-Carlo techniques. Such an ap-
proach would be more susceptible to the curse of dimensionality originating
from the size of the input space, the size of the output space, and the need to
take multiple samples (Powell, 2011, pp. 112-113). Further, joint optimisa-
tion of behavioural and performance inputs presents attribution challenges
arising from mixing behaviour and performance effects on outcomes.

The method proposed here presents a structured alternative to direct
Monte Carlo sampling. By assessing parameter and hyper-parameter ef-
fects separately, with the help of a flexible performance measure Mt(·) and
scoring criterion Yt(·), the problem dimensionality is reduced, and this aids
in gaining better understanding of underlying process dynamics.

At iteration t, with parameters Ψt, given hyper-parameters Θ̂t, perfor-
mance measure Mt(·), and loss function Yt(·), the general problem is formu-
lated as

Yt(·) ≡ Yt

(
Mt

({
sel
Ψit

Rt
(
Ψit, Θ̂t

)}N

i=1

))
(3.1a)

Θ̂t+1 = Θ̂t − αt∇Θ̂t
Yt(·) (3.1b)

where sel is a selection operator; for example, sel may be ‘maximise’, ‘min-
imise’, ‘median’, or ‘take top 5 percent.’ Further, Θ̂t is the current loss min-
imising hyper-parameter (vector) estimate, the term {selΨit Rt

(
Ψit, Θ̂t

)
}N

i=1

denotes a sequence of outputs derived from N applications of selecting Rt(·)
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with respect to Ψit given Θ̂t, and ∇Θ̂t
Y(·) denotes the gradient of Yt(·) with

respect to Θ̂t.
(3.1) specifies a repeated sampling learning algorithm, where learning

is summarised in the value-evolution of parameters Ψ and given hyper-
parameters Θ̂.

At each iteration t, (3.1a) is solved sequentially from the innermost to
the outermost criterion. That is, one first simulates the selection of Rt(·) N
times to get an output sequence. Next, the performance measurement crite-
rion Mt(·) reduces the repeated selection outputs to a performance criterion.
For example, one may wish to compute the mean of the outputs. Finally,
the performance criterion result is scored by the loss function Yt(·), which
produces via the update equation (3.1b) the next iteration hyper-parameter
candidates Θ̂t+1.

The update rule (3.1b) is well-known in stochastic approximation and
has been studied for cases when analytic gradients are available or must
be approximated (Kushner, 2010; Robbins & Monro, 1951; Spall, 2003). In-
deed (3.1b) is one of the most frequently encountered update strategies in
computational algorithms. For example while not discussed here, (3.1b)
is used in back-propagation (LeCun et al., 2012). With respect to gradient
approximation (3.1b), this work proposes CSUD (Constrained Single Un-
constrained Double) simultaneous perturbations stochastic approximation),
which is discussed in detail in chapter 12.

Up to now, (3.1) has been discussed from a mathematical and computa-
tional point of view, using for conciseness, the equation rather than algorith-
mic form. One might naturally ask whether iterating (3.1) goes to anywhere
useful? By useful, one is suggesting iterative convergence to an optimal
parameter and hyper-parameter combination (Ψ∗, Θ∗). That is, given (3.1)
with CSUD, can it be asserted that

lim
t→∞

Ψt → Ψ∗ and lim
t→∞

Θ̂t → Θ∗ (3.2)

where Ψ∗ and Θ∗ denote optimal parameter and hyper-parameter settings
respectively?

In any rational model, the convergence criteria (3.2) would be achieved
via corresponding assumptions. Section 3.4 below presents some simple as-
sumptions for achieving such optimality results. The full set of assumptions
and indicative proofs, however, are discussed in chapter 12.
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1 initialise Scores;
2 while iterating do
3 t← iteration counter;
4 Θ̂t ← GET;
5 initialise Mt;
6 for i = 1 to N do
7 Mt ← ACCUMULATE selΨit Rt

(
Ψit, Θ̂t

)
)

8 end
9 Mt ← REDUCE Mt;

10 Θ̂t ← UPDATE USING Yt(Mt);
11 Scores← YIELD Yt(Mt);
12 t + +;
13 UPDATE iterating;
14 end

Algorithm 1: Conditional Sequential Optimisation

3.3 Nonrational Search of

Parameter and Hyper-Parameter Spaces

The short answer as to whether optimal parameter and hyper-parameter re-
sults can be guaranteed in a nonrational setting is, "no, they cannot." How-
ever, this does not mean that optimal results cannot be achieved. It only
means that one cannot theoretically guarantee the existence of such results.
In a nonrational context, (3.1) is simply seen as a means of getting answers
to stipulated search criteria. It remains the search algorithm operator’s task,
to assess the search results.

One of the consequences of (3.1a) is that joint selection of Ψt and Θt is
replaced with sequential conditional selection. Given any hyper-parameter
estimate Θ̂t, Ψt is optimised, Θ̂t is updated; then the cycle is repeated,
guided by the prior structure imposed on Θ̂t via the performance statistic
and the form of the loss function.

Hence, the selection, or optimisation, problem in (3.1) is really of the
form shown in Algorithm 1, where the selection of parameters is contingent
on having selected some hyper-parameters first. In general, this is the usu-
ally followed sequential practice, for example, when assessing performance
of artificial neural networks (A. Li et al., 2019; L. Li et al., 2018).

For repeated samples i = 1 . . . N, it should be noted that accumulation of
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parameter Ψit selection outcomes can produce variations due to the stochas-
tic nature of Rt(Ψit, Θ̂t). This work does not discuss any considerations or
resolution methods for dealing with parameter variation. In the context of
reinforcement learning for example, Tsitsiklis (1993) discusses conditions
for achieving a stationary policy, which constitutes a generalised notion of
Ψ∗.

3.4 Rational Search of

Parameter and Hyper-Parameter Spaces

This section provides an example of the rational requirements for achieving
(3.2) with (3.1) and CSUD, that is, for converging to optimal parameters and
hyper-parameters as learning iterations go to infinity. CSUD is discussed in
detail Chapter 12, which also presents propositions and proofs. However,
the salient features are introduced here without any loss of generality.

Recall that the inner selection loop (3.1a) has input and output value
dimensions consisting of Rt(Ψt, Θt) : (Rq, Rp)→ Ro, (p, q, o ≥ 1, 2, · · ·), and
that the selection of Rt(·) is sampled N times.

Suppose that for any given hyper-parameter set Θ̂t, N samples of
selΨit Rt

(
Ψit, Θ̂t

)
produce the solution set ΩΘ̂t

Ψ∗ . Assume that performance
measure mapping reduces the solution set into r-dimensional performance
criteria. That is, M(ΩΘ̂t

Ψ∗) : RNo → Rr. Further, assume the performance
criteria m can be represented in simplified form as a time invariant mean
process, consisting of a central estimate m̂(Θ̂t) and a random error term ε

(3.3a)m = m̂(Θ̂t) + ε, m has r elements, ε ∼ i.i.d
(3.3b)E [ε] = 0
(3.3c)E|ε2

j |< ∞, Eε3
j = 0, E|ε4

j |< ∞, j ∈ {1, · · · , r}

(3.3d)E
[
εε′
]

= Σ =


σ2

1
. . .

σ2
r


where some restrictions on higher order moments (3.3c) have been imposed,
whilst allowing for heteroscedasticity (3.3d).

Finally given Θ̂t, formulate loss in quadratic form as

Y(Θ̂t) =
[
m(Θ̂t)−m∗

]′ S [m(Θ̂t)−m∗
]

(3.4)
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where m(Θ̂t) is an r-dimensional performance measurement, m∗ is a perfor-
mance measurement target, and S is an r x r diagonal matrix of weights.

Using (3.3a), the quadratic loss function in (3.4) can be expanded as,

(3.5a)Y(Θ̂t) =
[
m̂(Θ̂t)− m∗ + ε

] ′S [m̂(Θ̂t)− m∗ + ε
]

(3.5b)=
[
m̂(Θ̂t)− m∗

] ′S [m̂(Θ̂t)− m∗
]

+ ε′Sε+ 2ε′S
[
m̂(Θ̂t)− m∗

]
(3.5c)= L(Θ̂t) + ε(Θ̂t)

where
(3.6a)L(Θ̂t) =

[
m̂(Θ̂t)− m∗

] ′S [m̂(Θ̂t)− m∗
]

(3.6b)ε(Θ̂t) = ε′Sε+ 2ε′S
[
m̂(Θ̂t)− m∗

]
.

Note that the error term ε(Θ̂t) includes a quadratic component, and there-
fore has non-zero mean. That is, E

[
ε(Θ̂t)

]
= tr(SΣ) < ∞.

Therefore given the assumptions in (3.3), the stochastic loss function in
(3.5c) produces biased loss estimates. However, this bias is time invariant.

As noted in Chapter 12, CSUD is a type of simultaneous perturbations
stochastic approximations (SPSA, Spall, 1992) algorithm, where gradient
estimates are calculated from two separate loss measurements, Y(Θ) and
Y(Θ′). Note that E [ε(Θ)− ε(Θ′)] = 0. It follows that CSUD with quadratic
loss, as in (3.4), does produce asymptotically unbiased gradient, and conse-
quently asymptotically consistent and unbiased hyper-parameter estimates
Θ∗, which minimise loss. The expectation of loss remains biased. However,
this bias is time invariant, and therefore does not affect loss rankings.

Assumptions have been presented, under which it can shown that hyper-
parameter estimates Θ̂t converge to the least loss generating set Θ∗. Con-
vergence arguments have been outlined. It should be noted that even for
a case with assumptions as simple as those presented here, proving such
convergence is a non-trivial task. Chapter 12 provides a detailed roadmap
for such proofs.

While the quadratic wrapper function (3.4) provides some search regu-
larization, it may no longer be possible to guarantee that a global optimum,
in the sense of finding a unique parameter and hyper-parameter (Ψ∗, Θ∗)
tuple. All one will be able to say is that Ψ∗ fulfils minimum loss criteria
subject to Θ∗.

The convergence difficulties illustrated for (3.2) are not unique to the
general framework in (3.1), or to the properties of CSUD. In any rational
framework, proving iterative convergence requires assumptions, some of

44



Chapter 3. Learning from Repeated Sampling

which may be unverifiable, or costly to verify. Rational convergence the-
ory is not able to provide a threshold number of iterations after which con-
vergence is guaranteed. Consequently, the boundary between rational and
nonrational versions of iterative learning approaches is blurred, and often
relies on the algorithm operator, additional metadata, or budgetary consid-
erations for when to practically stop learning.

3.5 Switching between Nonrational and Rational

Contexts

It is proposed that the learning rate αt determines whether the recursive
update rule (3.1b) operates in a rational or nonrational context.

The recursive update rule (3.1b) is central to gradient driven iterative
learning. Intuitively, it is easy to see that (3.1b) is a first order difference
equation, with a steady state for some Θ∗ where∇Θ∗Y(·) = 0 (the minimum,
or a minimum, of (3.1a)).

Note that (3.1b) is used to search (3.1a) for any minima. Therefore αt

cannot be constant, as a constant αt would produce perpetual oscillations
about any minimum. Further, one can surmise that at a steady state αt can
be any value; however, in order to reduce oscillations around Θ∗, αt must
decay over time. Finally at or near αt = 0, computational convergence can be
forced, without necessarily knowing that a steady state has been reached. In
sum given (3.1a) and (3.1b), achieving theoretical guarantees of convergence
to Θ∗ requires (1) that αt must decay; yet (2) that there exist some speed
limits, which are imposed on the decay of αt, so that αt does not decay too
quickly or too slowly.

Note that with a deterministic one-dimensional quadratic (squared) loss
function, with 1st and 2nd analytical derivatives available, by setting the
learning rate equal to the inverse Hessian, αt = ∇2

Θ̂t
Y(·)−1, convergence can

be achieved in a single iteration.
With multi-dimensional stochastic loss functions, using the inverse Hes-

sian as the learning rate αt promises fastest theoretical convergence. Com-
putation of the inverse Hessian is difficult and forms an important area of
research in stochastic approximation. For example, Zhu et al. (2020) present
an LBL factorisation of the Hessian with the resulting approximated inverse
Hessian leading to a reduction in per iteration computational costs from
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O(p3) to O(p2), where p is the dimensionality of the hyper-parameter vector
Θ̂t. The authors’ reduction in computational costs arises from the dimen-
sionality reduction induced via LBL. From a rational perspective therefore
setting the learning rate equal to the inverse Hessian provides the fastest
iterative pathway towards Θ∗ subject to Hessian approximation and inver-
sion constraints.

Alternatives exist to using resource intensive Hessian approximation. A
well-known alternative rational approach is to set αt equal to a scalar, sub-
ject to the following conditions (Spall, 2003, pp. 105 - 108)

αt > 0, lim
t→∞

αt = 0,
∞

∑
t=0

αt = ∞,
∞

∑
t=0

α2
t < ∞. (3.7)

When the conditions in (3.7) are fulfilled, it can be shown that (3.1b) asymp-
totically converges to Θ∗. Hence (3.7) defines conditions in which the learn-
ing rate can be seen as being in a rational context. For example given t ∈
{0, 1, . . . }, αt = 1/(1 + t) fulfils these conditions.

With scalar αt, when compared to the use of the inverse Hessian, the
number of iterations to convergence by necessity increases. Powell (2011,
pp. 419 - 452) discusses deterministic and stochastic step sizes, where re-
ducing the number of step sizes to convergence is a key consideration.

Powell (2011, p. 427) also presents exponentially decaying learning rates
and shows that such decay rules do not fulfil the convergence criteria in
(3.7). Note that a constant learning rate αt = ᾱ > 0, as is frequently em-
ployed in neural network training, also fails to satisfy (3.7).

The context, where learning rate decay rules do not satisfy (3.7), is de-
fined in this work as being nonrational. Hence when a learning rate se-
quence fulfils (3.7), the model using such a decay pattern is considered to be
in a rational context. In contrast, when the learning rate decay profile does
not fulfil (3.7), it is said that the model is operating in a nonrational context.

Heuristics constitute a key hallmark of a model operating in a nonra-
tional context. For example, Riedmiller and Braun (1993) propose RPROP
for the training of artificial neural networks. Rather than reducing the learn-
ing rate αt in advance, RPROP uses an initially constant learning rate and
relies on detecting suspected over-shoots of Θ∗, based on which overshoots
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the learning rate is heuristically adjusted. Adam (Adaptive Moment Esti-
mation) proposed in Kingma and Ba (2014), uses a related strategy of scal-
ing a constant learning rate by using gradient moment metadata, in effect
turning a constant scalar learning rate into a scaled per gradient element
learning rate. With the exception of a heuristic to guard against division by
zero, Adam can be seen in a rational context.

The nonrational context in this work uses decaying learning rates of the
form

αt = Λαt−1 (3.8)

where Λ ∈ (0, 1]. To generate a decaying learning rate sequence {αt}, (3.8)
is used to construct an exponential decay sequence with:

Λ = e−λ (3.9a)

αt = e−λαt−1 (3.9b)

where λ ∈ [0, ∞) is the decay factor. When λ = 0, the learning rate is
constant. Note that for any λ,

(
1− e−λ

)
∗ 100 represents the constant per

period percentage decay of the learning rate. Further, with (3.9b), given any
initial learning rate α1 for t > 0, αt will decay at the same rate λ. This turns
out to be helpful in increasing resistance to initial learning rate effects.

Given (3.9)
lim
t→∞ ∑ αt = α1/(1−Λ) < ∞ (3.10)

where α1 is the initial learning rate; it is in this sense that exponential learn-
ing rate decay violates (3.7). (3.10) implies that for some planning horizon
T, learning rate decay λ, and initial learning rate α1, one obtains ∑T αt ≈
α1/(1−Λ), which shows that exponential learning rate decay induces a for-
ward planning horizon limit T. Here, a limited forward planning horizon is
seen a hallmark of nonrational systems. Note that such a nonrational limit
can be applied directly by simply setting T, the number of learning itera-
tions.

47



Chapter 4

The Iowa Gambling Task

This chapter introduces the Iowa Gambling Task (IGT), a card selection task,
and its variations. Human IGT results are used to calibrate single-state Q-
learning applications of (3.1). The term IGT is used most generally to refer
to all IGT variants and derivatives. When required by the context, however,
the term IGT is used to refer to Iowa Gambling Task (Bechara et al., 1994)
variants, and the term SGT is used to refer to the Soochow Gambling Task
(Lin et al., 2009).

Section 4.1 introduces the IGT, its variants, asociated summary yield
structures, and reports key human performance benchmarks relevant for
bootstrapping IGT model behaviour. Section 4.2 reports in further detail lit-
erature analysis of human IGT outcomes. Section 4.2 also develops the per-
formance analysis vocabulary, which is used in assessing Q-learning mod-
elling results. Appendix A presents the draw-by-draw IGT yield structures
used in this work.

4.1 The IGT and its Variants

The IGT is now presented in more detail. Since its inception in 1994, there
have been many variants of the IGT.

The IGT and its variants involve the use of virtual money. This work im-
plicitly assumes that virtual money is capable of producing some emotion
involvement. Tsampallas et al., 2023 study a virtual money based roulette
game, and conclude that virtual money driven gambling may produce some
emotional reaction; however, they also note that their study does not assess
the difference in emotion reactions to virtual versus real money gambling
tasks.

48



Chapter 4. The Iowa Gambling Task

In this work, the IGT variants are broadly classified as belonging to one
of the original, re-shuffled, random, reversed, or Soochow categories. In the
existing research literature, variants belonging to the same category have
not always been implemented in identical manner. As far as it is known,
implementation specific differences exhibited in the reported research liter-
ature will be highlighted in the below discussion.

4.1.1 The Original IGT

Description

The classification original IGT refers to the initial implementation of the IGT
reported in Bechara et al. (1994). The original IGT is the first clinical test
capable of successfully identifying vmPFC impairment in test subjects. As
discussed in section 2.3.2, vmPFC impairment refers to a complex condition
affecting the ventromedial prefrontal cortex, leading to forward planning
deficits.

In the original IGT, the participant is loaned virtual money to play a card
game, and is told to maximize profit inclusive of the loan repayment. The
participant is presented with four card decks: A, B, C, and D. In each turn,
the participant draws a single card from any deck. The participant then
receives a fixed reward, and occasionally has to pay a fine. If the participant
runs out of virtual money, additional loans are available.

While unknown to the participant, the decks and the game are struc-
tured as follows. Decks C and D are good decks, give low fixed rewards,
low fines, and on average yield net gains. A and B are bad decks, yield high
rewards, but even higher losses, and on average produce a net loss. Each
bad deck starts with a misleading sequence of eight cards, where the player
initially receives positive net gains. However, each bad deck, misleading
sequence is subsequently followed by high fines, causing the player, on fur-
ther selections from the same deck, to lose all gains and move into debt. The
game stops after 100 turns, when the dealer announces the end. However,
while playing, the participant does not know when the game will end.

Aim

The aim is to assess if participants are able to discover the good, low risk, on
average net positive yield decks and choose accordingly. In the IGT, a score
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of more than 50 draws from the good decks is defined as a normative pass
(Fellows & Farah, 2005).

Implementation Variations

Bechara et al. (1994, p. 9), replicated in Appendix A.1, present the original
IGT payout sheet with rewards and fines consisting of 40 entries per deck.
In Bechara et al. (2000), if any participant uses up all 40 entries for one deck,
they must then choose from the remaining decks. Therefore, any participant
cannot choose more than 80 cards from the good, or the bad, decks. When a
participant realises that only a few cards are left in a particular deck, such a
limit could potentially influence their exploration strategy.

In contrast, Steingroever et al. (2018) devise a computerised version,
where subjects are able to choose more than 40 cards from each deck.1 When
comparing payoff structures between Bechara et al. (1994) and Steingroever
et al. (2018), the fine structure varies for deck C. In Steingroever et al. (2018)
deck C fine is always 50; however in Bechara et al. (1994, p. 9), this deck has
the value range {25, 50, 75}. Steingroever et al. (2018) also give participants
a task performance related bonus, a condition not specified in the original
Bechara et al. (1994) specification.

Current Implementation

In the implementation here, deck C penalties use the original fine values
consisting of {25, 50, 75}. Further for each deck, a steady state is induced.
This steady state is achieved by looping the end of each deck to the begin-
ning of the deck. This formalises the manner in which more than 40 cards
can be sequentially drawn from the same deck, while retaining payout sheet
ordering. As the IGT only lasts for 100 turns, it is believed that this looping
strategy will not provide participants with added opportunities for tracking
and memorising card locations with the best net payoff locations.

The potential to select more than 40 cards from the same deck removes
any binding exploration versus exploitation constraints. Deck looping and
its effects are considered in Appendix B.

1This is not mentioned in the paper, but can be seen by looking at the associated open
data set available at Steingroever et al. (2015). Given a pool of 40 outcomes for each card
deck, for each deck draw, a card is randomly selected from the corresponding card pool. It
is not discussed whether random selection is with or without replacement.

50



Chapter 4. The Iowa Gambling Task

Type Bad Decks (A, B) Good Decks (C, D)
Mean Net Yield -25 25
At 100th draw: Good deck choices Cumulative Net Yield

20 -1500
50 0
80 1500

TABLE 4.1
The original IGT decks. Theoretical infinite horizon mean net yields per draw
and deck.

With the introduction of a steady-state, one can quantify the infinite hori-
zon (rational) net yield properties of each card deck. Table 4.1 presents the
infinite horizon mean net yields for the original IGT decks. It can be seen
that the minimum normative pass criterion of choosing more than 50 cards
from the good decks implies non-zero mean net yield. The re-shuffled, and
random IGT environments, which are discussed below have identical long-
term mean net yields. The rational infinite horizon solution illustrates that
at infinity, the individual deck card sequencing differences among the orig-
inal, re-shuffled, and random IGT variants in terms of the net mean yield
disappear.

4.1.2 The Re-shuffled IGT

Description

The classification re-shuffled IGT refers to the implementation of the IGT by
Fellows and Farah (2003, 2005) used to investigate reversal learning effects.
As discussed in section 2.3.2, vmPFC impairment can be explained in terms
of loss of reversal learning, that is, the ability to unlearn a previously learned
response.

Aim

As in section 4.1.1 above, the aim is for the participants to discover the good,
low risk, on average positive yield decks and choose accordingly. As before,
the normative pass criterion, that is achieving a normal behavioural result,
requires more than 50 draws from the good decks.
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Implementation

In the original IGT, the first 8 cards of each deck, when selected in sequence,
produce positive net yields. In the re-shuffled deck version, Fellows and
Farah (2005) move the first 8 cards of each original deck to the end. Further
in the original bad deck B, cards with payout indices 11 and 14 are switched.
This re-shuffle removes the initial, misleading net positive yield condition-
ing sequence in the bad decks A and B. As a result of the re-shuffles, players
experience, in all decks, rewards and fines relatively quickly. The details of
the re-shuffled decks can be found in Fellows and Farah (2005, p. 59), and
are also noted in Appendix A.2.

Current Implementation

The Fellows and Farah (2005) re-shuffles as discussed above are fully imple-
mented. However, as with the implementation of the original IGT in 4.1.1,
the end of each deck is looped to the beginning of the deck. As before, this
introduces the ability to choose more than 40 cards from the same deck, and
also induces a steady state, which has the infinite horizon payout structure
shown in Table 4.1.

4.1.3 The Random IGT

Description

Both the original IGT and the re-shuffled IGT aim to test performance ef-
fects, which arise from how the cards in each deck are ordered. In the origi-
nal IGT, the bad decks A and B each start with a misleading sequence where
positive net yields are achieved. The test subject is fooled into thinking that
the bad decks are good. In contrast in the re-shuffled IGT, the test subject
is exposed immediately within the first 1-11 cards to the true and negative
mean net yield nature of decks A and B. Both the original and re-shuffled
IGT test sequential learning with exploration and exploitation, where the
key learning effects may occur in the early learning iterations.

The question arises as to whether IGT behaviour changes when the se-
quential draw order is eliminated. Such randomized deck environments are
employed in Horstmann et al. (2012) and Steingroever et al. (2018). The data
for both studies is available in Steingroever et al. (2015) and via Haines et al.
(2018).
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Aim

As in sections 4.1.1 and 4.1.2 above, the aim is for the participants to dis-
cover the good, low risk, on average positive net yield decks and choose
accordingly. As before, the normative pass criterion remains the same.

Implementation

It is not clear whether Horstmann et al. (2012) or Steingroever et al. (2018)
implement randomisation with or without replacement. Both Horstmann
et al. (2012) and Steingroever et al. (2018) present participants with a perfor-
mance related bonus. In Horstmann et al. (2012), task duration is revealed to
participants. In the framework here, it is assumed that task duration is un-
known, hence for random environment comparisons, only the Steingroever
et al. (2018) data is used.

Current Implementation

The Bechara et al. (1994) original IGT environment payout sheet is imple-
mented as random draws without replacement. For each deck, the ran-
domised payout pool is initially of size 40. When the last payout has been
issued, the pool size returns to 40.

The end of each deck is looped to the beginning of the deck. As before,
this introduces the ability to choose more than 40 cards from the same deck,
and induces a steady state, which leads to the infinite horizon payout struc-
ture shown in Table 4.1.

4.1.4 Additional Investigated IGT Variants

The original, re-shuffled, and random IGT environments discussed in sec-
tions 4.1.1, 4.1.2, and 4.1.3 respectively constitute the primary focus in this
work. With these three variants, the efficacy of outcome driven sequential
learning can be investigated. Bechara et al. (2000), Chiu et al. (2008), and Lin
et al. (2009) have also introduced additional IGT variants for investigating
the effect of the timing, the progression, and the incidence of rewards and
fines.

Chapter 7 presents RL model fitting to human results using IGT variant
EFGH (Bechara et al., 2000), which is here referred to as the reversed IGT,
and is introduced below. Chapter 8 presents RL model fitting to human
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results using the Soochow Gambling Task (SGT) (Chiu et al., 2008; Lin et al.,
2009). The SGT is also described below.

Reversed IGT

In this work, version EFGH is referred to as the reversed IGT variant, where
decks E and G are the good decks, producing frequent high fines with less
frequent but higher rewards; and, F and H are the bad decks with frequent
low fines but even lower less frequent rewards. The reversed IGT attempts
to distinguish "hypersensitivity to reward" from "insensitivity to punish-
ment."2 The reversed IGT environment payout sheet is available at Bechara
et al. (2000, p. 2193), and is also replicated in Appendix A.4. Chapter 7
presents an application with the reversed IGT environment implemented
with looped deck structure.

The reversed IGT could test for loss aversion as in the EV (2.1a), PV
(2.2a) models, or distinct reward and fine learning rates as in the ORL (2.3b)
model. However, the application presented here in chapter 7 focuses instead
on being able to identify the good decks.

Soochow Gambling Task (SGT)

As the original IGT became a well-known test and more patient populations
were tested, it emerged that healthy controls had a hard time identifying
bad deck B as being bad. In this context, Chiu et al. (2008) and Lin et al.
(2009) discuss gain-loss frequency effects, and propose the Soochow Gam-
bling Task (SGT) as an explanation for observed normal participant deck B
behaviour.

The original IGT environment attempts to mislead the participant into
seeing the bad decks as being good by using an initial sequence of positive
net yields. In the SGT, the bad decks are not hidden by misleadingly good
initial net yields, but by high frequency losses and low frequency gains. The
good decks have high frequency losses with low frequency gains, but yield
per 10 consecutive deck draws a net gain. The bad decks have high fre-
quency gains with low frequency losses, but yield per 10 consecutive deck
draws a net loss. The payoff sheet for the SGT can be found at Chiu et al.
(2008, p. 15) or in Appendix A.5.

2Bechara et al., 2000, p. 2190.
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Type Bad Decks (A, B) Good Decks (C, D)
Mean Net Yield -50 50
At 100th draw: Choices from good decks Cumulative Net Yield

20 -3000
50 0
80 3000

TABLE 4.2
The SGT decks. Theoretical infinite horizon mean net yields per draw and
deck.

Chiu et al. (2008) and Lin et al. (2009) find that normal SGT participants
on average choose cards from the bad decks A and B, and are not able to
work out that in the long term, the good decks C and D indeed produce
positive net yields. The authors conclude that frequency effects lead the
participants to focus on immediate gain, and undervalue the probability of
losses. In relation to rare events, these conclusions are mirrored in Hertwig
et al., 2004, where under decisions from experience, that is uncertainty, rare
events are probabilistically undervalued.

From a rational statistical perspective, it takes longer to learn a rare event
distribution. In the case of the SGT, participants have to learn four rare
event distributions. Hence, the SGT presents a challenging signal extraction
problem, which humans may not be able to solve in 100 turns. Table 4.2
presents the SGT steady state net yield characteristics.

4.1.5 IGT Environments Not Considered

In addition to the above described IGT variants, the IGT literature also dis-
cusses adversarial environments. Such adversarial environments possess
non-stationary reward and fine distributions. Bechara et al., 2000, p. 2194-
2195 present an adversarial IGT environment consisting of 60 cards per
deck. After every 10 cumulative same-deck draws, rewards increase and
losses worsen; that is, good deck net yields increase, but the bad deck net
yields worsen.

This adversarial IGT environment has been studied in mental illness by
Premkumar et al. (2008), in ageing by Wood et al. (2005), and in addiction
by Ahn et al. (2014) and Fridberg et al. (2010). This work, however, does not
consider any adversarial IGT variants. Such variants do not substantially
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alter the fundamental problem structure posed in the original, re-shuffled,
random, and reversed IGT; and in the SGT environments.

4.2 Analysis of IGT Human Behaviour

The analysis of IGT outcomes focuses on cumulative aggregated measures
as well as blocked itemised measures. Cumulative aggregated measures
assess the total number of good cards at trial completion, and attempt to
summarise general performance as being normal or vmPFC impaired.

Blocked itemised measures assess individual deck, or good deck, perfor-
mance in 10- or 20-block draw segments, and aim to examine exploration
versus exploitation behaviour. Brand et al. (2007) administer the IGT to
healthy subjects, and use repeated measurements MANOVA (multivariate
analysis of variance) with 20-draw blocks as within-subjects factors to as-
sess choices from good minus bad decks as the outcome. They find statis-
tically significant differences (p < .001), indicating that per block response
behaviour shifted towards the good decks as the IGT trial progressed.

Not all studies report all measures, not all measures are applied to all
patient populations, and only some raw test data is available. This makes
it difficult to use the same measures when assessing software agent replica-
tion of normal and vmPFC impaired human IGT variant results. However,
good comparisons for cumulative aggregate measures can be obtained and
cumulative aggregated outcomes will constitute the main reporting mea-
sure here. Additionally some results involving blocked itemised measures
will be reported as well.

The main human IGT results, used for agent benchmarking and calibra-
tion, are presented next.

4.2.1 Cumulative Aggregated Measures

IGT task outcomes are typically assessed at the end of the trial, after 100
draws, by looking at the number of cards chosen from the good decks. Fel-
lows and Farah (2005) state that the normative pass criterion for this mea-
sure is more than 50 cards chosen from the good decks.

Another cumulative criterion, which has been reported in the literature,
is the number of cards chosen from the good decks minus the number of
cards chosen from the bad decks (Bechara et al., 1994; Brand et al., 2007).
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This work reports cumulative aggregated results in terms of the fraction
of cards chosen from the good decks, abbreviated as fG. For example, 1 indicates
that all cards were chosen from the good decks. After 100 draws, at the end
of an IGT trial, a result of more than 0.5 indicates normal human behaviour,
whereas a result of 0.5 or less indicates vmPFC impairment.

Note that the fraction of good decks measure fG used here can be trans-
formed into the good decks and good decks minus bad decks measures used
in the literature according to

fG = 0.5 +
cards good− cards bad

200
cards good + cards bad = 100

(4.1)

where fraction of cards chosen from the good decks fG ∈ [0, 1]. (4.1) is
useful for transforming reported variance, standard deviation, or standard
error values.

The remainder of this section presents fraction of cards chosen from the
good decks fG results extracted from the IGT literature with the extraction
sources and method noted on a per IGT environment basis.

Table 4.3 reports means and standard errors for the good decks, good -
bad decks, and fraction of good decks fG measures obtained from the liter-
ature using the original IGT environment, where the bad decks begin with
misleading positive net yields. Note that the three measures reported in Ta-
ble 4.3 are related as shown in (4.1). As not all studies reported in this table
use the same outcomes measures, outcome measures are reported in each
study’s preferred format followed by the fraction of good decks fG measure
used in this work. With the exception of Fellows and Farah (2005), compar-
ison of the healthy controls with vmPFC impaired subjects indicates that in
the original IGT environment at task termination, healthy controls achieve
a normative pass, while vmPFC impaired participants fail. Note that the
vmPFC impaired Fellows and Farah (2005) results straddle the normative
pass criterion, and will be viewed as indicative of a fail. As the original test
data for Bechara et al. (2000), Bechara et al. (1994, 1998), and Fellows and
Farah (2005) was not available, the graphical presentations are converted
into numerical format using pixel matching.

Table 4.4 reports means and standard errors for the good decks, and
fraction of good decks fG measures obtained from the literature using the
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Subjects Studya N
Good Deck
Cards

(Good-Bad)
Deck Cards

Mean fraction of
good decks f̄ H

G

Controls

Bechara
et al. (1994)

44 37.00 ± 3.00 0.69 ± 0.015

Bechara
et al. (1998)

21 62.10 ± 3.17 0.62 ± 0.032

Bechara
et al.
(2000)b

20 17.38 ± 3.79 0.59 ± 0.019

Fellows
and Farah
(2005)

14 62.86 ± 2.32 0.63 ± 0.023

vmPFC
Impaired

Bechara
et al. (1994)

6 -25.10 ± 11.1 0.37 ± 0.055

Bechara
et al. (1998)

9 39.70 ± 3.49 0.40 ± 0.035

Bechara
et al.
(2000)b

10 -9.66 ± 5.53 0.45 ± 0.028

Fellows
and Farah
(2005)

9 50.00 ± 2.00c 0.50 ± 0.020c

aAll values pixel match Computed.
bResults reported in 20 draw blocks. Calculation of 100 draw values here assume
no inter-block covariance. This is may be incorrect, and the aggregated standard
error may have been either under- or over-estimated.
cvmPFC impaired participants straddle the pass point, indicative of a fail.

TABLE 4.3
Original IGT environment. 100th draw cumulative good deck means ± SE.a

Controls pass, while vmPFC impaired participants fail.c

re-shuffled IGT environment, where the bad deck misleading positive net
yield sequences are re-shuffled to the end of the decks. Comparison of
the healthy controls with vmPFC impaired subjects indicates that in the
re-shuffled IGT environment at task termination, both healthy controls and
vmPFC impaired subjects achieve a normative pass. As the original test data
Fellows and Farah (2005) was not available, the graphical presentations are
converted into numerical format using pixel matching.

Table 4.5 reports the mean and standard error for the fraction of good
decks fG measure obtained from the literature using the random IGT en-
vironment, where no card sequencing effects exist. Only data for normal
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Subjects Studya N
Good Deck
Cards

Mean fraction of
good decks f̄ H

G

Controls Fellows and Farah
(2005)

17 72.30 ± 3.74 0.72 ± 0.038

vmPFC
Impaired

Fellows and Farah
(2005)

9 66.76 ± 7.84 0.67 ± 0.078

aPixel Match Computed.

TABLE 4.4
Re-shuffled IGT environment. 100th draw cumulative good deck means ±
SE.a Both controls and vmPFC impaired participants pass.

Subjects Studya N Mean fraction of good decks f̄ H
G

Controls Steingroever et al. (2018) 70 0.53 ± 0.023

aComputed from longitudinal data available at Steingroever et al. (2015).

TABLE 4.5
Random IGT environment. 100th draw cumulative good deck means ± SE.a

Healthy (controls) pass.

participants is available. Results indicate that in the random IGT environ-
ment at task termination, healthy controls achieve a normative pass. fG is
directly computed from the longitudinal dataset, reported in Steingroever
et al. (2015).

Table 4.6 reports means and standard errors for the fraction of good
decks fG measure obtained from the literature using the reversed IGT en-
vironment, where the good decks exhibit high fines with even higher re-
wards. Comparison of the healthy controls with vmPFC impaired subjects
indicates that in the reversed IGT environment at task termination, healthy
controls achieve a clear pass, while vmPFC impaired subjects straddle the
pass point, and the vmPFC impaired mean f̄G will be viewed as indicative
of a fail. As the original test data Bechara et al. (2000) was not available,
the graphical presentations are converted into numerical format using pixel
matching. Further, as results were reported in 20-draw blocks, cumulative
100 draw values needed to be re-calculated. Re-calculation of cumulative
100 draw values assumes no inter-block covariance.

Table 4.7 reports the mean and standard error for the fraction of good
decks fG measure obtained from the literature using the SGT environment,
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Subjects Studyab N
(Good-Bad)
Deck Cards

Mean fraction of
good decks f̄ H

G
Controls Bechara et al. (2000) 20 35.12 ± 4.87 0.68 ± 0.0243

vmPFC
Impaired

Bechara et al. (2000) 10 1.58 ± 5.97 0.51 ± 0.0298

aPixel Match Computed.
bResults reported in 20 draw blocks. Calculation of 100 draw values here assume
no inter-block covariance. This is may be incorrect, and the aggregated standard
error may have been either under- or over-estimated.

TABLE 4.6
Reversed IGT environment. 100th draw cumulative good deck means ± SE.a

Healthy controls pass, while vmPFC impaired participants straddle the pass
point, indicative of a fail.

Subjects Studyab N
Good Deck
Cards

Mean fraction of
good decks f̄ H

G
Controls Chiu et al. (2008) 48 40.13 ± 2.11 0.40 ± 0.0211
aPixel Match Computed.
bResults reported per deck. Calculation of aggregated good deck values here
assume no inter-deck covariance. This is may be incorrect, and the aggregated
standard error may have been either under- or over-estimated.

TABLE 4.7
Soochow (SGT) environment. 100th draw cumulative good deck means ± SE.a

Healthy controls fail the SGT. No published results for vmPFC impaired SGT
outcomes have been found.

where the good decks exhibit frequent high fines with rare but even higher
rewards. At task termination, healthy controls fail. As the original test data
for Chiu et al. (2008) was not available, the graphical presentations are con-
verted into numerical format using pixel matching. Further, results were
reported per deck. Re-calculation of aggregated good deck values assume
no inter-deck covariance.
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IGT Variant Rule Behaviour Mean Range Passc

Original

The minimum and

maximum of f̄ H
G

from Table 4.3

Normal 0.64b 0.59 to 0.69a X

vmPFC

Impaired
0.44b 0.37 to 0.50 −

Re-shuffled
f̄ H
G ± 2 SEs from

Table 4.4

Normal 0.72 0.64 to 0.80 X

vmPFC

Impaired
0.67 0.51 to 0.83 X

Random
f̄ H
G ± 2 SEs from

Table 4.5

Normald 0.53 0.49 to 0.58 X

Reversed
f̄ H
G ± 2 SEs from

Table 4.6

Normal 0.68 0.63 to 0.72 X

vmPFC

Impaired
0.51 0.45 to 0.57 ?

Soochow
f̄ H
G ± 2 SEs from

Table 4.7

Normald 0.40 0.36 to 0.44 −

aThe Steingroever et al. (2015) dataset also contains original IGT environment re-

sults by Maia and McClelland (2004), which are not used due to the presence

of an introspective questionnaire, which was administered after the 1st 20 draws

and every 10 draws thereafter. It is noted that Maia and McClelland (2004) results

produce a mean fraction of good decks f̄ H
G of 0.61, which remains inside the min-

imum and maximum values in Table 4.3.
bComputed as weighted averages from Table 4.3.
cPass refers to a mean fraction of good decks score greater than 0.5, f̄ H

G > 0.5. X

indicates a pass, − a fail, and ? an inconclusive result.
dNo published results for vmPFC impaired outcomes have been found.

TABLE 4.8
IGT and SGT mean fraction of good deck f̄ H

G ranges used for comparing agent
and literature results.

Computational Model Benchmarks

Table 4.8 shows the mean fraction of good deck f̄G ranges used to compare
computationally modeIled IGT software agent results with the IGT litera-
ture results. For the original IGT environment, the literature reports a broad
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range of values. Therefore the minimum and maximum of the reported
(human) mean fraction good deck values f̄ H

G from Table 4.3 is used. For
the re-shuffled, random, reversed, and Soochow deck environments, with
one study each per environment, the reported (human) mean fraction good
decks f̄ H

G ± 2 standard errors from Tables 4.4, 4.5, 4.6, and 4.7 respectively
are used.

Software agent IGT behaviour results are compared to the subject trial
outcome values shown in Table 4.8. For the original IGT, the control and
vmPFC impaired subject match ranges are [0.59, 0.69], and [0.37, 0.50] re-
spectively. For the re-shuffled IGT, the control and vmPFC impaired subject
match ranges are [0.64, 0.80] and [0.51, 0.83] respectively. For the random
IGT, the control subject match range consists of [0.49, 0.58]. For the reversed
IGT, the control and vmPFC impaired subject match ranges are [0.63, 0.72]
and [0.45, 0.57] respectively. For the SGT, the control subject match range
consists of [0.36, 0.44].

4.2.2 Blocked Itemised Measures

Blocked itemised measures consist of those, which assess individual deck,
or a combined deck selection, over a specified number of draws. For ex-
ample, Bechara et al. (2000) assess original and reversed IGT outcomes over
five draw blocks consisting of draws 1-20, 21-40, 41-60, 61-80, 81-100 for
good decks minus bad decks for normal and vmPFC impaired subjects. Fel-
lows and Farah (2005) construct the same measure for good decks to as-
sess original and re-shuffled IGT outcomes for normal and vmPFC impaired
subjects. For normal subjects, Chiu et al. (2008) report results for the SGT
using this 5-block 20-draw measure for good decks. Finally, using the data
from Steingroever et al. (2015), this measure is constructed for the fraction
of good decks fG for the random IGT environment outcomes reported in
Steingroever et al. (2018).

Blocked itemised measure outcomes are reported with repeated samples
ANOVA in Chiu et al. (2008) and Fellows and Farah (2005); and repeated
samples M/ANOVA in Bechara et al. (2000). Due to lack of individual data,
M/ANOVA results for the studies noted above cannot be re-tested. How-
ever, for visual reference, the 5-block, 20-draw behaviour for the mean frac-
tion of cards chosen from the good decks f̄ H

G for the original, re-shuffled,
reversed, random, and SGT environments are presented.
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FIGURE 4.1: 5-block 20-draw mean fraction of good decks f̄ H
G results for IGT

environments with both healthy control and vmPFC impaired participants.
The dotted horizontal line at 0.5 indicates the pass point. In the original IGT
environment, healthy subjects increase choices from the good decks, while
vmPFC impaired participants fail to do so. However, both healthy and vmPFC
impaired subjects pass the re-shuffled IGT variant at every 20-draw block. Fur-

ther comments in the text.

Fig. 4.1 presents 5-block 20-draw mean fraction of cards chosen from
the good decks f̄ H

G results for IGT environments with blocked data for both
healthy and vmPFC impaired subjects. Error bars represent±1 standard er-
rors. Due to the unavailability of source data in Bechara et al. (2000) and Fel-
lows and Farah (2005), numeric values are derived from pixel matching. The
dotted horizontal line at 0.5 indicates the normative pass threshold. In the
original IGT environment, healthy subjects increase choices from the good
decks, while vmPFC impaired participants fail to do so. In the original IGT
environment, from draw 40 onwards, healthy subjects exhibit a mean frac-
tion of good decks f̄ H

G above the pass mark of 0.5. Both healthy and vmPFC
impaired subjects pass the re-shuffled IGT variant at every 20-draw block.
Healthy subjects pass the reversed IGT at every 20-draw block. In contrast
vmPFC impaired subjects’ performance at the reversed IGT straddles the
pass mark; the vmPFC impaired subjects appear to have learned in the last
draw block 81-100, but this cannot be determined conclusively. Block data
is used as a visual aid to indicate shifts towards the mean fraction of good
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FIGURE 4.2: 5-block 20-draw mean fraction of good decks f̄ H
G results for IGT

environments with only healthy control participants. The dotted horizontal
line at 0.5 indicates the pass point. In the random IGT environment, healthy
subjects increase choices from the good decks. However, healthy subjects fail

the SGT variant at every 20-draw block. Further comments in the text.

decks over trial draws.
Fig. 4.2 presents 5-block 20-draw mean fraction of cards chosen from

the good decks f̄ H
G results for IGT environments with blocked data for only

healthy subjects. Error bars represent ±1 standard errors. For Steingroever
et al. (2018), numerical values are derived from the longitudinal data set in
Steingroever et al. (2015). Due to the unavailability of source data in Chiu
et al. (2008), numeric values are derived from pixel matching. The dotted
horizontal line at 0.5 indicates the normative pass threshold. In the random
IGT environment, healthy subjects increase choices from the good decks,
and achieve passes above 0.5 from draw 41 onwards. However, healthy
subjects fail the SGT variant at every 20-draw block.

Blocked itemised measures were devised to help answer the exploita-
tion versus exploration question, and to see if one can conclusively ascer-
tain movement towards good decks over task duration. Based on Figures
4.1 and 4.2 with a block size of 20-draws, shifts can be observed towards
the good decks among healthy participants for the original, reversed, and
random IGT environments. However, at 20-block resolution the re-shuffled
IGT environment does not display any clear shift towards the good decks
for healthy and vmPFC impaired participants. The vmPFC impaired re-
versed IGT and normal SGT results appear to show in 20-draw blocks a
pattern, which could be seen as a mild shift towards the good decks. These
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observed behavioural differences will be important in agent calibrations.

4.2.3 The Exploration Index

To further assess exploration versus exploitation, a measure referred to as
the exploration index (EI) is defined. The proposed exploration index aims
to quantify the exploration versus exploitation dilemma, and establishes a
rating based on the number of available and actual choices made over a
period of time. Given N choices over an assessment block of b periods, the
index rates exploring over a uniform distribution at 100 (that is, at frequency
1/N for N choices), and never exploring at 0.

In the IGT, there are four choices but only one choice can be made per
draw. Therefore, the minimum block size must be 4. However, in line with
the results in section 4.2.2, exploration index results will be reported using
a block value of b = 20. The exploration index is reported on a per-deck
basis for the random IGT presented in Steingroever et al. (2018) from the
longitudinal data set in Steingroever et al. (2015), and for the SGT reported
in Chiu et al. (2008) from pixel match computations. A version of the ex-
ploration index is also reported for good versus bad decks for all of the IGT
environments discussed in 4.2.2.

Given N total choices over b periods, with all choices available at each
period and only one choice selected at any one period, the entropy based
exploration index is defined as

EI = 100∑N
i=1 f (Ni/b)
log(1/N)

, f (Ni/b) =

Ni/b · log (Ni/b) , if Ni > 0

0, otherwise
(4.2)

where b ≥ N, Ni is the number of selections of choice i, and Ni/b is the
observed frequency of choice i over the sampling block b. Note that if Ni/b =
1/N for all i, then EI = 100, and this indicates full exploration. On the
other hand, given that a choice selection for every period is required, EI = 0
indicates that for all periods, the same choice was selected; this means no
exploration, which in turn implies full exploitation of some choice. Note the
the EI does not distinguish between directed or random exploration.

Further when applied to the IGT, the exploration index does not indicate
whether the subject or software agent is shifting towards the good decks.
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FIGURE 4.3: 5-block 20-draw good versus bad decks exploration index EI re-
sults for IGT environments with both healthy control and vmPFC impaired
participants. For the original, re-shuffled, and reversed environments, healthy
control subjects exhibit a reduction of the exploration index over draw blocks.

Further comments in the text.

Also, in the sense of (4.2), exploitation does not imply having shifted to-
wards the good decks, it only means decreased choice variance, which could
have resulted from exploiting any of the good or bad decks. (4.2) purely in-
dicates whether exploration is increasing or decreasing over time, and can
be used in conjunction with the blocked fraction of good decks measure pre-
sented in section 4.2.2. Finally, (4.2) is descriptive of an exploration strategy
implied by an observed outcome, but this implied exploration strategy may
be different from the one employed by the actor. (4.2) is used to rank the
implied exploration strategies of IGT results.

Fig. 4.3 shows 5-block 20-draw good versus bad decks exploration in-
dex EI results for IGT environments with both healthy control and vmPFC
impaired participants. For the original, re-shuffled, and reversed environ-
ments, healthy control subjects exhibit a reduction of the exploration in-
dex over draw blocks. In contrast vmPFC impaired patients fail to reduce
implied exploration for the original and reversed IGT environments, while
lagging behind in the re-shuffled IGT environment.
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FIGURE 4.4: 5-block 20-draw good versus bad decks exploration index EI re-
sults for IGT and SGT environments with healthy control participants. For the
random IGT environment, healthy control subjects exhibit a reduction of the
exploration index over draw blocks. In the SGT (Soochow), healthy controls

appear to show an increase in exploration.

Fig. 4.4 shows 5-block 20-draw good versus bad decks exploration in-
dex EI results for IGT and SGT environments with healthy control partici-
pants. For the random IGT environment, healthy control subjects exhibit a
reduction of the exploration index over draw blocks. In the SGT (Soochow),
healthy controls appear to show an increase in exploration.

In sum, exploration index EI results support the notion that exploration
during the IGT decreases over draw blocks in healthy subjects, and remains
unresponsive, or slow to respond in vmPFC impaired subjects. The SGT
environment healthy subject outcomes provide the exception, where over
draw blocks, exploration seems to increase. This could be because of the
difficulties in sampling from rare event distributions, leading to a prolonged
exploration phase.
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Chapter 5

IGT Modelling with
Reinforcement Learning and
Exponential Learning Rate Decay:
Introduction

This chapter proposes a (nonrational context) single-state Q-learning model
with exponential learning rate decay for IGT modelling. The single state
approach removes the need for tracking different states of the world, which
for example, would need to be tracked if different rewards and costs ob-
tained under different states. The IGT versions studied here do not posses
such complex yield structures. Therefore stateful Q-learning can safely be
simplified.

Additionally CSUD (Constrained Single Unconstrained Double SPSA)
search is employed to discover Q-learning model hyper-parametrisations,
which in software agents lead to behaviour consistent with that exhibited
by human IGT participants.

Section 5.1 defines the single-state Q-learning model, which is used to
solve the IGT in a nonrational learning context. Section 5.2 presents the rein-
forcement learning agent implementations with differing exploration strate-
gies. The well-known Boltzmann and ε-Greedy RL agents are reviewed
in sections 5.2.1 and 5.2.2 respectively. The lesser known value difference
based exploration agent (Tokic, 2010) is introduced in section 5.2.3. Finally,
section 5.2.4 presents, as far as is known, a novel ε-Greedy agent variant
with exponential exploration rate decay.

Section 5.3 illustrates how the proposed CSUD search strategy can be
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employed as a hyper-parameter tuner used for discovering model hyper-
parametrisations, leading to human IGT outcomes. Rather than using tra-
ditional statistical techniques, such as linear regression or maximum likeli-
hood for determining the value of exponential learning rate decay and other
hyper-parameters supported by a particular outcome data set, section 5.3
proposes a search strategy, implemented via CSUD, which is discussed in
detail in chapter 12. The aim of the CSUD search strategy is to tune model
hyper-parameters so as to produce agent outcomes conformant with perfor-
mance matching criteria from Table 4.8. Based on the search considerations
discussed in section 3.4, section 5.3 implements a search strategy where the
loss scoring function includes a linear-quadratic loss form, chained (joint)
search criteria, and a structure, which can be flexed to allow for standard
error uncertainties.

5.1 Single state Q-learning with Exponential Learn-

ing Rate Decay

The rational n-armed bandit problem discussed in section 2.5.1 constitutes
a good starting point. Accordingly, any IGT environment is modelled as a
single state, four deck, environment with four actions. Here Q-learning is
not implemented as initially proposed by Watkins (1989), where the current
contribution to the Q-factors uses off-policy updating, so that in any state,
the agent estimates action contribution values by choosing the best known
action in that state. Instead, on-policy value function updates are applied
as suggested by Sutton and Barto (2018, p. 32). While Watkins’ approach
approximates (weighted) present value, Sutton and Barto’s approximation
can be seen as estimating (weighted) yield.

Both approaches originate from the same stochastic approximation func-
tion class (Tsitsiklis, 1993). Given the single state, and given that yield risk
(variance) is not considered, a deck with the highest yield also produces
the highest present value. By not requiring an off-policy term, Sutton and
Barto’s approach reduces computational complexity. In line with Occam’s
razor, the less complex Sutton and Barto approach is chosen. Next terminol-
ogy and the model are specified.

An action a consists of choosing a card from a particular deck. The net
payoff for action a at iteration t, xa

t , is the difference between the realized
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reward and fine. That is, xa
t = ra

t − ca
t , where ra

t and ca
t denote rewards and

costs obtained at iteration t with action a.
From any (software) agent’s perspective, the net payoff stream {xa

t } is
unknown. It is assumed that, the unknown net payoff streams are inde-
pendently and identically distributed (i.i.d.) over time and decks. Conse-
quently, net payoff streams are stationary and fulfil the requirements of a
Markov process.

In the IGT, as discussed in section 4.1.1, the agent does not know when
the task ends. Therefore, the agent must iteratively approximate a net-yield
stream value function from the present until the game ends.

Given any action a, let Q(a) be an unknown value function. Let Qt(a)
denote the tth iteration. Let Qt(a) represent, for action a, the value of the net
payoff stream from iteration t onwards. Then the computational estimation
problem is writen as

Qt(a) = αtxa
t + (1− αt) γQt−1(a) (5.1a)

= γQt−1(a) + αt (xa
t − γQt−1(a)) (5.1b)

where the term Qt−1(a) is used to forecast the future value of action a, and
γ represents the discount rate. This notational convention is used to com-
pactly represent the agent’s actual decision making sequence at iteration t,
which consists of using the existing known Q-values Qt−1(a) to choose ac-
tion a, and then observe outcome xa

t , leading to Q-value updates.
(5.1a) represents the standard on-policy Q-learning form, where the learn-

ing rate, αt, re-weights the relative contribution of the current net payoff to
the (discounted) value function. (5.1b) shows the stochastic gradient form
where xa

t − γQt−1(a) is the gradient approximation and αt is the stepsize.
As the learning rate αt approaches 1, the last net payoff contributes in-

creasingly more to the value function. (5.1a) states that when estimating the
current value, the agent uses a mixture of the current payoff and γQn−1(a),
its best, last-known approximation of the updated value function.

The parameter γ ∈ [0, 1] is the discount rate, and, when less than 1, in-
dicates a preference for current over future rewards. The discount rate is
used to compute the present value of a yield stream. However, with a sin-
gle state, estimating mean yields is sufficient and mathematically simpler.
Furthermore in this section, it is assumed that the length of the card game,
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although unknown, is not long enough to create a preference for present
rewards. Therefore here the discount γ rate is set as γ = 1.

5.1.1 Exponential Learning Rate Decay

Let {αt}∞
1 be a sequence of learning rates. Section 3.5 has indicated that ex-

ponentially decaying learning rates constitute a nonrational form of learn-
ing and cannot produce theoretical guarantees of Q-value convergence. An
exponentially decaying learning rate sequence {αt}, could get sufficiently
close to 0 prior to some final period T, and in that manner effectively curtail
learning. However, this does not mean that exponentially decaying learning
rates will not produce well-performing Q-value functions.

For review purposes, the exponential learning rate decay form (3.9b) is
repeated below

αt = e−λαt−1 (3.9b)

where λ ∈ [0, ∞) is the decay factor. Next set γ = 1. Then using (3.9b) to
recursively expand (5.1a) yields

Qt(a) =
t

∏
k=1

(
1− e−λ(t−k)α1

)
Q0(a) + α1

t

∑
k=1

e−λ(k−1)
t−k

∏
m=1

(
1− e−λ(t−m)α1

)
xa

k

(5.2)
where α1 ∈ (0, 1] is the initial learning rate and λ is the learning rate decay.
After setting Q0(a) = 0, only the second term of (5.2) remains.

With the first term in (5.2) set to 0, the effects of the initial learning rate α1,
and learning rate decay λ on Q-value evolution can be better understood. In
the second term the initial learning rate α1, is bounded above by 1, and the
decay factor, λ is bounded below by 0. Therefore it can be seen that α1 and
λ influence Qt(a) in opposing directions. Everything else being equal, in-
creasing the initial learning rate increases net yield value attribution, while
increasing the decay factor reduces net yield value attribution. The recur-
sively expanded form (5.2) suggests that, when Q0(a) = 0, the decay factor
λ, is the most dominant parameter.

5.2 Software agent implementations

In principle, software agents learning the IGT exhibit unconstrained max-
imising behaviour. At any iteration t, the agent picks the deck with the
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highest attributed value

Q∗t = max
a

Qt(a), a ∈ IGT Decks (5.3)

However, this rule on its own is overly greedy, and suffers from a signif-
icant drawback. Once the maximization in (5.3) eliminates a deck, the agent
would never re-draw from the eliminated deck, even if the eliminated deck
would have later produced positive net yields.

Thus (5.3) on its own indicates sequential choice shortcomings similar to
the "hot stove" effect discussed in Denrell and March, 2001. (5.3) however
produces choice selections, which are very strict when compared with the
"hot stove" effect; with (5.3) choices are eliminated not on a probabilisitc
but on a permanent basis. Therefore a stochastic exploration rule must be
introduced to mitigate the shortcomings of the overly greedy selection rule
(5.3). That is, (5.3) must be augmented with an exploration rule to ensure
continuing exploration of deck selection.

Note that software agents are not varied to exhibit any individual dif-
ferences. In that sense, software agents in this study comprise represen-
tative agents. Any agent can be thought of as a projection filter solely as-
sessing the uncertainty inherent in the IGT task. If the same agent hyper-
parametrisation produces substantially different outcomes on re-runs of a
particular IGT task, then such differences will need to be explained.

5.2.1 The Boltzmann Agent

Implementations of Boltzmann exploration have already been presented in
cognitive models in (2.1c), (2.2d), and (2.4f). The Boltzmann agent formu-
lation here is closest to (2.4f). However, an iteration invariant temperature
term τ is added

Q∗t,B(a) = a with probability
exp (Qt(a)/τ)

∑i∈{A,B,C,D} exp
(
Qi

t/τ
) (5.4)

where τ > 0. As τ → 0, (5.4) becomes increasingly greedy, and the action
with the highest Q-value becomes more likely to be chosen. In contrast for
high τ, the deck selection probability gap between high and low Q-values
is decreased.
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Boltzmann exploration constitutes an indirect and proportional approach.
Provided Q-values are learned correctly, higher Q-valued actions are chosen
more frequently, and this leads to reduction of suboptimal action sampling.

However, the requirement that Q-values must be learned correctly also
forms the Achilles heel of Boltzmann exploration. It will be seen that in a
nonrational context, for sufficiently high learning rate decay λ, Boltzmann
agents cannot learn correct Q-values, and are subsequently unable to re-
cover from suboptimal selection policies.

Interestingly, in a rational context, it can be shown that even a Boltz-
mann agent with decaying exploration may exhibit suboptimal sampling
behaviour. Cesa-Bianchi et al. (2017) show that with monotonically decay-
ing inverse temperature sequences {1/τt}, Boltzmann exploration does not
exhibit optimal regret behaviour. The authors derive a near optimal ver-
sion of Boltzmann exploration, however only for cases when duration T is
known a-priori. Cesa-Bianchi et al. (2017) report that with n-armed ban-
dits, both Boltzmann and ε-Greedy exploration strategies tend to oversam-
ple from the suboptimal arms.

5.2.2 The ε-Greedy Agent

The ε-Greedy agent employs direct exploration and therefore, unlike the
Boltzmann agent, is more resistant to incorrectly learned Q-values. Further
the ε-Greedy agent is computationally simpler. In this work, a constant ex-
ploration variant is formulated

Q∗t,ε =

Q∗t , with probability 1− ε,

a ∈ {A, B, C, D}, with probability ε, choose a randomly
(5.5)

where ε is typically a small number and indicates the probability of explo-
ration.

Note that regardless of learned Q-values, exploration always occurs with
probability ε, and therefore suboptimal decks continue to be sampled, even
after they have been discovered to be suboptimal.

Note that in a rational context, (5.5) is always suboptimal in terms of
regret. However, in a nonrational context with learning rate decay λ, (5.5)
provides stronger potential for recovery from incorrectly learned Q-values.
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One of the considerations in the IGT is whether deck exploration de-
creases over time. To accommodate such considerations, two further soft-
ware agents with decreasing exploration are formulated. These are the adap-
tive (Tokic, 2010), and exponentially decaying exploration ε-Greedy agents.

5.2.3 The Adaptive ε-Greedy Agent

This agent is discussed in detail in Tokic (2010), where it is called the ε-
Greedy VDBE-Boltzmann agent, with VDBE standing for value-difference
based exploration. This agent employs a mixture of the Boltzmann agent and
ε-Greedy agent features. For simplicity, in this work, this agent is called the
adaptive ε-Greedy agent. Salient agent features are presented below, where
the author’s original notation has been slightly altered.

Qt,τ,β =

Q∗t , with probability 1− εt,

a ∈ {A, B, C, D}, with probability εt, choose a randomly

(5.6a)

f (a, τ) =
1− e−b/τ

1 + e−b/τ
, b = |αt (xa

t −Qt−1(a))| (5.6b)

εt+1 = β f (a, τ) + (1− β)εt (5.6c)

where τ > 0 is the temperature, 0 ≤ β < 1 is the exploration adaptation
parameter, and |αt (xa

t −Qt−1(a))| is the absolute value of the temporal dif-
ference error between the actual net yield and forecasted Q-value.

(5.6b) introduces a scaled system "shock" such that 0 ≤ f (a, τ) < 1. This
shock increases towards 1 with larger temporal difference errors. (5.6c) is
the linear combination of this scaled shock with existing exploration εt. If
the scaled shock is consistently above current exploration, then exploration
increases; otherwise exploration decreases. In a nonrational context, (5.6)
remains susceptible to getting stuck after learning incorrect Q-values. This
is because with high learning rate decay, the exploration update mechanism
cannot generate accurate exploration updates.

5.2.4 The Decaying ε-Greedy Agent

The decaying exploration ε-Greedy agent constitutes an example of a fully
nonrational (heuristic) agent. In this agent type, exploration begins at a
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set value, and then decays exponentially with each iteration. This agent is
used to model decision making approaches, where after some initial learn-
ing period, a decision must be produced regardless of the consequences.
This agent is formulated as

Qt,ε1,ν =

Q∗t , with probability 1− εt,

a ∈ {A, B, C, D}, with probability εt, choose a randomly

(5.7a)

εt+1 = e−νεt (5.7b)

where ν is the exploration decay factor, ν ≥ 0. Note that initial exploration
ε1 must be given. Furthermore when ν = 0, (5.7) reduces to (5.5).

5.3 Search strategy implementations

Section 5.2 introduces (agent) implementations of the inner selection func-
tion R(·) in (3.1a) for solving IGT environments with single state Q-learning
subject to given model hyper-parameters. Here an implementation is dis-
cussed for solving the companion equation (3.1b), searching for the best
hyper-parameter settings fulfilling specified search criteria. Search strategy
and criteria specification are presented, which are similar to the quadratic
loss example (3.5) provided in section 3.4.

Table 5.1 presents a summary of agent specific tunable hyper-parameters.
Note that the Boltzmann and ε-Greedy agents each have three tunable; and
the adaptive and decaying ε-Greedy agents each have four tunable hyper-
parameters. All agents require the initial learning rate α1 and learning rate
decay λ, but differ in exploration implementation. The Boltzmann and ε-
Greedy agents each have one exploration hyper-parameter: τ defined in
(5.4) and ε defined in (5.5) respectively. In the adaptive ε-Greedy agent, τ

and β modulate exploration and are defined in (5.6b) and (5.6c). Finally in
the decaying ε-Greedy agent initial exploration ε1 and exploration decay ν

defined in (5.7b) influence exploration.

5.3.1 Search Criteria Specification

Section 3.4 discusses the general approach. Within the IGT context, the fun-
damental building block of search criteria is the mean fraction of good decks
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Agent Boltzmann ε-Greedy
Adaptive
ε-Greedy

Decaying
ε-Greedy

Initial Learning Rate α1 X X X X

Learning Rate Decay λ X X X X

Exploration X (τ) X (ε) X (τ) X (ε1)
Exploration Adaptation β − − X −
Exploration Decay ν − − − X

TABLE 5.1
Tunable hyper-parameters by software agent.

f̄G measure and its standard error, both introduced in section 4.2.1 along
with human performance results, denoted as f̄ H

G , presented in tables 4.3 to
4.8. The mean fraction of good decks f̄ H

G resides in the unit interval, and
this makes it easier to discern to what extent the search strategy discovered
hyper-parametrisations are able to achieve the IGT normative pass criterion
regardless of the respective cumulative net payoff magnitude differences
among IGT variations.

Searches seek hyper-parameter combinations capable of simultaneously
matching multiple human IGT environment outcomes. In particular, it is
hypothesized that learning rate decay λ is a key parameter for matching
normal versus vmPFC impaired human IGT performance. This hypothesis
is motivated by the observation that in the original IGT with the misleading
initial bad deck card sequences, vmPFC impaired human subjects: (a) can-
not recover from having learned an incorrect policy, but (b) perform at par
with normal human subjects in the re-shuffled IGT, where the initial mis-
leading sequence has been moved to the end. In the context of (5.1a) and
(5.2), such a result can be approximated by a fast decaying learning rate,
which leads to a very short learning horizon.

Θ is used to indicate the hyper-parameter vector. For example, using the
Boltzmann agent, ΘN = (α1, λN , τ), and ΘvmPFC = (α1, λvmPFC, τ) are spec-
ified to define the hyper-parametrisation of normal, and vmPFC impaired
Boltzmann agents. Next, for given Boltzmann agent hyper-parameter vec-
tors Θ̂N and Θ̂vmPFC, the mean fraction of good decks obtained by the nor-
mal and vmPFC impaired agents are denoted as f̄G,Θ̂N

and f̄G,Θ̂vmPFC
respec-

tively.
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For any IGT environment, using human performance outcomes as tar-
gets, search criteria can be represented as squared loss target deviations

(
f̄G,Θ̂N

− f̄ H
G,N

)2
,

(
f̄G,Θ̂vmPFC

− f̄ H
G,vmPFC

)2
(5.8)

where mean fraction of good decks f̄G is a scalar, N indicates normal, vmPFC
denotes vmPFC impaired behaviour, and H indicates corresponding human
outcome targets. In sum, the central loss measure indicated in (5.8) consists
of the squared loss of the difference between simulated agent and target hu-
man mean fraction of good deck outcomes for normal (control) and vmPFC
impaired behaviours.

5.3.2 Loss Function Specification

With the vocabulary defined in (5.8), a linear-quadratic loss function is spec-
ified with standard error penalisation and with multiple, chained search cri-
teria. The loss function presented below is used to generate the results for
chapter 6. Chapters 7 and 8 use similarly constructed loss functions.

Based on the availability of targeting data, one wishes to search for pa-
rameter combinations Θ̂N and Θ̂vmPFC, which will produce target matches
as follows: in the original and re-shuffled IGT environments for normal and
vmPFC impaired human subjects, and in the random IGT environment for
normal human subjects.

For example, let Θ = (α1, λN , λvmPFC, . . . ) be the hyper-parameters. Let
Env = {Or, Re, Rn} denote the original, re-shuffled, and random IGT envi-
ronments respectively. Let B = {N, vmPFC} denote the set of behaviours.
For each j ∈ Env and k ∈ B, let f̄ H,j

G,k , f H,j,+
G,k and f H,j,−

G,k be the mean, maxi-
mum and minimum fraction of good decks respectively of the correspond-
ing human match ranges available from table 4.8. Then, for example for the
original IGT environment with normal participants, from table 4.8 the fol-
lowing values are obtained: f̄ H,Or

G,N = 0.64, f H,Or,+
G,N = 0.69, and f H,Or,−

G,N = 0.59.
As illustrated above, the human match targets used in this work con-

sist of average IGT outcome ranges. Hence software agents are targeted to
match not individual human IGT, but averaged human IGT outcomes. This
decision is in part driven by the lack of available data, and in part by the
question of whether and under what circumstances average, that is, thigh-
tly clustered behaviours may obtain.
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More generally, the loss function is formulated as

Y(Θ) = ∑
j∈

Env

∑
k∈

Env∩B

Ajk + Djk,

Djk =


(

f̄ j
G,Θk
− f̄ H,j

G,k

)2
, if f H,j,−

G,k ≤ f̄ j
G,Θk
≤ f H,j,+

G,k

− f̄ j
G,Θk

+ Bjk, if f̄ j
G,Θk

< f H,j,−
G,k

f̄ j
G,Θk

+ Cjk, if f̄ j
G,Θk

> f H,j,+
G,k

(5.9)

where Ajk is a regularisation term accounting for the standard error of sim-
ulated fraction of good deck results, Bjk, Cjk are intercept terms, and k ∈
Env ∩B is shorthand for the behaviours available to the IGT environment.
For example, according to table 4.8, in the original IGT environment, both
normal and impaired behaviours are available, whereas in the random IGT
environment only the normal behaviour is available.

The terms Ajk, Bjk, Cjk expand as

Ajk =

SE+ − f H,j,+
G,k if SE+ > f H,j,+

G,k SE+ = f̄ j
G,Θk

+ 2 ∗ SE( f̄ j
G,Θk

)

f H,j,−
G,k − SE− if SE− < f H,j,−

G,k SE− = f̄ j
G,Θk
− 2 ∗ SE( f̄ j

G,Θk
)

(5.10a)

Bjk =
(

f H,j,−
G,k − f̄ H,j

G,k

)2
+ f H,j,−

G,k (5.10b)

Cjk =
(

f H,j,+
G,k − f̄ H,j

G,k

)2
− f H,j,+

G,k (5.10c)

Note that (5.10a) constitutes a linear penalty term equal to the positive dif-
ference between the human mean fraction of good decks outcome bound
and the agent mean fraction of good decks performance bound, where the
agent mean fraction of good decks performance bound is calculated as the
agent mean fraction of good decks plus twice its standard error.

Strictly speaking (5.9) has discontinuities at f H,j,−
G,k and f H,j,+

G,k , at which
points the loss function switches from quadratic to linear form. While these
simple discontinuities can be managed analytically, it is not done so here.
Also in the strict sense, as seen later in chapter 12 that these discontinuities
would violate the rational convergence derivation for CSUD. However, the
loss construction remains such that the computational aspects of CSUD are
not affected, and therefore, the CSUD algorithm is able to computationally
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manage these discontinuities.
Further note that (5.9) is simple enough that it can be solved via com-

putation of analytical derivatives, with the discontinuities being handled.
That is, (5.9) can be adapted to standard stochastic gradient descent, and
this would be computationally cheaper. In this work however, (5.9) is only
a search strategy driving the second, tuning stage for the IGT choice prob-
lem encapsulated in the Q-learning agents (5.4) to (5.7). Consequently, the
additional randomness injected via hyper-parameter Θ perturbations in the
CSUD search strategy can be helpful in achieving better exploration of the
underlying problem.

From a rational perspective, Lorraine et al. (2020) show that within the
context of tuning artificial neural networks with weights w and hyper-para-
meters Θ, the analytical derivative version of the approach presented here
can be proven to produce optimal tuning results via the implicit function
theorem. Their work is closest to what is generally proposed in (3.1); more
specifically here via the IGT Q-learning agents (5.4)-(5.7) and the search
strategy (5.9). Other than the use of gradient approximation via CSUD, this
proposal also differs from that of Bengio (2000) and Lorraine et al. (2020),
in that a flexible, tuning targeting mid-layer is introduced. That is to say,
while here the mean fraction of good decks is used for tuning, one could
also substitute another performance measure without changing the general
flow of the approach and implementation proposed in this work.
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Chapter 6

The Original, Re-Shuffled, and
Random IGT Environments with
Simple Reinforcement Learning
Modelling via CSUD

This chapter uses the simple single state reinforcement model (5.1) with dis-
count rate γ = 1. With exponential learning rate decay, and when the initial
Q-values are initialised to 0, then (5.1) can be unrolled to solely consist of
the second term of (5.2)

Qt(a) = α1

t

∑
k=1

e−λ(k−1)
t−k

∏
m=1

(
1− e−λ(t−m)α1

)
xa

k (6.1)

where t is an iteration index, a is an action, xa
k denotes a net yield entity,

α1 ∈ (0, 1] is the initial learning rate and λ is the learning rate decay. Note
that for given net yield entities, Q-valuation at iteration t is solely influenced
by the initial learning rate α1 and learning rate decay λ. With exploration
and any additional agent specific hyper-parameters, Q-valuation forms the
basis of agent learning and decision making.

In any given iteration, the nonrational CSUD search strategy sets prob-
lem hyper-parameters, which then produce an IGT mean fraction of good
decks result f̄G. The mean fraction of good decks result in turn is scored
by the CSUD loss function, which evaluates deviations from human out-
come ranges. The CSUD loss scores are used to update the problem hyper-
parameters for the next iteration.

It will be seen that learning rate decay λ proves to be the critical param-
eter for mimicking vmPFC impaired behaviour.
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6.1 General Methodology

Simulation based methodologies are employed for discovering and verify-
ing software agent results, which match human IGT behaviour in terms of
mean fraction of cards chosen from the good decks f̄G. The discovery and
verification process consists of three stages.

In the first stage, the CSUD search strategy is used to discover rein-
forcement learning hyper-parameters values, which produce human per-
formance match candidates. In the second stage, a local grid search is con-
structed around the CSUD discovered hyper-parameter values. This grid
search helps to establish performance topology in a localised neighbour-
hood. Finally, IGT results are re-simulated using the discovered hyper-
parameter candidates and a percentage measure for consistently replicat-
ing human performance outcomes is derived. Additionally, non-parametric
multiple ANOVA (np-M/ANOVA) tests are performed for the effects of
learning rate decay across different IGT environments.

CSUD is an iterative search algorithm with asymptotic convergence.
Such algorithms are typically run subject to fixed search iterations or to a
pre-determined change in the loss threshold. Here, a fixed iteration bud-
get is used. A fixed iteration budget is in line with the approach of de-
emphasizing infinity. In hyper-parameter tuning, when the search iteration
budget is fixed, at the end of the iterations, either the result of the last it-
eration, or the result associated with the lowest loss can be chosen (Liaw
et al., 2018). Here the lowest loss choice from among the best match selec-
tion is chosen. In a search for matches to normal and vmPFC impaired hu-
man behaviour for the original, re-shuffled, and random IGT environments,
the best match would consist of matching five human outcome zones: nor-
mal original, re-shuffled, and random; and vmPFC impaired original and
re-shuffled. Compared to the maximum likelihood fitting and verification
process for example as discussed in Wilson and Collins, 2019, this final stage
takes the place of parameter recovery, with the difference that re-simulated
outcomes are directly used to perform statistical tests.
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Agent Boltzmann ε-Greedy
Adaptive
ε-Greedy

Decaying
ε-Greedy

Hyper-parameter
Initial learning
rate α1

0.01 - 0.99 0.01 - 0.999 0.01 - 1.0 0.05 - 0.99

Normal learning
rate decay λN

0.0001 - 0.22 0.03 - 0.30 0.03 - 0.13 0.03 - 0.17

vmPFC impaired
learning rate
decay λvmPFC

0.22 - 1.2 0.25 - 1.2 0.12 - 1.2 0.2 - 1.2

Temperature τ 0.5 - 500 0.01 - 50

Exploration ε 0.05 - 0.70 1.0ac 0.5 - 1.0a

Exploration
adaptation β

0.25bc

Exploration
decay ν

0.002 - 0.02

CSUD Iterations 1000 1000 1000 1000

Gradient Samples 5 1 1 5

IGT length Q-learning samples

100 750
a Exploration ε refers to initial exploration ε1.
b Exploration adaptation β value set as recommended in Tokic (2010) to
1/actions.
c These parameters are fixed and do not vary.

TABLE 6.1
Search Methodology. Joint original, re-shuffled, random IGT hyper-parameter
CSUD search criteria.

6.2 Joint Search of the Original, Re-shuffled, and

Random IGT environments

The original, re-shuffled, and random IGT environments are conceptually
closely related. All three environments use the same payoff sheet with vari-
ations arising from how cards are sequenced within each deck. The original
IGT discussed in 4.1.1 uses in the bad decks, initially misleading card se-
quences making the bad decks look good. The test subject is then expected
to discover the genuinely good decks producing on average positive net
yields. The re-shuffled IGT presented in 4.1.2 re-orders the original IGT
deck cards so that the bad decks are immediately identifiable. The random

82



Chapter 6. The Original, Re-Shuffled, and Random IGT Environments
with Simple Reinforcement Learning Modelling via CSUD

IGT discussed in 4.1.3 simply randomises (without replacement) the origi-
nal IGT decks, thereby eliminating any specific card sequencing effects.

The human outcome differences across these three IGT environments
originate from subject health status and card sequencing attributes. For that
reason, a joint search across all three environments is conducted, subject
to available human comparison data to look for hyper-parameter combina-
tions, which will produce matching software agent performance.

Table 6.1 summarises software agent CSUD search hyper-parameter con-
straints and attributes. Hyper-parameters, which do not vary are italicised.
In summary, the fixed hyper-parameters consist of initial exploration and
exploration adaptation for the adaptive ε-Greedy agent. In general, broad
parameter search ranges are used for the initial learning rate and explo-
ration, while constrained ranges are applied for normal and vmPFC im-
paired learning rate decay. One might argue that by limiting learning rate
decay ranges, prior information is being injected, and this guides the search
towards a desired result. Indeed, this is precisely what the CSUD search
strategy aims to do, that is, to see whether a specific search hypothesis pro-
duces any results. By construction, CSUD search loss is minimised to the
extent that search criteria are fulfilled. It is in this sense that the CSUD
search strategy can be seen as a contraction of the grid search space.

Because CSUD is a stochastic, gradient driven search technique, some-
times a single gradient evaluation is not sufficient to produce a reliable
gradient estimate. Under such circumstances, for the same set of hyper-
parameter values, multiple gradient samples may be obtained and then av-
eraged (Spall, 1992). The ‘Gradient Samples’ entry in Table 6.1 indicates if
any gradient sampling was employed.

6.3 ε-Greedy Agent Results

In this section, a very detailed report of the ε-Greedy agent IGT simulation
results will be provided. This detail is provided as an introduction to the
simulation outcome analysis tools.

Simulations produce a high volume of data. When there is a high vol-
ume of data, it is generally preferred to use consolidated summary statis-
tics. Here however, outcomes with specific behavioural implications are of
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FIGURE 6.1: ε-Greedy agent CSUD iterations. Green points indicate (α1, λN ,
λvmPFC, ε) hyper-parameter tuples, which produce search matches for all avail-

able IGT environment and behaviour combinations.

interest. Therefore, a good balance between summary statistics and data di-
versity becomes important. The primary summary statistic used is the mean
fraction of cards chosen from the good decks f̄G. Data diversity is shared via
visual plots, which can incorporate large amounts of numeric information.

Table 6.2 and Fig. 6.1 present CSUD search results in tabular and graphic
forms respectively. This is then followed by 2D and 3D grid search verifica-
tion plots in Fig. 6.2 and Fig. 6.3 respectively, reflecting grid search results
in a neighbourhood expanded about the selected CSUD hyper-parameter
values. Finally, a simple consistency analysis is presented. In general, the
ε-Greedy agent provides excellent matching for human f̄ H

G outcomes. How-
ever, the selected exploration hyper-parameter value appears very high and
counter-intuitive, and is further considered in section 6.3.1, where ε-Greedy
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Minimum
Loss

Range Mean Median
Standard
Error

Loss 0.004 0.00404- 0.0346 0.0105 0.0101 0.00025
Initial learning
rate α1

0.417 0.307 - 0.999 0.817 0.843 0.0095

Normal learning
rate decay λN

0.104 0.0685 - 0.153 0.108 0.105 0.00072

vmPFC impaired
learning
rate decay λvmPFC

0.449 0.25 - 0.870 0.540 0.530 0.0075

Exploration ε 0.627 0.535 - 0.691 0.642 0.647 0.0016
Matched
environments

For normal human behaviour: original, re-shuffled, random.
For vmPFC impaired human behaviour: original, re-shuffled.

Match count 290 of 1000 iterations

TABLE 6.2
ε-Greedy agent CSUD search matches after 1000 iterations. The highlighted
minimum loss column shows selected agent hyper-parameters. Light gray
indicates minimum loss and the associated initial learning rate α1. Dark-gray,
mid-gray, and light blue indicate minimum loss associated normal learning
rate decay λN , vmPFC impaired learning rate decay λvmPFC, and exploration ε
respectively.

agent results are discussed.
Figure 6.1 shows ε-Greedy agent CSUD iteration progression. Green

points indicate initial learning rate, normal learning decay, vmPFC impaired
learning decay, and exploration, that is (α1, λN , λvmPFC, ε) hyper-parameter
tuples, which produce agent performance matching normal human mean
fraction of good decks f̄G outcomes for the original, re-shuffled, and ran-
dom; and vmPFC impaired human mean fraction of good decks f̄G out-
comes for the original and re-shuffled IGT environments. The match ranges
can be found in Table 4.8. It is seen that as the iterations progress, the num-
ber of matches increases.

Table 6.2 depicts the ε-Greedy agent CSUD search matches after 1000 it-
erations. The search produces 290 hyper-parameter value sets at which nor-
mal human behaviour outcomes are matched for the original, re-shuffled,
and random decks, and vmPFC impaired human behaviour outcomes are
matched for the original and re-shuffled decks. In the coloured ‘Minimum
Loss’ column, Table 6.2 shows that the minimum loss hyper-parameter ini-
tial learning rate, normal learning decay, vmPFC impaired learning decay,
and exploration (α1, λN , λvmPFC, ε) tuple discovered by the search is (0.417,
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0.104, 0.449, 0.627) respectively. It is observed that in the ε-Greedy agent Q-
learning model, the variable leading to a switch from normal versus vmPFC
impaired type human IGT outcome behaviour is the learning rate decay.
Normal human behaviour is matched when learning decay is low at λN =
0.104, while vmPFC impaired human behaviour is matched when learning
decay is high at λN = 0.449.

Table 6.2 shows that the initial learning rate α1 varies from 0.307 to 0.999.
That is, behavioural matches obtain within a large range, indicating that for
purposes of pivoting between normal and vmPFC impaired behaviour, the
initial learning rate α1 is not a determining hyper-parameter. Exponential
learning rate decay leads to proportional per period decay regardless of the
initial learning rate. Therefore it is believed that model design with expo-
nential learning rate decay is responsible for the low influence of the initial
learning rate.

Table 6.2 reveals that an exploration range from 0.535 to 0.691 is as-
sociated with matched normal and vmPFC impaired, human original, re-
shuffled, and random IGT outcomes. That is, in order for the ε-Greedy agent
to achieve matched human outcomes, exploration needs to be very high; at
least at 0.535 (53.5%), and at the minimum loss selection at 0.627 (62.7%).
Usual experiment design would set this exploration hyper-parameter be-
tween 0.01 and 0.15. It is concluded that, compared to normal and vmPFC
impaired subjects, the ε-Greedy agent may obtain in the original, re-shuffled,
and random IGT environments, results superior to those achieved by hu-
man subjects. Indeed, this conjecture is verified in the below grid search
plots. The question of why a human decision maker may be using excep-
tionally high exploration is discussed in section 6.3.1 in relation to the No
Free Lunch theorems (Wolpert & Macready, 1997) and directed versus ran-
dom exploration (Wilson et al., 2014).

Next CSUD verification grid searches are presented. Table 6.3 reports the
localised grid search specification used to verify ε-Greedy agent CSUD re-
sults. Initial tests indicated that for the initial learning rate and exploration,
a small grid of four points was sufficient. The learning (rate) decay grid
generally consists of 20 points, and is constructed to include λN = 0.014 and
λvmPFC = 0.449, both of which come from the minimum loss CSUD matches.
Appendix C provides the construction method of the learning decay grid.

Fig. 6.2 and 6.3 present 2D and 3D views of the selected CSUD search
hyper-parameters in the context of a neighbourhood grid search. As the 2D
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Hyper-parameter Grid Points
Initial learning
rate α1

0.01, 0.417, 0.6, 0.999

Learning
rate decay λa 0.104, 0.449

Exploration ε 0.1, 0.535, 0.627, 0.691

IGT length Q-learning samples

100 750
a The learning rate decay grid is constructed around the CSUD reported values.
Appendix C provides the construction method.

TABLE 6.3
ε-Greedy agent hyper-parameter grid search criteria for joint original,
re-shuffled, and random IGT.

local search plots in Fig. 6.2 below show, the lower learning rate decay of
λN = 0.104 implies a 10% per iteration decrease in the learning rate, while
the higher learning rate decay of λvmPFC = 0.449 implies a 36% per iteration
decrease in the learning rate. The higher learning rate decay is sufficiently
high so that in the original IGT environment, once the initial misleading
sequence of 8 draws is completed, the learning rate has decreased so much
that new information no longer accurately updates Q-value accruals. In
turn, this inaccurate update of Q-values leads to reproduction of vmPFC
impaired original IGT human behaviour.

Fig. 6.2 depicts 2D contour lines which show the effect of learning rate
decay λ and exploration ε on the mean fraction cards chosen from the good
decks, f̄G. The dark and light gray zones indicate normal and vmPFC im-
paired human outcome match ranges for the original, re-shuffled, and ran-
dom IGT environments. For the random IGT environment, only normal
human outcome match ranges are available. Match range derivation is ex-
plained in Table 4.8. The lower x-axis indicates learning rate decay. Using
the conversion formula (1− e−λ) ∗ 100, the upper x-axis translates the lower
x-axis learning rate decay value into a per period learning rate decay per-
centage, a measure that makes more intuitive sense.

In Fig. 6.2, at the CSUD minimum loss initial learning rate α1 = 0.417,
when exploration ε = 0.627, and with normal learning decay λN = 0.104
and vmPFC impaired learning decay λvmPFC = 0.449, the ε-Greedy agent
reproduces human IGT outcomes in the original, re-shuffled, and random
environments. These results are indicated by the solid black contours. That
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FIGURE 6.2: ε-Greedy agent 2D contours showing learning decay λ and ex-
ploration ε effects. The dark and light gray zones indicate normal and vmPFC
impaired human outcome match ranges for the original, re-shuffled, and ran-
dom IGT environments. Learning decay variation reproduces human IGT out-
comes, while exploration variation is responsible for matching human IGT out-

come performance ranges.

is, the normal configured agent achieves a normative pass in the original, re-
shuffled, and random IGT environments; while the vmPFC impaired con-
figured agent fails the original but passes the re-shuffled IGT environment.
In general, as learning decay increases, agent performance degrades and
becomes conformant with vmPFC impaired performance.

Also note that at ε = 0.627, CSUD minimum loss exploration is very high.
In a rational context such a high level of exploration could be interpreted as
poor model fit. As rational models are typically geared towards the ex-
ploitation of a central tendency, however, in the present nonrational con-
text, the interpretation of high exploration is not so straightforward,. Here
results are presented, and section 6.3.1 will then interpret these results in a
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nonrational context in light of reported hyper-parameter values and their
interactions.

The 2D grid search verification contour plots show that multiple alterna-
tive solutions are available, which satisfy search criteria. This is in line with
the (290) multiple matches, which were found in the CSUD search. How-
ever, the surprising observation from the 2D grid search verification plots
is that at exploration ε = 0.100, the ε-Greedy agent produces mean fraction
of good deck f̄G values, which are higher than 85%, that is much superior
to the results produced by human IGT participants. Indeed, the agent can
only reproduce human IGT outcomes at a very high exploration rate in the
range of 0.535 ≤ ε ≤ 0.691, with the minimum loss exploration rate being
ε = 0.627. The discussion in section 6.3.1 however, will make a case for high
exploration as being indicative of a robust search strategy.

For the ε-Greedy agent, Fig. 6.3 depicts 3D contour plots, which in addi-
tion to learning decay λ and exploration ε, show the effect of the initial learn-
ing rate α1. The minimum loss CSUD solution is annotated with α1 = 0.417,
ε = 0.627, � : λN = 0.104 and H : λvmPFC = 0.449. Both learning decay λ and
exploration ε effects across different initial learning rate values α1 retain the
characteristics discussed in Fig. 6.2.

For all IGT environments, Fig. 6.3 shows that the initial learning rate α1

has very little effect on the mean fraction of cards chosen from the good
decks f̄G. As is observed, in the direction of the initial learning rate α1 axis,
the 3D plot surfaces are horizontal with respect to the fraction of good decks
chosen, indicating very little influence. However, a notable initial learning
rate α1 effect occurs with very low learning decay λ and high initial learning
rate α1, leading to the triangular-shaped, draped areas visible in the back of
each IGT environment plot.

These triangular shaped areas summarise the technical difficulties that
occur in iterative learning at the beginning of the learning process, when the
learning rate is very high, leading to a strong contribution towards Q-values
and when the agent is initially learning incorrect responses. In such a sce-
nario, a high learning rate with low learning decay leads to large incorrect
contributions to the Q-values. Under such conditions, reducing the initial
learning rate or increasing learning rate decay can lead to performance gains
in terms of the mean fraction of cards chosen from the good decks f̄G.

Note that the ε-Greedy agent CSUD matches for human behaviour oc-
cur with learning decay matches of � : λN = 0.104 and H : λvmPFC =
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FIGURE 6.3: ε-Greedy agent 3D contours with learning decay λ and explo-
ration ε, but focusing on initial learning rate α1 effects. Learning decay and
exploration variation mirror the contours in Fig. 6.2. The initial learning rate
α1 shows a small technical effect at very high initial learning rates, but other-

wise exerts no determining effect.

0.449 for normal and vmPFC impaired subject type behaviour respectively.
Both learning decay matches occur after the initial triangularly shaped non-
stationarity zone, where incorrect learning pre-dominates. As human re-
sults indicate that human subjects would be able to negotiate the non-station-
arity zone, this zone is not considered to be of interest in the search out-
comes.

The IGT literature includes 20-draw blocked analysis of mean fraction of
good decks f̄G. For the original, re-shuffled, and random IGT environments,
Figs. 4.1 and 4.2 summarise these results. 20-draw blocked analysis aims to
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FIGURE 6.4: ε-Greedy Agent 20-draw blocks comparison at CSUD search
matches α1 = 0.417, λN = 0.104, λvmPFC = 0.449, ε = 0.627. Human results in
light gray. Agent results in dark gray, averaged from 750 samples. All error
bars at ±2SE. When error bars are taken into account agent and human 20-

draw block performance appears relatively similar. Details in text below.

assess whether exploration decreases during the 100-draw long task, be-
cause it is hypothesized participants incorporate what they learn from pre-
vious draws and increasingly switch to exploitation. The expectation is that
healthy subjects are able to switch from exploration to exploitation while
vmPFC impaired subjects are not.

Fig. 6.4 shows 20-draw blocked analysis for the ε-Greedy agent at 20-
draw blocks comparison with minimum loss CSUD search matches at α1 =
0.417, λN = 0.104, λvmPFC = 0.449, and ε = 0.627. For comparison purposes,
human results are reproduced in light gray. Agent results, averaged from
750 samples, are in dark gray. All error bars are at ±2SE (standard errors).
Light gray human subject results have larger standard error bands due to
having been obtained from smaller samples as indicated in tables 4.3 to 4.5,
where sample sizes range between 6 and 70.

In general, across the original, re-shuffled, and random IGT environ-
ments, it is observed that normal (λN = 0.104) and vmPFC impaired (λN =
0.449) parametrised ε-Greedy agents exhibit 20-draw block mean fraction of
good decks f̄G progression respectively similar to human outcomes when
±2SE bars are taken into account. That is, for the original IGT environment,
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the normal ε-Greedy agent, similar to human outcomes, appears to switch
from exploration to exploitation, while the vmPFC impaired agent is unable
to do so. For the re-shuffled IGT environment, at 20-draw block resolution
no exploration versus exploitation effects are discernible. For the random
IGT environment, only healthy subject comparison data is available. Agent
and human results, however, do appear to differ slightly, especially in the
beginning phases of blocks 1− 20, and 21− 40.

In the random IGT environment, if with human data, two-sided confi-
dence bands with 69 degrees of freedom (samples = 70) are constructed,
then at significance level α = 99%, t-value = 2.6490, for blocks 1− 20 and
21− 40, the null hypothesis that agent and human mean fraction of good
decks are equal would be rejected. If the significance level is increased to
further decrease the risk of type I error, then at significance level α = 99.9%,
t-value = 3.4372, one would fail to reject this null hypothesis. Exploration
versus exploitation switch considerations will be revisited after presenting
exploration index (EI) comparisons in Fig. 6.5. The exploration index (EI)
introduced in section 4.2.3 is a measure of implied exploration. The theoreti-
cal limits for the exploration index (EI) are 100 for full exploration and 0 for
full exploitation.

Fig. 6.5 presents 20-draw EI comparisons at the minimum loss CSUD
solution consisting of α1 = 0.417, λN = 0.104, λvmPFC = 0.449, and ε = 0.627.
Human results are in dotted light gray, whereas agent results appear in solid
dark gray, and are averaged from 750 samples. In general, agent results
mirror human outcomes. For normal behaviour, the original, re-shuffled,
and random IGT environment EI values decrease over 20-draw blocks. For
vmPFC impaired behaviour, EI values only decrease for the re-shuffled IGT
environment. Except for normal behaviour re-shuffled IGT environment
results, agent responses qualitatively look like a smoothed version of the
respective human responses.

However, it is possible that the modelled agent and underlying human
decision making dynamics partially differ, and therefore lead to divergence
regarding normal re-shuffled IGT outcomes. As noted in Table 4.4, the nor-
mal re-shuffled IGT human study consists of 17 participants. It is also possi-
ble that a small human sample size is leading to increased variation. Further
studies could shed light on human exploration index behaviour.

Most significantly, Figs. 6.4 and 6.5 show that over 20-draw blocks, learn-
ing rate decay, in general, exerts a strong offsetting influence on exploration.
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FIGURE 6.5: ε-Greedy Agent 20-draw exploration index (EI) comparison at
CSUD search matches α1 = 0.417, λN = 0.104, λvmPFC = 0.449, ε = 0.627. Hu-
man results in dotted light gray. Agent results in solid dark gray, averaged
from 750 samples. Human subject and agent exploration index responses ap-
pear relatively similar except for normal behaviour in the re-shuffled IGT en-

vironment. Details in text below.

The ε-Greedy agent, despite high constant exploration at ε = 0.627, does
show a tapering response both in mean fraction of good decks f̄G, and in
the exploration index in the normal original, re-shuffled, and random, and
in the vmPFC impaired re-shuffled configurations. The observed tapering
is much smoother that what would be expected from 62.7% exploration.

In other words, learning rate decay, by reducing Q-value attribution,
leads over time to a decrease in implied exploration, which is measured by
the exploration index (EI). The time horizon, in which learning rate decay
"freezes"1 learning, and consequently produces a decrease in implied ex-
ploration, depends on the value of learning rate decay λ. For the ε-Greedy
agent, at λN = 0.104, the learning rate decreases by 10% per iteration, and
this leads to the observed tapered responses in implied exploration as mea-
sured by the Exploration Index (EI). On the other hand, at λvmPFC = 0.449,
the learning rate decreases by 36% per iteration, at which rate IGT environ-
ment card sequencing effects appear. For the original and random decks,
given vmPFC impaired settings, implied exploration (EI) stays close to 100,

1The term "freezing" was suggested by a reviewer for Koluman et al. (2019).

93



Chapter 6. The Original, Re-Shuffled, and Random IGT Environments
with Simple Reinforcement Learning Modelling via CSUD

suggesting that agent learning was frozen prior to the end of the first 20-
draw block (since all Q-values are initialised to 0, there must have been
very little choice differentiating Q-value accruals). However, by design the
re-shuffled IGT reveals deck characteristics within the first 20-draw block,
and this leads to a tapered response.

One of the applications of simulation based cognitive computing is to
hypothesize about the computational model, which may be underlying a
given decision making problem. For example, Doya (2002) presents such
a review centring on TD(κ) reinforcement learning models applied to neu-
rotransmitter effects. Among others, Maia and McClelland (2005) consider
the exploration versus exploitation trade-off in the IGT.

The 20-draw block analysis indicates that exploration versus exploita-
tion in the IGT could be mediated via two computational pathways: (a)
a direct exploration pathway (which for the CSUD hyper-parametrised ε-
Greedy agent is constant), and (b) an indirect pathway driven by learning
rate decay, which creates a learning freeze after a set number of iterations,
and thereby leads to decreasing implied exploration. With the ε-Greedy
agent with constant direct exploration, learning rate decay λ appears to pro-
vide a determining indirect influence on exploration.

For the original, re-shuffled, and random IGT environments, the jitter
plots in Fig. 6.6 assesses the human outcome match performance of repeated
simulations of the discovered minimum loss CSUD solution at α1 = 0.417,
λN = 0.104, λvmPFC = 0.449, and ε = 0.627. On the horizontal axis, in ad-
dition to the CSUD discovered exploration ε = 0.627, exploration rates of
ε = 0.10 and ε = 0.535 are also listed. As listed in Table 6.3, these additional
exploration rates have been used to investigate agent behaviour at further
exploration values to provide context for the CSUD minimum loss discov-
ered agent hyper-parameter values.

The dashed horizontal lines indicate the minimum and maximum of the
to be matched human IGT outcome ranges. The red squares mark sam-
ple means ±2 standard errors. The green coloured dots represent matches
to respective human IGT outcome ranges. The green coloured text reports
the number of samples, and in parenthesis, the percentage of human range
matches achieved. The blue coloured dots indicate a normative pass, that
is a mean fraction of good decks value above 0.50, hypothesized to be as-
sociated with normal learning decay λN = 0.104. The blue coloured text
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FIGURE 6.6: ε-Greedy agent comparison of repeated simulation outcomes to
human IGT results. At ε = 0.627 with CSUD minimum loss hyper-parameter
values, the ε-Greedy agent achieves the highest human range matches for the
re-shuffled IGT. The vmPFC impaired ε-Greedy agent tends towards bi-modal

outcomes for the original and random IGT. Full details are in the text.

reports the number of samples, and in parenthesis, the percentage of nor-
mative pass matches achieved. The red dots represent a normative fail, that
is a mean fraction of good decks value of 0.50 or lower, hypothesized to be
associated with vmPFC impaired learning decay λvmPFC = 0.449.

Concerning human IGT outcome range matches, Fig. 6.6 shows that
given 750 simulated samples at the CSUD minimum loss hyper-parameters,
that is at α1 = 0.417, λN = 0.104, λvmPFC = 0.449, and ε = 0.627, the ε-Greedy
agent achieves in the re-shuffled IGT, 78% matches with normal and 100%
matches with vmPFC impaired behaviour configurations. The agent also
achieves 57% matches with original IGT normal learning decay. However,
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for the original IGT vmPFC impaired behaviour configuration, and the ran-
dom IGT normal behaviour configuration, the agent only achieves 8% of
matches. There is no human outcome match data available for the random
IGT vmPFC impaired configuration.

The ε-Greedy agent does not achieve a high level of human IGT outcome
matches across all ranges reported in Table 4.8. However, the agent per-
forms better in matching the respective normative pass outcomes reported
in Table 4.8. In the re-shuffled IGT, the ε-Greedy agent achieves a 100% nor-
mative pass match for the normal and vmPFC impaired configurations. In
the original IGT, the agent achieves 92% and 34% normative pass matches
for the normal and vmPFC impaired configurations respectively. Note that
the original IGT vmPFC impaired configuration, 34% normative pass match
is equivalent to a 66% normative fail match. In the random IGT normal con-
figuration, the agent achieves a 73% normative pass match.

Fig. 6.6 reveals that both learning decay λ and exploration ε interact with
IGT environment card sequencing effects to produce different density (jit-
ter) plots for the fraction of good decks fG. For normal learning decay with
λN = 0.104, the original and re-shuffled IGT fraction of good decks den-
sity appears unimodal and relatively symmetric as indicated by the red bar,
which shows the mean ±2 SEs. However, as exploration increases, symme-
try decreases in favour of a left-hand tail. In contrast, the random IGT ap-
pears bi-modal, with the modes tending towards the match ranges as explo-
ration increases. For vmPFC impaired learning decay with λvmPFC = 0.449,
the re-shuffled IGT fraction of good decks fG appears unimodal symmetric,
whereas the original and random IGT present as bi-modal, asymmetric, and
with the modes tending towards 0.5 as exploration increases.

Finally, non-parametric multi-variate analysis of variance (np-M/ANO-
VA) is performed using the npmv R package (Bathke et al., 2008; Burchett
et al., 2017). The np-M/ANOVA method assesses the response of multi-
ple variables to a single factor with multiple levels. The np-M/ANOVA
analysis asks the question: given initial learning rate α1 = 0.417 and explo-
ration ε = 0.627, do learning rate decay λN = 0.104 and λvmPFC = 0.449
parametrisations lead to a statistically significant difference in mean frac-
tion of good decks f̄G for the original, re-shuffled, and random IGT environ-
ments? Hence the single factor of interest is learning rate decay and the re-
sponses are the mean fraction of good decks for the original, re-shuffled, and
random IGT environments. The np-M/ANOVA design is balanced with 750
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Learning Decay λ At α = 0.01, the null
hypotheses of learning
decay factor equality is
rejected. Only equality of
the re-shuffled response
cannot be rejected.

ANOVA Typea 71.02 2.984 4470.435 0

Original | Random vs. Learning Decay λ At α = 0.01, the null
hypotheses of equal
original and random,
original only, and
random only responses
are rejected.

ANOVA Type 108.824 1.995 2988.442 0

Wilks Lambda 113.288 2.000 1497.000 0

Re-Shuffled vs. Learning Decay λ

ANOVA Type 0.258 1.000 1498 0.611 Single response variable,
no subsets.Wilks Lambda 0.258 1.000 1498 0.611

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 6.4
ε-Greedy agent np-M/ANOVA analysis of mean fraction of good decks f̄G
with learning decay λ as factor. At significance level α = 0.01 Mean fraction of
good decks f̄G responses are statistically significantly different, except for the
re-shuffled IGT environment.

samples per cell.
The results are reported in Table 6.4. The most comprehensive null hy-

pothesis is no multivariate response to any factor levels. This null hypoth-
esis is tested in the first row of the table. The p-value of 0 indicates that the
null hypothesis is strongly rejected globally. The right-most column of Table
6.4 summarises subset responses. At significance level α = 0.01, factor level
equality is rejected. Further equality of mean fraction of good decks f̄G for
the following response variable subsets is rejected: original and re-shuffled
and random, re-shuffled and random, original and random, original and
re-shuffled, original, and finally random.

Only equality of mean fraction of good decks f̄G for the re-shuffled IGT
environment fails to be rejected. That is to say, the normal and vmPFC im-
paired ε-Greedy agent mean fraction of good deck results mirror, from a sta-
tistical hypothesis testing perspective, corresponding human results for the
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re-shuffled IGT environment, where both normal and vmPFC impaired hu-
mand subjects achieve a mean fraction of good decks pass. The second and
third rows of the table provide further insight into the subset results. The
third row shows that re-shuffled mean fraction of good decks f̄G response to
learning decay factor variation produces a p-value of 0.611, indicating fail-
ure to reject the null hypothesis of equality, thereby corroborating the visual
result in Fig. 6.6. The np-M/ANOVA results also verify that the ε-Greedy
agent at CSUD selected minimum loss hyper-parameter values does indeed
replicate expected human behavioural results in terms of IGT outcomes for
the original, re-shuffled, and random IGT environments.

6.3.1 ε-Greedy Agent Discussion

High learning rate decay appears to be the central mechanism driving the ε-
Greedy agent’s ability to replicate human IGT outcome results for the orig-
inal, re-shuffled, and random IGT environments for healthy and vmPFC
impaired subjects. As the 750 sample grid search verification results in
Fig. 6.6 reveal, at the selected minimum loss CSUD hyper-parametrisation,
the agent achieves variable consistency in matching human performance
ranges. The agent’s human outcome match consistency improves with re-
spect to the IGT normative pass criterion. The statistical analysis sum-
marised in Table 6.4 shows that with high learning rate decay as a proxy for
vmPFC impairment, the agent qualitatively replicates human IGT outcome
results in statistically significant terms at a significance level of α = 0.01.

The ε-Greedy agent represents a very special decision making arrange-
ment in that nominal exploration is constant, large, and never decreases.
However, as exploration index (EI) results in Fig. 6.5 indicate, high learning
rate decay effectively leads to a decrease in implied exploration. It has also
been revealed that to approximate human IGT performance ranges, explo-
ration has to be very high at ε = 0.627.

The question arises as to what might be the aim of a decision making
strategy with very high exploration? The No Free Lunch (NFT) theorems
(Wolpert & Macready, 1997) state that in the space of all problems and all
algorithms, no algorithm can outperform random search. Accordingly, it
is proposed that high exploration could be a mitigation strategy aiming to
address limited information, finite time, and limited opportunities, which
may all be expressed as algorithmic specificity.
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Another plausible explanation to high exploration is offered in Wilson
et al., 2014, who find that in choice tasks with a longer horizon, human sub-
jects exhibit higher exploration driven not by random but by directed explo-
ration, which increases sampling from more informative options. In their
study, the authors compare choice selection tasks with durations of 5 and 10
periods respectively (including 4 periods of training), with the longer du-
ration task outcomes exhibiting high exploration geared towards the more
informative option. In these 5 and 10 period duration tasks, however, task
length was communicated to the participants. In the IGT, task duration con-
sists of 100 periods but is not known by the participants. Given the relatively
longer length of the IGT, however, it is possible that the participants start to
act as if the IGT is a long duration task and accordingly explore the infor-
mative choices more. Such behaviour has been indicated, for example, with
respect to the (original) IGT disadvantageous deck B (Lin et al., 2007), and
discussed in terms of frequency-gain effects, where a rare event is underval-
ued. The undervaluing a rare event has also been noted in Hertwig et al.,
2004. It is possible, however, that the increased draws from deck B stem
not from undervaluing, but from information seeking about the rare event;
such information can only be found by increasing the number of draws.

The original, re-shuffled, and random IGTs do not constitute a neutral
environment. The original and re-shuffled IGTs use card sequencing effects
to respectively disguise or reveal deck net yields during the first 8 rounds
of the task. The random IGT, by design does not have card sequencing ef-
fects; but contains frequency and loss effects as have been discussed in the
EV (2.1), PV (2.2), and ORL (2.4) models. Frequency effects refer to events,
which occur rarely, making estimation of the central tendency difficult. Loss
effects refer to the desire to avoid negative outcomes and chase large pay-
offs, even if deck cards would produce, by means of regular small penalties,
a net loss despite high infrequent payoffs.

In Fig. 6.6, both normal and vmPFC impaired random deck IGT config-
urations produce bi-modal distributions with comparatively extreme out-
comes for low exploration. At ε = 0.1, 93% of agent simulations achieve a
high normative pass (blue dots), while 7% of simulations end in a low nor-
mative fail. At ε = 0.627, 73% of agent simulations achieve a normative pass,
while 27% of simulations end in a normative fail. However, at ε = 0.627, the
normative pass or fail jitter plot masses (modes) get closer to each other,
leading to comparatively moderate outcomes: while the passes are not as
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high, the fails are also not as low.
Hence, a difference between population level and individual decision

making is observed. For the random IGT, the agent population benefits at
ε = 0.1, but a few individual agents are much worse off. At ε = 0.627, the
population is worse off in terms of the central tendency as indicated by the
red bar, but individual agents who fail mainly do so above a mean fraction
of good decks f̄G value of 0.25.

The IGT could encapsulate a decision making problem where individual
mistakes can be very costly and irrecoverable. In a population, such as hu-
man beings, where individuals are valued highly, it could be speculated that
to mitigate limited decision making resources, evolutionary or behavioural
tendencies may therefore have adopted to produce as high individual ex-
ploration as the population can tolerate. As noted above, NFT theorems
(Wolpert & Macready, 1997) state that in the space of all search algorithms
and search problems, no algorithm will perform universally better than ran-
dom search. Hence, one approach to dealing with complex search problems
is by increasing randomness to reduce search algorithm specificity.

6.4 Boltzmann Agent Results

Table 6.5 and Fig. 6.7 present Boltzmann agent CSUD search results in tabu-
lar and graphic forms respectively. Boltzmann agent CSUD searches could
not achieve the full search match consisting of matching normal human
IGT outcome original, re-shuffled, and random environment ranges; and
vmPFC impaired human IGT outcome original and re-shuffled environ-
ment ranges. CSUD searches produced very few full search match candi-
dates, and the minimum loss selection chosen from these candidates in turn
failed full grid search verification.

A search budget of 1000 iterations was used and 5 gradient samples for
each gradient evaluation per iteration were employed. After 1000 iterations,
only 9 full-match candidates were found. The minimum loss candidate
was chosen from among these nine matches as per the search methodol-
ogy. However during grid search verification, the CSUD full search mini-
mum loss candidate only fulfilled partial match conditions consisting of, for
normal and vmPFC impaired human IGT outcome ranges, the original and
re-shuffled environments. A simultaneous match to normal human random
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FIGURE 6.7: Boltzmann agent CSUD iterations. Green and blue points indi-
cate (α1, λN , λvmPFC, τ) hyper-parameter tuples, which produce full and partial
CSUD search matches respectively. Partial search matches fulfil normal and
vmPFC impaired human IGT outcome ranges for the original and re-shuffled

IGT environments. Details in text.

IGT outcomes could not be found. Here, these partial match results are re-
ported.

Fig. 6.7 highlights CSUD search matches for full and partial matches,
which are coloured green and light blue respectively. CSUD search finds
many matches (459 of 1000 iterations) where CSUD hyper-parameter selec-
tions generate agent results, which lie within normal and vmPFC impaired
human outcome ranges for the original and re-shuffled IGT environments.
These light blue coloured zones constitute partial search matches. The green
coloured dots (9 of 1000) represent full matches, which in addition to the
partial match defined above, match normal human random IGT outcome
ranges. The numeric results in Table 6.5 come from the CSUD full match

101



Chapter 6. The Original, Re-Shuffled, and Random IGT Environments
with Simple Reinforcement Learning Modelling via CSUD

Minimum
Loss

Range Mean Median
Standard
Error

Loss 0.0196 0.0196 - 0.0261 0.0229 0.0237 0.000703
Initial learning
rate α1

0.364 0.339 - 0.364 0.353 0.352 0.00306

Normal learning
rate decay λN

1.0e-4 1.0e-4 - 0.00151 2.56e-4 1.0e-4 0.000156

vmPFC impaired
learning
rate decay λvmPFC

0.226 0.22 - 0.479 0.344 0.328 0.0333

Temperature τ 225.002 225.002 - 225.005 225.004 225.005 0.000494
Matched
environments

Full CSUD and partial grid search verified matches as
discussed in text.

Match count 9 of 1000 iterations (Full CSUD matches).

TABLE 6.5
Boltzmann agent CSUD minimum loss search matches after 1000 iterations.
The highlighted minimum loss column shows selected agent hyper-
parameters. Light gray indicates minimum loss and the associated initial
learning rate α1. Dark-gray, mid-gray, and light blue indicate minimum loss
associated normal learning rate decay λN , vmPFC impaired learning rate
decay λvmPFC, and exploration τ respectively.

set. However, during grid search verification, the CSUD full match set could
only generate the partial matches as defined by the light blue range in Fig.
6.7.

Table 6.5 highlights the CSUD minimum loss hyper-parameter combi-
nation, which for initial learning rate α1, normal learning decay λN, vmPFC
impaired learning decay λvmPFC, and temperature τ is at (α1 = 0.364, λN =
1.0e−4, λvmPFC = 0.226, τ = 225.002). Note that the selected normal learning
decay λN is at minimum loss at 1.0e−4, and that exploration temperature τ

does not fluctuate much. The contribution of exploration temperature τ to
decision making is not easy to discern, and the associated Boltzmann action
probabilities are provided later.

It is noted that as with the ε-Greedy agent, normal and vmPFC impaired
behaviour configurations are driven by learning decay λ. Normal learning
decay λN is very close to 0 and at the lower constraint boundary. This sug-
gests that the normal Boltzmann agent may have a constant learning rate so-
lution. Here, on the basis that a learning decay rate of 1.0e−4 is already very
low, a constant learning rate Boltzmann agent variant is not discussed. The
question considered next is why the Boltzmann agent CSUD search might
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Hyper-parameter Grid Points
Initial learning
rate α1

0.05, 0.364, 0.66, 0.99

Learning
rate decay λa 0.0001, 0.226

Temperature τ 5, 75, 225, 425

IGT length Q-learning samples

100 750
a The learning rate decay grid is constructed around the CSUD reported values.
Appendix C provides the construction method.

TABLE 6.6
Boltzmann agent CSUD verification. Hyper-parameter grid search criteria for
joint original, re-shuffled, random IGT.

not discover full match hyper-parameter settings, which can be replicated
in grid search verification.

Table 6.6 reports the localised grid search specification used to verify
Boltzmann agent CSUD results. Fig. 6.8 and Fig. 6.9 present 2D and 3D
views respectively of the selected search hyper-parameters in the context of
the neighbourhood grid search presented in Table 6.6.

Fig. 6.8 presents visual impressions qualitatively similar to those ob-
tained from the ε-Greedy agent searches. As before, the lower x-axis in-
dicates learning rate decay. Using the conversion formula (1− e−λ) ∗ 100,
the upper x-axis translates the lower x-axis learning rate decay value into a
per period learning rate decay percentage. The contour line associated with
CSUD minimum loss hyper-parametrisation is coloured in black. Learning
rate decay λ is responsible for determining normal (λN = 1.0e−4) versus
vmPFC impaired (λvmPFC = 0.226) agent behaviour. Increased temperature
τ leads to a vertical downward shift of the mean fraction of good decks f̄G

contours, and facilitates inclusion into the normal (dark gray) and vmPFC
impaired (light gray) human match ranges.

Fig. 6.8 indicates why, subject to the search criteria, the Boltzmann agent
is not able to achieve a match in all tested IGT environments. In particu-
lar, it is important note that for a given initial learning rate α1, the Boltz-
mann agent cannot obtain a simultaneous match in the original and ran-
dom IGT environments for the respective normal human outcome ranges.
At λN = 1e−4, the original IGT environment match is at the lower human
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FIGURE 6.8: Boltzmann agent 2D contours showing learning decay λ and ex-
ploration τ effects. The dark and light gray zones indicate normal and vmPFC
impaired human outcome match ranges for the original, re-shuffled, and ran-
dom IGT environments. Learning decay variation reproduces human IGT out-
comes, while exploration variation is responsible for matching human IGT out-

come performance ranges.

performance boundary. However, at λN = 1e−4, agent random IGT per-
formance is slightly above the corresponding human outcome match range
maximum.

Fig. 6.9 reveals that for the Boltzmann agent, the initial learning rate α1

has some influence on decision making outcome. However, as with the ε-
Greedy agent, this effect is most noticeable at high learning rates and low
learning decay rates, leading to initial non-stationarity effects consisting of
a region, where increasing learning rate decay improves mean fraction of
good decks outcomes. The visual signature of these initial non-stationarity
effects consists of the draped over area especially prominent in the origi-
nal, and to a lesser extent in the random IGT environment outcome contour
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FIGURE 6.9: Boltzmann agent 3D contours for learning decay λ and explo-
ration τ, focusing on initial learning rate α1 effects. Learning decay and ex-
ploration variation mirror the contours in Fig. 6.8. The initial learning rate α1
shows a small technical effect at very high initial learning rates, but otherwise

exerts no determining effect.

plots.
While grid search results indicate that there are indeed multiple match-

ing solutions in addition to the one discovered by CSUD, none of these so-
lutions appear capable of producing a match across all of considered IGT
environments and human behaviours. Hence, the simple Boltzmann agent
implementation does not appear capable of achieving the desired number
of simultaneous human outcome matches. The matching misses are quite
close, and matches could potentially be obtained by increasing the range
of the catchment zone. However, such mitigating approaches are not ex-
plored here so as to keep the methodology presented in Table 4.8 consistent.
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FIGURE 6.10: Boltzmann agent 20-draw blocks comparison at CSUD search
matches α1 = 0.364, λN = 1e−4, λvmPFC = 0.226, τ = 225.002. Human results
in dotted light gray. Agent results in solid dark gray, averaged from 750 sam-
ples. All error bars at ±2SE. When error bars are taken into account agent and
human 20-draw block performance appears relatively similar. Details in text

below.

Further, increasing the catchment zone would not alter the result that the
Boltzmann agent exhibits difficulty in achieving a match across all IGT en-
vironments and human behaviours as measured in terms of distance to the
corresponding human means.

Fig. 6.10 and Fig. 6.11 show Boltzmann agent mean fraction of good
decks f̄G and exploration index (EI) behaviour respectively in 20-draw
blocks for normal and vmPFC impaired behaviour. Agent outcomes are
plotted in solid dark gray. Corresponding human 20-draw block outcomes
are depicted by the dotted light gray lines. The dash-dotted line indicates
the normative pass point of 0.5. In terms of mean fraction of good decks,
in Fig. 6.10, when human performance ±2 standard error (SE) is taken into
account, Boltzmann agent 20-draw block performance is relatively similar
but shows small deviations for normal behaviour for blocks 1-20 and 21-
40 in the random IGT environment where agent performance is better than
human performance.

Fig. 6.11 depicts the Boltzmann agent exploration index (EI) results. Cor-
responding human 20-draw block outcomes are depicted by the dotted light
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FIGURE 6.11: Boltzmann agent 20-draw blocks exploration index (EI) compari-
son at CSUD search matches α1 = 0.364, λN = 1e−4, λvmPFC = 0.226, τ = 225.002.
Human results in dotted light gray. Agent results in solid dark gray, averaged
from 750 samples. Human subject and agent exploration index responses in-
dicate high index values, which are higher for the agent. This is because high

Boltzmann exploration approximates random search. Details in text below.

gray lines. The Boltzmann agent exhibits mixed (qualitative) success in
matching human exploration index profiles. When exhibiting vmPFC im-
paired behaviour, the Boltzmann agent exploration index shows similar
trends for the original and re-shuffled IGT environments. However when
exhibiting normal behaviour, the Boltzmann agent indicates a higher level
of exploration than the corresponding human values in the latter draw
blocks of the original and re-shuffled IGT environments.

Fig. 6.12 assesses the percentage of fraction of good decks fG matches
achieved for 750 repeated IGT simulations at the selected CSUD values. The
green coloured jitter plots indicate matches to the corresponding human
ranges. Blue jitter plots indicate any normative passes outside of the hu-
man match ranges, whereas red jitter plots indicate normative failures ( fG ≤
0.50) outside of human match ranges. The red central line and bars indicate
the mean and ±2 SEs. At CSUD selection α1 = 0.364, λN = 1e−4, λvmPFC =
0.226, τ = 225, the Boltzmann agent achieves for normal configuration, 55%,
57%, and 43% human range matches for the original, re-shuffled, and ran-
dom IGT environments respectively. For vmPFC impaired configuration,

107



Chapter 6. The Original, Re-Shuffled, and Random IGT Environments
with Simple Reinforcement Learning Modelling via CSUD

vm
PFC

Number of Passes 
(% of Passes) 

Human Range
Maximum

In Pass Zone and 
Above Maximum

In Fail Zone and 
Below Minimum

Number of in Range
(% of in Range) 

Human Range 
Minimum

In Human Range

Sample
Mean

+2 SE

-2 SE

Pass / Fail 
Border

FIGURE 6.12: Boltzmann agent comparison of repeated simulation outcomes
to human IGT results. At τ = 225 and reported CSUD minimum loss hyper-
parameter values, the Boltzmann agent achieves the highest matches for the

re-shuffled IGT environment. Full details are in the text.

the agent achieves 61% and 99% human range matches for the original and
re-shuffled IGT environments respectively.

When compared with the corresponding ε-Greedy agent results in Fig.
6.6, the Boltzmann agent results in Fig. 6.12 produce an overall better con-
formance to human match ranges. In particular, the ε-Greedy agent ex-
hibits a stronger tendency towards bi-modal fraction of good decks out-
comes, which exhibit low probabilistic mass at the corresponding simula-
tion means. That is, in the ε-Greedy agent plots, there are a lot of areas,
where there are few jitter plot dots around the red lines. Put differently, the
Boltzmann agent is by design resistant to the polarising effect of learning
rate decay. This is a well-known design feature of the Boltzmann agent, and
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also one of the reasons why Boltzmann agents remain popular: They are
designed to produce smooth unimodal probabilistic decision making.

In Fig. 6.12, it is noted that as exploration increases from τ = 5 to τ = 225,
agent mean fraction of good decks performance decreases across all simu-
lations. That is, the entire jitter plot tends to shift down as exploration in-
creases. This observation reminds of the ε-Greedy agent result that in order
to attain human match ranges, exploration needs to be high. The second
point to note is that, while the Boltzmann agent is resistant to the polarising
effect of learning rate decay, increasing exploration alone, is not enough to
escape poor learning. This is because at high learning rate decay, even if
exploration leads to a positive result, such a result can no longer contribute
sufficiently to overturn aggregated Q-values.

Table 6.7 presents the results of the np-M/ANOVA analysis with orig-
inal, re-shuffled, random IGT mean fraction of good deck f̄G output as re-
sponse variables, and with λN = 1e−4 and λvmPFC = 0.226 as the learning
rate decay factor values. For the Boltzmann agent at statistical significance
level α = 0.01, learning rate decay exerts a significant effect for all possible
response variable combinations: original and re-shuffled and random, orig-
inal and random, original and re-shuffled, re-shuffled and random, original,
re-shuffled, and random. However, in order to replicate human results, one
would have expected learning rate decay not to have a significant effect for
the mean fraction of good decks results for the re-shuffled IGT environment.
Hence, on the basis of these results, the Boltzmann agent replicates most hu-
man results, but is unable to support the key result, which expects that with
the re-shuffled IGT environment, normal (λN = 1e−4) and vmPFC impaired
(λvmPFC = 0.226) behaviour should not lead to statistically significantly dif-
ferent mean fraction of good decks outcomes.

Finally, some insight is provided into what an exploration temperature
of τ = 225 (or, to be precise τ = 225.002) means in practice. Fig. 6.13 shows
Boltzmann agent action (deck) selection probabilities at completion of the
IGT. The dash-dotted line at 0.25 highlights the uniform probability selec-
tion threshold. Probabilistic selection of 0.25 for each deck implies that 50%
of the cards have been chosen from the good decks, and therefore leads to
a normative fail at the maximum fail level of mean fraction of good decks
f̄G = 0.5. In other words, given the high Boltzmann exploration figure of
τ = 225, it is probable that some random draw realizations may achieve
mean fraction of good decks f̄G ≥ 0.5 The jitter plots summarise the range
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Learning Decay λ

ANOVA Typea 543.823 2.774 4154.857 0 At α = 0.01, the null
hypotheses of learning
decay factor equality is
rejected for all response
variable combinations
with λN = 1e−4 and
λvmPFC = 0.226 as normal
and vmPFC impaired
factors respectively.

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 6.7
Boltzmann agent np-M/ANOVA analysis of mean fraction of good decks f̄G
with learning decay λ as factor. At statistical significance level α = 0.01, mean
fraction of good decks f̄G responses are statistically significantly different, even
for the re-shuffled IGT environment. The Table only presents test-statistic
values for the joint response test, with p− value = 0 ≤ 0.01.

of action selection probabilities exhibited by the simulation population of
n = 750. The red line and boxes represent the mean action selection proba-
bility and the ±2 SE range. Jitter plot means have not been normalised but
provide sufficient indication of probabilistic effect.

The CSUD discovered solution at exploration temperature τ = 225, in
Fig. 6.13c shows that for normal behaviour, mean good deck (C and D) card
selection probabilities are above 0.25, and mean bad deck (A and B) card
selection probabilities are below 0.25. For vmPFC impaired behaviour, as
predicted in the re-shuffled IGT environment, good deck selection probabil-
ities are above 0.25; but in the original IGT environment, bad decks A and
B exhibit selection probabilities above 0.25 (thereby increasing the proba-
bility of a normative fail). At τ = 75, as Fig. 6.13b shows, the action selec-
tion probabilities of good decks are further increased. However, at τ = 5,
Fig. 6.13a reveals a shift in behaviour, where good deck selection proba-
bility is predominantly attributed to deck C. This may be because deck D
produces regular low rewards and seldom very high fines (1/25 chance),
while deck C produces regular low rewards with occasional low fines (1/5
chance). Therefore probabilistically speaking, at low exploration, the agent
may treat deck D as if it were a bad deck. In general, for normal behaviour
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FIGURE 6.13: Boltzmann agent exploration temperature τ and action selection
probabilities at IGT completion. Simulation sample size n = 750. As explo-
ration temperature increases from τ = 5 to τ = 225, normal behaviour mean
action selection probabilities shift towards 0.25, the random search probability.

configuration, as exploration temperature τ increases, deck selection prob-
abilities approach 0.25, the random search threshold. For vmPFC impaired
behaviour, however, deck sequencing effects appear to influence deck selec-
tion probabilities differently. For example, at low exploration temperature
τ = 5, vmPFC impaired agent mean action selection probabilities for decks
C and D are above 0.25. However, this is not the case at τ = 75 or τ = 225. In
contrast with the re-shuffled deck, vmPFC impaired agents on average con-
tinue to select from the good decks as exploration temperature τ increases.
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6.4.1 Boltzmann Agent Discussion

The Boltzmann agent produces mixed results.
As a decision making entity, the Boltzmann agent’s main contribution

is to make a probabilistic action selection, where actions which are valued
more highly, have a higher probability of being chosen. In this sense, the
Boltzmann agent is considered to be a rational agent and an efficient ex-
plorer: actions which are valued more highly have a higher probability of
being chosen, and exploration is in proportion to the value of an action.
Thus exploration is probabilistically geared towards selections, which have
the higher aggregated Q-values. As long as the learning rate has an appre-
ciable effect, Q-value updates produce changes in action selection proba-
bilities. Since action selection probabilities are normalized, the Boltzmann
agent tends to exploit statistical central tendencies. Because of its emphasis
on central tendencies, the Boltzmann agent would be more appropriately
called an efficient exploiter than an efficient explorer.

The IGT performance of the simple Boltzmann agent partially replicates
human IGT outcomes, but also raises some questions as to whether the
Boltzmann agent can adequately capture human decision making. As noted
in Fig. 6.8 the Boltzmann agent is unable to simultaneously match all tested
IGT environments and behaviours, only matching original and re-shuffled
outcomes for normal and vmPFC impaired configurations, while missing
normal random IGT outcomes. Further, for the re-shuffled IGT environ-
ment, while normal and vmPFC impaired configurations produce matches,
the np-M/ANOVA analysis in Table 6.7 shows that the normal λN and the
vmPFC impaired λvmPFC learning decay rates produce mean fraction of
good decks f̄G values, where the null hypothesis of equal outcomes is re-
jected. The a priori expectation however is that in statistical terms, this null
hypothesis should fail to be rejected.

Despite these variations, as Fig. 6.12 indicates, the Boltzmann agent in
general produces results where high learning rate decay, that is modelled
vmPFC impairment, leads to normative fails in the original and random IGT
environments. Also as Fig. 6.11 shows, the exploration index (EI) presenta-
tion of the Boltzmann agent appears qualitatively similar to those produced
by human outcomes.

Finally, a CSUD limitation is noted, which limitation is a known issue in
simultaneous perturbations stochastic approximation (SPSA). From Fig. 6.7,
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note that exploration τ varies very little. While this can result from a flat gra-
dient, in this case, the result obtains from a discrepancy between the scale
of perturbations and that of the temperature parameter, which in relation
to the remaining parameters has a much larger range, reaching from 0.5 to
500 (see Table 5.1). In contrast, remaining parameters approximately range
over the unit interval. Spall (2003, Ch. 7, p. 189) has suggested such a scale
issue can be dealt with by remapping so that all parameters have similar
ranges. Here the approach of using a constant perturbation scaling vector
has been employed. Such scaling retains standard SPSA asymptotic guaran-
tees.2 However, in practice increasing the scale of perturbations can reduce
the gradient even further, since scaled perturbations would appear both in
the numerator and denominator of (12.13). Based on 2D and 3D grid search
plots, it is believed that the reduced movement in temperature τ does not
impact adversely on the presented results.

6.5 Adaptive ε-Greedy Agent Results

The adaptive ε-Greedy agent has been introduced by Tokic (2010), and is
discussed in section 5.2.3. The adaptive ε-Greedy agent provides a good
platform for testing exploitation versus exploration effects. Unlike the con-
stant exploration ε-Greedy agent or the proportionate exploration Boltz-
mann agent, the adaptive ε-Greedy agent formulates exploration, which re-
sponds to the temporal difference error. Consequently exploration can vary
from 0 (no exploration) to 1 (full exploration) in response to selected action
outcomes.

Fig. 6.14 and Table 6.8 present adaptive ε-Greedy agent CSUD search
results in graphic and tabular forms respectively. Note that the Tokic hyper-
parametrisation requires an initial exploration value, which is set to ε1 = 1.
Further, (5.6c) requires a mixing hyper-parameter β, called influence, used
for updating exploration. Influence β scales the contribution of exploration
adjustment f (a, τ) and current exploration εt to next period’s exploration
εt+1. Following Tokic, β = 1/norm(actions) = 0.25 is used. This leaves the
following four free hyper-parameters for estimation: initial learning rate α1,
normal learning decay λN, vmPFC impaired learning decay λvmPFC, and

2This can be shown by an extension of the proofs in chapter 12; but is not an extension
discussed in this work.

113



Chapter 6. The Original, Re-Shuffled, and Random IGT Environments
with Simple Reinforcement Learning Modelling via CSUD

vm
PFC

Learning
D
ecay

FIGURE 6.14: Adaptive ε-Greedy agent CSUD iterations. Green points indicate
(α1, λN , λvmPFC, τ) hyper-parameter tuples, which produce full CSUD search
matches. Many full CSUD search matches are obtained, increasingly so as

search iterations advance.

exploration temperature τ. The CSUD minimum loss solution for these pa-
rameters is reported in Table 6.8.

Fig. 6.14 indicates that over 1000 CSUD iterations, full matches (i.e., the
green dots) increase towards later iterations. Hence CSUD traversal of the
hyper-parameter space is indeed proceeding in the direction of minimising
loss.

Table 6.9 presents the CSUD grid search verification configuration. Fig.
6.15 and Fig. 6.16 present the 2D and 3D contours respectively generated
from a localised grid search around the CSUD discovered hyper-parameters
as indicated in Table 6.9.
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Minimum

Loss
Range Mean Median

Standard

Error

Loss 0.0180 0.0180 - 0.0552 0.0313 0.0314 0.000419

Initial learning

rate α1
0.591 0.476 - 0.593 0.559 0.572 0.00150

Normal learning

rate decay λN
0.082 0.0647 - 0.0888 0.0813 0.0827 0.000245

vmPFC impaired

learning

rate decay λvmPFC

0.120 0.12 - 0.124 0.120 0.12 0.0000196

Temperature τ 0.383 0.230 - 0.392 0.356 0.373 0.00174

Matched

environments

For normal human behaviour: original, re-shuffled, random.

For vmPFC impaired human behaviour: original, re-shuffled.

Match count 405 of 1000 iterations

TABLE 6.8
Adaptive ε-Greedy agent CSUD minimum loss search matches after 1000
iterations. The highlighted minimum loss column shows selected agent
hyper- parameters. Light gray indicates minimum loss and the associated
initial learning rate α1. Dark-gray, mid-gray, and light blue indicate minimum
loss associated normal learning rate decay λN , vmPFC impaired learning rate
decay λvmPFC, and exploration τ respectively.

Hyper-parameter Grid Points

Initial learning

rate α1
0.01, 0.3, 0.591, 0.999

Learning

rate decay λa 0.082, 0.120

Exploration

Temperature τ
0.1, 0.383, 1, 24

IGT length Q-learning samples

100 750
a The learning rate decay grid is constructed around the CSUD reported values.

Appendix C provides the construction method.

TABLE 6.9
Adaptive ε-Greedy agent CSUD verification. Hyper-parameter grid search
criteria for joint original, re-shuffled, and random IGT.
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FIGURE 6.15: Adaptive ε-Greedy agent 2D contours showing learning decay λ
and exploration τ effects. The dark and light gray zones indicate normal and
vmPFC impaired human outcome match ranges for the original, re-shuffled,
and random IGT environments. Learning decay variation reproduces human

IGT outcomes, while exploration variation leads to contour shifts.

From Fig. 6.15, note that as in the case of the ε-Greedy and Boltzmann
agents, learning rate decay λ is the key hyper-parameter for inducing nor-
mal versus vmPFC impaired IGT behaviour. As learning rate decay in-
creases, exploration contours shift from the dark gray normal match zone
through to the light gray vmPFC impaired behaviour match zone. Similarly
changes in exploration temperature produce a vertical shift in the 2D mean
fraction of good deck f̄G contours.

For the adaptive ε-Greedy agent, initial exploration ε1 = 1 and this in-
dicates random search. Exploration temperature τ determines how quickly
the agent will depart from random search. For low τ, the agent remains
closer to random search, and for high τ, the agent becomes an increas-
ingly specific exploiter. At the CSUD discovered exploration temperature
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FIGURE 6.16: Adaptive ε-Greedy agent 3D contours with learning decay λ and
exploration τ, but focusing on initial learning rate α1 effects. Learning decay
and exploration variation mirror the contours in Fig. 6.15. The initial learning
rate α1 shows a technical effect at very high initial learning rates, but otherwise

exerts no determining effect.

τ = 0.383, the black contour line with the green triangles indicates within
range matches for the normal original, normal re-shuffled, vmPFC impaired
re-shuffled, and on-border matches for vmPFC impaired original, normal
random IGT behaviour and environment combinations. Finally note that
as learning rate decay increases, the transition from normal to vmPFC im-
paired behaviour is very sudden, with λN = 0.082 and λvmPFC = 0.120.

The 3D visualisation in Fig. 6.16 indicates that mean fraction of good
decks f̄G surfaces exhibit increased complexity when compared with the
corresponding ε-Greedy and Boltzmann figures 6.8 and 6.9 respectively.
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FIGURE 6.17: Adaptive ε-Greedy agent 20-draw blocks comparison at CSUD
search matches α1 = 0.591, λN = 0.082, λvmPFC = 0.120, τ = 0.383. Human re-
sults in light gray dotted lines.3Agent results in dark gray solid lines, averaged
from 750 samples. All error bars at ±2SE. Even when error bars are taken into

account, agent and human 20-draw block performances generally differ.

However, the influence of the initial learning rate α1 remains relatively mod-
est, except for an increase in the initial non-stationarity (the draped-over
surface) zone.

Fig. 6.17 and Fig. 6.18 demonstrate that human versus adaptive ε-Greedy
agent comparative 20-draw blocked results show differences from human
behaviour. In particular, agent behaviour is more exploitative than corre-
sponding human behaviour. This is most visible in Fig. 6.18 for the re-
shuffled IGT, where the agent exploration index (EI) decreases markedly
from IGT draw 40 onwards.

Specifically with normal behaviour configuration, Fig. 6.17 shows that
the adaptive ε-Greedy agent achieves higher mean fraction of good decks f̄G

in the final two draw blocks, 61-80 and 81-100, across all IGT environments
except for the vmPFC impaired original case, with the difference being most
pronounced for the re-shuffled IGT case. When ±2 SE bars are taken into
account, in the re-shuffled environment, mean fraction of good decks f̄G

outcomes for blocks 61-80 and 81-100 lie outside the SE catchment areas.
3As a reminder human results in are initially presented in Fig. 4.1 and Fig. 4.2.
4As a reminder human results in are initially presented in Fig. 4.3 and Fig. 4.4.
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FIGURE 6.18: Adaptive ε-Greedy agent 20-draw blocks exploration index
(EI) comparison at CSUD search matches α1 = 0.591, λN = 0.082, λvmPFC =
0.120, τ = 0.383. Human results in dotted light gray lines.4Agent results in
solid dark gray lines, averaged from 750 samples. Human subject and agent
exploration index responses show comparative differences especially for the

re-shuffled IGT environment. Details in text below.

Fig. 6.18 indicates that the design of the adaptive ε-Greedy agent en-
ables the agent to drive down exploration. With the exception of the normal
behaviour random IGT environment case, agent exploration index (EI) is
substantially lower in draw blocks 61-80 and 81-100, noticeably so for the
re-shuffled IGT environment, where EI decreases to approximately 10 and
0 for the normal and vmPFC impaired configurations respectively, indicat-
ing very high exploitation. Compared to ε-Greedy agent figures 6.4 and 6.5;
and Boltzmann agent figures 6.10 and 6.11, it is noted that the corresponding
adaptive ε-Greedy agent results show large variations from the comparable
human benchmark results.

Fig. 6.19 provides a jitter plot density summary for the fraction of good
decks fG outcomes obtained at the CSUD selected minimum-loss hyper-
parameter values for 750 samples of the original, re-shuffled, and random
IGT environments for normal (control) and vmPFC impaired configura-
tions. Green dots mark outcomes inside human performance ranges. Blue
dots mark additional normative pass results, whereas red dots mark addi-
tional normative pass fails. Green numbers give total matches out of 750
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FIGURE 6.19: Adaptive ε-Greedy agent comparison of repeated simulation out-
comes to human IGT results. At τ = 0.383 and reported CSUD minimum
loss hyper-parameter values, the adaptive ε-Greedy agent achieves the highest
matches for the re-shuffled IGT environment and otherwise does not perform

well. Full details are in the text.

samples, and the values in brackets indicate percentages matched. A high
percentage matched value is indicative of predictive simulation success. Fi-
nally the red bars and the box indicate central tendency in terms of the mean
and ±2 SEs (standard errors).

Fig. 6.19 indicates that at exploration temperature τ = 0.383, adaptive
ε-Greedy agent simulations achieve the best results in the re-shuffled IGT,
with 90% and 73% matches for the normal and vmPFC impaired configura-
tions respectively. In the remaining comparable original normal and vmPFC
impaired, and random normal configurations, the adaptive ε-Greedy agent
does not perform well. This low simulation fidelity is due to a tendency
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Learning Decay λ
At α = 0.01, the null
hypotheses of learning
decay factor equality is
rejected. Only equality of
the random response
cannot be rejected.

ANOVA Typea 372.438 2.861 4286.479 0

Original | Re-shuffled vs. Learning Decay λ
At α = 0.01, the null
hypotheses of equal
original and re-shuffled,
original only, and
re-shuffled only
responses are rejected.

ANOVA Typea 635.344 1.942 2908.666 0

Random vs. Learning Decay λ

ANOVA Type 2.916 1.000 1498 0.088 Single response variable,
no subsets.Wilks Lambda 2.916 1.000 1498 0.088

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 6.10
Adaptive ε-Greedy agent np-M/ANOVA analysis of mean fraction of good
decks f̄G with learning decay λ as factor. At significance level α = 0.01, mean
fraction of good decks f̄G responses are statistically significantly different, even
for the re-shuffled IGT environment.

towards a bimodal outcome distribution with low or no density within the
respective human performance ranges.

Table 6.10 shows the results of the np-M/ANOVA analysis assessing
the effect of learning decay as a factor in contributing to normal versus
vmPFC impaired behaviour. The joint multi-variate response of original,
re-shuffled, and random mean fraction of good decks f̄G outcomes to learn-
ing decay as a factor is significant at significance level α = 0.01. The joint
multi-variate response of original and re-shuffled, univariate original, and
univariate re-shuffled fraction of good decks f̄G outcomes also exhibit sig-
nificantly different factor responses at significance level α = 0.01. In con-
trast, the univariate random IGT environment response to learning decay
as a factor does not appear to be significantly different at α = 0.01, with uni-
variate random vs. learning decay np-M/ANOVA revealing a p-value of
0.088.
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FIGURE 6.20: Adaptive ε-Greedy agent 2D contours showing exploration tem-
perature τ effects. In general, as τ increases, exploitation increases at a faster
rate. The dotted line marks ε = 0.627, the CSUD discovered minimum-loss
exploration value for the ε-Greedy agent results presented in section 6.3. The
stepwise appearance are due to the presence of small ±2SE bands, indicating

low sample variation.

As it was the case with the Boltzmann agent, the adaptive ε-Greedy
agent np-M/ANOVA results reject the expected null hypothesis of no learn-
ing rate decay λ factor effect for the re-shuffled IGT environment. How-
ever, based on human outcome data it is expected that for the re-shuffled
IGT environment, the null hypothesis of no learning rate decay λ factor ef-
fect would have been failed to be rejected. That is for the re-shuffled IGT
environment, the learning rate decay factor settings of λN = 0.082 and
λvmPFC = 0.12 should not have produced at significance level α = 0.01, a
statistically significant mean fraction of good decks f̄G effect.

Finally, Fig. 6.20 presents exploration temperature τ contours for actual
mean exploration ε̄ achieved over the duration of IGT tasks. Per period
mean exploration ε̄t is computed from 750 simulation samples for each IGT
environment and behaviour configuration. The plot includes ±2 SE error
bars. However, at 750 samples, the magnitude of the error bars is relatively
modest.

In general, as τ increases, exploitation increases. The dotted line marks
ε = 0.627, the CSUD discovered minimum-loss exploration value for the ε-
Greedy agent results presented in section 6.3. Hence the dotted line helps to
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contextualise per period mean exploration ε̄t versus constant exploration ε.
Fig. 6.20 shows that at the CSUD discovered minimum-loss exploration

temperature τ = 0.383, for normal (control) cases, per period mean explo-
ration ε̄t is above constant exploration ε = 0.627 for approximately the first
half (50 periods) of the IGT task, thereafter decaying rapidly towards 0 in-
dicating a strong shift towards exploitation in the second 50 periods. For
vmPFC impaired behaviour, however, exploration decays more rapidly, and
exploitation relative to the constant exploration mark starts approximately
by period 37. In relation to the re-shuffled IGT, and to a smaller extent the
random IGT environments, note that periods up to 25 exhibit regions of in-
creasing per period mean exploration ε̄t.

6.5.1 Adaptive ε-Greedy Agent Discussion

The adaptive ε-Greedy agent is theoretically interesting because it is able
to increase and decrease exploration in response to the temporal difference
error. In theory, this behaviour should allow the agent to swiftly shift from
exploration to exploitation, while also being resistant to proportional explo-
ration (Boltzmann agent) induced central tendency focused vision.

With CSUD searches using the mean fraction of good decks f̄G, mea-
sured cumulatively at the end of the IGT at the 100th draw, the adaptive ε-
Greedy agent achieves 405 full environment and behaviour matches in 1000
search iterations. That is, CSUD produces 405 agent hyper-parametrisations,
which produce agent outcomes residing within respective human outcome
catchment zones for normal original, re-shuffled, random, and vmPFC im-
paired original and re-shuffled IGT environments.

This high number of full CSUD matches initially looks promising, how-
ever, the 20-draw blocked mean fraction of good decks performance of the
agent indicates large differences from corresponding human outcomes.
Compared to human outcomes, agent exploration index (EI) exhibits differ-
ing per 20-draw block exploration decay patterns. The theoretical innova-
tion, which allows the agent to adjust exploration, also leads to differences
from human outcomes. This suggests that regarding the IGT, if humans do
decrease exploration in response to learning, they do not do this using the
adaptive ε-Greedy algorithm.

In general, the adaptive ε-Greedy agent does well with solving IGT tasks.
As discussed above however, the adaptive ε-Greedy agent results display
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characteristics, which are quite different from those displayed by human
benchmark data. Additionally, this agent is more sensitive to learning rate
decay than either the ε-Greedy or Boltzmann agent. In summary, the adap-
tive ε-Greedy agent appears to be an unlikely candidate for modelling hu-
man IGT behaviour.

Note that from the exploration index (EI) results in Fig. 6.18 unlike hu-
man benchmarks, the adaptive ε-Greedy agent is quite successful at decreas-
ing exploration. The per period mean exploration ε̄t results in Fig. 6.20 sup-
port this finding. The original IGT environment case in Fig. 6.15 shows that,
when it comes to learning rate decay λ, the adaptive ε-Greedy agent ap-
pears to exhibit a tipping point beyond which agent performance in terms
of mean fraction of good decks f̄G rapidly degrades.

When learning rate decay is present, the second term in (5.6b), which
is b = |αt (xa

t −Qt−1(a))| can become very small, even when the temporal
difference error xa

t − Qt−1(a) is large. According to (5.6c), this in turn leads
to small and decreasing per period exploration εt.

The adaptive ε-Greedy agent has a hard time dealing with decreasing
learning rates, and may work best with a constant learning rate, a decision
making case, which is not discussed here. Learning rate decay λ periodi-
cally decreases the initial learning rate α1, and this leads to weakening of the
exploration adjustment signal. Hence, high learning rate decay contributes
to the agent acting as if it has completed learning, and subsequent decreases
in exploration amplify exploitation. If the agent learns the correct solution,
it may surpass per block human performance. But if the agent has learned
the incorrect solution, then as indicated in the vmPFC impaired original IGT
case of Fig. 6.17, the agent produces worse than human results.

Finally, the adaptive ε-Greedy agent np-M/ANOVA results, like the Boltz-
mann agent results, reject for the re-shuffled environment the null hypothe-
sis of no learning rate decay λ factor effects.

In summary, while of strong theoretical value, it is not believed that the
adaptive ε-Greedy agent can reflect human IGT behaviour. In the rest of this
work, this agent will not be considered any further.
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FIGURE 6.21: Decaying ε-Greedy agent CSUD iterations. Green points indicate
(α1, λN , λvmPFC, ε1, ν) hyper-parameter tuples, which produce full CSUD search

matches.

6.6 Decaying ε-Greedy Agent Results

Section 5.2.4 has introduced the decaying ε-Greedy agent formulation. The
decaying ε-Greedy agent exhibits heuristic exploration decay by using, just
like learning rate decay λ, an exponential decay paradigm. Decaying ε-
Greedy agent hyper-parameters consist of the initial learning rate α1, nor-
mal learning decay λN, vmPFC impaired learning decay λvmPFC, initial ex-
ploration ε1, and exploration decay ν. Note that the same exploration decay
ν value is used in both normal and vmPFC impaired behaviours.

Fig. 6.21 and Table 6.11 present the CSUD search results. With 5 repeated
gradient samples, the decaying ε-Greedy agent CSUD hyper-parameter
search converges relatively quickly given the 1000 iteration search budget,
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Minimum
Loss

Range Mean Median
Standard
Error

Loss 0.00276 0.00276 - 0.0176 0.00506 0.00474 5.21e-5

Initial learning
rate α1

0.911 0.886 - 0.919 0.912 0.912 6.00e-5

Normal learning
rate decay λN

0.106 0.0719 - 0.110 0.101 0.100 1.02e-4

vmPFC impaired
learning
rate decay λvmPFC

0.622 0.620 - 0.644 0.626 0.626 6.13e-5

Initial
Exploration ε1

0.891 0.884 - 0.895 0.892 0.892 4.96e-5

Exploration
Decay ν

0.00842 0.00548 - 0.00893 0.00724 0.00713 1.50e-5

Matched
environments

For normal human behaviour: original, re-shuffled, random.
For vmPFC impaired human behaviour: original, re-shuffled.

Match count 860 of 1000 iterations

TABLE 6.11
Decaying ε-Greedy agent CSUD minimum loss search matches after 1000
iterations. The highlighted minimum loss column shows selected agent
hyper- parameters. Light gray indicates minimum loss and the associated
initial learning rate α1. Dark-gray, mid-gray indicate minimum loss associated
normal learning rate decay λN and vmPFC impaired learning rate decay
λvmPFC respectively. Light blue highlights minimum loss initial explocation ε1
and exploration decay ν.

and achieves 860 full search matches. In Fig. 6.21 green points indicate
initial learning rate, normal learning decay, vmPFC impaired learning de-
cay, initial exploration, and exploration decay, that is (α1, λN , λvmPFC, ε1, ν)
hyper-parameter tuples, which produce agent performance matching mean
fraction of good decks f̄G outcomes for the normal behaviour configuration
original, re-shuffled, and random; and vmPFC impaired configuration orig-
inal and re-shuffled IGT environments.

Table 6.12, Fig. 6.22 and Fig. 6.23 present CSUD grid search verification
configuration, 2D, and 3D contour mean fraction of good deck f̄G plots re-
spectively.

At initial learning rate α1 = 0.911 and initial exploration ε1 = 0.891,
Fig. 6.22 presents 2D mean fraction of good deck f̄G contours obtained at
four distinct exploration decay ν values. As previously, the dark and light
gray zones represent normal and vmPFC impaired match zones respec-
tively. The derivation of the match zones is discussed in Table 4.8. The
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Hyper-parameter Grid Points

Initial learning rate α1 0.1, 0.33, 0.66, 0.911

Learning rate decay λa 0.106, 0.622

Initial Exploration ε1 0.25, 0.5, 0.891, 1

Exploration Decay ν 0.002, 0.00842, 0.015, 0.05

IGT length Q-learning samples

100 750
a The learning rate decay and exploration decay grids are constructed around
the two values above. Appendix C provides the construction method.

TABLE 6.12
Decaying ε-Greedy agent CSUD verification. Hyper-parameter grid search
criteria for joint original, re-shuffled, and random IGT.

black coloured line represents the CSUD minimum-loss exploration decay
at ν = 0.00842. The legend on the right additionally indicates that when
ν = 0.00842, then at the IGT termination, final exploration is at 0.3871.

It is noted that in Fig. 6.22 at tuple (α1 = 0.911, λN = 0.106, λvmPFC =
0.622, ε1 = 0.891, ν = 0.00842), the black coloured line exhibits matches in all
of the marked dark and light gray zones, indicating a full match to human
IGT outcomes in all cases. Further it is noted that as observed in the (con-
stant exploration) ε-Greedy and Boltzman agent results, matching human
outcomes once more requires high exploration; here, in the form of high
initial exploration ε1.

At initial learning rate α1 = 0.911, Fig. 6.23 illustrates 3D mean fraction
of good deck f̄G contours obtained at initial exploration values ε1 = 0.25
and ε1 = 0.891. Fig. 6.23 assesses learning decay λ and exploration decay ν

interactions, while holding initial learning rate constant at α1 = 0.911. The
blue coloured 3D contour marks the CSUD discovered initial exploration
value ε1 = 0.891. The green diamond and red inverted triangular shapes
mark CSUD discovered normal and vmPFC impaired learning decay rates
respectively.

The 3D mean fraction of good decks f̄G surfaces reveal that learning rate
decay continues to induce normal versus vmPFC impaired behaviour. Ex-
ploration decay ν itself produces some effects, which depend on initial ex-
ploration ε1 and the specific IGT environment. Increasing exploration decay
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FIGURE 6.22: Decaying ε-Greedy agent 2D contours showing learning decay
λ and exploration decay ν effects at α1 = 0.911 and ε1 = 0.891. The dark and
light gray zones indicate normal and vmPFC impaired human outcome match
ranges for the original, re-shuffled, and random IGT environments. Learning
decay variation reproduces human IGT outcomes, while increasing exploration
decay produces upwards contour shifts due to exploration decreasing faster

over time.

leads to an increase in mean fraction of good decks. This effect is more pro-
nounced at higher initial exploration, and for the original and random IGT
environments, at lower learning decay λ. The initial learning rate α1 = 0.911
is high, and an initial non-stationarity effect is notable, with low learning
rate decay, towards the rear of the mean fraction of good decks f̄G contours,
in the area where learning decay λ is close to zero. In this non-stationary
zone, due to the high initial learning rate, increasing learning rate decay
initially leads to an increase in the mean fraction of good decks.
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FIGURE 6.23: Decaying ε-Greedy agent 3D contours with learning decay λ, ex-
ploration decay ν, and initial exploration ε1 at initial learning rate α1 = 0.911.
Both learning decay and exploration decay show f̄G influences in all IGT envi-

ronments. However, learning decay shows a stronger effect.
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FIGURE 6.24: Decaying ε-Greedy agent 20-draw blocks comparison at CSUD
search matches α1 = 0.911, λN = 0.106, λvmPFC = 0.622, ε1 = 0.891, ν = 0.00842.
Human results in dotted light gray. Agent results in solid dark gray, averaged
from 750 samples. All error bars at ±2SE. When error bars are taken into ac-
count agent and human 20-draw block performance appears relatively similar.

Details in text below.

Fig. 6.24 and Fig. 6.25 present 20-draw block results for mean fraction
of good decks f̄G and the exploration index (EI) respectively. In Fig. 6.24,
the dotted gray lines represent human benchmarks while the solid dark
gray lines show agent results. The dash-dotted line indicates f̄G = 0.50,
above which a normative pass is achieved. It is expected that as the IGT ad-
vances from block 1-20 towards 81-100, for normal behaviour, mean fraction
of good decks f̄G increases and then levels out. In contrast for vmPFC im-
paired behaviour, f̄G increases and levels out for the re-shuffled case, while
decreasing or staying the same for the original IGT environment. The decay-
ing ε-Greedy agent when taking human f̄G benchmark outcomes with ±2
SEs into account, matches the trends exhibited for the human benchmarks
in all behaviour and environment cases except for the vmPFC impaired re-
shuffled case, where the agent displays a steeper increasing trend.

In Fig. 6.25 the dotted gray lines represent human benchmarks while
the solid dark gray lines show agent results in relation to the exploration
index (EI). The results mirror those in Fig. 6.24, that is, human benchmark
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FIGURE 6.25: Decaying ε-Greedy agent 20-draw blocks exploration index
(EI) comparison at CSUD search matches α1 = 0.911, λN = 0.106, λvmPFC =
0.622, ε1 = 0.891, ν = 0.00842. Human results in dotted light gray. Agent results
in solid dark gray, averaged from 750 samples. Human subject and agent ex-
ploration index responses appear relatively similar except for vmPFC impaired

behaviour in the re-shuffled IGT environment. Details in text below.

EI trends are matched well in all cases except for the vmPFC impaired re-
shuffled case. This agent human outcome match discrepancy in the re-
spective vmPFC impaired re-shuffled environment outcomes suggest that
vmPFC impaired humans may not be exhibiting the exponential exploration
decay heuristic. However, as reported in Table 4.3, the vmPFC impaired
human population is very small ranging from 6 to 10 subjects. On the other
hand, the agent population is at n = 750. Therefore, it would be difficult to
make a definitive assessment as confidence bands have not been computed
for the non-linear exploration index (EI) transforms.

Fig. 6.26 provides a jitter plot density summary for the fraction of good
decks fG outcomes obtained at the CSUD selected minimum-loss hyper-
parameter values (α1 = 0.911, λN = 0.106, λvmPFC = 0.622, ε1 = 0.891) for 750
samples of the original, re-shuffled, and random IGT environments for nor-
mal (control) and vmPFC impaired configurations. Green dots mark out-
comes inside human performance ranges. Blue dots mark additional nor-
mative pass results, whereas red dots mark additional normative pass fails.
Green numbers give total matches out of 750 samples, and the values in
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FIGURE 6.26: Decaying ε-Greedy agent comparison of repeated simulation out-
comes to human IGT results. At ν = 0.00842 and reported CSUD minimum loss
hyper-parameter values, the decaying ε-Greedy agent achieves 633 and 749 full
matches for the normal and vmPFC impaired configurations respectively. Full

details are in the text.

brackets indicate percentages matched. A high percentage matched value
is indicative of predictive simulation success. Finally the red bars and box
indicate central tendency in terms of the mean and±2 SEs (standard errors).

Fig. 6.26 indicates that at exploration decay ν = 0.00842, decaying ε-
Greedy agent simulations achieve the best results in the re-shuffled IGT,
with 84% and 100% matches for the normal and vmPFC impaired configu-
rations respectively. In the remaining configurations, the decaying ε-Greedy
agent achieves for the normal original case 73% matches, while only achiev-
ing 7% and 5% actual matches for the vmPFC impaired original and normal
random configurations respectively. In the vmPFC impaired original and
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Learning Decay λ
At α = 0.01, the null
hypotheses of learning
decay factor equality is
rejected. Only equality of
the re-shuffled response
cannot be rejected.

ANOVA Typea 110.633 2.969 4447.856 0

Original | Random vs. Learning Decay λ
At α = 0.01, the null
hypotheses of equal
original and random,
original only, and
random only responses
are rejected.

ANOVA Type 171.039 1.982 2968.573 0

Wilks Lambda 186.696 2.000 1497.000 0

Re-Shuffled vs. Learning Decay λ

ANOVA Type 1.698 1.000 1498 0.193 Single response variable,
no subsets.Wilks Lambda 1.698 1.000 1498 0.193

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 6.13
Decaying ε-Greedy agent np-M/ANOVA analysis of mean fraction of good
decks f̄G with learning decay λ as factor. At significance level α = 0.01 mean
fraction of good decks f̄G responses are statistically significantly different,
except for the re-shuffled IGT environment.

random normal cases, where low matches are achieved, note that the red
bars indicate that simulation means lie within the respective human out-
come catchment areas marked at the maximum by the dashed, and at the
minimum, by the dot-dashed lines. However, the low match cases display
bi-modal outcome distributions leading to very low mass in the catchment
areas.

Table 6.13 depicts decaying ε-Greedy agent np-M/ANOVA results con-
sidering the factor effect of normal and vmPFC impaired learning rate decay
λN = 0.106 and λvmPFC = 0.622 relative to the mean fraction of good decks
f̄G. The test statistic and degrees of freedom (df1 and df2) columns report
the details of the relevant test variant against which the reported p-value
result is obtained. The results show that at significance level α = 0.01, the
joint (multivariate) factor effect of learning rate decay across the original, re-
shuffled, and random IGT environments is significant. Further, the learning
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FIGURE 6.27: Decaying ε-Greedy agent 2D contours showing exploration de-
cay ν effects during the IGT. In general, as ν increases, exploitation increases at
a faster rate. The dotted line marks ε = 0.627, the CSUD discovered minimum-
loss exploration value for the ε-Greedy agent results presented in section 6.3.

rate decay factor effect fails to produce a statistically significant effect for
the re-shuffled IGT environment alone; this result is in conformance with
corresponding human IGT results.

Finally given initial exploration ε1 = 0.891, Fig. 6.27 presents how explo-
ration decay ν affects per period exploration εt. In general, as ν increases,
exploration decay increases. The dotted line marks ε = 0.627, the CSUD
discovered minimum-loss exploration value for the ε-Greedy agent results
presented in section 6.3. Hence the dotted line helps to contextualise per
period decaying exploration εt versus constant exploration ε.

Note that at CSUD selected exploration decay ν = 0.00842, in relation to
constant exploration at ε = 0.627, decaying exploration is above this value
for approximately the first IGT half (apprx. 43 periods), while decreasing
below constant exploration in approximately the second IGT half. In that
manner,on average, over the course of the 100 draws, exploration decay
with ν = 0.00842 appears to replicate the results the constant exploration
ε-Greedy agent achieves with ε = 0.627.
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6.6.1 Decaying ε-Greedy Agent Discussion

The decaying ε-Greedy agent presents primarily good results. However,
these results are not very different from those obtained by the simpler con-
stant exploration ε-Greedy agent presented in section 6.3. This raises the
question of whether in general there exist constant exploration counterparts
to the exponential exploration decay model employed here.

In relation to minimising CSUD search loss in 1000 iterations, the decay-
ing ε-Greedy search delivers the lowest minimum loss at lossmin = 0.00276.
In relation to CSUD grid search verification, the decaying ε-Greedy agent
delivers at hyper-parameter values α1 = 0.911, λN = 0.106, λvmPFC = 0.622,
ε1 = 0.891, and ν = 0.00842, mean fraction of good decks f̄G matches for
all behaviour and IGT environment data, for which human IGT outcome
comparables exist.

In relation to 20-draw blocked data, this agent achieves good matches as
well. Further for np-M/ANOVA results with normal learning decay λN and
vmPFC impaired learning decay λvmPFC as factors and at significance level
α = 0.01, the decaying ε-Greedy achieves a joint statistically significantly dif-
ferent result, while failing to achieve as expected a statistically significantly
different result for the re-shuffled IGT.

As with all other ε-Greedy based agents, CSUD verification fraction of
good decks fG jitter plots display bi-modal densities with little or no mass
in human IGT outcome catchment zones, especially for the normal original
and random, and vmPFC impaired original IGT cases. This tendency could
be an artefact of exploring all possible alternatives subject to learning decay.

6.7 Summary

A joint CSUD search is conducted across the original, re-shuffled, and ran-
dom IGT environments, to discover mean fraction of good decks f̄G matches
for normal and vmPFC impaired human behaviours, modelled in software
agents by initial learning rate α1, exploration, and normal and vmPFC im-
paired learning decay λN and λvmPFC respectively.

The results reported here are based on aggregated human IGT outcomes.
With the exception of the random IGT (Steingroever et al., 2015), individual
human IGT outcome data was not available. As noted in chapter 1 when
combined with the human f̄ H

G targeting outcomes, a representative agent
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and squared loss, CSUD resembles recursive least squares. From this per-
spective that is, thinking of CSUD as recursive least squares, one might ask
to what extent CSUD derived Q-learning hyper-parameters are useful at ex-
plaining individual human behaviour? This question, however, is beyond
the scope of this work. The primary purpose of this work is not to explain
human behaviour, but to develop nonrational computational technologies
inspired by human behaviour. This work, however, provides some bench-
mark results, which may in future work be fitted against individual IGT
outcome data to ascertain whether observed simulation results do indeed
obtain in humans.

From an algorithmic perspective, this work focuses on the key Q-learning
hyper-parameters involved in learning over time and in the exploitation
versus exploration trade-off. Grid search results show that given expo-
nential learning rate decay, original, re-shuffled and random IGT f̄G con-
tours decompose very nicely into onion-layered surfaces. Although it is
not reported here, such a decomposition does not obtain with linear learn-
ing rate decay. The onion layer decomposition effectively minimises hyper-
parameter interaction. The main contribution of the initial learning rate α1 is
to produce initial non-stationarities. Exploration produces vertical f̄G con-
tour shifts, whereas learning rate decay λ determines normal versus vmPFC
behaviour. Grid search results verify that with this onion layered decom-
position, CSUD does indeed achieve its algorithmic objective of tuning Q-
learning hyper-parameters to minimise target deviations. It is also clear
from 2D and 3D contour plots that the CSUD solution is not unique. The
non-uniqueness of CSUD could be taken as an indication that the hyper-
parameters in question may vary across individuals, however, that there
exists some general key tendencies.

Here two key results are presented: (1) regardless of agent type, increas-
ing learning rate decay leads to vmPFC impaired agent behaviour, and (2)
human exploration in the IGT is shown to be very high both in terms of
ex-ante agent exploration and the ex-post implied exploration index (EI).

From an algorithmic perspective either for RL or CSUD, both learning
rate decay and exploration remain indispensable components of operation.
As it has been noted (Ljung, 1978; Spall, 1992; Tsitsiklis, 1993; Yin & Kush-
ner, 2003), in iterative learning such as RL or stochastic approximation, for
theoretical guarantees of convergence, the learning rate must decay, how-
ever, subject to decay speed limits. A constant learning rate such as in the
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EV (2.1b), the PV (2.2b), or the ORL (2.4b) does not satisfy this prerequisite;
nor however, does the exponentially decaying learning rate used here. Intu-
itively, a constant learning rate leads to non-degrading oscillations about the
optimum, and in a stochastic context, this could possibly lead to divergence.
The rational learning requirements apply to a broad range of problems. It
would be of interest to fit human choice problem outcome data, such as IGT
outcomes, to RL models with rational and exponentially decaying learning
rates.

Regarding exploration, a further result in the IGT literature states that
normal and vmPFC impaired subjects do not produce statistically signifi-
cant group effects with respect to re-shuffled IGT outcomes, while produc-
ing a corresponding significant group effect with respect to original IGT
outcomes (Fellows & Farah, 2005, pp. 60-61). This result is assessed using
np-M/ANOVA (non-parametric multivariate analysis of variance) with the
cumulative mean fraction of good decks measure as the response and, nor-
mal and vmPFC impaired learning rate decay as factors. It is found that the
human subject result analogue can only be obtained with the ε-Greedy and
decaying ε-Greedy agents.

One interesting consideration at the outset of this work was to see whether
universal normal and vmPFC impaired learning decay rates could be ob-
tained. Such universal rates were hypothesized to remain the same across
different agents and IGT environments. However, in search results such a
common value set could not be discovered. It was found instead that CSUD
discovered normal and vmPFC impaired learning decay rates varied among
agents, while remaining relatively stable across the original, re-shuffled, and
random IGT environments. All of these three IGT environments have iden-
tical long term net yield structures. As agents only differ by exploration im-
plementations, however, normal and vmPFC impaired learning decay rates
may be sensitive to underlying model stochasticity. A direct comparison of
randomness and corresponding levels of learning rate decay has not been
undertaken here and remains outside of the scope of this current work.

Four reinforcement learning software agents are considered, of which
the Boltzmann and adaptive ε-Greedy agents can be considered as rational,
as they include sophisticated probabilistic modelling leading in the Boltz-
mann agent to proportionate probabilistic exploration, and in the case of
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the adaptive ε-Greedy agent to temporal difference based exploration scal-
ing. The remaining two agents, consisting of the ε-Greedy and decaying ε-
Greedy agents, comprise heuristic agents, with the former agent exhibiting
constant and the latter agent exhibiting constant decay exploration. Litera-
ture references for the single-state (exponential decay) decaying exploration
agent used here have not been found. However, in multi-state environ-
ments, a version of the decaying ε-Greedy agent, where exploration decays
in proportion to the number of state visits has been discussed for example
in Powell, 2011, p. 466.

In general, the heuristic or nonrational agents perform better than the
rational agents in the following sense: minimum CSUD loss and ability
to match all human results at CSUD discovered hyper-parameters. Both
the ε-Greedy and decaying ε-Greedy agents produce mean fraction of good
decks f̄G results, which for normal behaviour original, re-shuffled, and ran-
dom; and vmPFC impaired behaviour original and re-shuffled IGT envi-
ronments produce results in the corresponding IGT human outcome match
zones. Further, treating normal learning decay λN and vmPFC impaired
learning decay λvmPFC as factors at statistical significance level α = 0.01,
the original IGT environment produces behaviour driven statistically sig-
nificantly different f̄G outcomes, while the re-shuffled environment fails to
do so.

In contrast, the rational agents struggle to produce f̄G performance
matches for all behaviour and IGT environment cases. The Boltzmann agent
CSUD hyper-parametrisation fails to match normal random IGT environ-
ment outcomes, while the adaptive ε-Greedy agent CSUD hyper-parametri-
sation obtains a match where the vmPFC impaired original and normal ran-
dom outcomes are just at the respective match zone boundaries. Also, both
rational agents fail to reject the null hypothesis of no learning decay factor
effect in the re-shuffled IGT.

Only the Boltzmann agent, however, generates unimodal fraction of good
decks fG jitter plots. In the original and random IGT environments espe-
cially with vmPFC impaired behaviour, ε-Greedy agent variants may pro-
duce bi-modal jitter plots, which may display little or no mass inside hu-
man IGT outcome match zones. This effect may result from a combination
of learning rate decay with equal-incidence exploration. When agents learn
correct responses, high exploration leads to an additional low performance
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cluster, and when agents learn incorrect responses, high exploration like-
wise leads to an additional high performance cluster. These high explo-
ration induced individual performance variations produce bi-modal jitter
plots, where the central tendency is computed to be in the IGT human catch-
ment areas, however, with little or no actual individual software agent mass
inside catchment zones.

20-draw block exploration index (EI) plots suggest that the ε-Greedy and
decaying ε-Greedy agents come closest to matching corresponding human
outcomes. In 1000 CSUD iterations, the decaying ε-Greedy agent achieves
860 full matches while the ε-Greedy agent only achieves 290 full matches.
Therefore in relation to the cumulative end-of-task mean fraction of good
decks measure used in CSUD, having heuristic exploration decay appears
to improve search outcomes. However, Fig. 6.27 reveals that, the two ε-
Greedy models may be quite similar, when considering average exploration.
In fact, the decaying ε-Greedy model appears to exhibit average exploration
around the ε = 0.627 value employed by the constant exploration ε-Greedy
model. Between these two heuristic models, the constant exploration model
remains the simpler alternative.

It is unclear why the heuristic models perform better. This could be due
to the statistical properties of the original, re-shuffled, and random IGT pay-
outs, where some decks exhibit low frequency realisation of the determining
payouts, making it difficult to accurately develop mean net payout repre-
sentations. Chapters 7 and 8, further explore this possibility by looking at
the reversed IGT and SGT environments.
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Reversed IGT with Simple
Reinforcement Learning
Modelling via CSUD

The reversed IGT (Bechara et al., 2000, p. 2193) has been introduced in sec-
tion 4.1.4. To review, the reversed IGT environment consists of four decks
E, F, G, and H, where decks E and G are the good decks, producing fre-
quent high fines with less frequent but higher rewards providing a positive
net yield; and F and H are the bad decks with frequent low fines but even
lower less frequent rewards providing a negative net yield. Over the course
of 100 turns, a duration unknown to the participants, the participants must
discover the on average positive net yield decks E and G. While the orig-
inal, re-shuffled, and random IGT environments produce a steady stream
of rewards with occasional fines, the reversed IGT environment produces a
steady stream of fines, with occasional rewards. However, for decks E and
G, the occasional rewards produce on average net positive yields.

The reversed IGT draw-by-draw yield structure is shown in Appendix A.4.
It wil be noted that the reversed IGT more closely resembles gambling ac-
tivities, where in each period a constant entry cost must be incurred to gain
admission to the possibility of a large payout. Bechara et al., 2000 report
that the aim of the reversed IGT, that is of making punishments constant, is
to assess contributions of insensitivity to punishment and hypersensitivity
to reward in vmPFC impaired subject outcomes. This work reports on the
reversed IGT, because in a value maximisation context, the constant accrual
of costs makes it more difficult to determine the best on average positive net
yield decks. It is of interest to assess the effect of such a more difficult sig-
nal extraction problem on the values of the initial learning rate, exploration,
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and learning rate decay.
The adaptive ε-Greedy agent is no longer considered. This is on the

basis of the poor 20-draw block mean fraction of good deck f̄G and emo-
tion index results presented in Fig. 6.17 and Fig. 6.18. Further, based on the
np-M/ANOVA results reported in Table 6.10, the adaptive ε-Greedy agent
cannot replicate the key IGT literature result that for the re-shuffled IGT,
there is no statistically significant factor (group) effect arising from normal
learning rate λN and vmPFC impaired learning rate λvmPFC as behavioural
factors, when using mean fraction of good decks as the response (Fellows
& Farah, 2005, pp. 60-61). Due to these two observations, the adaptive ε-
Greedy agent, while exhibiting a very interesting rational technology, does
not appear to be capable of producing human analogue results.

With the remaining ε-Greedy, Boltzmann, and decaying ε-Greedy archi-
tectures, it will be investigated to what extent learning rate decay λ and
exploration influence software agent ability to achieve human reversed IGT
outcomes for normal and vmPFC impaired behaviours. All discussed agents
will continue to use base model (6.1) introduced in chapter 6. The general
methodology remains the same as in section 6.1.

7.1 Search of the Reversed IGT environment

Table 7.1 summarises software agent CSUD search parameter constraints
and attributes. As in chapter 6, broad parameter search ranges are used for
the initial learning rate and exploration, while smaller ranges are employed
for normal and vmPFC impaired learning rate decay.

It is found from preliminary searches that the ranges for normal and
vmPFC impaired learning rate decay, λN and λvmPFC respectively, must be
set carefully, so as to avoid outcomes where λN and λvmPFC produce simula-
tion results, which do not reside in the corresponding human IGT outcome
catchment zones. It is believed that this odd behaviour results from the use
of a loss function where normal and vmPFC impaired loss are added to-
gether; this addition can be seen in the more complex multi-environment
search loss specification (5.9), where losses across environments and be-
haviours (normal, vmPFC impaired) are aggregated additively. Here, a sim-
ple version of (5.9) with a single environment and two behaviours is used.
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Agent Boltzmann ε-Greedy
Decaying
ε-Greedy

Hyper-parameter

Initial learning rate α1 0.01 - 0.99 0.01 - 0.999 0.05 - 0.99

Normal learning rate decay λN 0.0001 - 0.25 0.03 - 0.30 0.03 - 0.32
vmPFC impaired learning rate
decay λvmPFC

0.25 - 1.2 0.25 - 1.2 0.32 - 1.2

Temperature τ 0.5 - 500

Exploration ε 0.05 - 0.70 0.5 - 1.0a

Exploration decay ν 0.002 - 0.02

CSUD Iterations 1000 1000 1000

Gradient Samples 5 1 3

IGT length Q-learning samples

100 750
a Exploration ε refers to initial exploration ε1.

TABLE 7.1
Search Methodology: Joint reversed IGT hyper-parameter CSUD search
criteria by agent.

By limiting learning rate decay ranges, prior information in the sense of
range boundaries is injected into the search query. In this case, the notion
that λN and λvmPFC must be distinct and that the former must be less than
the latter. By construction, search loss is minimised to the extent that search
criteria are fulfilled. It is in this sense that the CSUD search strategy can be
seen as a contraction of a grid search over a constrained space.

Because CSUD is a stochastic, gradient driven search technique, some-
times a single gradient evaluation is not sufficient to produce a reliable gra-
dient estimate. The ‘Gradient Samples’ entry in Table 7.1 indicates if any
gradient sampling was employed.

7.2 Search Results: Reversed IGT

Searches are conducted via CSUD. The reinforcement learning layer is im-
plemented using the Boltzmann, ε-Greedy, and decaying ε-Greedy agents.

For the reversed IGT environment, cumulative and 20-draw block hu-
man mean fraction of good decks f̄ H

G data is available for both normal and
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vmPFC impaired subjects. Additionally 20-draw block exploration index
(EI) values can be computed (see chapter 4). The CSUD searches will aim
to find hyper-parameter combinations, which can produce simultaneous
performance matches for two human IGT outcomes: normal reversed and
vmPFC impaired reversed cumulative mean fraction of good decks results.

For ease of comparison, the ε-Greedy, Boltzmann, and decaying ε-Greedy
agent results are presented side-by-side.

Fig. 7.1 and Table 7.2 present CSUD search results in graphic and tabular
forms respectively.

Table 7.2 indicates that after 1000 CSUD iterations, all agents have achieved
a large number of matches within the normal and vmPFC impaired reversed
IGT outcome human match zones, which are noted in Table 4.8. For the
reversed IGT environment, the (rational) Boltzmann agent has the lowest
minimum loss performance, while the (heuristic) decaying ε-Greedy has the
highest minimum loss performance.

As discussed in section 6.7, prior to empirical results, one consideration
in this work was whether universal normal and vmPFC impaired learning
decay rates, reflecting perhaps some unknown organic rule and therefore
applying to all agents and environments, could be obtained. It was found,
however, in chapter 6 that such a universal value set could not be obtained
across different agents. The results in Table 7.2 further suggest that at least
with the CSUD search methodology, such a universal normal and vmPFC
learning rate decay value set cannot be found across IGT environments with
substantially different net yield structures.

Intuitively the lack of discovering across considered IGT environments
a universal normal and vmPFC impaired learning decay rate can be seen
as arising from the combination of the strong loss assessment of the CSUD
employed squared loss function and the fact that exponential learning rate
decay λ acts as a sampling frequency band-pass filter, attenuating sampling
after a certain search iteration. Consequently, the reversed IGT environment
has a substantially different net yield structure, and there is no a-priori rea-
son to expect for this structure to be discovered at the same sampling fre-
quency as that is applied to the normal, re-shuffled, and random IGTs via
the corresponding learning decay rates.
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FIGURE 7.1: Reversed IGT CSUD searches. Green dots indicate matches. All
agents achieve a large number of matches. But at 1000 iterations search conver-

gence might not yet have been achieved. Details in text.
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Agent ε-Greedy Boltzmann Decaying ε-Greedy

Hyper-parameter

Initial Learning Rate α1 0.848 0.596 0.121

Normal Learning Decay λN 0.193 0.205 0.226
vmPFC Impaired Learning Decay
λvmPFC

0.633 0.466 0.594

Exploration ε = 0.431 τ = 35.0
ε1 = 0.905

ν = 0.00609

Minimum Loss 8.12e-7 4.64e-7 0.00125

Matches 990 997 752

TABLE 7.2
Reversed IGT CSUD search matches after 1000 iterations. Minimum loss
column shows selected agent hyper-parameters.

Fig. 7.1 depicts CSUD iteration results for agent hyper-parameters and
loss. Green dots indicate agent hyper-parameter combinations, where agent
results for normal and vmPFC impaired learning decay λN and λvmPFC lie
within normal and vmPFC impaired human reversed IGT environment out-
come ranges. Such a result is referred to as having achieved a match to
human IGT outcomes.

Rather than obtain a global minimum, conceptually CSUD search aims
to satisfice, that is produce one or more suitable search result candidates.
As noted in Proposition 12.4.1, only if a global optimum already exists in
the constrained search space, does the CSUD search strategy theoretically
guarantee convergence to a global minimum loss outcome; however, only
in terms of the performance statistic ( f̄G) and not in terms of the perfor-
mance statistic generating (Q-learning) hyper-parameters. If search budgets
permit, then further searches at different iterations, or with different initial
conditions may be undertaken to assess whether the initially obtained re-
sults correspond to those with a global minimum. In such endeavours how-
ever, care must be taken as complex searches with complex loss functions
over the constrained space may not exhibit a global minimum.

Based on the slow convergence paths of vmPFC impaired learning rate
decay λvmPFC and initial exploration ε1 for the Boltzmann and decaying ε-
Greedy agents respectively, Fig. 7.1 indicates that at 1000 iterations, hyper-
parameter searches for these two agents may not yet have converged. Fig.
7.1b shows that for the Boltzmann agent at 1000 iterations, vmPFC impaired
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Agent ε-Greedy Boltzmann
Decaying
ε-Greedy

Hyper-parameter
Initial
Learning Rate α1

0.1, 0.5,
0.848, 0.999

0.05, 0.33,
0.596, 0.99

0.01, 0.121,
0.45, 0.9

Normal
Learning Decay λN

a 0.193 0.205 0.226

vmPFC Impaired
Learning Decay λvmPFC

a 0.633 0.466 0.594

Exploration
ε = 0.1, 0.431,

0.6, 0.8
τ = 5, 35,

75, 225

ε1 = 0.25, 0.5,
0.905, 1

ν = 0.002, 0.00609,
0.015, 0.05

IGT length Q-learning samples

100 750
a The learning rate decay and exploration decay grids are constructed around
the two values above. Appendix C provides the construction method.

TABLE 7.3
CSUD Verification. Reversed IGT hyper-parameter grid search criteria for the
ε-Greedy, Boltzmann, and decaying ε-Greedy agents.

learning decay λvmPFC appears be increasing albeit at a lower trend. Fig.
7.1c shows that for the decaying ε-Greedy agent, initial exploration still ap-
pears to be on a decreasing trend. However, keeping in line with the non-
rational idea of a limited search budget, which here is set to 1000 iterations,
only these results are reported here. Despite these unconverged searches, at
1000 iterations, all agents achieve a high number of matches out of 1000 iter-
ations, with the Boltzmann agent achieving 997 out of 1000 matches. From
a nonrational CSUD search perspective, all that is needed is to achieve such
search matches.

Table 7.3 presents agent grid search verification configurations. Fig. 7.2
and Fig. 7.3 show 2D and 3D CSUD grid search verification contours. In Fig.
7.2, dark and light gray zones represent normal and vmPFC impaired hu-
man IGT outcome match areas respectively. Solid black contours show re-
sponse to learning decay λ at CSUD selected minimum loss hyper-parameter
values. In terms of mean fraction of good decks f̄G, Fig. 7.2 indicates that
for all agents, increasing learning rate continues to lead to outcomes, which
are consistent with vmPFC impaired behaviour. That is for all agents, there
is a lower learning decay rate λN and a higher learning decay rate λvmPFC

associated with normal and vmPFC impaired behaviour respectively.
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FIGURE 7.2: Reversed IGT CSUD verification grid search 2D contours. Dark
and light gray zones represent normal and vmPFC impaired human IGT out-
come match areas respectively. Solid black contours show response to learning

decay λ at CSUD selected minimum loss hyper-parameter values.
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However, for all agents, the role of exploration becomes more complex.
For the ε-Greedy and Boltzmann agents, unlike in the original, re-shuffled,
random IGT environment joint search results in chapter 6, low exploration
no longer guarantees higher than normal human outcomes.

Fig. 7.2a and Fig. 7.2b show that in the reversed IGT environment for
the ε-Greedy and Boltzmann agents, low exploration leads to f̄G outcomes,
which remain below the human dark gray normal IGT outcomes. Fig. 7.2c
shows that at initial exploration ε1 = 0.905, increasing exploration decay ν

shifts f̄G contours upwards as seen in chapter 6. However, all of the con-
tours depicted in Fig. 7.2c may produce solution candidates in the dark and
light gray match zones.

In such circumstances, where many solutions exist, note that by design
CSUD produces solutions, which attempt to minimise deviations from the
corresponding human mean fraction of good deck outcome means. This is
noted for example in Fig. 7.2.

For the ε-Greedy and Boltzmann agents, Fig. 7.3a and Fig. 7.3b respec-
tively illustrate that low exploration in combination with a low initial learn-
ing rate may produce mean fraction of good decks f̄G outcomes, which ex-
ceed the normal reversed IGT outcome human match zones. At low explo-
ration, for example at ε = 0.1, or τ = 5, holding learning decay λ constant,
and increasing the initial learning rate leads to a strong decline in mean
fraction of good decks f̄G. Hence in the reversed IGT environment, both
the ε-Greedy and Boltzmann agents exhibit some interaction between ex-
ploration and the initial learning rate. However, as indicated by the lack
of a similar decreasing slope in blue coloured surfaces, when exploration is
higher then this interaction appears to stop.

For the decaying ε-Greedy agent, with learning decay λ and exploration
decay ν on the horizontal axes and at initial learning rate α1 = 0.121, Fig.
7.3c presents a different view. Note that even when initial learning rate is
held constant at α1 = 0.121, exploration behaviour is more complex in the
sense that the lower exploration contour with initial exploration ε1 = 0.25
crosses through the blue coloured surface associated with the CSUD dis-
covered minimum loss hyper-parameter values consisting of (α1 = 0.121,
λN = 0.226, λvmPFC = 0.594, ε1 = 0.905, ν = 0.00609). The decaying ε-
Greedy agent 3D visualisation results also support the notion of more com-
plex agent exploration behaviour in the reversed IGT.
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FIGURE 7.3: Reversed IGT CSUD verification grid search 3D contours. Blue
coloured surfaces show response to learning decay λ at CSUD selected min-
imum loss hyper-parameter values. The diamond and inverted triangular
shapes mark CSUD minimum loss normal and vmPFC impaired learning de-

cay rates respectively.

Fig. 7.4 and Fig. 7.5 compare 20-draw block agent results to correspond-
ing human outcomes. Fig. 7.4 compares mean fraction of good decks f̄G

results achieved by agents and humans. Human results are in light gray.
Agent results appear in dark gray, averaged from 750 samples. All error
bars are at ±2SE. When error bars are taken into account, agent and hu-
man 20-draw block performance appears relatively similar. For normal be-
haviour, Fig. 7.4a and Fig. 7.4b show that the ε-Greedy and Boltzmann
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FIGURE 7.4: Reversed IGT agent 20-draw blocks comparison at CSUD mini-
mum loss search matches noted in Table 7.2. Human results in dotted light
gray. Agent results in solid dark gray, averaged from 750 samples. All error
bars at ±2SE. When error bars are taken into account agent and human 20-

draw block performance appears relatively similar. Details in text below.

agents match human per block f̄G results more precisely than the decaying
ε-Greedy agent, which matches the general trend.

Fig. 7.5 compares exploration index (EI) results achieved by agents and
humans. At full exploitation, the exploration index reduces to 0. Human
results are in light gray. Agent results appear in dark gray, averaged from
750 simulation samples. Human and agent exploration index responses ap-
pear relatively similar. However, for normal behaviour, Fig. 7.5a and Fig.
7.5b show that the ε-Greedy and Boltzmann agents match human per block
exploration index (EI) results more precisely than the decaying ε-Greedy
agent, which only matches the general trend. For normal behaviour, the ex-
ploration index does not drop under 75, indicating that agents do not switch
to full exploitation. For vmPFC impaired behaviour, the exploration index

150



Chapter 7. Reversed IGT with Simple Reinforcement Learning Modelling
via CSUD

Reversed

C
ontrol

1−
20

21
−4

0
41

−6
0
61

−8
0

81
−1

00

0
25
50
75

100

0
25
50
75

100

Blocks

Ex
pl

or
at

io
n 

In
de

x,
 E

I

vm
PFC

(A) ε-Greedy Agent
α1 = 0.848, ε = 0.431,
λN = 0.193, λvmPFC = 0.633

Reversed

C
ontrol

1−
20

21
−4

0
41

−6
0
61

−8
0

81
−1

00

0
25
50
75

100

0
25
50
75

100

Blocks

Ex
pl

or
at

io
n 

In
de

x,
 E

I

vm
PFC

(B) Boltzmann Agent
α1 = 0.596, τ = 35.0,
λN = 0.205,
λvmPFC = 0.466

Reversed

C
ontrol

1−
20

21
−4

0
41

−6
0
61

−8
0

81
−1

00

0
25
50
75

100

0
25
50
75

100

Blocks

Ex
pl

or
at

io
n 

In
de

x,
 E

I

vm
PFC

(C) Decaying ε-Greedy
Agent ε-Greedy Agent
α1 = 0.121, ε1 = 0.905,
ν = 0.00609, λN = 0.226,
λvmPFC = 0.594

Agent resultsHuman results

(D) Legend

FIGURE 7.5: Reversed IGT agent 20-draw blocks exploration index (EI) com-
parison at CSUD minimum loss search matches noted in Table 7.2. Human
results in dotted light gray. Agent results in solid dark gray, averaged from 750
samples. All agents match the decreasing trend in normal human (control) EI
and replicate the vmPFC human impaired outcome exhibited lack of EI reduc-

tion. Details in text below.

(EI), that is implied exploration, remains close to 100, indicating that the
agents cannot learn to exploit the good decks.

Fig. 7.6 provides agent jitter plot density summary for the fraction of
good decks fG outcomes obtained at the CSUD selected minimum loss agent
hyper-parameter values for 750 simulation samples of the reversed IGT en-
vironments for normal (control) and vmPFC impaired configurations. Green
dots mark outcomes inside human performance ranges. Blue dots mark ad-
ditional normative pass results, whereas red dots mark additional norma-
tive pass fails. Green numbers give total matches out of 750 samples, and
the values in brackets indicate percentages matched. A high percentage
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FIGURE 7.6: Reversed IGT. Comparison of repeated agent simulation out-
comes to human IGT results. CSUD minimum loss exploration values are
ε = 0.431, τ = 35, ν = 0.00609 for the ε-Greedy, Boltzmann, decaying ε-Greedy
agents respectively. ε-Greedy based agents exhibit a tendency towards bi-
modal fG. Due to this bi-modal tendency, agents do not achieve many sim-

ulation results, which are inside human match zones. Details are in the text.

matched value is indicative of predictive simulation success. The dashed
and dash-dotted horizontal lines indicate the maximum and minimum re-
spectively of the human match range. Finally the red bars and box indicate
central tendency in terms of the mean and ±2 SEs (standard errors).

Fig. 7.6 shows that agents do not achieve many simulation results inside
the respective human match zones. At CSUD selected exploration ε = 0.431,
the ε-Greedy agent achieves 19% normal matches and no vmPFC impaired
matches. At CSUD selected exploration temperature τ = 35, the Boltz-
mann agent, which had the lowest CSUD search loss, achieves 33% normal
and 38% vmPFC impaired matches. At CSUD selected initial exploration
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

ε-Greedy Agent, λN = 0.193, λvmPFC = 0.633 At α = 0.01, the null
hypotheses of Learning
Decay factor equality is
rejected.

ANOVA Typea 44.275 1.000 1498 0

Boltzmann Agent, λN = 0.205, λvmPFC = 0.466 At α = 0.01, the null
hypotheses of Learning
Decay factor equality is
rejected.

ANOVA Typea 576.055 1.000 1498 0

Decaying ε-Greedy Agent, λN = 0.226, λvmPFC = 0.594 At α = 0.01, the null
hypotheses of Learning
Decay factor equality is
rejected.

ANOVA Typea 128.535 1.000 1498 0

aWilks Lambda produces identical results.

TABLE 7.4
Agent Reversed vs. Learning Decay λ np-M/ANOVA analysis of mean
fraction of good decks f̄G with learning decay λ as factor. At significance level
α = 0.01 Mean fraction of good decks f̄G responses are statistically
significantly different.

ε1 = 0.905 and exploration decay ν = 0.00609, the decaying ε-Greedy agent
achieves 63% normal matches and 3% vmPFC impaired matches. For ε-
Greedy agent variants, this may in part be a result of the tendency towards
bi-modal agent fraction of good decks fG outcome densities, which have
little or no mass at the distribution mean. Interestingly for any agent, in-
creasing exploration leads towards a density migration towards the normal
and vmPFC impaired human match zones. In contrast, as exploration de-
creases, for example as seen in Fig. 7.6b, as τ reduces from 225 to 5, even
the Boltzmann agent moves towards a bi-modal fG outcome density. Also
note that at τ = 225 vmPFC impaired simulations achieve 587 matches
inside the corresponding human outcome catchment zone. In contrast, at
τ = 35, vmPFC impaired Boltzmann simulations achieve only 268 in catch-
ment zone matches. The primary reported Boltzmann results use τ = 35
since exploration is constrained to be identical across normal and vmPFC
configured agents, and τ = 35 performs better overall across both configu-
rations.

Table 7.4 shows np-M/ANOVA effect analysis for reversed IGT mean

153



Chapter 7. Reversed IGT with Simple Reinforcement Learning Modelling
via CSUD

fraction of good decks f̄G with normal learning decay λN and vmPFC im-
paired learning decay λvmPFC as factors. Test variants can be thought of as
non-parametric versions of the F-test, with a test statistic and two degrees
of freedom. These three quantities are then assessed to derive the p-value.
The test statistics are discussed in Burchett et al., 2017.

For all agents, at significance level α = 0.01, the effect of learning de-
cay as a factor is significant. That is, in the models proposed here, learn-
ing decay is instrumental in generating normal versus vmPFC impaired be-
haviour. The findings are discussed next.

7.3 Discussion: Reversed IGT

The hallmark of the reversed IGT task is that while the subject must iden-
tify the good decks E and G, which on average give net positive yields, they
must do so in face of a per draw constant and high loss of 100 (imaginary)
dollars. In contrast, the bad decks F and H produce a lower per draw con-
stant loss of 50 dollars with even lower positive yields. Therefore, the sub-
ject must not only identify the good decks but also disambiguate for each
good deck the loss and the gain signals. This type of task is difficult for hu-
man beings, and this difficulty has been modelled via loss aversion in the
expectancy valence (section 2.4.1), via risk aversion in the prospect valence
(section 2.4.2), and via separate loss and gain signal learning rate weight-
ing in the outcome-representation model (section 2.4.3). In all three models,
however, the common theme is that humans react differently to loss and
gain.

An alternative explanation regarding frequency-gain effects may be pro-
vided by Hertwig et al., 2004, who find that in decisions from experience,
that is under uncertainty, low frequency events are probabilistically under-
weighted. In the reversed IGT, good deck E and bad deck H exhibit with
probability 0.10 (rare) gains of 1250 and 250 respectively. The under-weighting
of these events may have an effect on cumulative task end f̄G outcomes.
However, as the reversed IGT also contains low frequency gain decks, a
clear indication of probabilistic under-weighting cannot be obtained at the
aggregated good versus bad decks and cumulative task end outcome mea-
sures used in this work.
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The three Q-learning agents discussed in this chapter lack the signal ex-
traction sophistication of the EV, PV, or ORL models. Thus the presence
of learning decay with a maximisation criterion and the increased experi-
ence of negative yields produce a harder signal extraction problem. This is
because due to learning rate decay, any deck yield streams, which initially
produce a lower net yield will be established as "bad decks," even when
they produce better results later on in the IGT. Based on slower CSUD itera-
tion convergence as noted in Fig. 7.1, and complex exploration interactions
as noted in Fig. 7.2 and Fig. 7.3, it would appear that the reversed IGT is
harder to solve for the ε-Greedy, Boltzmann, and decaying ε-Greedy agents.
This is possibly due to the low frequency of reward, leading to the accrual of
negative Q-values, which in combination with learning rate decay, may pro-
duce a delay in reflecting any positive updates from decks E and G, leading
to a lag, or inability, in learning the good decks.

The general result that high learning decay leads to vmPFC impaired
behaviour is retained. For the reversed IGT environment, the Boltzmann
agent, in terms of minimum CSUD loss and simulation outcome matches,
produces the overall best results. In comparison, the decaying ε-Greedy
agent, which had performed best in the original, re-shuffled, and random
IGT environments, performs relatively poorly in that it produces the highest
CSUD minimum loss. That is, the decaying ε-Greedy agent does poorly in
terms of the CSUD squared distance measure from corresponding human
IGT outcome means. The decaying ε-Greedy agent jitter plot in Fig. 7.5c,
however, shows that the decaying ε-Greedy agent achieves better simula-
tion verification results than the constant exploration ε-Greedy agent. Given
the 1000 iteration limited CSUD budget, the decaying ε-Greedy agent searches
do not appear to have fully converged, and it may be that the agent’s poor
performance regarding individual matches inside corresponding match zones
is a side-effect of this iteration limit.

However, a case could also be made in terms of nonrational (heuristic)
versus rational learners. It is possible that the decaying ε-Greedy agent’s
constant exploration decay is not best suited for solving the reversed IGT.
The 2D and 3D exploration contours in Fig. 7.2 and Fig. 7.3 indicate complex
exploration behaviour, which may be missed by the decaying exploration
heuristic.

As with the original, re-shuffled, and random IGT environments, in the
reversed IGT environment as shown in Fig. 7.6, fraction of good decks fG
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jitter density plots with exploration modulation on the horizontal axis re-
veal a tendency towards bi-modal fG densities with little or no mass in the
human outcome catchment areas. This effect is increased in ‘greedy’ explo-
ration parameter configurations, such as in Fig. 7.6a with ε = 0.1, in Fig. 7.6b
with τ = 5, and in Fig. 7.6c with ν = 0.05. At these hyper-parameter values,
some agents produce very high fG, while others produce very low fraction
of good decks fG. Hence, being greedy may not be the best survival strat-
egy for solving the reversed IGT, and this in turn may explain the reason
for requiring high exploration to match corresponding human outcomes.
At higher exploration, the bi-modal effect is reduced and fG outcomes co-
agulate around the human outcome catchment zones, especially for normal
behaviour. In other words, higher exploration appears to forego extreme
high and low outcomes, in favour of a mean centred outcome, where the
overall risk of normative failure is lower. This risk smoothing effect of high
exploration can also be observed in the original, re-shuffled, and random
IGT jitter plot outcomes reported in chapter 6.
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Chapter 8

The SGT Environment with
Simple Reinforcement Learning
Modelling via CSUD

The SGT (Soochow Gambling Task) has been introduced in section 4.1.4. To
recap, the SGT environment consists of four decks A, B, C and D, where
decks C and D are the good decks. These good decks produce high fre-
quency losses with low frequency rewards; yielding per 10 draws a net pos-
itive gain. Decks A and B are the bad decks with low frequency fines and
high frequency rewards, but yielding per 10 draws a net loss.

The SGT draw-by-draw yield structure is depicted in Appendix A.5. In
the SGT, the determining events, that is the rewards in good decks C and D,
and the losses in bad decks A and B, consistently happen rarely, making it
challenging to determine per deck mean net yields. As noted in chapter 1,
the SGT models both uncertain rewards and uncertain fines as rare events
occurring with probability 0.2.

As Table 4.8 indicates, normal human subjects do not pass the SGT, scor-
ing a mean fraction of good decks value f̄ H

G = 0.40, with a ±2SE range of
0.36 ≤ f̄ H

G ≤ 0.44. Note that the normal human mean fraction of good decks
outcome remains below f̄G = 0.5, the score that could be achieved via pure
random search. In that sense, normal humans must be using a deck selec-
tion strategy, which performs worse than random search. This paradoxical
non-optimal human behaviour is also noted in Hertwig et al., 2004, where
under decisions from experience, that is uncertainty, rare events are proba-
bilistically undervalued. In the context of the SGT, probabilistically under-
valued events lead to non-avoidance of high but rare fines, and could lead
to the observed low, non-passing mean fraction of good deck f̄G outcomes.
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Agent Boltzmann ε-Greedy
Decaying
ε-Greedy

Hyper-parameter

Initial learning rate α1 0.01 - 0.99 0.01 - 0.999 0.01 - 0.999

Normal learning rate decay λN 0.0001 - 0.3 0.03 - 0.30 0.03 - 0.32

Temperature τ 0.5 - 500

Exploration ε 0.05 - 0.95 0.5 - 1.0a

Exploration decay ν 2.0e-8 - 0.03

CSUD Iterations 1000 1000 1000

Gradient Samples 1 1 3

IGT length Q-learning samples

100 750
a Exploration ε refers to initial exploration ε1.

TABLE 8.1
Search Methodology: SGT hyper-parameter CSUD search criteria by agent.

8.1 Search of the SGT environment

Table 8.1 summarises software agent CSUD search parameter constraints
and attributes. As in chapters 6 and 7, broad parameter search ranges are
used for the initial learning rate and exploration, while a smaller range is
employed for normal learning rate decay. By limiting the learning rate de-
cay range, it is intended to inject prior information, which captures the pre-
vious results of low learning rate decay leading to normal IGT behaviour.
Since only normal human data is available for the SGT, learning rate decay
is constrained to a range consistent with previously achieved normal learn-
ing rate decay values.

By construction, CSUD loss is minimised to the extent that search criteria
are fulfilled, and in this sense, CSUD search can be seen as a contraction of
a grid search space.

8.2 Search Results: SGT

The results for the searches introduced above in section 8.1 are now pre-
sented. Each search is conducted via CSUD. The reinforcement learning
layer is implemented using the Boltzmann, ε-Greedy, and decaying ε-Greedy
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agents discussed in sections 5.2.1, 5.2.2, and 5.2.4 respectively. As only
normal human mean fraction of good decks f̄ H

G data is available, CSUD
searches will aim to find hyper-parameter combinations, which produce
performance matches for normal human IGT outcomes.

For ease of comparison, results are presented for the ε-Greedy, Boltz-
mann, and decaying ε-Greedy agents side-by-side. Fig. 8.1 and Table 8.2
present CSUD search results in graphic and tabular forms respectively.

Fig. 8.1a shows that in CSUD searches, the ε-Greedy agent initially has
wide search space traversal for all hyper-parameters, before settling down.

Fig. 8.1b shows that the Boltzmann agent has wide initial traversal for
the initial learning rate and learning rate decay. However, Boltzmann agent
exploration temperature τ does not change much. It is believed this is due
to a parameter scale factor consideration. That is, the scale of perturbations
is not large enough to induce sizeable variations in exploration temperature.
However, fundamental agent conclusions are not affected in so far as the 2D
grid search contours in Fig. 8.2b suggest that the range 5 ≤ τ ≤ 200 should
be able to produce for some (normal) learning rate decay λN, mean fraction
of good deck f̄G outcomes residing in the human catchment zone. Hence at
least for the SGT searches, if the τ perturbation scale issue is corrected, one
would expect that multiple λN values are found for multiple τ values. In
CSUD search the telltale sign of such a situation is when across search iter-
ations, τ and λN settle at multiple locations. It would be interesting to see
if under such circumstances, another estimation method perhaps maximum
likelihood could produce definitively unique λN and τ estimates.

Fig. 8.1c shows that the decaying ε-Greedy agent search settles relatively
quickly. Exploration decay ν exhibits, along with loss, some dispersion,
however the range of this dispersion is small. In general, all agents dis-
play relatively good (qualitative) convergence at the 1000 iteration cut-off
point. This indicates that given the respective hyper-parameter constraints
reported in Table 8.1, the agents are able to consistently produce, within the
iteration budget, (cumulative) mean fraction of good decks f̄G outcomes,
which lie within the respective human catchment areas.
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(A) ε-Greedy Agent, 975 matches
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(B) Boltzmann Agent, 788 matches
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(C) Decaying ε-Greedy Agent, 1000 matches

FIGURE 8.1: SGT CSUD searches. Green dots indicate matches defined as agent
cumulative mean fraction of good decks f̄G residing in corresponding human
catchment zones. All agents achieve a large number of matches. At 1000 itera-

tions, agents display overall good search convergence. Details in text.
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Agent ε-Greedy Boltzmann
Decaying
ε-Greedy

Hyper-parameter

Initial Learning Rate α1 0.450 0.189 0.268

Normal Learning Decay λN 0.099 0.073 0.0780

Exploration ε = 0.702 τ = 34.997
ε1 = 0.693

ν = 2e−8

Minimum Loss 6.66e-8 1.24e-8 2.00e-9

Matches 975 788 1000

TABLE 8.2
SGT minimum loss CSUD search matches after 1000 iterations.

Table 8.2 indicates that given the 1000 iteration search budget, the de-
caying ε-Greedy agent produces 1000 matches and delivers the lowest min-
imum loss CSUD search score. In comparison, the ε-Greedy and Boltzmann
agents achieve 975 and 788 matches respectively. For the decaying ε-Greedy
agent, 3 repetition gradient averaging is employed. For all agents, nor-
mal learning decay λN achieves similar values. The initial learning rate α1

stretches over a broader range, however remaining under 0.5. Exploration
related hyper-parameters remain high, but are lower than those observed in
the original, re-shuffled, random, and reversed IGT environments. Explo-
ration decay ν is close to zero, indicating constant exploration, close to that
discovered for the ε-Greedy agent (ε1 = 0.693 versus ε = 0.702).

Table 8.3 displays agent grid search configurations for CSUD search re-
sults verification. As in previous application chapters, the CSUD search dis-
covered minimum loss agent hyper-parameter values are used to construct
a small search grid around these values.

Fig. 8.2 and Fig. 8.3 show 2D and 3D CSUD grid search verification con-
tours. In Fig. 8.2, the dark zone represents the normal human IGT out-
come match area. Solid black contours show response to learning decay
λ at CSUD selected minimum loss hyper-parameter values.

In terms of mean fraction of good decks f̄G, Fig. 8.2 contours for all
agents cross over each other, and this indicates more complex exploration
and learning decay interactions than seen in other IGT environments. Note
that with respect to the dark gray catchment zones, CSUD has not identi-
fied any solutions with lower exploration. For example, in Fig. 8.2a, visual

161



Chapter 8. The SGT Environment with Simple Reinforcement Learning
Modelling via CSUD

Agent ε-Greedy Boltzmann
Decaying
ε-Greedy

Hyper-parameter
Initial
Learning Rate α1

0.1, 0.450,
0.75, 0.9

0.05, 0.189,
0.5, 0.9

0.01, 0.268,
0.45, 0.9

Normal
Learning Decay λN

a 0.099 0.073 0.0780

Exploration
ε = 0.1, 0.4,

0.702, 0.9
τ = 5, 34.997,

75, 225

ε1 = 0.25, 0.45,
0.693, 0.9

ν = 2e−8, 0.006,
0.015, 0.05

IGT length Q-learning samples

100 750
a The learning rate decay and exploration decay grids are constructed around
the two values above. Appendix C provides the construction method.

TABLE 8.3
CSUD Verification. SGT hyper-parameter grid search criteria for the ε-Greedy,
Boltzmann, and decaying ε-Greedy agents.

inspection indicates a match solution with ε = 0.1 and λN ≈ 0.1. Simi-
lar results are observed for the remaining two agents. Other solutions may
possibly have been discovered at longer iterations or with different initial
starting points. However, it is noted that at the selected agent normal learn-
ing rate decay λN values, 2D exploration contours are close to or go through
an inflexion point and have high change rates; these two conditions create
more challenging searches. In general, rational search methods would not
consider optima at or near inflection points. Nonrational CSUD, however,
is able to tune through such locations and provide insight as to the configu-
ration of primitive decision making hyper-parameters, whose values in this
instance produce mean fraction of good decks outcome solutions, which
perform worse than pure random search.
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FIGURE 8.2: SGT CSUD verification grid search 2D contours. The dark gray
zone represents the normal human IGT outcome match area. Solid black con-
tours show response to learning decay λ at CSUD selected minimum loss
hyper-parameter values. Human outcome range matches occur in areas with
high slope. vmPFC impaired human SGT outcomes have not been reported in

the literature. Details in text.
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FIGURE 8.3: SGT CSUD verification grid search 3D contours. Blue coloured
surfaces show response to learning decay λ at CSUD selected minimum loss
hyper-parameter values. The diamond shape marks the CSUD minimum loss
normal learning decay rate λN . vmPFC impaired human SGT outcomes have

not been reported in the literature. Details in text.

Fig. 8.3 shows 3D CSUD verification contours. Blue coloured surfaces
show response to learning decay λ at CSUD selected minimum loss hyper-
parameter values. The diamond shape marks the CSUD minimum loss nor-
mal learning decay rate λN = 0.078. Fig. 8.3b and Fig. 8.3c indicate that
when exploration is allowed to vary, complex mean fraction of good decks
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(B) Boltzmann Agent
α1 = 0.189, τ = 35.0,
λN = 0.073
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(C) Decaying ε-Greedy
Agent α1 = 0.268, ε1 = 0.693,
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FIGURE 8.4: SGT agent 20-draw blocks comparison at CSUD minimum loss
search matches noted in Table 8.2. Human results in dotted light gray. Agent
results in solid dark gray, averaged from 750 samples. All error bars at ±2SE.
When error bars are taken into account agent and human 20-draw block per-

formance appears to provide good matches. Details in text below.

f̄G surfaces result. Such complex surfaces are not observed with the pre-
viously discussed original, re-shuffled, random, or reversed IGT environ-
ments, suggesting that the SGT is more difficult to solve. Further, replicat-
ing human performance is more difficult as well in the sense of the matching
human outcome generating agent hyper-parameters being resident in sur-
face zones of high curvature (high slope).

Fig. 8.3b indicates interaction between learning decay λ and the initial
learning rate α1 as exploration temperature τ increases. Similarly Fig. 8.3c
shows increasing interaction between learning decay λ and exploration de-
cay ν as initial exploration ε1 increases.

Fig. 8.2 and Fig. 8.3 suggest that for all agents, the human performance
zone is located in a mean fraction of good decks f̄G range where the 2D and
3D surfaces cross over. With the data available however, it is not possible to
ascertain whether this observation is significant or coincidental.

Fig. 8.4 and Fig. 8.5 show 20-draw blocked mean fraction of good decks
f̄G and exploration index (EI) outcomes respectively. Human reference re-
sults are in light gray dotted lines, and agent results, averaged from 750
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(B) Boltzmann Agent
α1 = 0.189, τ = 35.0,
λN = 0.073
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FIGURE 8.5: SGT agent 20-draw blocks exploration index (EI) comparison at
CSUD minimum loss search matches noted in Table 8.2. Human results in dot-
ted light gray. Agent results in solid dark gray, averaged from 750 samples.
Human subject and agent exploration index responses appear relatively simi-

lar. Further details in text below.

samples, appear in dark gray solid lines.
Fig. 8.4, where the dash-dotted line at f̄G = 0.5 indicates the IGT norma-

tive pass threshold, shows that all agent 20-draw block f̄G results remain
within the human reference ±2SE catchment zones. However, Fig. 8.4b
and Fig. 8.4c show that Boltzmann and decaying ε-Greedy agents respec-
tively better mirror human reference points, indicating support for varying
exploration throughout the IGT. Agent exploration indices (EI) in Fig. 8.5
support the above finding. More importantly, exploration index (EI) values
remain high, close to 100 throughout the IGT, indicating that while explo-
ration varies, it does not move towards full exploitation as the IGT pro-
gresses.
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FIGURE 8.6: SGT. Comparison of repeated agent simulation outcomes to hu-
man IGT results. CSUD minimum loss exploration values are ε = 0.702, τ =
34.997, ν = 2e−8 for the ε-Greedy, Boltzmann, decaying ε-Greedy agents respec-
tively. ε-Greedy based agents exhibit a tendency towards bi-modal fG for high
exploration. At CSUD selected exploration values, ε-Greedy, Boltzmann and
decaying ε-Greedy agents achieve 42%, 38%, and 31% respectively of simula-

tion results inside human match zones. Full details are in the text.

Fig. 8.6 provides agent jitter plot density summary for the fraction of
good decks fG outcomes obtained at the CSUD selected minimum loss agent
hyper-parameter values for 750 simulation samples of the SGT environment
for normal (control) behaviour. Green dots mark outcomes inside the hu-
man performance range. Blue dots mark additional normative pass results,
whereas red dots mark additional normative pass fails. Green numbers give
total human performance zone matches out of 750 samples, and the values
in brackets indicate percentages matched. A high percentage matched value
is indicative of predictive simulation success. The dashed and dash-dotted
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horizontal lines indicate the maximum and minimum respectively of the
human match range. Finally the red bars and box indicate central tendency
in terms of the mean and ±2 SEs (standard errors).

Fig. 8.6 shows that agents do not achieve many simulation results, which
are inside human match zones. At CSUD selected exploration ε = 0.702,
the ε-Greedy agent achieves 42% normal matches. At CSUD selected ex-
ploration temperature τ = 34.997, the Boltzmann agent achieves 38% nor-
mal matches. At CSUD selected initial exploration ε1 = 0.693 and explo-
ration decay ν = 2e−8, the decaying ε-Greedy agent achieves 31% normal
matches. Interestingly for any agent, increasing exploration leads towards a
density migration towards the normal human match zones. As exploration
decreases as seen in Fig. 8.6b, as τ reduces from 225 to 5, the Boltzmann
agent does not move towards a bi-modal fG outcome density, but exhibits
some banding.

8.3 Discussion: SGT

The SGT embodies a complex decision making environment, where humans
on average, fail to make the correct decisions subject to the SGT task limi-
tation of 100 turns. The results show that agents exhibit hyper-parameter
ranges, where they can produce decisions superior to those achieved by
normal humans. However, only the rational Boltzmann agent retains uni-
modal mean fraction of good decks f̄G densities.

The SGT (Soochow Gambling Task) results indicate that, this task is
generally more difficult to solve. Note for example in Fig. 8.6a how the
ε-Greedy agent at low exploration ε = 0.1, produces strongly bi-modal out-
comes, where agents cluster either high above or very low below the human
catchment zone. As seen in Fig. 8.6b, even the rational Boltzmann agent at
τ = 5 produces skewed outcomes with a heavy tail towards worse out-
comes. Agents are capable of producing better than human mean fraction
of good decks results. The agents also exhibit, however, hyper-parameter
ranges where human SGT outcome results are matched. Such ranges are
associated with mild exponential learning rate decay of around 7%-10% per
period, or a normal learning decay λN range of approximately 0.073− 0.1.

For the original, re-shuffled, and random IGT environment simulation
results in chapter 6, the ε-Greedy, Boltzmann, and decaying ε-Greedy agents
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exhibit normal learning rate decay λN values of λN = 0.10, λN = 1e−04,
λN = 0.106 respectively. Hence the ε-Greedy and decaying ε-Greedy agents
appear to exhibit for the original, re-shuffled, random, and SGT cases rel-
atively similar numerical values for λN. The Boltzmann agent λN value,
however, is considerably lower for the original, re-shuffled, and random
deck simulations.

It is possible that decision making hyper-parameter values such as the
learning decay rate λN are themselves calibrated during the decision mak-
ing process. The question of whether universal decision making hyper-
parameter values exist, or whether such hyper-parameters are themselves
calibrated during decision making would provide an interesting extension
of the current work. It is possible that in a heuristic decision making con-
text, with learning rate decay imposed event sampling cut-off, learning rate
decay somehow reacts to the underlying sampled process frequency dy-
namics, for example as in a frequency domain context.

As in previous IGT environments, learning rate decay λ plays a key role
in mean fraction of good decks f̄G outcomes. However, it is not possible
to obtain clear visual support, as in Fig. 7.2 with the reversed IGT, for the
proposition that matching human outcomes requires high exploration. This
is because as seen in Fig. 8.2, the SGT mean fraction of good decks f̄G con-
tours cross over, and there is no human vmPFC impaired data, which would
further help clarify the role of high exploration.

As Fig. 8.2a and Fig. 8.2c indicate, the ε-Greedy and decaying ε-Greedy
agents produce similar solutions, and this is due to the very low exploration
decay value ν = 2e−8, coupled with the closeness of ε-Greedy agent explo-
ration ε = 0.702 to decaying ε-Greedy agent initial exploration ε1 = 0.693.

The adaptive ε-Greedy and decaying ε-Greedy agents are not considered
any longer. The adaptive ε-Greedy agent appeared only in chapter 6 as a
rational agent capable of adjusting exploration in response to the temporal
difference error.

The decaying ε-Greedy agent, on the other hand, is not considered any
further because it performs very close to the simpler constant ε-Greedy model.
The decaying ε-Greedy agent presents good results for replicating human
IGT outcomes. These results, however, obtain at relatively low exploration
decay ν values with ν = 0.00842, ν = 0.00609, and ν = 2e−8 for the original
IGT and its variants, the reversed IGT, and the SGT environments respec-
tively.
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It would appear that the decaying ε-Greedy agent presents as a truly
heuristic model, with the exploration parameter ν acting as a way to slightly
dampen exploration so as to improve on the results of the constant explo-
ration ε-Greedy variant. So the decaying ε-Greedy agent acts more as a fitted
model than as a generative model, with ν values making sure that good fits
are obtained. The constant ε-Greedy agent model, however, achieves rela-
tively good results and can be seen as a simple generative model. It is on
this conceptual basis that, the decaying ε-Greedy model is omitted in further
discussions in favour of its simpler alternative. With relevant theoretical
work, the decaying ε-Greedy agent may yet become a generative heuristic
alternative. Such efforts, however, remain beyond the scope of this work.
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Chapter 9

Reinforcement Learning: The Iowa
Gambling Task with Discount
Rate and Trace Decay

Up to now, it has been argued that in the IGT, the initial learning rate α1,
learning rate decay λ, and exploration sufficiently capture single-state Q-
learning decision making dynamics. It was also argued that the 100-draw
IGT was not long enough to generate a preference for immediate over future
yields. Therefore the discount rate γ was set to γ = 1.

Further, it was assumed that agents do not employ any persistence dy-
namics attributed to specific yield streams. That is, in their Q-value attribu-
tions, the agents only considered action net yield at face value, but did not
apply any additional weighting to actions deemed to produce favourable
outcomes. One way to achieve such additional action tracking is through
trace decay, where frequently chosen actions exert an additional influence
on Q-values. Trace decay can also be used to track multi-period action attri-
bution of yields. Here trace decay is denoted by κ. This chapter introduces
the discount rate γ and trace decay κ in order to asses to what extent the
earlier assumptions regarding their omission may be justified.

In iterative learning, the discount rate 0 < γ < 1 is used to reduce the
perceived value of future unrealized net yield streams. In short, the dis-
count rate induces a preference for the present. It is important to recall that
test subjects in the IGT variants tested here do not know the length of the
task. From the perspective of these participants, a discount rate γ less than
1 could be used to capture various reasons for losing interest in the task
as it progresses, where this loss of interest is mathematically formulated as
decreasing value attribution of future outcomes. Alternatively, it could be
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that the sheer uncertainty over the length of the task induces a preference
for immediate rewards, perhaps in the sense of the participant using a high
discount rate to affect a single period look-ahead. Finally on a technical
note, it is very difficult to solve finite duration reinforcement learning prob-
lems when the end period is unknown, and as in the case of the IGT there
is no other absorbing state. One may for example need to establish a prob-
ability for the length of the task. One easy approach, however, when task
end is unknown is to drive the problem into infinity in the presence of a
discount rate less than 1. In reinforcement learning (for an infinite horizon),
a discount rate less than one is an additional requirement for convergence
and the discovery of optimal policies, see for example Szepesvári (2010, p.
9).

Unlike the forward-looking discount rate, trace decay κ, looks back-
wards and is its intended use consists of accounting for gestation lag related
outcome attribution. One shortcoming of (discrete time) iterative learning is
the difficulty in attributing to previous actions any outcomes, which require
more than one iteration to affect yield. Trace decay creates a mechanism for
capturing such actions, which exhibit a gestation lag. In such cases trace
decay is referred to as an eligibility trace (Sutton & Barto, 2018, p. 287).

Trace decay can also be used as a mathematical technique for instituting
choice perseveration, a phenomenon where having chosen an option leads
to it being chosen again regardless of its value. The dynamics (9.1) of the
model introduced here, differ from those in Miller et al., 2019, where choice
perseverance is indeed action independent, and where choice perseverance
and action value attribution are modelled separately and then combined
linearly via a controller unit. The model below also differs from the trace
decay implementation in Sutton and Barto, 2018, p. 292, where eligibility
trace updates include a value function contribution, that is eligibility traces
are value dependent. In the single state Q-value IGT modelling here, how-
ever, trace decay mathematics are implemented so as to produce a hybrid
of the two above views: (1) as in Sutton and Barto, trace decay directly in-
fluences Q-learning without any controller logic, but (2) as in Miller et al., a
choice perseverance component can be said to be present as the increment-
ing of a trace decay solely depends on whether an action has been chosen
but not its value.

Such an approach is adopted for the sake of keeping a simple model,
which can algorithmically capture any potential multi-period dynamics. When
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learning is not vmPFC impaired, then in principle the model below can lead
to an increase in the Q-values of good, and to a decrease in the Q-values of
bad decks; the trace decay will function more like an eligibility trace. In
the case of vmPFC impairment, when bad decks are more frequently cho-
sen, increments in Q-values should then lead to the bad actions having high
Q-values and thereby affect choice perseverance. That is, the model here
is expected to magnify good as well as poor choice selection. Further it is
noted that low trace decay κ and low discount rate γ reduce the effective
decision making horizon, while high trace decay κ and high discount rate γ

increase it. Finally, the original, re-shuffled, and random IGT environments
employed here do not themselves contain any multi-period effects. Never-
theless, it is interesting to see if any agents would behave as if such effects
were present.

9.1 The Amended Single State Q-learning Model,

ARA(κ)

In the classical SARSA(κ) implementation (Sutton & Barto, 2018, pp. 303-
307), each state-action (s, a) pair has its own trace decay (eligibility trace).
Here as there is only a single state, trace decay, in the hybrid sense, is applied
to each individual action.

SARSA itself denotes the sequential process state-action→ response→
state-action, where the initial and consequential state-action pair may be
different. With only a single state, the SARSA mnemonic reduces to ARA,
action → response → action. Further in the ARA implementation in this
chapter, the initial (pre-response) action is persisted as the post-response ac-
tion. That is unlike SARSA, in the present ARA implementation, the initial
pre-response and forecasted post-response actions are identical and equal
to the pre-response action, which is the action the agent will take, and may
be the Q-value maximum or an exploratory action.

Hence, the current ARA implementation uses hybrid trace decay, and
also in formulating next period’s Q-values, employs a discounted and traced
forecast resulting from the one-period-ahead persisted pre-response action.

The model in this chapter will be referred to as ARA(κ), where κ in-
dicates (hybrid) trace decay. The literature has typically used λ for trace
decay, in particular for eligibility traces. However in this work, λ indicates
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learning rate decay, and therefore the use of κ is retained to symbolise trace
decay.

Given the pre-response action ã, and any action a, let Q(a) be an un-
known value function, let e(a) denote the eligibility trace for action a, and
let Qt(a), et(a) denote the tth iterations. Then the computational ARA(κ)
model is written as

δt = xã
t + (γ− 1) Qt−1(ã) (9.1a)

et−1(ã) = et−1(ã) + 1 (9.1b)

Qt(a) = Qt−1(a) + αtδtet−1(a) (9.1c)

et(a) = γκet−1(a) (9.1d)

where γ is the discount rate, δt is a version of the temporal difference er-
ror, xã

t is the net yield following the pre-response action ã, Qt−1(ã) is used
to generate the Q-value forecast of the pre-response action ã; that is, it is
assumed that the same action if chosen, would produce the same Q-value
contribution.

(9.1b) indicates that if an action is frequently selected, then its trace decay
is incremented frequently, and this in turn leads to larger Q-value accruals.
Note that, the trace decay increment is 1 and thus independent of the actual
action value. Also note that the time index on both the left and right hand
sides of (9.1b) is t − 1. This convention is used here to indicate that (9.1b)
is always applied prior to (9.1d). (9.1d) shows that in general the trace for
each action decays every iteration. Therefore, seldom selected actions lead
to smaller Q-value accruals.

9.2 Software agent implementations

The only agents considered here are the ε-Greedy and Boltzmann agents
as presented in sections 5.2.2 and 5.2.1 respectively. The ε-Greedy agent
has constant exploration ε, and the Boltzmann agent specifies exploration
temperature τ, which controls how Q-values contribute to individual action
selection probabilities.

The adaptive and decaying ε-Greedy agents are no longer considered.
The rationale for these omissions is discussed in section 8.3. To review, the
adaptive ε-Greedy agent obtains good cumulative mean fraction of good
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decks results. Due to its ability to substantially reduce exploration, how-
ever, as noted in Fig. 6.17 and Fig. 6.18, in simulation outcomes, this agent
did not exhibit the 20-draw block mean fraction of good deck f̄G and ex-
ploration index (EI) properties of corresponding human IGT outcome cases,
especially for the re-shuffled IGT environment. Moreover the adaptive ε-
Greedy agent could not replicate the key human IGT outcome result that for
the re-shuffled IGT environment, normal and vmPFC impaired behaviour
configurations should not exert a statistically significant factor effect on the
cumulative mean fraction of good decks.

The decaying ε-Greedy agent, on the other hand, with its fixed explo-
ration exponential decay heuristic, can accommodate residual exploration,
and does match human 20-draw block IGT mean fraction of good deck and
exploration index results. These results, however, obtain at relatively low
exploration decay ν values with ν = 0.00842, ν = 0.00609, and ν = 2e−8

for the original IGT and its variants, reversed IGT, and SGT environments
respectively. Since exploration decay is very small, the decaying ε-Greedy
model is omitted in favour of its simpler alternative the (constant explo-
ration) ε-Greedy variant.

9.3 Methodology: Joint Search of the Original, Re-

shuffled, and Random IGT environments

The general methodology remains as discussed in section 6.1. A joint CSUD
(hyper-parameter) search is conducted of the original, re-shuffled, and ran-
dom IGT environments, looking for a hyper-parameter configuration, which
may lead to mean fraction of good decks f̄G outcomes residing within re-
spective human catchment ranges for normal and vmPFC impaired IGT
outcome behaviour. This CSUD search is conducted on a per agent basis.

Note that as discussed in section 7.2, a joint search for all IGT environ-
ments is not undertaken. A joint CSUD hyper-parameter search for the
original IGT, its variants, the reversed, and SGT environments has been at-
tempted but not found to produce hyper-parameter combinations, which
could be verified in subsequent simulations. Further it is believed that the
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Agent Boltzmann ε-Greedy

Hyper-parameter

Discount rate γ 0.15 - 0.85 0.5 - 0.99

Trace decay κ 0.15 - 0.75 0.25 - 0.99

Initial learning rate α1 0.01 - 0.6 0.01 - 0.999

Normal learning rate decay λN 1.0e-8 - 0.22 0.03 - 0.30

vmPFC impaired learning rate decay λvmPFC 0.22 - 0.8 0.25 - 1.2

Exploration τ = 0.5− 500 ε = 0.05− 0.70

CSUD Iterations 2000 1000

Gradient Samples 4 1

IGT length Q-learning samples

100 750

TABLE 9.1
ARA(κ) Search Methodology. Joint original, re-shuffled, random IGT
hyper-parameter CSUD search criteria.

learning rate decay λ parameter is sensitive to the underlying IGT envi-
ronment yield frequency distribution characteristics, and that on that ba-
sis, searches are limited to IGT environment combinations with similar fre-
quency dynamics, with the related original, re-shuffled, and random IGT
environments providing the largest common yield characteristics search set.

Therefore, for each agent architecture, CSUD search loss is minimised
for hyper-parameter configurations which produce a match in five outcome
cases: normal original, normal re-shuffled, normal random, vmPFC im-
paired original, and vmPFC impaired re-shuffled. The hyper-parameters
CSUD search investigates are the discount rate γ, trace decay κ, the initial
learning rate α1, normal learning rate decay λN, vmPFC impaired learning
rate decay λvmPFC, and exploration.

By design, (per agent) CSUD loss is minimised to the extent that search
criteria are fulfilled. It is in this sense that CSUD can be seen as a contraction
of a grid search space. Initially hyper-parameter ranges were broad, and
where applicable, identical accross models. However, preliminary CSUD
searches indicated that search direction could be further focused by limiting
the ranges of γ, κ, α1, λN, and λvmPFC on a per agent basis. Table 9.1 sum-
marises the final software agent CSUD search hyper-parameter constraints
and attributes.
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Because CSUD is a stochastic, gradient driven search technique, some-
times a single gradient evaluation is not sufficient to produce a reliable
gradient estimate. Under such circumstances, for the same set of hyper-
parameter values, multiple gradient samples maybe obtained and then av-
eraged (Spall, 1992). The ‘Gradient Samples’ entry in Table 9.1 indicates
that gradient sampling was employed for the Boltzmann but not for the ε-
Greedy agent.

It is not certain why the Boltzmann agent required gradient sampling
to produce high quality CSUD search induced hyper-parameter updates.
It is thought that this result obtains because the Boltzmann agent produces
tightly clustered mean fraction of good decks outcomes, and such tight clus-
tering increases the sensitivity of gradient calculations.

The CSUD search results are verified by running 750 repeated software
agent simulations in a small grid search around the CSUD discovered hyper-
parameter values. The grid search verification results are then analysed and
discussed with respect to software agent outcomes.

9.4 CSUD Search Results

For ease of comparison, results for the ε-Greedy and Boltzmann agents are
presented side-by-side. Table 9.2 and Fig. 9.1 present CSUD search results
in tabular and graphic forms respectively.

Table 9.2 shows that as in the simple reinforcement learning model re-
sults in chapter 6, normal IGT outcomes are associated with low learning de-
cay, λN = 0.080 and λN = 0.00291 for the ε-Greedy and Boltzmann agents re-
spectively. In contrast, vmPFC impaired IGT outcomes are associated with
high learning decay, λvmPFC = 0.270 and λvmPFC = 0.402 for the ε-Greedy
and Boltzmann agents respectively.

Exploration with ε = 0.612 and τ = 225 remains high for both the ε-
Greedy and Boltzmann agents respectively. That is, as in chapters 6 and
8, for agents to match human IGT outcomes, exploration must be high. The
initial learning rate α1 for either agent is lower than the corresponding value
in the simple reinforcement learning model. For example with ARA(κ), the
ε-Greedy agent CSUD search produces α1 = 0.137, while the corresponding
CSUD search in the simple model in chapter 6 produces α1 = 0.417.

177



Chapter 9. Reinforcement Learning: The Iowa Gambling Task with
Discount Rate and Trace Decay

Agent ε-Greedy Boltzmann

Hyper-parameter

Discount rate γ 0.514 0.206

Trace decay κ 0.264 0.626

Initial Learning Rate α1 0.137 0.290

Normal Learning Decay λN 0.080 0.00291

vmPFC Impaired Learning Decay λvmPFC 0.270 0.402

Exploration ε = 0.612 τ = 225

Minimum Loss 0.00386 0.0222

Matches 389 16 / 951a

a16 full CSUD matches. 951 partial matches. Partial matches include normal
and vmPFC impaired behaviour, original and re-shuffled decks. Full matches
consist of partial matches plus the normal behaviour random IGT.

TABLE 9.2
ARA(κ) joint original, re-shuffled and random IGT CSUD search matches.

Discount rate γ and trace decay κ values differ between agents. The
trace decay rule in (9.1d) indicates that in calculating trace decay, the prod-
uct γκ is used. Compared to the Boltzmann agent, the ε-Greedy agent has
a relatively higher discount rate γ and relatively lower trace decay κ. For
example, CSUD search delivers a Boltzmann agent, which with γ = 0.206 is
highly focused on the present. Note however that (9.1d) indicates, eligibil-
ity traces use the product γκ; this product is quite similar at 0.135696 and
0.128956 for the ε-Greedy and Boltzmann agents respectively.

Table 9.2 and Fig. 9.1 indicate that the Boltzmann agent requires more
computational effort for achieving convergence, and as in chapter 6, has dif-
ficulty in matching all IGT outcome cases. Boltzmann agent CSUD search
produces 16 full matches over 2000 iterations with 4 gradient averages,
while the corresponding ε-Greedy agent search produces 389 full matches
over 1000 iterations with no gradient averaging. However, the Boltzmann
agent does produce 951 partial matches consisting of matching the normal
original and re-shuffled; and the vmPFC impaired original and re-shuffled
IGT environments. To see whether more full matches could be obtained,
the Boltzmann agent iteration budget was increased to 4000, but this did
not lead to an increase in the number of full matches. Here only the 2000
iteration CSUD search Boltzmann agent results are reported.
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(B) ARA(κ) Boltzmann Agent

FIGURE 9.1: ARA(κ) joint original, re-shuffled and random IGT CSUD search
matches. Green dots indicate full matches. Blue dots indicate partial matches
as noted in Table 9.2. The Boltzmann agent is slower to converge and at 2000
iterations, search convergence might not yet have been achieved. Details in

text.
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Agent ε-Greedy Boltzmann

Hyper-parameter

Discount rate γ 0.2, 0.514, 0.9 0.206, 0.5, 0.9

Trace decay κ 0.264, 0.5, 0.9 0.2, 0.626, 0.9

Initial Learning Rate α1 0.137, 0.33, 0.66, 0.9 0.1, 0.290, 0.66, 0.9

Learning Decay λa 0.080, 0.270 0.00291, 0.402

Exploration ε = 0.1, 0.5, 0.612, 0.75 τ = 5, 75, 225, 425

IGT length Q-learning samples

100 750
a The learning rate decay and exploration decay grids are constructed around
the two values above. Appendix C provides the construction method.

TABLE 9.3
ARA(κ) joint original, re-shuffled and random IGT CSUD verification grid
search configurations.

Table 9.3 presents the CSUD grid search verification configurations. Note
that adding two additional parameters, the discount rate γ and trace decay
κ with 3 grid points each leads to a 9-fold increase of the grid search.

For the ε-Greedy and Boltzman agents, Fig. 9.2 and Fig. 9.3 respectively
show 2D contours resulting from CSUD verification grid search at CSUD
selected minimum loss discount rate γ and trace decay κ values.

In Fig. 9.2 and Fig. 9.3, dark and light gray zones represent normal and
vmPFC impaired human IGT outcome match areas respectively. Solid black
contours show response to learning decay λ at CSUD selected minimum
loss hyper-parameter values. In terms of mean fraction of good decks f̄G,
Fig. 9.2 and Fig. 9.3 indicate that for both agents, increasing learning rate
decay continues to lead to outcomes, which are consistent with vmPFC im-
paired behaviour. For both agents, there is a lower learning decay rate λN

and a higher learning decay rate λvmPFC associated with normal and vmPFC
impaired behaviour respectively. Additionally, to achieve simulation out-
comes in corresponding human match zones, it is noted that exploration
must be high with ε = 0.612 and τ = 225 for the ARA(κ) ε-Greedy and
ARA(κ) Boltzmann agents respectively.
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FIGURE 9.2: ε-Greedy Agent ARA(κ) CSUD verification grid search 2D con-
tours. The dark gray zone represents the normal human IGT outcome match
area. The light gray zone represents the vmPFC impaired human IGT out-
come match area. Solid black contours show response to learning decay λ at
CSUD selected minimum loss hyper-parameter values consisting of γ = 0.514,
κ = 0.264, α1 = 0.137, ε = 0.612, λN = 0.08, λvmPFC = 0.27. The solid red line pro-
vides an approximate comparison between chapter 6 simple RL and the current
ARA(κ) models. It is noted that the ARA(κ) ε-Greedy agent would not achieve
a match in the original IGT at the chapter 6 reported normal learning rate de-
cay value of λN = 0.104. The solid red line provides an indication that it does
not appear possible to find universal full match CSUD minimum loss hyper-
parameter values across different agent architectures. The general results of
chapter 6 continue to apply. Just as in Fig. 6.2, increasing learning rate leads to
vmPFC impaired behaviour, and human match zones require high exploration.
Due to initial learning rate differences, however, a direct overlay comparison

of this plot with Fig. 6.2 is not possible.
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FIGURE 9.3: Boltzmann Agent ARA(κ) CSUD verification grid search 2D con-
tours. The Boltzmann agent does not obtain hyper-parameter matches for the
random IGT. The dark gray zone represents the normal human IGT outcome
match area. The light gray zone represents the vmPFC impaired human IGT
outcome match area. Solid black contours show response to learning decay λ at
CSUD selected minimum loss hyper-parameter values consisting of γ = 0.206,
κ = 0.626, α1 = 0.290, τ = 225, λN = 2.91e−03, λvmPFC = 0.40. The solid red line
provides an approximate comparison between chapter 6 simple RL and the
current ARA(κ) models. It is noted that the ARA(κ) Boltzmann agent would
not achieve a match in the random IGT at the chapter 6 reported normal learn-
ing rate decay value of λN = 0.0001. The solid red line provides an indication
that it does not appear possible to find universal full match CSUD minimum
loss hyper-parameter values across different agent architectures. The general
results of chapter 6 continue to apply. Just as in Fig. 6.8, increasing learning rate
leads to vmPFC impaired behaviour, and human match zones require high ex-
ploration. Due to initial learning rate differences, however, a direct overlay

comparison of this plot with Fig. 6.8 is not possible.
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Fig. 9.3 shows that like the simple Boltzmann agent, the ARA(κ) Boltz-
mann agent has difficulty matching all IGT outcome cases. The CSUD driven
search produces a partial match indicated by the annotated circles on the
solid black contour lines. However, even the partial matches obtained are
close to the match boundaries for the normal original, vmPFC impaired
original, and normal re-shuffled cases.

The question arises as to how the CSUD discovered minimum loss hyper-
parameters compare across the chapter 6 simple RL model and the current
ARA(κ) model. The ARA(κ) model has the additional discount rate γ and
trace decay κ hyper-parameters. Also a comparison of Table 9.2 and Ta-
ble 6.2 reveals that across the two models agents exhibit differing initial
learning rates. The ARA(κ) ε-Greedy agent has α1 = 0.137, while the simple
ε-Greedy agent has α1 = 0.417. The ARA(κ) Boltzmann agent has α1 = 0.290,
while the simple Boltzmann agent has α1 = 0.364. Of greater interest are
the normal learning decay λN values. In particular, one could ask whether
common λN values exist in light of the observation that λN values appear
numerically close on a per agent basis. The ARA(κ) ε-Greedy agent has
λN = 0.08, while the simple ε-Greedy agent has λN = 0.104. The ARA(κ)
Boltzmann agent has λN = 2.91e−03, while the simple Boltzmann agent has
λN = 1.0e−04. The solid red vertical line in Fig. 9.2 and Fig. 9.3 marks the
simple agent normal learning rate decay λN values for the simple ε-Greedy
and Boltzmann agents respectively. It can be seen that at λN = 0.104 the
ARA(κ) ε-Greedy agent cannot produce a corresponding simulation match
residing in the normal human original IGT outcome catchment zone. Sim-
ilarly at λN = 0.0001 the ARA(κ) Boltzmann agent cannot produce a corre-
sponding simulation match residing in the normal human random IGT out-
come catchment zone. Such "misses" illustrate the difficulties encountered
in searching for universal learning rate decay parameter values across dif-
ferent agent architectures. As noted above, however, regardless of model in-
duced hyper-parameter value differences, the general observations remain
intact. Learning rate decay increase leads to vmPFC impaired behaviour
and matching human IGT outcomes requires high exploration.

Fig. 9.4 and Fig. 9.5 depict ARA(κ) agent 3D contour plots, which at
CSUD selected minimum loss discount rate γ and trace decay κ, show the
effects of the initial learning rate α1, learning decay λ and exploration.
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FIGURE 9.4: ARA(κ) ε-Greedy Agent, γ = 0.514, κ = 0.264, CSUD search grid
verification 3D contours. Blue coloured surfaces show response to learning de-
cay λ at CSUD selected minimum loss hyper-parameter values. The diamond
and inverted triangular shapes mark CSUD minimum loss normal and vmPFC

impaired learning decay rates respectively.

Blue coloured surfaces show response to learning decay λ at CSUD se-
lected minimum loss hyper-parameter values. The minimum loss CSUD so-
lutions are annotated on the graphs, with the diamond � and the inverted
triangle H highlighting the normal and vmPFC impaired solutions respec-
tively.

For all IGT environments and for the ARA(κ) ε-Greedy and ARA(κ) Boltz-
mann agents respectively, Fig. 9.4 and Fig. 9.5 show that the initial learning
rate α1 has little effect on the mean fraction of cards chosen from the good
decks f̄G. As noted in the simple reinforcement learning agents, an initial
learning rate effect α1 occurs at very low learning decay λ and high initial
learning rate α1, leading to the dome-shaped areas visible in the rear of some
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FIGURE 9.5: ARA(κ) Boltzmann agent, γ = 0.206, κ = 0.626, CSUD search grid
verification 3D contours. Blue coloured surfaces show response to learning de-
cay λ at CSUD selected minimum loss hyper-parameter values. The diamond
and inverted triangular shapes mark CSUD minimum loss normal and vmPFC

impaired learning decay rates respectively.

IGT environment plots, for example as is notable for the ARA(κ) Boltzmann
agent Fig. 9.5 τ = 5 3D contour, in the area where learning rate decay λ is
low and the initial learning rate α1 is high.

In Fig. 9.4 and Fig. 9.5, increases in exploration lead to downward shifts
of the mean fraction of good decks f̄G surfaces. The blue 3D surfaces in-
dicate that to match human IGT outcomes, ARA(κ) agents must have high
exploration.

In general, at CSUD selected minimum loss discount rate γ and trace
decay κ, ARA(κ) agents retain similar behavioural mean fraction of good
decks f̄G 2D and 3D response contours, which were initially noted in Fig. 6.2
and Fig. 6.3 for the simple ε-Greedy; and Fig. 6.8 and Fig. 6.9 for the simple
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Boltzmann agents respectively.
ARA(κ) 20-draw block agent behaviour retains the same features dis-

cussed in section 6.3, Fig. 6.4 and Fig. 6.5; and section 6.4, Fig. 6.10 and
Fig. 6.11 for the simple ε-Greedy and Boltzmann agents respectively.

However for completeness, ARA(κ) agent 20-draw block mean fraction
of good decks f̄G and exploration index (EI) results are presented in Fig. 9.6
and Fig. 9.7 respectively.

In terms of mean fraction of good decks f̄G in Fig. 9.6, when human
performance±2 standard error (SE) is taken into account, ARA(κ) agent 20-
draw block performance is generally within human ranges but shows small
deviations for normal behaviour for blocks 1-20 and 21-40 in the random
IGT environment where, agent performance is better.

The exploration index (EI) measure in Fig. 9.7b indicates that the ARA(κ)
Boltzmann Agent produces in the normal and vmPFC impaired re-shuffled
IGT, higher 20-draw block EI values than those exhibited by the human ref-
erence data.

In contrast, as Fig. 9.7a shows, the ARA(κ) ε-Greedy agent attains com-
paratively closer exploration index (EI) values.

Fig. 9.8 and Fig. 9.9 depict success of simulation outcomes, and provide
agent jitter plot density summary for the fraction of good decks fG outcomes
obtained at the CSUD selected minimum loss agent hyper-parameter values
for 750 simulation samples for normal (control) and vmPFC impaired con-
figurations. Green dots mark outcomes inside human performance ranges.
Blue dots mark additional normative pass results, whereas red dots mark
additional normative pass fails. Green numbers give total matches out of
750 samples, and the values in brackets indicate percentages matched. A
high percentage matched value is indicative of predictive simulation suc-
cess. The dashed and dash-dotted horizontal lines indicate the maximum
and minimum respectively of the respective human match range. Finally
the red bars and box indicate central tendency in terms of the mean and ±2
SEs (standard errors).
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(A) ε-Greedy Agent, γ = 0.514, κ = 0.264, α1 = 0.137, λN = 0.080, λvmPFC = 0.270, ε = 0.612
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(B) Boltzmann Agent, γ = 0.206, κ = 0.626, α1 = 0.290, λN = 0.00291, λvmPFC = 0.402, τ =
225

Pass / Fail Border Human results Agent results

(C) Legend

FIGURE 9.6: ARA(κ) agent 20-draw blocks comparison at CSUD search values
as indicated above. Human reference results in dotted light gray. Agent re-
sults in solid dark gray, averaged from 750 samples. All error bars at ±2SE.
Human vmPFC outcomes show variation, whereas vmPFC configured agent
outcomes appear flat, suggesting the absence of a per 20-draw block learning
effect. When ±2SE human error bars are taken into account, however, agent

20-draw block performance resides within human ±2SE ranges.
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(A) ε-Greedy Agent, γ = 0.514, κ = 0.264, α1 = 0.137, λN = 0.080, λvmPFC = 0.270, ε = 0.612
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(B) Boltzmann Agent, γ = 0.206, κ = 0.626, α1 = 0.290, λN = 0.00291, λvmPFC = 0.402, τ =
225
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(C) Legend

FIGURE 9.7: ARA(κ) agent 20-draw block exploration index (EI) comparison
at CSUD search values as indicated above. Human reference results in light
gray. Agent results in dark gray, averaged from 750 samples. Human subject
and agent exploration index responses appear relatively similar except in the

re-shuffled IGT, where Boltzmann agent EI appears higher.

188



Chapter 9. Reinforcement Learning: The Iowa Gambling Task with
Discount Rate and Trace Decay

vm
PFC

Number of Passes 
(% of Passes) 

Human Range
Maximum

In Pass Zone and 
Above Maximum

In Fail Zone and 
Below Minimum

Number of in Range
(% of in Range) 

Human Range 
Minimum

In Human Range

Sample
Mean

+2 SE

-2 SE

Pass / Fail 
Border

FIGURE 9.8: ε-Greedy ARA(κ) agent, CSUD minimum at ε = 0.612. Com-
parison of repeated simulation outcomes to human IGT results. At ε = 0.612
and remaining reported CSUD minimum loss hyper-parameter values as noted
above, the ARA(κ) ε-Greedy agent generally achieves high matches for the pre-

sented IGT cases. Full details are in the text.

Fig. 9.8 shows that the ARA(κ) ε-Greedy agent behaves similar to the
simple ε-Greedy agent. Comparison of Fig. 9.8 with Fig. 6.6 reveals that the
addition of discount rate γ and trace decay κ has not changed the bi-modal
jitter plot densities observed especially for the normal random, vmPFC im-
paired original and random cases. For the ARA(κ) ε-Greedy and simple
ε-Greedy agents with CSUD minimum loss exploration at ε = 0.627 and
ε = 0.612 respectively, it is noted that the ARA(κ) ε-Greedy agents exhibits
a slight decrease in human match zone values across normal and vmPFC
impaired behaviours and all IGT cases. For example, the simple ε-Greedy
agent achieves 429, 586, and 58 matches for the normal original, re-shuffled,
and random environments respectively. In contrast, the ARA(κ) ε-Greedy
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FIGURE 9.9: Boltzmann ARA(κ) agent, CSUD minimum at τ = 225. Com-
parison of repeated simulation outcomes to human IGT results. At τ = 225
and remaining reported CSUD minimum loss hyper-parameter values as noted
above, the ARA(κ) Boltzmann agent generally achieves high matches for the

presented IGT cases. Full details are in the text.

agent achieves slightly reduced values with 354, 634, and 50 matches for the
normal original, re-shuffled, and random environments respectively. Fur-
ther, the simple ε-Greedy agent achieves 62, and 750 matches for the normal
original and re-shuffled environments respectively. In contrast, the ARA(κ)
ε-Greedy agent achieves slightly reduced values with 38 and 743 matches
for the normal original and re-shuffled environments respectively.

In general the ARA(κ) ε-Greedy agent achieves the highest simulation
matches in the re-shuffled IGT environment with 85% and 99% matches
for the normal and vmPFC impaired behaviour configurations respectively.
The normal original case achieves 47% matches. However the vmPFC im-
paired normal and normal random cases only achieve 5% and 7% matches
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respectively, with these two cases showing strongly bi-modal densities with
very little mass in the human catchment zones. Therefore overall the dis-
count rate γ and trace decay κ appear to have a very small, and possibly
negligible effect in the RL formulations of the IGT.

Further Fig. 9.9 shows that the ARA(κ) Boltzmann agent behaves sim-
ilar to the simple Boltzmann agent. The addition of discount rate γ and
trace decay κ produces a bi-modal jitter plot for the vmPFC impaired origi-
nal case, but otherwise does not substantially alter the remaining bi-modal
jitter plot densities. In general the ARA(κ) Boltzmann agent achieves the
highest simulation matches in the re-shuffled IGT environment with 63%
and 90% matches for the normal and vmPFC impaired behaviour configura-
tions. The normal and vmPFC impaired original cases achieve 54% and 58%
matches respectively. The normal random case achieves 45% matches. The
ARA(κ) Boltzmann agent overall produces more matches inside IGT human
outcome catchment zones. However, as the red coloured agent mean ±2SE
boxes indicate, despite higher in-zone matches, Boltzmann agent means ap-
pear in general near catchment zone boundaries.

A comparison of Fig. 9.8 with ε = 0.612 and Fig. 9.9 with τ = 225
shows with respect to the original and random IGT environments that the
Boltzmann agents achieves more individual outcome placements inside cor-
responding human catchment zones than does the ε-Greedy agent. Re-
garding outcome means however for the normal random IGT, the ε-Greedy
simulation f̄G narrowly lies in the corresponding human catchment zone,
whereas the f̄G of the Boltzmann agent narrowly misses the corresponding
human catchment zone. Given that in Fig. 9.1, the Boltzmann agent hyper-
parameter search appears unconverged, one might ask if the Boltzmann
agent could achieve random IGT normal configuration outcomes inside the
corresponding catchment zone with a longer search horizon. This was at-
tempted for the Boltzmann agent with 4000 search iterations. The CSUD
search after 4000 iterations, however, could not produce any in-catchment-
zone normal random IGT f̄G outcomes, and on that basis this approach was
then abandoned. As noted in section 9.5, it would be possible to get Boltz-
mann agent normal random IGT outcome f̄G matches by increasing the size
of the corresponding catchment zone. Such an approach, however, is not
undertaken in this work.

Table 9.4 and Table 9.5 present np-M/ANOVA results for the ARA(κ) ε-
Greedy and Boltzmann agents respectively. Test variants can be thought of
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Learning Decay λ
At α = 0.01, the null
hypotheses of learning
decay factor equality is
rejected. Only equality of
the re-shuffled response
cannot be rejected.

ANOVA Typea 92.139 2.979 4463.136 0

Re-Shuffled vs. Learning Decay λ

ANOVA Type 1.07 1.000 1498 0.301 Single response variable,
no subsets.Wilks Lambda 1.07 1.000 1498 0.301

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 9.4
ARA(κ) ε-Greedy agent np-M/ANOVA analysis of mean fraction of good
decks f̄G at γ = 0.514, κ = 0.264, α1 = 0.137, ε = 0.612, with learning decay λ as
factor. λN = 0.08, λvmPFC = 0.27. At significance level α = 0.01, mean fraction
of good decks f̄G responses are statistically significantly different, except for
the re-shuffled IGT environment.

as non-parametric versions of the F-test, with a test statistic and two degrees
of freedom. These three quantities are then assessed to derive the p-value.
The test statistics are discussed in Burchett et al., 2017.

The np-M/ANOVA tests check to see whether learning rate decay λ as
a factor leads to a switch from normal to vmPFC impaired behaviour. The
learning decay factors are normal learning decay λN and vmPFC impaired
learning decay λvmPFC. The null hypothesis is that there is no learning rate
decay value induced factor effect. At significance level 0.01, a p-value less
than 0.01 leads to the rejection of this null, whereas p-values greater than
0.01 indicate that the null hypothesis of no factor effects cannot be rejected.
Based on human IGT mean fraction of good deck f̄G results, the expectation
is that for the original decks, high learning rate decay leads to vmPFC im-
paired behaviour in the original but not in the re-shuffled IGT environment.
While there is no human outcome data for the vmPFC impaired random
IGT case, a test is also included, based on simulation results, for the random
IGT environment. Human data does not exist to validate the random IGT
results; however, based on simulation results, expected human outcomes
can be hypothesised for the random IGT environment.

At the CSUD discovered minimum loss hyper-parameter values as listed
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Learning Decay λ At α = 0.01, the null
hypotheses of learning
decay factor equality is
rejected for all response
variable subsets

ANOVA Typea 918.78 2.915 4366.213 0

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 9.5
ARA(κ) Boltzmann agent np-M/ANOVA analysis of mean fraction of good
decks f̄G at γ = 0.206, κ = 0.626, α1 = 0.290, τ = 225, with learning decay λ as
factor. λN = 0.00291, λvmPFC = 0.402. At significance level α = 0.01, mean
fraction of good decks f̄G responses are statistically significantly different.

in the respective tables, Table 9.4 and Table 9.5 show that at significance level
α = 0.01, normal versus vmPFC impaired learning rate decay (λN versus
λvmPFC) produces a statistically significant joint difference in mean fraction
of good decks f̄G. However, as Table 9.4 indicates, only for the ARA(κ) ε-
Greedy agent, does one fail to reject the null hypothesis of no factor effect
for the re-shuffled IGT environment. That is, the ARA(κ) ε-Greedy agent re-
produces statistically expected human re-shuffled IGT outcomes, whereas
the ARA(κ) Boltzmann agent does not. Both agent results indicate that if
vmPFC impaired subjects are given the random IGT, then there should be
statistically significantly different mean fraction of good decks results be-
tween the normal and vmPFC impaired subjects.

Fig. 9.10 displays ARA(κ) Boltzmann agent action (deck) selection prob-
abilities at CSUD discovered minimum loss hyper-parameter values for ex-
ploration (temperature) τ = 5, 75, and 225. At IGT completion and with
τ = 225, the CSUD selected minimum loss exploration value, with normal
behaviour configuration λN = 0.00291, the agent chooses from the good
decks C and D at probabilities above 0.25, while bad deck choice proba-
bilities are under 0.25. Bad deck B has the lowest selection probability in
all three IGT environments. However, in the vmPFC impaired behaviour
configuration with λvmPFC = 0.402, in the original IGT, deck B selection
probability is above 0.25. At τ = 5, the agent is too greedy, and for normal
behaviour, focuses primarily on deck C. At τ = 75, the agent for normal be-
haviour achieves selection probabilities with the good decks C and D being
clearly favoured.
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FIGURE 9.10: ARA(κ) Boltzmann agent at CSUD selected minimum loss with
γ = 0.206, κ = 0.626, α1 = 0.290. Exploration temperature τ and action selec-
tion probabilities at IGT task completion. Simulation sample size n = 750. At
τ = 225, mean action selection probabilities for the good decks C and D are
above 0.25. Note that per deck individual human results with n = 70 are only
available for the random IGT, however, have not been included in this plot, as
corresponding human data for the original and re-shuffled IGTs are not avail-

able.

However, as the 2D contours in Fig. 9.3 indicate, at τ = 75, the agent is
already achieving better than human performance across all behaviour and
IGT environment cases, in particular for the normal random IGT case.
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9.5 CSUD Search Discussion

From an infinite horizon perspective, the original, re-shuffled, and random
IGT environments appear identical and all exhibit the same mean net yields
shown in Table 4.1. However, as the results in chapter 6 and here indicate,
the three IGT environments exhibit sequencing effects, which lead to vari-
ations in the human mean fraction of good decks f̄ H

G achieved, especially
with respect to normal and vmPFC impaired behaviour.

The simple and ARA(κ), ε-Greedy and Boltzmann agent reinforcement
learning models discussed and implemented in chapter 6 and here, differ by
two additional parameters, the discount rate γ and trace decay κ. The ad-
dition of the discount rate and trace decay does not alter previous findings
regarding mean fraction of good decks f̄G outcomes. In particular, increas-
ing learning rate decay λ continues to lead to vmPFC impaired behaviour
and matching human results continues to require high exploration.

At the low learning rate decay λN, normal configured agents pass the
original, re-shuffled, and random IGTs. However, at the higher learning
rate decay λvmPFC, vmPFC impaired configured agents fail the original, but
pass the re-shuffled IGT. Software agents qualitatively achieve this result at
multiple f̄G outcomes, including those, which exceed normal human perfor-
mance. To match human performance agents must have high exploration.

Further for given discount γ and trace decay κ values, ARA(κ) agent
mean fraction of good decks f̄G 2D and 3D contours as well as jitter plots
present with similar visual characteristics as those observed in the corre-
sponding simple RL action value agent plots in chapter 6. This indicates
that γ and κ do not appear to have much interaction with λ and exploration
at least for the original, re-shuffled, and random IGT environments.

In this work, exponential learning rate decay is used to effectively induce
a finite learning horizon. A finite learning horizon constitutes a plausible
explanation for the sequencing effect driven mean fraction of good decks
f̄G outcome differences observed in original, re-shuffled and random IGT
environments.

Considering the fraction of good decks fG jitter plot density results in
Fig. 9.8 and Fig. 9.9, in conjunction with the np-M/ANOVA results in Tables
9.4 and 9.5 for the ARA(κ) ε-Greedy and Boltzmann agents respectively, it is
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noted that neither software agent provides an entirely convincing explana-
tion of human decision making. However, it is believed that both agents do
represent learning decay λ effects well, while neither agent fully captures
the nature of human exploration. Further, agent original and re-shuffled
IGT, vmPFC impaired configuration, 20-draw block results are flatter than
corresponding human results, indicating that vmPFC impaired humans ex-
hibit some learning, which the agents do not appear to capture.

At CSUD discovered exploration ε = 0.612, the ARA(κ) ε-Greedy agent
displays bi-modal fG jitter plot densities for the vmPFC impaired original
and normal random cases. These bi-modal densities have very little prob-
abilistic mass inside the indicated human match zones. However, as the
respective red bars indicate, the respective mean fraction of good decks
f̄G outcomes do fall within the human catchment zones. It is possible that
the combination of learning rate decay λ and constant exploration ε effects
leads to the development of bi-modal fraction of good decks fG densities.
Whether agent choices converge towards the good or bad decks, constant
exploration still brings in enough choices from the complement decks, and
this leads to bi-modal densities.

In terms of the np-M/ANOVA assessment, which uses ranks to deter-
mine whether behaviour and IGT environment cases exhibit significantly
different means, the ARA(κ) ε-Greedy agent does achieve conformance with
expected human IGT outcomes.

These results offer good insight into the difficulty of solely assessing
based on central tendency measures. Unfortunately, assessing potential bi-
modal human response patterns requires a large sample of individual hu-
man data, which is not available. Fellows and Farah (2005, p. 60, Fig. 4)
provide a breakdown for vmPFC impaired subjects for the original and re-
shuffled IGT environments. vmPFC impairment is a rare condition how-
ever, and their participant sample size is 9; this makes it difficult to develop
comparative density plots.

Fig. 9.11 depicts jitter density plot for fraction of good decks f H
G achieved

by normal human subjects taking the random IGT with individual partici-
pant data available from Steingroever et al. (2015). Green dots mark out-
comes inside human performance ranges. Blue dots mark additional nor-
mative pass results, whereas red dots mark additional normative pass fails.
Green numbers give total matches out of 70 samples, and the values in
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FIGURE 9.11: Random IGT fraction of good deck f H
G outcomes for control sub-

jects. Data from Steingroever et al. (2015). Only 11% of participants achieve
outcomes placed in the ±2SE catchment area denoted by the dashed top and

dash-dotted bottom lines. Details in text.

brackets indicate percentage matched. The dashed and dash-dotted hori-
zontal lines indicate the maximum and minimum respectively of the human
match range. Finally the red bars and box indicate central tendency in terms
of the mean and ±2 SEs (standard errors).

In Fig. 9.11, note that only 11% of participants placed inside the ±2SE
catchment area. Therefore, it is possible that catchment areas of ±2SE are
too narrow. However, here this possibility is not investigated further.

At 70 samples, the jitter plot in Fig. 9.11 itself does not indicate a ten-
dency towards bi-modality, and in shape is similar to the corresponding Fig.
9.9 τ = 225 ARA(κ) Boltzmann agent jitter plot, however with wider disper-
sal. The wider f H

G dispersal suggests that at 70 participants, the resulting f H
G

distribution is unlikely to have converged to a normal distribution. Hence,
the use of np-M/ANOVA, which does not rely on normality for statistical
significance testing, appears to be a correct choice.

At τ = 225, the ARA(κ) Boltzmann agent does not exhibit bi-modality,
and if catchment areas are widened, it could match all available human be-
haviour, IGT environment f̄G outcome ranges. However, in np-M/ANOVA,
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the Boltzmann agent fails to reject the hypothesis of no learning decay factor
effect for the mean fraction of good decks f̄G in the re-shuffled IGT environ-
ment. Widening the catchment areas would not address this divergence
from expected human behaviour, where it is expected that the re-shuffled
IGT normal and vmPFC impaired mean fraction of good deck f̄G outcomes
do not produce a statistically significant difference.

In sum, neither of the two ARA(κ) agents considered here achieves a de-
cisive match on the basis of non-aggregated, individual performance and
aggregated np-M/ANOVA analysis. It is believed that this is because nei-
ther model adequately expresses human exploration; whereas ε-Greedy ex-
ploration is too loose, Boltzmann exploration is too precise. The underly-
ing mathematical representation of human exploration behaviour may lie
somewhere between these two exploration alternatives.
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Chapter 10

Reinforcement Learning: Iowa
Gambling Task with Burst
Learning

This chapter develops a simple model for burst learning. The term burst
learning is used to describe an iterative learning scenario, where the learning
rate may suddenly increase, leading to increased contributions from current
or future projected outcomes. Therefore an increased learning rate intro-
duces the capability to overwrite a previously learned response.

A variable learning rate is not a new concept. In rational iterative learn-
ing as well as in stochastic search, a variable learning rate, for example, can
be implemented as an inverse Hessian approximation (Zhu et al., 2020), as a
deterministic rule, or in response to knowledge accumulation (Powell, 2011,
pp. 419-452).

Here, a heuristic approach is taken to learning rate variation. The expo-
nential learning rate decay model (5.2) with Q0(a) = 0, introduced in chapter
5, is capable of generating human IGT outcomes. At lower learning decay
λN, the agents match normal human IGT outcomes, and at higher learning
decay λvmPFC, the agents match vmPFC impaired IGT outcomes.

As discussed in section 2.3, the vmPFC, or orbitofrontal cortex (OFC),
is implicated in emotion mediated outcome valuation. Here, it is proposed
that the default learning rate is always decaying, but that via emotion medi-
ation, a decayed learning rate may be reset to a higher learning rate. In doing
so, a theoretical model is presented that provides an alternative to infinite
horizon, continuous learning rational models, such as the ones discussed in
section 2.5.

In the model proposed here, the learning rate may decay so quickly as
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to freeze learning within a few iterations. However, outcomes may elicit
emotions, which reset the learning rate, thus allowing the agent to re-learn,
but once again, for a limited number of iterations. The interplay between
emotion signals, which reset the learning rate, and high default learning
rate decay creates sequences of short learning episodes. This phenomenon
is called burst learning.

The term burst learning been employed in a psychological context to re-
fer to directed episodes of "focused learning" (Kunitani, 2016). The term
"bursting" is also used in neuroscience, where it refers to episodes of multi-
ple neuron spikes, and has been employed in the modelling of forward-pass
neural networks to generate learning benefits (Ohta et al., 2022).

In the current context, the notion of bursting is applied via emotion sig-
nals to modulate a decaying learning rate. When the decaying learning rate
is reset, learning benefits are obtained. The use of an emotion signal to regu-
late a decaying learning rate constitutes as far as is known a novel approach.
It should be noted, however, that the model proposed here can be devel-
oped without reliance on emotion labels. It is believed, however, that using
emotion labels may be justified by the role of emotion in decision making as
discussed in section 2.3.1 and section 2.3.2.

As in the previous chapter, first the decision making model is presented,
and then the reinforcement learning agent implementations are introduced.
This is followed by IGT applications, and then a discussion.

10.1 Single State Exponential Learning Rate De-

cay Q-learning with Burst Learning

The burst learning heuristic has three key components: emotions, default
learning rate behaviour, and the intervention logic, which resets the learn-
ing rate. Each key component is introduced in turn.

10.1.1 Emotions

Abstracting from Rolls (2013), a simple two emotion system is defined. In
this system, within target results produce happiness, while out-of target re-
sults produce anger. The experience of happiness results in default learning
rate decay behaviour. The software agent only alters its default behaviour
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Outcome Emotion Behaviour

On-target Happiness Default behaviour

Off-target Anger Intervention

TABLE 10.1
Two emotion learning and response, abstracted from Rolls (2013)

when it experiences anger. That is, anger leads to resetting the learning
rate. Table 10.1 summarizes two emotion learning, and the resulting agent
behaviour.

10.1.2 Learning Rate Decay

Let α1 ∈ [0, 1] be the initial learning rate, where the notation [] indicates a
closed interval. A class of bounded exponential decay learning weights are
defined, such that the upper bound is the initial learning rate α1, and the
lower bound is an attenuated fraction of the initial learning rate, α1/D with
D > 1. The term time-to-bound, TTB, is used to indicate the time required
to go from α1 to α1/D.

Under exponential decay, for any decay factor λ ∈ (0, ∞+), the time-to-
bound TTB required to reach α1/D can be computed as

TTB =
lnD

λ
(10.1)

Note that, the initial learning rate α1 does not affect the time-to-bound,
which is solely expressed in terms of the attenuation factor D and the decay
factor (learning rate decay) λ.

For example, D = 2 would correspond to the half-life of the initial learn-
ing rate. If α1 = 0.5 and λ = 0.25, then it would take ln2/0.5 = 2.8 periods
for the learning rate to decay from 0.5 to 0.25. If D = 100 and λ = 0.5, then it
would take ln100/0.5 = 9.2 periods for the initial learning rate to reduce by
100-fold. For example, it would take 9.2 periods for an initial learning rate
of 0.5 to decay to 0.005. Time is represented in discrete iterations, and there-
fore, TTB is always rounded to the nearest integer. This rounding operation
is denoted as Round(TTB).
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Given the initial learning rate α1, learning rate decay λ, and attenuation
D, define an indexed learning rate sequence

{
αt(i)

}
i∈Z

where

αt(i) =


α1, if i ≤ 0

e−iλα1, if 0 < i < Round(TTB)

α1/D, otherwise

(10.2)

and Z denotes the set of integers.
Note that αt(i) as defined in (10.2) above does not fulfil the theoretical

convergence criteria described in (3.7) that would be required for conver-
gence guarantees for the general iterative update rule (3.1b). Intuitively this
is easy to see, as (10.2) consists of the concatenation of exponentially decay-
ing and constant learning rates, neither of which satisfy convergence criteria
(3.7) on their own.

It would be straightforward to modify the lower α1/D bound in (10.2)
so that αt(i) satisfies convergence criteria. For example for i ≥ Round(TTB),
one can set

αt(i) = 1/t− 1/ f loor(TTB) + α1/D. (10.3)

Provided there exists a time period t after which the learning rate is no
longer reset, then such a sequence can be shown to satisfy convergence cri-
teria (3.7). This proof is not shown here, however, intuitively it can be seen
that such a proof is driven by the 1/t term in (10.3). The remaining terms
in (10.3) are constant, finite and bounded, and on that basis do not affect
convergence dynamics as t→ ∞.

Such bounded convergent learning rates as in (10.3) have been employed
by the author in experimental studies, but are not reported in this work, as
the results do not differ much from the simpler decay mechanics reported
here in (10.2). Since the IGT only lasts for 100 periods, and is adminis-
tered on a one-shot learning basis, the use of bounded convergent learn-
ing rates did not much change below findings, which use the bounded but
‘non-convergent’ learning rate schedule presented in (10.2).

10.1.3 Behaviour Intervention

Default behaviour consists of incrementing the learning rate index i by 1 per
learning iteration. This default behaviour is denoted by i++. As the middle
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branch of (10.2) shows, under default agent behaviour, when learning rate
decay λ and attenuation D are high, the incremented learning rate can de-
cay very quickly and effectively lead to truncation of learning. This default
behaviour may be modified on the basis of elicited emotions.

The behaviour cycle consists of four stages: assess, act, report, and pre-
pare (AARP). Emotions are ‘broadcast’ into a global buffer accessible to
any behavioural stage. The assess and act stages approximately correspond
to the critic and actor respectively in an actor-critic reinforcement learning
framework. However, in addition to value function updates, the assessment
stage here also populates the global emotion buffer. The agent’s internal
state remains private, but in the reporting stage, the agent has the option to
disclose the emotion buffer. The preparation stage is where the agent may
engage in additional set-up such as default preparatory behaviours.

The proposed architecture is general and permits a rich set of interac-
tions. However, in the present study, to investigate emotion and learning
rate interaction, behaviour is simplified as follows: the emotion buffer only
contains a single emotion, and is cleared at the beginning of each decision
making cycle. Emotions simply consist of labels, and hence, can be seen as
just being on or off.

10.1.4 Two Emotion Single State On-Policy Q-learning

Chapter 9 shows that the addition of discount rate γ and trace decay κ does
not lead to changes in initial learning rate α1, learning decay λ, and explo-
ration responses. Therefore in this chapter, rather than ARA(κ) agents, the
simple reinforcement learning agents introduced in chapter 5 are employed.

The use of single state on-policy (action-value) Q-learning (5.1) is re-
tained as suggested by Sutton and Barto (2018, p. 32). With discount rate
γ = 1 and indexed learning rate αt(i), model (5.1) becomes

Qt(a) = αt(i)xa
t +
(
1− αt(i)

)
Qt−1(a) (10.4)

where a denotes action, αt(i) is defined in (10.2), and i ∈ Z is an index. xa
t

indicates the net yield for action a.
Note that (10.4) is general enough to accommodate different indexed

learning rates for each card deck, or could even be generalised to have sep-
arate gain and loss learning rates. Such differences could for example be
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achieved by simply letting the index vary across decks, gains, and losses.
The notation above, however, is geared towards the simplest case where
the indexed learning rate remains the same across all decks, and instead of
gains and losses, only net yield is considered. The approach here produces
a simpler model and facilitates an architectural comparison with previously
presented models.

Next define the one-step temporal difference error as

δt ≡ (xa
t −Qt−1(a)) (10.5)

where Qt−1(a) constitutes the agent’s best forecast of the value of action a at
time t.

Given (10.4) and (10.5), define the one-step Q-difference error as

∆Qt(a) ≡ Qt(a)−Qt−1(a) = αt(i)δt (10.6)

where ∆ indicates the difference operator.
All-or-nothing emotions are elicited via threshold activation criteria de-

fined as the ratio of the current Q-difference error to the last-achieved Q-
value, which also forms the best one period ahead forecast. The emotion
activation threshold is defined in terms of a fraction involving the current
learning rate αt(i). Using Equation (10.6), specify

∆Qt(a)
Qt−1(a)

=
αt(i)δt

Qt−1(a)
S

αt(i)

B
(10.7)

where S denotes a three way switch consisting of "less than, equal to, or
greater than," and B > 1 is a scaling term applied to the current learning rate
αt(i). Intuition for B is presented after the introduction of the next equation.

For computational convenience, the threshold boundary condition in
Equation (10.7) is further simplified as,

δt

Qt−1(a) + ξ
S 1/B (10.8)

where B > 1, and ξ > 0 is a small computational guard to deal with the case
when the denominator Qt−1(a) is 0. Looking at (10.8), one can think of 1/B
as defining the fraction threshold for the activation paths of the three way
switch. For example, if B = 2, then 1/B = 0.5, and (10.8) can be interpreted

204



Chapter 10. Reinforcement Learning: Iowa Gambling Task with Burst
Learning

Variant Emotions Learning Rate αt(i) Index Behaviour

Tempered input >= 1/B→ Happy i++, Default behaviour

< 1/B→ Angry i = 0, re-learn, i++

Stoic input >= −1/B→ Happy i++, Default Behaviour

< − 1/B→ Angry i = 0, re-learn, i++

Buffered input > 1/B→ Happy i++, Default Behaviour

< −1/B→ Angry i = 0, re-learn, i++

otherwise→ NOP i = i

TABLE 10.2
Agent variants, activation thresholds, associated emotions and learning rate
index i behaviour for input δt/Qt−1. Details in text.

as, "if the temporal difference error is less than, equal to, or more than half
the action value." Regarding the value of the computational guard against
division by 0, in this chapter ξ = 1e−8 is employed.

Using equation (10.8), three agent temperaments are defined: tempered,
stoic, and buffered. For each temperament, Table 10.2 presents associated
activation thresholds, emotions, and learning rate index behaviour. As Ta-
ble 10.2 shows, δt/Qt−1 is the assessment criterion based on which emotions
are emitted. The activation thresholds are 1/B, −1/B, and the complement
of the interval [−1/B, 1/B] for the tempered, stoic, and buffered agents re-
spectively.

The tempered agent is only happy when the temporal difference error as
a fraction of Qt−1(a) is equal to or above 1/B. For example, when 1/B = 0.50,
then the agent is only happy when the temporal difference error gain is
at or above 50% of the most recently experienced Q-value. Therefore the
tempered agent is only happy when positive gains are achieved. Setting
1/B = 0.50 produces a high threshold for the three way switch, which con-
trols the behavioural pathways noted in Table 10.2. One can think of this
high threshold as inducing behavioural inertia so that agents are only "mo-
tivated" to switch when there is a relatively high (unanticipated) temporal
difference error.

With −1/B = −0.50, the stoic agent is happy when the temporal differ-
ence error loss is at or less than 50% of most recently experienced Q-value.
In short, the stoic agent can tolerate some disappointment and still remain
happy. Finally, the buffered agent is happy or angry depending on whether
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the temporal difference error gain or loss is above or below a certain percent-
age, for example 50%, of the last experienced Q-value. The buffered agent
does not react when the input δt/Qn−1 is in the closed interval [−1/B, 1/B].
Computationally speaking, this non-reactance is denoted with NOP (no op-
eration), a term borrowed from assembly mnemonics. In this context, NOP
is not interpreted as a separate emotion, but describes a state where sub-
activation threshold emotion is present.

In all three agent temperaments, happy does not produce an intervention
and implicitly leads to default agent behaviour. The learning rate index
increments by 1, and this leads to a decay of the learning rate in the next
period, at a speed set by learning rate decay λ. In contrast, when angry, the
agent resets its learning rate back to the initial learning rate α1. The agent
then re-computes, in the current period, the value function using the initial
learning rate. Next, as per the default behaviour, the learning rate index is
incremented, and this leads to a decrease of the learning rate for the next
period. For the buffered agent, in the NOP case, the learning rate remains
unchanged.

10.1.5 vmPFC Impairment

vmPFC impairment is modelled as the inability to assess emotions, with this
inability leading to perpetual continuation of default learning rate decay
behaviour.

That is, when a vmPFC impaired configured agent, for example the stoic
agent, experiences the angry emotion, the agent is no longer able to reset the
learning rate back to the initial learning rate α1. Instead, the learning rate
continues to decrease at decay rate λ towards the lower learning rate bound
α1/D. Once this lower bound is attained, the learning rate remains at the
lower bound.

These dynamics imply that emotion responses are necessary for normal
behaviour, and if emotion responses are not present then vmPFC impaired
behaviour results.
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10.2 Software agent implementations

Only the ε-Greedy and Boltzmann agents, introduced in sections 5.2.2 and
5.2.1 respectively, are considered. The ε-Greedy agent has constant explo-
ration ε, and the Boltzmann agent defines exploration temperature τ, which
controls how Q-values contribute to individual action probabilities.

The adaptive and decaying ε-Greedy agents are no longer considered.
The rationale for these omissions is discussed in section 8.3 and section
9.2. To briefly review, the adaptive ε-Greedy agent does not do well repli-
cating human 20-draw block and normal versus vmPFC impaired human
M/ANOVA mean fraction of good deck results. The decaying ε-Greedy
agent on the other hand produces IGT outcome results close to the simpler
constant exploration ε-Greedy agent, leading to the retention of the simpler
variant.

Standard ε-Greedy and Boltzmann agent behaviours introduced in sec-
tions 5.2.2 and 5.2.1 are augmented by the stoic agent emotion response pat-
terns presented in Table 10.2. As discussed in section 10.1, the happy emotion
response leads to learning rate decay towards the lower learning rate bound
α1/D. The angry emotion response, however, leads to a reset to the initial
learning rate α1, and the re-assessment of the relevant Q-value at the higher
learning rate, after which the learning rate is once more decremented for
the next iteration. When the agent emits the angry emotion, the agent has
a chance to learn from the missed expected target, assessed in relation to a
percentage threshold in terms of the ratio of the temporal difference error to
the last relevant Q-value.

Methodology, results, and the discussion are presented next. Only sim-
ulations using stoic emotion agents are presented with the emotion and
learning rate dynamics shown in Table 10.2. Tempered and buffered emo-
tion agent variants have been tested, however, these agents presented sim-
ilar results. While tempered and buffered emotion agent variants have dif-
ferent behavioural pathways, it is possible that the high learning rate decay
specifications lead to results similar to those obtained by the stoic emotion
variant. In the interest of brevity, here only stoic emotion agent results are
reported.

To review the agent learning problem, given original, re-shuffled, and
random IGT environments, the stoic emotion agents choose cards from one
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Agent Boltzmann ε-Greedy

Hyper-parameter

Attenuation D 2 - 1000 2 - 1000

Emotion activation threshold 1/B 0.5 0.5

Initial learning rate α1 0.01 - 0.99 0.01 - 0.45

Learning rate decay λ 0.08 - 0.75 0.1 - 0.8

Exploration τ = 0.5− 500 ε = 0.05− 0.90

CSUD Iterations 4000 4000

Gradient Samples 2 2

IGT length Q-learning samples

100 750

TABLE 10.3
2EmST agent search methodology. Joint original, re-shuffled, random IGT
hyper-parameter CSUD search criteria.

of the four card decks, A, B, C, and D; and are expected to discover good
decks C and D, and choose accordingly.

As in chapter 9, it is believed that the learning rate decay λ parameter
is sensitive to the underlying IGT environment yield frequency distribution
characteristics; on that basis, searches in this chapter are limited to IGT en-
vironment combinations with similar frequency dynamics, with the related
original, re-shuffled, and random IGT environments providing the largest
common yield characteristics search set.

The prefix 2EmST is used to differentiate the two-emotion stoic ε-Greedy
and Boltzmann agents from the ARA(κ) agents discussed in chapter 9 and
the simple RL agents discussed in chapter 6.

10.3 Methodology: Joint Search of the Original,

Re-shuffled, and Random IGT environments

The general methodology remains as discussed in section 6.1. The hyper-
parameters CSUD search investigates are attenuation D, emotion activation
threshold 1/B, the initial learning rate α1, learning decay λ, and exploration.
Table 10.3 summarises software agent CSUD search parameter constraints
and attributes. Note that the emotion activation threshold is constrained at
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1/B = 0.5. For each agent, CSUD is run for 4000 iterations and two gradient
samples are averaged in each iteration.

A joint CSUD (hyper-parameter) search is conducted of the original, re-
shuffled, and random IGT environments, looking for a hyper-parameter
configuration, which may lead to mean fraction of good decks f̄G outcomes
residing within respective human catchment ranges for normal and vmPFC
impaired behaviour.

As indicated in section 10.1.5, normal versus vmPFC impaired behaviour
is induced by disabling the emotion response described in Table 10.2. There-
fore CSUD search in effect traverses two separate Q-learning models for
each agent, the emotion enabled model for normal behaviour and the emo-
tion disabled model for vmPFC impaired behaviour. CSUD search loss is
minimised for hyper-parameter configurations which produce a match in
five outcome cases: normal original, normal re-shuffled, normal random,
vmPFC impaired original, and vmPFC impaired re-shuffled. Searches in
this chapter are limited to IGT environment combinations with similar fre-
quency dynamics, with the related original, re-shuffled, and random IGT
environments providing the largest common yield characteristics search set.

In sum, this chapter uses CSUD search to assess a common hyper-para-
meter set controlling the behaviour of two related models, which differ by
the inclusion, or exclusion, of learning rate reset dynamics. The CSUD re-
sults are then verified by running 750 repeated software agent simulations
in a small grid search around the CSUD discovered minimum loss hyper-
parameter values. Grid search verification results are analysed and software
agent performance is discussed.

10.4 CSUD Search Results

For ease of comparison, results for the two emotion stoic threshold (2EmST)
ε-Greedy and Boltzmann agents are presented side-by-side. Table 10.4 and
Fig. 10.1 present CSUD search results in tabular and graphic forms respec-
tively.

Table 10.4 shows that after 4000 search iterations, the 2EmST ε-Greedy
agent achieves 725 full matches. In contrast, the 2EmST Boltzmann agent
only achieves 5 full matches, while achieving 2230 partial matches.
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Agent ε-Greedy Boltzmann

Hyper-parameter

Attenuation D 100.372 100.012

Emotion Activation Threshold 1/B 0.5 0.5

Initial Learning Rate α1 0.150 0.420

Learning Decay λ 0.176 0.102

Exploration ε = 0.665 τ = 225.002

Minimum Loss 0.00767 0.0233

Matches 725 5 / 2230a

a5 full CSUD matches. 2230 partial matches when excluding normal random IGT
behaviour. Partial matches include normal and vmPFC impaired behaviour, original
and re-shuffled decks.

TABLE 10.4
2EmST agent joint original, re-shuffled and random IGT CSUD search
matches.

A full search match consists of achieving mean fraction of good decks f̄G

outcomes residing in the respective five human outcome catchment zones:
normal original, normal re-shuffled, normal random, vmPFC impaired orig-
inal, and vmPFC impaired re-shuffled. In a partial match, such as that ex-
hibited by the 2EmST Boltzmann agent, the agent fails to achieve matches
for the normal random IGT outcome case.

Exploration with ε = 0.665 and τ = 225.002 remains high for both the
2EmST ε-Greedy and Boltzmann agents respectively. The initial learning
rate α1 for the 2EmST ε-Greedy agent is lower than the corresponding value
in the simple reinforcement learning model. With 2EmST, the ε-Greedy
agent CSUD search produces α1 = 0.150, while the corresponding CSUD
search in the simple model in chapter 6 produces α1 = 0.417. This difference
possibly originates because the added behavioural complexities of the emo-
tion agent do not do as well with initial non-stationarities, occurring at the
beginning of the IGT; consequently the CSUD search algorithm is forced to
consider lower initial learning rate values.

Fig. 10.1a and Fig. 10.1b show the outcome of 4000 iterations of CSUD
loss minimising hyper-parameter searches for the 2EmST ε-Greedy and Boltz-
mann agents respectively. Green dots indicate full matches, where as blue
dots represent partial matches. Fig. 10.1a shows that the ε-Greedy agent
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exhibits, with the exception of attenuation D, strong traversal of hyper-
parameter space. Further, the clustering of the green dots indicates that
there is indeed a specific parameter range which satisfy the search criteria
towards which the search is converging.

In contrast, Fig. 10.1b shows that the corresponding CSUD search for
the Boltzmann agent exhibits only good hyper-parameter range traversal
for the initial learning rate α1. Attenuation D and exploration τ show little
range traversal, while learning decay λ shows some range traversal.

As indicated by the sparsity of green dots within the iteration budget,
the Boltzmann agent does not show a tendency towards discovery of a full
search match. However, the Boltzmann agent does discover a large num-
ber of partial matches consisting of in-zone mean fraction of good deck
f̄G matches for the normal and vmPFC impaired, original and re-shuffled
IGT environments. It is possible that with different initial hyper-parameter
values, larger iteration budget, or mapping of hyper-parameter ranges, the
Boltzmann agent would achieve better results. However, the results exhib-
ited here are consisted with the difficulties Boltzmann agents in previous
chapters have exhibited, as indicated by Fig 9.1b and Fig 6.7 for the ARA(κ)
and simple Boltzmann agents respectively. It is believed that the difficulties
seen here are an inherent by-product of the Boltzmann agent exploration
specification.

Also Boltzmann exploration in Fig 9.1b does not change much, and it
might be asked whether the Boltzmann agent could have achieved better
match results had there been wider hyper-parameter space traversal for ex-
ploration τ. As mentioned previously, the low traversal result for τ is due to
a perturbation scale effect in CSUD. Fig. 10.3 2D grid search results indicate
that it is unlikely that a value of τ exists at which the (2EmST) Boltzmann
agent would achieve f̄G matches across all catchment zones. On that ba-
sis, the τ perturbation scale and resulting low range traversal issue is not
addressed any further.
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(A) 2EmST ε-Greedy Agent, 725 full matches
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(B) 2EmST Boltzmann Agent, 5 full, 2230 partial matches

FIGURE 10.1: 2EmST agent joint original, re-shuffled and random IGT CSUD
search matches. Green dots indicate full matches. Blue dots indicate partial
matches as noted in Table 10.4. The Boltzmann agent is slower to converge and
at 4000 iterations, search convergence might not yet have been achieved. The
Boltzmann agent CSUD search minimum loss match extracted from the few
full matches did not produce full matches in subsequent CSUD verification

simulations.
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Agent ε-Greedy Boltzmann

Hyper-parameter

Attenuation Da 100.372 100.012

Emotion Activation

Threshold 1/B
0.5 0.5

Initial Learning Rate α1 0.05, 0.150, 0.35, 0.65 0.05, 0.15, 0.420, 0.65

Learning Decay λb 0.176, 0.5 0.102, 0.5

Exploration ε = 0.10, 0.5, 0.665, 0.75 τ = 5, 75, 225, 475

IGT length Q-learning samples

100 750
a Attenuation grid elements are: 2, 4, 6, 11, 20, 35, 62, a, 197, 349, 620, 1100,

where a is replaced as noted above.
b The learning rate decay and exploration decay grids are constructed around

the two values above. Appendix C provides the construction method.

TABLE 10.5
2EmST agent joint original, re-shuffled and random IGT CSUD search grid
verification configurations.

CSUD grid search verification results are presented next. Based on CSUD
grid search verification, the burst learning model implemented with two
emotion stoic activation threshold (2EmST) agents, displays from a deci-
sion theoretic point of view, some significant results, which are especially
noticeable with the 2EmST ε-Greedy agent. To summarise, the burst learn-
ing model results produce very good effect decomposition among the three
key decision making hyper-parameters, the initial learning rate α1, learning
rate decay λ, and exploration ε or τ. The results are now discussed in some
detail.

Table 10.5 presents the 2EmST agent CSUD verification grid search con-
figurations. In CSUD searches the emotion activation threshold is constrained
to 1/B = 0.5. Also to conform with agent specifications discussed in section
10.2, emotion use ability is not altered during grid searches.

Fig. 10.2 and Fig. 10.3 show respectively the 2EmST ε-Greedy and Boltz-
mann agent CSUD verification 2D mean fraction of good decks f̄G contours
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obtained at IGT completion. For the 2EmST ε-Greedy agent the CSUD ver-
ification grid search 2D contours are displayed at CSUD selected minimum
loss attenuation D = 100.372 and initial learning rate α1 = 0.150. For the
2EmST Boltzmann agent the CSUD verification grid search 2D contours are
displayed at CSUD selected minimum loss attenuation D = 100.012 and
initial learning rate α1 = 0.420.

In Fig. 10.2 and Fig. 10.3, dark and light gray zones represent normal and
vmPFC impaired human IGT outcome match areas respectively. Solid and
dash-dotted contours show learning decay λ response of normal (emotion
on) and vmPFC impaired (emotion off) configured agents respectively at
CSUD selected minimum loss hyper-parameter values. The black contours
represent the CSUD minimum loss exploration contour at ε = 0.665. The
gray coloured contours present mean fraction of good decks f̄G behaviour
at alternative grid exploration values. Each learning rate decay λ grid point
is reported with ±2SE error bars.

Most significantly, in terms of mean fraction of good decks f̄G, Fig. 10.2
and Fig. 10.3 indicate that for both agents normal behaviour, 2D (solid line)
exploration contours in all IGT environments flatten and the influence of
learning rate decay λ is strongly reduced. Previously in chapters 6 and 9,
such an effect was only noticeable in the re-shuffled IGT environment. This
flattening effect is more noticeable in Fig. 10.2 with the ε-Greedy agent. This
result implies that in burst learning and with normal behaviour, the original,
re-shuffled, and random IGT environment card sequencing effects no longer
play an outcome determining role.

In the case of vmPFC impaired behaviour however, with both agents,
the 2D dotted line exploration contours retain the sinusoid like shapes pre-
viously noted in chapters 6 and 9. Note that the sinusoid shapes are most
prominent in the vmPFC impaired original case, while being squashed to a
line in Fig. 10.2 for the 2EmST ε-Greedy agent vmPFC impaired re-shuffled
IGT environment case. This result implies that in burst learning and with
vmPFC impaired behaviour, card sequencing, in the the original, re-shuffled,
and random IGT environments, does lead to sequencing effects, modulated
by learning rate decay λ and the IGT environment itself.
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FIGURE 10.2: 2EmST ε-Greedy agent CSUD verification grid search 2D con-
tours. Normal and vmPFC impaired behaviours are depicted by solid and dot-
ted lines respectively. For normal behaviour, burst learning produces signifi-
cant decoupling of learning decay and exploration responses. The dark gray
zone represents the normal human IGT outcome match area. The light gray
zone represents the vmPFC impaired human IGT outcome match area. Solid
black contours show response to learning decay λ at CSUD selected minimum

loss hyper-parameter values. Details in text.

Regarding exploration, for either agent and behaviour configuration, in-
creasing exploration leads to a downward shift of the corresponding 2D
contours. However, as full exploration is equivalent to random search,
which would yield an expected result of f̄G = 0.5, there may be a lower limit
to this downward shift; indeed the limiting point of increasing exploration
appears to be f̄G = 0.5.
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FIGURE 10.3: 2EmST Boltzmann agent CSUD verification grid search 2D con-
tours. Normal and vmPFC impaired behaviours are depicted by solid and dot-
ted lines respectively. For normal behaviour, burst learning produces signifi-
cant decoupling of learning decay and exploration responses. The dark gray
zone represents the normal human IGT outcome match area. The light gray
zone represents the vmPFC impaired human IGT outcome match area. Solid
black contours show response to learning decay λ at CSUD selected minimum

loss hyper-parameter values. Details in text.

Since each IGT environment by construction consists of 50% good, and 50%
bad decks and the 50/50 mean as noted in Table 4.1 is 0 net yield, such a
limiting point appears plausible (by construction).
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The 2D contour view provides an opportunity to discuss the most promi-
nent initial learning rate effect, which consists of a technical non-stationarity
effect increasing as learning decay increases from 0. Fig. 10.2 and Fig. 10.3,
with vmPFC impaired behaviour, with exploration ε = 0.100 and τ = 5 for
ε-Greedy and Boltzmann agents respectively, depict a portion of the respec-
tive sinusoidal dotted 2D vmPFC impaired contours which rises above the
corresponding solid 2D normal behaviour contours as learning rate decay
increases from λ = 0 towards λ = 0.15. As the initial learning rate α1 in-
creases, the amplitude of this sinusoidal region, where the vmPFC impaired
dotted 2D contour rises above the corresponding normal solid 2D contour,
increases. This increased amplitude effect encapsulates the primary conse-
quences of increasing the initial learning rate α1.

Therefore in the burst learning model, there is a region of parameter
space, consisting of high initial learning rate α1 and low learning decay λ,
where for vmPFC impaired behaviour, strong initial learning rate α1 and ex-
ploration interactions take place. From a decision theoretic perspective, this
effect is not taken into consideration here because there is no support for
such a potential outcome in human IGT data. That is, original IGT vmPFC
impaired human outcomes do not exceed corresponding normal human
outcomes.

It has been well established that, high initial learning rate leads to non-
stationarities, especially, when starting learning with Q-values, which have
been initialised at arbitrary values (such as 0). In such cases, by reducing
the unduly high initial learning rate α1, increasing learning rate decay λ

would naturally lead to outcome improvements. Here focus remains on
learning rate decay behaviours, which obtain when the initial learning rate
has been specified so as to minimise any nonstationarity effects. Indeed, as
Fig. 10.2 and Fig. 10.3 indicate, CSUD searches approximating human IGT
outcomes discover hyper-parameter solutions, where learning rate decay is
such that the selected points on the vmPFC impaired dotted contours do
not lie on the increasing portion of the curve. This suggests that if the com-
putational model presented here describes accurately mathematical human
IGT behaviour, then vmPFC impaired humans are able to mitigate initial
potential nonstationarities by selecting a relatively low initial learning rate.
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Abstracting for a moment from human IGT outcome zones, in the burst
learning model, initial learning rate α1, learning rate decay λ, and explo-
ration effects are sufficiently decoupled for normal behaviour cases, effec-
tively letting hyper-parameter tuning produce the desired mean fraction
of good decks f̄G target. These primary decision making theoretic hyper-
parameters are also sufficiently decoupled in the vmPFC impaired behaviour
case, and likewise allow hyper-parameter tuning through to a specific per-
formance target.

Considering agents’ ability to match all human IGT outcome cases, it is
noted that for the 2EmST ε-Greedy agent, as the black 2D contours placed
inside the dark and light gray zones indicate in Fig. 10.2, all outcome cases
are matched; however for normal behaviour, such matches lie close to the
boundaries of the respective catchment zones. In Fig. 10.3 the 2EmST Boltz-
mann agent achieves a partial search match consisting of the normal and
vmPFC impaired, original and re-shuffled IGT environments; however, ex-
cept for the vmPFC impaired re-shuffled case, remaining matches are on
catchment zone boundaries. The normal random catchment zone is only
narrowly missed.

It is possible that overall matches are improved by increasing catchment
zone sizing. However, such a possibility is not pursued any further here.
The construction of the catchment zones employed is described in section
4.2.1 and Table 4.3 to Table 4.8.

Fig. 10.4 and Fig. 10.5 depict 2EmST agent CSUD verification grid search
3D contours. Green and blue coloured surfaces show normal and vmPFC
impaired behaviour response respectively to learning decay λ and atten-
uation D at CSUD selected minimum loss hyper-parameter values. The
diamond � and inverted triangular H shapes mark CSUD minimum loss
normal and vmPFC impaired learning decay and attenuation rates respec-
tively.

Regarding the initial learning rate α1, it has already been established in
previous chapters that due to exponential learning rate decay, the initial
learning rate does not have much influence. As the 3D contours in Fig 10.4
and Fig 10.5 illustrate, this result does not change. Further, the 2EmST agent
CSUD 3D grid search verification plots reinforce the results of the corre-
sponding 2D plots in Fig 10.2 and Fig 10.3.
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FIGURE 10.4: 2EmST ε-Greedy agent CSUD verification grid search 3D con-
tours. Green and blue coloured surfaces show normal and vmPFC impaired be-
haviour response respectively to learning decay λ and attenuation D at CSUD
selected minimum loss hyper-parameter values. The diamond � and inverted
triangular H shapes mark CSUD minimum loss normal and vmPFC impaired
learning decay and attenuation rates respectively. When emotion is ’On’ cor-
responding normal human IGT outcomes are matched. When emotion is ’Off’
corresponding vmPFC impaired human IGT outcomes are matched. The grey

3D contours show agent emotion behaviour response at ε = 0.1.
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FIGURE 10.5: 2EmST Boltzmann agent CSUD verification grid search 3D con-
tours. Green and blue coloured surfaces show normal and vmPFC impaired be-
haviour response respectively to learning decay λ and attenuation D at CSUD
selected minimum loss hyper-parameter values. The diamond � and inverted
triangular H shapes mark CSUD minimum loss normal and vmPFC impaired
learning decay and attenuation rates respectively. When emotion is ’On’ cor-
responding normal human IGT outcomes are matched. When emotion is ’Off’
corresponding vmPFC impaired human IGT outcomes are matched. The grey

3D contours show agent emotion behaviour response at τ = 5.
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The 3D plots in Fig. 10.4 and Fig 10.5 show that for both the 2EmST
ε-Greedy and Boltzmann agents, as indicated by the relatively flat normal
behaviour green coloured 3D surfaces, increasing learning decay λ and at-
tenuation D has little effect on the mean fraction of good decks f̄G outcomes.

In contrast, for the original and random IGT environments with vmPFC
impaired behaviour, the blue coloured 3D surfaces present a bowl like re-
sponse with reduced f̄G outcomes as learning decay λ and attenuation D
increase. By design in the re-shuffled IGT environment, this bowl like re-
sponse is substantially mitigated.

For low exploration at ε = 0.1 and τ = 5, the gray 3D contours for the
2EmST ε-Greedy and Boltzmann agents in Fig. 10.4 and Fig. 10.5 respec-
tively, indicate that lower exploration increases mean fraction of good decks
f̄G outcomes. However, in the original and random IGT with vmPFC im-
paired behaviour, this leads to deeper bowls in response to increased learn-
ing rate decay and attenuation.

Fig. 10.6 shows the effect of increasing the learning rate. In this case,
increasing the learning rate from the CSUD discovered value α1 = 0.15 to
α1 = 0.65 for the 2EmST ε-Greedy agent with vmPFC impaired behaviour,
leads to increased nonstationarity effects on the far edges of the blue and
gray bowl shaped 3D surfaces.

Fig. 10.7 and Fig. 10.8 present 2EmST agent 20-draw block behaviour for
mean fraction of good decks f̄G and exploration index (EI) respectively. In
both figures, human reference and agent results appear in light gray dotted
lines and dark gray solid lines respectively. Agent results are averaged from
750 samples. All error bars are at ±2SE.

Fig. 10.7 shows that agent 20-draw block mean fraction of good decks f̄G

lie within the ±2SE of corresponding human IGT outcomes for the normal
and vmPFC impaired, original and re-shuffled IGT environments. How-
ever, for the normal random IGT case for both agents, in blocks 1-20 and
21-40, agent f̄G lies above ±2SE of corresponding human values. The agent
curves appear parabolic and asymptotic, while the corresponding human
curves have a sigmoid shape. This indicates that possibly neither the Boltz-
mann nor the ε-Greedy agents fully capture the nature of human explo-
ration.
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FIGURE 10.6: 2EmST ε-Greedy agent CSUD search grid verification 3D con-
tours for α1 = 0.65. Green and blue coloured surfaces show normal and vmPFC
impaired behaviour response respectively to learning decay λ and attenuation
D at CSUD selected minimum loss hyper-parameter values. The inverted tri-
angular H shape marks CSUD minimum loss vmPFC impaired learning de-
cay and attenuation rates respectively. When emotion is ’Off’ corresponding
vmPFC impaired human IGT outcomes are matched. The grey 3D contours
show agent emotion behaviour response at ε = 0.1. Compared to α1 = 0.15 in
Fig 10.4, at high initial learning rate α1 = 0.65, the edges of the vmPFC impaired
behaviour surfaces reveal increased nonstationarity effects. At α1 = 0.65, CSUD
minimum loss matches are only achieved for the vmPFC impaired original and

re-shuffled IGT environments.
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(A) ε-Greedy Agent, D = 100.372, 1/B = 0.5, α1 = 0.150, λ = 0.176, ε = 0.665
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(B) Boltzmann Agent, D = 100.012, 1/B = 0.5, α1 = 0.420, λN = 0.102, τ = 225
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FIGURE 10.7: 2EmST agent 20-draw blocks comparison at CSUD search values
as indicated above. Human reference results in dotted light gray. Agent results
in solid dark gray, averaged from 750 samples. All error bars at ±2SE. When
error bars are taken into account agent and human 20-draw block performance

appears relatively similar, except for the random IGT. Details in text.
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(A) ε-Greedy Agent, D = 100.372, 1/B = 0.5, α1 = 0.150, λ = 0.176, ε = 0.665
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FIGURE 10.8: 2EmST agent 20-draw block exploration index (EI) comparison
at CSUD search values as indicated above. Human reference results in dotted
light gray. Agent results in solid dark gray, averaged from 750 samples. Human
subject and agent exploration index responses appear relatively similar except
in the normal re-shuffled IGT, where agent EI appears higher. Details in text.
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FIGURE 10.9: Exploration index (EI) for mean fraction of good decks f̄G. The
solid line indicates the exploration index, while the dash dotted line highlights

f̄G = 0.5. Note that EI = 100 at f̄G = 0.5.

Fig. 10.8 shows 2EmST agent 20-draw block exploration index (EI) out-
comes. The exploration index (EI) profiles presented in Fig. 10.8 are simi-
lar to those obtained in Fig. 6.5 and Fig. 6.11 for the simple reinforcement
agents; and in Fig. 9.7 for the ARA(κ) agents. Therefore the inclusion of the
model reset mechanism, which normal configured 2EmST agent employ,
does not appear to be associated with a change in exploration index (EI)
behaviour. Recall that the exploration index (EI) measured implied explo-
ration based on realized choices, and that learning rate decay could thus
have an indirect effect on the exploration index via the initial learning rate.
Such an theoretical effect, however, is not exhibited in Fig. 10.8.

The exploration index (EI) ranges from 0 to 100, with 0 indicating full
exploitation and 100 indicating full exploration (i.e., random search). In the
sense of the No Free Lunch theorems (Wolpert & Macready, 1997), the explo-
ration index measures search algorithm specificity, with 0 indicating a fully
specific response, and 100 indicating random search. As no specific algo-
rithm can provide universal solutions over all algorithms and search prob-
lems, an increased EI can be seen as an attempt to build hybrid search algo-
rithms, which attempt to increase search space generalisation by increasing
randomness.

The exploration index (EI) is not a linear scale, and is described in more
detail in section 4.2.3. For two selection options, such as fraction of good
decks versus fraction of bad decks, however, EI can be readily visualised
and is presented in Fig. 10.9. With reference to Fig. 10.9, note that based
on Fig. 10.8a and Fig. 10.8b neither the ε-Greedy nor the Boltzmann agent
respectively can fully capture human exploration.
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FIGURE 10.10: 2EmST ε-Greedy agent, CSUD minimum at ε = 0.665. Compar-
ison of repeated simulation outcomes to human IGT results. 2EmST ε-Greedy
agent jitter plots reveal that normal behaviour (emotion on) configuration no-

longer exhibits bi-modality. Full details are in the text.

This is noted in the respective normal original and re-shuffled IGT environ-
ments at block 81-100, where human reference EI values are lower indicat-
ing a greater reduction in exploration than that evidenced in agent results.

Fig. 10.10 and Fig. 10.11 depict success of 2EmST agent simulation out-
comes, and provide agent jitter plot density summary for the fraction of
good decks fG outcomes obtained at the CSUD selected minimum loss agent
hyper-parameter values from 750 simulated samples for normal (control,
emotion on) and vmPFC impaired (emotion off) configurations. Green dots
mark outcomes inside human performance ranges. Blue dots mark addi-
tional normative pass results, whereas red dots mark additional normative
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FIGURE 10.11: 2EmST Boltzmann agent, CSUD minimum at τ = 225. Compar-
ison of repeated simulation outcomes to human IGT results. Full details are in

the text.

fails. Green numbers give total matches out of 750 samples, and the values
in brackets indicate percentages matched. A high percentage matched value
is indicative of predictive simulation success. The dashed and dash-dotted
horizontal lines indicate the maximum and minimum respectively of the
human match range. Finally the red bars and box indicate central tendency
in terms of the mean and ±2 SEs (standard errors).

For 2EmST agents, with normal behaviour configured agents capable
of resetting to the initial learning rate α1, the ε-Greedy agent as noted in
Fig. 10.10 exhibits a significant shift in behaviour when compared with re-
sults obtained with the simple and ARA(κ) reinforcement learning agents.
Unlike previous ε-Greedy agents, the 2EmST ε-Greedy agent with normal
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behaviour does not display bi-modal fraction of good decks fG outcomes.
In Fig. 9.8 for example, the normal behaviour ARA(κ) ε-Greedy agent

with CSUD loss minimising exploration at ε = 0.612 displays for the fraction
of good decks fG, a heavy tail in the original, and a bi-modal density in the
random IGT environments. In contrast in Fig. 10.10 the normal behaviour
2EmST ε-Greedy agent, with CSUD loss minimising exploration at ε = 0.665,
displays for fG, a clustered (unimodal) density both in the original and ran-
dom IGT environments. This result is significant because it indicates that
the current model with learning rate resetting and an ε-Greedy agent pro-
vides an alternative to the Boltzmann architecture for achieving unimodal
fG jitter plot outcomes.

As Fig. 10.10 shows, the vmPFC impaired behaviour 2EmST ε-Greedy
agent presents with reduced bi-modality when compared in Fig. 6.6 and
Fig. 9.8 to the simple and ARA(κ) ε-Greedy agents respectively. At ε = 0.665,
this leads to increased matches in the respective human IGT outcome catch-
ment zones. It is believed that this is a consequence of the 2EmST model
requiring lower learning decay for achieving vmPFC impaired behaviour.

As Fig. 10.11 shows, the vmPFC impaired behaviour 2EmST Boltzmann
agent presents with some differences when compared in Fig. 6.12 and Fig. 9.9
to the simple and ARA(κ) Boltzmann agents respectively. Both the simple
and ARA(κ) Boltzmann agents display at τ = 5, in the original and random
environments, heavy tailed or bi-modal jitter plots. In the 2EmST Boltz-
mann agent, the strength of this tendency is diminished. As mentioned
above, this observation is possibly a consequence of the 2EmST model re-
quiring lower learning decay for achieving vmPFC impaired behaviour.
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Behaviour At α = 0.01, the null
hypotheses of behaviour
factor equality is rejected.
Equality of the
re-shuffled|random,
re-shuffled, and random
subset responses cannot
be rejected.

ANOVA Type 79.856 2.984 4469.406 0

Wilks Lambda 88.976 3.000 1496.000 0

Re-Shuffled | Random vs. Behaviour

ANOVA Typea 2.065 2 2995.551 0.127 Joint response is not
significant, no subsets.

Re-Shuffled vs. Behaviour

ANOVA Type 1.927 1.000 1498 0.165 Single response variable,
no subsets.Wilks Lambda 1.927 1.000 1498 0.165

Random vs. Behaviour

ANOVA Type 2.203 1.000 1498 0.138 Single response variable,
no subsets.Wilks Lambda 2.203 1.000 1498 0.138

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 10.6
2EmST ε-Greedy agent np-M/ANOVA analysis of mean fraction of good
decks f̄G at D = 100.372, 1/B = 0.5, α1 = 0.150, λ = 0.176, ε = 0.665, with
behaviour (normal, vmPFC impaired) as factor. At significance level α = 0.01,
mean fraction of good decks f̄G responses are statistically significantly
different, except for the re-shuffled | random, re-shuffled, and random IGT
environment subsets.

Table 10.6 and Table 10.7 present np-M/ANOVA results for the 2EmST ε-
Greedy and Boltzmann agents respectively. The np-M/ANOVA tests check
to see whether behaviour configuration as normal (emotion on) or vmPFC
impaired (emotion off) produces a statistically significant joint mean frac-
tion of good decks f̄G difference across the original, re-shuffled, and ran-
dom IGT environments, and their subset combinations. Test variants can be
thought of as non-parametric versions of the F-test, with a test statistic and
two degrees of freedom. These three quantities are then assessed to derive
the p-value. The test statistics are discussed in Burchett et al., 2017.

The null hypothesis is that there is no emotion induced factor effect. At
significance level 0.01, a p-value less than 0.01 leads to the rejection of this
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null, whereas p-values greater than 0.01 indicate that the null hypothesis of
no factor effects cannot be rejected.

Based on human IGT mean fraction of good deck f̄ H
G results, the expec-

tation is that for the original decks, a statistically significantly different f̄G

is found for normal (emotion on) versus vmPFC impaired (emotion off) be-
haviour. On the other hand, the expectation is that for the re-shuffled decks,
the null hypothesis of equal f̄G cannot be rejected with respect to normal
and vmPFC impaired behaviour. While there is no human outcome data for
the vmPFC impaired random IGT case, based on simulation results, a test
is also included for the random IGT environment. Human data to validate
vmPFC configured random IGT simulation results does not exist; however,
one can hypothesize expected human outcomes for the random IGT envi-
ronment. In particular, the ε-Greedy 2EmST burst learning model predicts
that should a normal versus vmPFC impaired random IGT variant test be
conducted with human participants, then there should be no significant fac-
tor effect due to vmPFC impairment at α− 0.01.

For the ε-Greedy agent, Table 10.6 reveals at significance level α = 0.01 a
statistically significant mean fraction of good decks f̄G joint response across
all three, the original, re-shuffled, and random IGT environments. Sub-
setted responses, indicate that the null hypothesis of a statistically signifi-
cant behaviour driven f̄G response fails to be rejected for the re-shuffled and
random, re-shuffled only, and random only IGT environments. In terms of
human benchmarks, rejecting the null with respect to the original IGT, and
failure to reject the null with respect to the re-shuffled IGT environment is
the expected response. Additionally, the results predict that if human IGT
decision-making is adequately explained by the 2EmST ε-Greedy model,
then an ANOVA looking at human mean fraction of good decks f̄ H

G for nor-
mal, vmPFC impaired behaviour differences for the random IGT should not
yield statistically significant results.

Table 10.7, showing np-M/ANOVA results for the 2EmST Boltzmann
agent with behaviour (normal, vmPFC impaired) as factor, reveals at signif-
icance level α = 0.01, a statistically significant mean fraction of good decks
f̄G joint response across all three, the original, re-shuffled, and random IGT
environments. Additionally all sub-setted response combinations also pro-
duce statistically significantly different outcomes. This indicates that the
Boltzmann agent does not match expected human outcomes. For the re-
shuffled IGT environment, one would have expected failure to reject the
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Test
Variant

Test
Statistic

df1 df2 p-Value
Subset
Results

Original | Re-Shuffled | Random vs. Behaviour At α = 0.01, the null
hypotheses of behaviour
factor equality is rejected
for all response variable
subsets

ANOVA Typea 438.663 2.776 4158.388 0

aWilks Lambda could not be computed due a singular rank matrix.

TABLE 10.7
2EmST Boltzmann agent np-M/ANOVA analysis of mean fraction of good
decks f̄G at D = 100.012, 1/B = 0.5, α1 = 0.420, λ = 0.102, τ = 225, with
behaviour (normal, vmPFC impaired) as factor. At significance level α = 0.01,
joint and all sub-setted mean fraction of good decks f̄G responses are
statistically significantly different.

null hypothesis of no factor effect; however, this is not the case.
Fig. 10.11, at τ = 225 for the re-shuffled IGT, shows that the Boltzmann

agent achieves a high number of control and vmPFC impaired matches.
The np-M/ANOVA results however reveal statistically significantly differ-
ent f̄G of the respective jitter plot clusters. Therefore while in the re-shuffled
IGT case the Boltzmann agent visually places normal and vmPFC impaired
agent f̄G inside the respective human catchment zones, statistically speak-
ing the two distinct behaviour result means do not appear to come from the
same distribution. The 2EmST Boltzmann agent’s divergent np-M/ANOVA
results may be due to the agent’s exploration architecture, which enforces
tight distributions due to Q-value proportional exploration.

Fig. 10.12 and Fig. 10.13 depict 2EmST agent per period average learning
rate ᾱt progression for normal and vmPFC impaired original, re-shuffled,
and random IGT environments. The solid black lines represent mean learn-
ing rate ᾱt in IGT period t. The red vertical pinhead lines indicate for nor-
mal (control) behaviour configured agents, the maximum and minimum
range of learning rate values at period t across all agents, with the mini-
mum marked by a dark red pinhead. The blue solid line indicates smoothed
trends. The top dashed line marks the initial learning rate α1. The bottom
dash-dotted line marks the learning rate bound α1/D, and the dotted ver-
tical line marks the time-to-bound TTB. For convenience, the numeric α1,
α1/D, TTB values are depicted in green in the vmPFC impaired, random
IGT case grid panel.
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FIGURE 10.12: 2EmST ε-Greedy agent per period mean learning rate ᾱt pro-
gression for normal and vmPFC impaired original, re-shuffled, and random
IGT environments. Red saw-tooth patterns indicate burst learning. Full details

are in the text.

In Fig. 10.12 and Fig. 10.13 for 2EmST ε-Greedy and Boltzmann agents
respectively, for normal configured 2EmST agents, the red saw-tooth pat-
terns indicate that in any IGT period t, there are agents with decaying learn-
ing rate, as well as agents engaging in emotion mediated learning rate re-
setting. That is, the saw-tooth patterns indicate episodes of burst learning.
In general, the dark solid mean learning rate ᾱt line appears above the mid-
way point of the red pinhead lines, indicating that at any one period, there
are more learning rate re-setting than learning rate decaying agents.
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FIGURE 10.13: 2EmST Boltzmann agent per period mean learning rate ᾱt pro-
gression for normal and vmPFC impaired original, re-shuffled, and random
IGT environments. Red saw-tooth patterns indicate burst learning. Full details

are in the text.

However the blue smoothed trends indicate that, with the exception of
the 2EmST Boltzmann agent normal configured original IGT case, the re-
maining behaviour and IGT environment cases show a decrease in mean
learning rate ᾱt with increasing periods; this indicates that over time, the
number of learning rate decaying agents is increasing. That is, as normal be-
haviour 2EmST agents learn the respective IGT environment, their Q-value
representation improves and temporal difference errors, which exceed the
stoic emotion agent activation threshold, decrease.

As Fig. 10.12 and Fig. 10.13 for 2EmST ε-Greedy and Boltzmann agents
respectively indicate, vmPFC impaired 2EmST agents do not exhibit emo-
tion mediated learning rate re-setting, and consequently, the respective learn-
ing rates decline exponentially from the initial learning rate α1 to the lower
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bound α1/D in time-to-bound TTB periods. For both agents, the initial
learning rate declines approximately by 100 fold. However, the 2EmST ε-
Greedy agent is configured with higher learning decay λ = 0.176, and this
is why this agent has a shorter time-to-bound of only 26 periods, which is
approximately a quarter of the IGT task duration.

10.5 Discussion: Burst Learning Model

The burst learning model has been presented with reference to emotion trig-
gered signals. Strictly speaking the proposed error correction heuristics in
Table 10.2 do not require emotion labels. It is hoped, however, that the use
of emotion labels is helpful in drawing attention to the possible role of this
computational architecture in explaining the contributions of emotion and
vmPFC impairment in decision making.

The burst learning model is implemented with (10.4), (10.5), and (10.8)
with stoic emotion activation threshold behaviour as described in Table 10.2.
The implementation is completed using ε-Greedy and Boltzmann explo-
ration architectures introduced in sections 5.2.2 and 5.2.1 respectively.

Of the emotion activation thresholds presented in Table 10.2, the stoic
and buffered emotion activation strategies have the lowest activation thresh-
old (−1/B) for engaging the learning rate reset mechanism. However with
a two-behaviour response pathway, the stoic agent possesses the simpler
behavioural pathway. In contrast, in order to achieve learning decay, the
tempered emotion activation strategy always requires a positive temporal
difference error. At 1/B = 0.5, this would require that the temporal differ-
ence error is consistently equal to or more than half the current aggregated
action value estimate Qt−1(a). Consequently, the tempered strategy would
lead to comparatively more emotion mediated learning rate resetting with
a slower learning rate decay profile, leading to a larger difference between
normal and vmPFC impaired configured agents. Here the stoic strategy is
preferred over the tempered strategy, because the former strategy should
in theory make it more difficult to obtain normal and vmPFC impaired be-
havioural configuration differences. That is, if stoic threshold emotion acti-
vation produces normal and vmPFC impaired behaviour configuration IGT
simulation outcome differences, so would the tempered threshold emotion
activation strategy. Further, the tempered strategy does not admit of any
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loss potential, and it is believed that human decision making models should
have some built-in tolerance for adverse outcomes.

Using CSUD search as a model hyper-parameter tuner, the burst learn-
ing model agent implementations are calibrated with the original, re-shuffled,
and random IGT environments to discover agent hyper-parameter configu-
rations capable of generating simulated IGT outcomes matching respective
normal and vmPFC impaired behaviour human outcomes.

Then grid searches are conducted around the CSUD discovered mini-
mum loss 2EmST agent hyper-parameter values. Grid search IGT simulated
mean fraction of good decks f̄G outcomes are used to assess agent perfor-
mance and agent ability to generate human IGT outcomes in terms of itera-
tive decision making primitives, the learning rate, learning rate decay, and
exploration.

Section 7.2 and section 9.3 discuss reasons for foregoing in this work a
comprehensive joint CSUD search of all discussed IGT environments;
namely, such searches have been attempted but have not produced a full
match solution consisting of hyper-parameter combinations yielding agent
IGT outcomes in corresponding human IGT outcome match zones. It is
believed that the lack of such a joint solution is driven by underlying IGT
process yield distribution characteristics, which affect learning rate decay
λ selection. It has been noted that learning rate decay λ acts as a band-
pass filter in the frequency domain leading to learning cut-off after a certain
number of iterations. Hence if certain IGT environments required more it-
erations than others to be learned well, then the same learning rate decay
λ value may not apply to all IGT environments. The original, re-shuffled,
and random IGT environments however, are closely related and only differ
by the manner in which cards are sequenced in each deck. Given that only
one card may be selected at each IGT period, these three IGT environments
present an ideal test base for assessing learning rate decay, which may affect
a ‘learning freeze’ after a certain number of periods.

Assessment of the original, re-shuffled, and random IGT environments
with simple, ARA(κ) ε-Greedy and Boltzmann agents in chapters 6 and 9
respectively produce the decision making results, which consist of (1) learn-
ing rate decay λ leads to vmPFC impaired behaviour, (2) for agents to match
respective human IGT outcomes, exploration must be high, and (3) at high
values, the initial learning rate α1 produces a technical non-stationarity ef-
fect.
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In the simple and ARA(κ) reinforcement learning models, two different
learning rate decay values λN and λvmPFC are used for generating normal
and vmPFC impaired behaviour respectively. In these models, the pathol-
ogy causing vmPFC impairment somehow leads to an increase of learning
rate decay from λN to λvmPFC.

In burst learning, under normal configured behaviour and in the absence
of an emotion trigger, the learning rate decays exponentially; however an
emotion mediated signal may lead to a reset of the decayed learning rate.
Therefore burst learning proposes a model, where vmPFC impairment re-
sults not from ex-machina factors but from the disruption of a specific emotion
mediated pathway.

In the absence of an emotion signal, (1) the learning rate cannot be re-
set, and instead (2) continues to decay as per model dynamics at a fast rate
and to a lower bound; the combination of these two effects lead to vmPFC
impairment. So from an iterative learning, and decision theoretic point of
view, the burst learning model proposes that learning rate decay, combined
with the inability to reset to the initial learning rate, provides the impetus
for poor decision making as exhibited by vmPFC impaired human IGT par-
ticipants. Using solely decision making primitives, the burst learning model
proposes and captures well a computational approach, and decision making
explanation, in terms of the initial learning rate α1 and learning rate decay λ

for modelling vmPFC impairment. The burst learning model presented here
provides a mathematical nonrational formulation of decision making and
learning mediated by emotion, where the concept of burst learning found
in psychology (Kunitani, 2016) and neuroscience (Ohta et al., 2022) is ap-
plied in a novel manner using emotion mediated exponential learning rate
decay.

However, when exploration is considered as a decision making primi-
tive, the results in chapter 6, chapter 9, and here with constant exploration ε-
Greedy and proportional Boltzmann exploration architectures, indicate that
neither agent architecture adequately captures the nature of human explo-
ration. For example, as the mean fraction of good decks f̄G 2D contour plots
in Fig. 10.2 and Fig. 10.3; and, the CSUD grid search verification plots in
Fig. 10.10 and Fig. 10.11 indicate, burst learning 2EmST agents must have
very high exploration in order to produce mean fraction of good decks f̄G

outcomes, which lie within corresponding human IGT outcome catchment
zones.

236



Chapter 10. Reinforcement Learning: Iowa Gambling Task with Burst
Learning

Further as 2EmST agent 20-draw block mean fraction of good deck f̄G

and exploration index (EI) figures, Fig. 10.7 and Fig. 10.8 respectively reveal,
agents are unable to fully mirror human reference characteristics across all
behaviour and IGT environment cases. In particular, systematic f̄G devia-
tions appear in blocks 1-20, 21-40, and possibly 41-60 in the healthy, random
IGT case. In Fig. 10.7, the healthy, random IGT case human 20-draw block
mean fraction of good decks f̄G profiles have a sigmoid shape whereas the
corresponding agent results produce a parabolic segment like shape. For
the exploration index (EI), 2EmST agent 20-draw block EI values are con-
sistently overestimated in the normal re-shuffled IGT case. These variations
do not appear to affect the key result regarding the effect of emotion medi-
ated learning rate decay in generating normal versus vmPFC impaired IGT
outcome matches.

Further as Fig. 10.8 reveals, in terms of the exploration index (EI) mea-
sure, the observed 20-draw block mean fraction of good decks f̄G differences
do not transform into large exploration index value differences. While agent
human exploration behaviour differences do not appear to influence emo-
tion mediated learning rate decay effects, such exploration behaviour dif-
ferences do suggest that human exploration in the IGT is using a different
approach than those employed by either the ε-Greedy or Boltzmann agent
architectures.

The jitter plots summarising 750 repeated simulation fG outcomes in
Fig. 10.10 show that in the 2EmST ε-Greedy agent, burst learning leads to
increased human IGT outcome matches for the normal behaviour, original
and random IGT cases, and also for the vmPFC impaired, original case.
Compared to Fig. 6.6 and Fig. 9.8 for simple and ARA(κ) ε-Greedy agents
respectively, as Fig. 10.10 shows, the burst learning specification also leads
to removal of bi-modality for the normal, and reduction of bi-modality for
the vmPFC impaired cases. This shows that with burst learning the heuristic
constant exploration ε-Greedy agent can achieve, under normal behaviour,
the same unimodal fG outcome characteristics as those exhibited by the ra-
tional Boltzmann agent noted in Fig. 10.11. There is, however, a significant
difference. In the case of the 2EmST Boltzmann agent, this unimodal fG out-
come is a direct consequence of the exploration achitecture. In the case of
the 2EmST ε-Greedy agent, however, the unimodal fG outcome comprises
an emergent behaviour arising from the interaction of the agent with the
decision making task.
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Unfortunately individual human reference data is not available for jit-
ter plot comparison. However, Fig. 9.11 shows control human jitter plot
reference data for the random IGT. Note that in general, the human jit-
ter plot demonstrates wider dispersion than that observed for either agent
at normal behaviour with the random IGT environment. In sum, it ap-
pears that the 2EmST exploration architectures produce simulation results,
which do not quite match corresponding human IGT characteristics. As
mentioned above, these agent human exploration differences do not appear
to influence emotion mediated learning rate decay effects exhibited in the
presented burst learning model. The exploration difference results, how-
ever, indicate that further research into the nature of human exploration is
needed.

The key human IGT statistical result (ANOVA, Neuman-Keuls) indicates
that when grouped into control and vmPFC impaired categories, for the
original IGT, the vmPFC impaired group had significantly worse f̄ H

G , while
for the re-shuffled IGT, no statistically significant f̄ H

G difference existed (Fel-
lows & Farah, 2005). With the burst learning model, as well as with the
simple and ARA(κ) reinforcement learning models, in np-M/ANOVA tests
only the ε-Greedy agent variant could match this result. In the case of Boltz-
mann agent variants, np-M/ANOVA returned a significant factor (group)
effect between normal (control) and vmPFC impaired behaviour configured
agent re-shuffled IGT f̄G outcomes.

Possibly the divergence of the Boltzmann agent from the established hu-
man reference results originates from its proportional exploration architec-
ture. It appears that proportional exploration leads to tight dispersion in
behaviour and IGT environment case fraction of good deck fG outcomes; it
is this tight dispersion that may lead to the observed np-M/ANOVA result
mismatch.

In sum, the burst learning model produces good results with respect to
the effects of the initial learning rate α1, learning rate decay λ, and learn-
ing rate bursts αt, as depicted in Fig. 10.12 and Fig. 10.13. However, agent
exploration architectures appear to produce simulation results, which only
partially match observed human results.
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Future Directions

This chapter indicates future directions suggested by the results obtained
in chapters 5 to 10. In these chapters, the CSUD search strategy was used
to target human IGT outcomes to calibrate nonrational Q-learning models,
where the to be calibrated hyper-parameters primarily consisted of the ini-
tial learning rate, learning rate decay, and exploration.

In CSUD search when hyper-parameters do not share the same scale,
that is the same order of magnitude, search space traversal may suffer. This
effect has been observed for example in the Boltzmann agent temperature
τ, or in the 2EmST agent attenuation D hyper-parameters. Further, as seen
in grid search verification, when there are multiple solutions, CSUD will
tend to gravitate towards one of them. This work however did not consider
mitigating these CSUD search issues. The rationale for this omission was
provided ex-post, as 2D and 3D grid search plots did not reveal any adverse
affects, which may have arisen from the lack of space traversal in the CSUD
discovered τ or D values. While grid search results indicated the presence
of multiple hyper-parameter solutions, CSUD performed well at approxi-
mating the targeted human f̄ H

G values. While there could be some technical
adjustments to CSUD itself, discussion on these will be relegated to chapter
12.

In this chapter, decision theoretic aspects are of interest, especially with
respect to modelling human exploration or human learning heuristics. The
most surprising result originating from this work has been the finding that
human exploration in the IGT, as modelled by ε-Greedy and Boltzmann
agents, is quite high. This finding of high exploration holds in ex-ante explo-
ration hyper-parameter values as well as in ex-post exploration index (EI)
results. Human reference exploration index (EI) values depicted in Fig. 4.3
and Fig. 4.4 corroborate high exploration findings.
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For example, these figures indicate that for control (normal) subjects,
the exploration index for the original and re-shuffled IGT environments at
draw block 81-100 is around 80-85, and for the random IGT environment
around 93. Fig. 10.9 shows that this implies that at the final draw block, ap-
proximately 62-70% of cards are drawn from the good decks by control IGT
participants. For vmPFC impaired IGT participants, who fail the original
IGT environment, at block 81-100, the exploration index is approximately
at 97.5, indicating in combination with the vmPFC impaired original case
in Fig. 4.1, that around 50% of the cards have been selected from the good
decks. Hence, in the case of human controls, the IGT mean fraction of good
deck f̄ H

G results do not indicate a very strong trend towards exploitation.
vmPFC impaired human subjects, who do not learn well, appear to exhibit
a trend focused on random search.

Such a high exploration result is verified by the EI measure, however, it
cannot be explained by the Q-learning models presented here, as excepting
the reverse IGT results, all Q-learning models produce lower than human
exploration options where they can exceed corresponding human f̄ H

G per-
formance benchmarks. Wilson et al., 2014 provide an argument for directed
exploration and Findling et al., 2019 suggest learning noise as additional
factors in high exploration behaviour. Also if humans did use directed ex-
ploration to learn more about the lesser known choices, and if rare events
themselves are probabilistically undervalued under experience (Hertwig et
al., 2004), then rare events such as in the SGT, decks B and D in the original
IGT, decks E and H in the reversed IGT may all lead to increased explo-
ration. Except the SGT, remaining IGT environments mix rare and frequent
events, and along with the aggregated task-end cumulative measure of the
mean fraction of good decks f̄G, this makes it very difficult to break down
exploration into directed versus random components. It would be interest-
ing to devise an iterative learning experience, subject to learning decay con-
ditions, with more than two choice options, where exploration behaviour
can be tested more accurately. Here it is suggested that each exploration
model considered here cannot on its own adequately reflect human explo-
ration behaviour. The question therefore remains as to how human explo-
ration changes for example over successive IGT draws?

More research is needed to establish the nature of exploration in human-
analogue machine decision making. For example, does choice exploration
produce a focusing effect about the outcome central tendency such as f̄G?
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Does exploration decay? If exploration decay were to be used as a decision
making hyper-parameter, would this hyper-parameter be expected to have
different behavioural implications regarding vmPFC impairment? Further,
what if there is a ‘boredom effect’, or a directed effort (Wilson et al., 2014) in-
creasing exploration, thereby counteracting actual exploration decay. Then
for example the measured exploration decay based here on the cumulative
end of task f̄G may have been understated in this work. Fig. 4.4 shows that
for normal SGT participants 20-draw block EI does indeed increase as the
task progresses. It would be interesting to develop a model where such
exploration responses can be differentiated.

It is possible that in the context of the ‘No Free Lunch’ theorems, humans
use exploration as a defence against algorithm specificity, or to aid in gen-
eralised learning. Such an approach could explain why human exploration
remains high. In general, many questions regarding human exploration,
and the algorithmic modelling of human exploration remain open; more
research is needed.

In contrast, learning rate, or step size, decay has been well studied, and
(3.7) provides conditions typically required for ensuring that an iterative
learning problem with decaying learning rate converges to an optimum. In
this work however, agent modelling uses exponential learning rate decay,
which does not fulfil such theoretical convergence criteria.

The burst learning model offers an alternative pathway for achieving
theoretical convergence, whilst retaining the exponential decay induced learn-
ing freeze. There are two possible pathways that could be explored, but
neither has been explored in this work. The first and harder pathway is to
develop a theoretical convergence proof based on the cyclic nature of burst
learning with learning rate decay presented in (10.2). The second and easier
approach is to swap out the lower bound α1/D in (10.2) with a correspond-
ing 1/t dependent decay pattern as discussed in section 10.1.2. Both of these
approaches provide interesting opportunities for exploring the connections
between the rational and nonrational schools of thought.

One of the themes in this work has been time constraints in human
decision making, which are known to exist but unknown as to when the
constraints will become binding; consequently how to therefore effectively
make decisions when resources such as time or opportunities are limited.
Such constraints are embedded in the IGT. Here exponential learning rate
decay has been used to induce finiteness. Is this really how humans deal

241



Chapter 11. Future Directions

with limited resources? This question is also waiting to be answered.
In engineering, infinity is one of the most useful concepts for producing

smooth, convergent outcomes. Is the successful use of infinity in scientific
endeavours a domain specific benefit, originating from the locally time in-
variant presentation of natural order? For example, a ray of light may be
conceptualised as travelling in a straight line, unless of course it is being
bent by a strong gravitational force. In conceptualising the natural world,
with assumptions about the existence of a to be discovered ground truth,
statistical assessment, in terms of a central tendency with asymptotic distri-
butions, makes sense.

The problems and statistics of human endeavours, however, remain as
yet quite unclear. For example, do individual human decision makers en-
gage in any central tendency based optimisation, or is such optimisation
only an artefact observed in aggregated behavioural data? Do individual
human decision makers instead engage in threshold based targeting in re-
lation to a cumulative density function, with fall-back thresholds in case of
target misses? In such a case, humans would continually be setting goals,
recovering, and re-setting goals as needed. Such a strategy could be helpful
when time constraints and lack of information make it difficult or costly to
formulate the corresponding rational decision making strategy.

The burst learning model can capture such re-targeting mechanics, as
a learning rate reset is capable of leading to an over-write of the current
solution. Similarly, burst learning should be able to navigate non-stationary
environments subject to good targeting guidelines.

When do humans optimise, and when do they, in the words of Herbert
A. Simon, "satisfice?" Even with generalised models such as reinforcement
learning, much is yet to be understood about how to apply these models to
human behaviour.

A few final interesting notes remain. On a technical note, burst learning
could provide a computationally cheap alternative to Hessian, or Hessian
approximation, driven loss searches. That is, the burst learning results pre-
sented here indicate that a heuristically varying (emotion mediated) learn-
ing rate (or step-size), may offer in comparison to Hessian methods, a rela-
tively simple and rapid gradient approximation alternative. More research
on burst learning methods is needed.

The result that high learning rate decay in the presented Q-learning mod-
els leads to vmPFC impairment poses further questions regarding the use
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of exponentially decaying learning rates. In chapter 10, CSUD search pro-
duces an attenuation parameter of about D = 100 for both agents. As noted
in section 10, this indicates that it will take 9.2 iterations for the learning rate
to diminish by 100-fold. Does this number of 9.2 choice iterations have rele-
vance regarding the size of working memory? Or, does it in some way relate
to the amount of trials needed to extract information from well-behaved er-
godic processes? These provide good future directions as well.

In any case, it is hoped that the Q-learning modelling discussed in this
work has provided useful computational techniques for the nonrational mod-
elling of iterative choice
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Constrained Perturbations
Stochastic Search

The CSUD search algorithm is based on simultaneous perturbations stochas-
tic approximation (SPSA), initially proposed by Spall (1992), where double
symmetric randomised perturbations are employed. SPSA variants have
been developed with single-sided (Chen et al., 1999), point (Spall, 1997),
repeated measurements (Abdulla & Bhatnagar, 2006), and non-stochastic
perturbations (Bhatnagar et al., 2013). Further work on SPSA discusses up-
date constraints (Spall, 2003, Ch. 7), asymptotic distributions (Hernández &
Spall, 2019), and approximated Hessian driven variable learning rates (Zhu
et al., 2020). CSUD itself is a probabilistic hybrid of double- and single-
sided SPSA. In CSUD however, both updates and perturbations are con-
strained without invalidating the perturbation restrictions required for sta-
tistical convergence of SPSA.

The intended general purpose and use of SPSA algorithms is for stochas-
tic optimisation. CSUD however is employed as a search strategy, which
uses a loss function to tune and evaluate another hyper-parametrised model.
The loss function provides a loss value, which can be used for ranking pur-
poses. A search is not necessarily expected to produce a unique best result,
which would however typically be expected in the stochastic optimisation.

CSUD loss is used to score the hyper-parametrisation of another model.
Since such hyper-parameters may need to be bounded over a certain range,
not only hyper-parameter updates, but also hyper-parameter perturbations
are constrained. The search method proposed here is most generally called
constrained perturbations SPSA, or cp-SPSA for short. In terms of nomen-
clature however, cp-SPSA is not specific enough. As noted above, SPSA
has many variants. As discussed in Bhatnagar et al. (2013), it is helpful to
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denote a specific SPSA variant by its key innovation. In this context, the cp-
SPSA algorithm specifically implemented here is called Constrained Single
Unconstrained Double perturbations, or CSUD for short.

It is not always immediately apparent why a hyper-parameter search
needs to be conducted in a bounded space. From a procedural perspec-
tive, bounded hyper-parameter regions can help divide the search space
into smaller, manageable regions. Or, such bounds can highlight specific
areas of interest. For example in chapters 6 to 9, bounds are used on nor-
mal and vmPFC impaired learning rate decay, λN and λvmPFC respectively
to focus on ranges of interest. Finally, some hyper-parameter values may be
illegal and may be restricted on that basis. For example, for ARA(κ) agents
discussed in chapter 9, the discount rate γ may not be less than or equal to
0, or greater than or equal to 1. Since inclusive bound constraints are used in
CSUD, as indicated in Table 9.1 the ARA(κ) ε-Greedy and Boltzmann agent
discount rates are limited to inclusive ranges of 0.5− 0.99 and 0.15− 0.85
respectively.

Adding hyper-parameter constraints produces increased computational
overhead, as at each iteration, hyper-parameter updates and perturbations
need to be checked for any constraint violations, with any such violations
then being mitigated. It is proposed that CSUD helps to assess interesting
areas of parameter space, and while constraints introduce additional com-
putational overhead, their use makes it easier to prototype and assess model
specifications.

This chapter first introduces double- and single-sided SPSA. Then a stan-
dard proof of optimal convergence is provided for (unconstrained) single-
sided SPSA under a stringent set of assumptions. This initial proof will set-
up vocabulary and provide a basis for a similar optimal convergence proof
for CSUD, where some of the initial assumptions will be relaxed. Finally,
conditions will be provided for local optimal convergence for the CSUD
search strategy, initially introduced in section 3.4.

12.1 The SPSA Framework

The simultaneous perturbations stochastic approximation (SPSA) framework
is introduced. First the SPSA loss function and the input update equation
is discussed. Next the gradient estimators are reviewed for double-sided
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SPSA. This is then followed by the development of unconstrained single-
sided SPSA.

Let Θ be a input vector of dimension p. Let Y(Θ) be a stochastic loss
function, which can be expressed as

Y(Θ) = L(Θ) + ε (12.1)

where Y(·) is the observed loss, L(·) is the unknown loss function, and ε

is the observation, or measurement error. Using the observed loss Y(·), the
aim is to find a unique input Θ∗ such that L(Θ) is minimised, assuming such
a minimum exists. If such a minimum exists, it is known as the root of the
function.

Standard gradient descent methods search for the function root by using
analytical gradients. However, when the functional form of the observed
or underlying loss is not known, analytical gradients cannot be derived.
Therefore minimum root discovery cannot be conducted via analytical gra-
dients. SPSA aims to solve the minimum root discovery problem by using a
gradient descent approach, but with gradient approximations derived from
randomly perturbed input vectors.

Section 12.2 below presents a simple set of assumptions, under which
given observed stochastic loss Y(·), a unique minimum may be found. The
key steps of the argument are introduced here. For the moment, assume that
somehow the unknown loss gradient can be approximated. Let ∂L(Θ)/∂Θ ≡
g(Θ) be the true but unobserved gradient of L(Θ). Therefore, one wishes
to find Θ∗ such that g(Θ∗) = 0. Let t ∈ {0, 1, 2, . . . } indicate an iteration
counter. Let ĝt(Θ) denote the gradient approximation at iteration t, and let
αt denote step size (learning rate). Then the iterative input update rule is
defined as

Θ̂t+1 = Θ̂t − αt ĝt(Θ̂t). (12.2)

The premise of SPSA is that under certain conditions, as t → ∞, ĝt(·)→
gt(·) and consequently Θ̂t → Θ∗.

12.1.1 Unconstrained Double-Sided SPSA

Unconstrained double-sided SPSA is introduced and discussed in detail in
Spall (1992, 2003). The major innovation of double-sided SPSA, over the
finite differences gradient approximation method by Kiefer and Wolfowitz
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(1952) is a reduction in the number of per-iteration loss measurements for
gradient approximation. Given an input vector of dimension p, the finite
differences method requires 2p measurements per iteration. In contrast,
double-sided SPSA only needs to take 2 loss measurements per iteration;
that is, the number of loss measurements are constant and do not depend
on the size of the input vector. Furthermore, double-sided SPSA exhibits a
comparatively good convergence rate along with a comparatively low gra-
dient approximation bias, which vanishes asymptotically.

In unconstrained double-sided SPSA, the gradient approximation rule is
defined as

ĝD
ti (Θ̂t) =

Y(Θ̂t + µt∆t)−Y(Θ̂t − µt∆t)
2µt∆ti

(12.3)

where ĝD
ti (Θ̂t) represents the double-sided gradient approximation at the tth

iteration for the ith element of the input vector estimate Θ̂t, µt is the per-
turbation step size, and ∆t is a random perturbation vector, subject to the
restrictions discussed in Spall (1992, 2003), and summarized below in As-
sumption 12.2.6. Finally ∆ti denotes the perturbation corresponding to the
ith input vector element at iteration t.

12.2 Unconstrained Single-Sided SPSA

Spall (1998) discusses the notion of single-sided SPSA. Chen et al. (1999)
present a single-sided SPSA variant with input estimate constraints. This
section discusses unconstrained single-sided SPSA, where all input dimen-
sions are varied simultaneously using single-sided perturbations. The re-
sulting gradient approximation rule can be expressed as

ĝS
ti(Θ̂t) =

Y(Θ̂t + µt∆t)−Y(Θ̂t)
µt∆ti

(12.4)

where ĝS
ti(Θ̂t) represents the single-sided gradient approximation at the tth

iteration for the ith element of the input vector estimate Θ̂t, µt is the pertur-
bation step size, and ∆t is a random perturbation vector. Finally ∆ti denotes
the perturbation corresponding to the ith input vector element at iteration t.

The bias and convergence properties of unconstrained single-sided SPSA
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are now presented. The proof below uses classical techniques, and is be-
lieved to be easier to follow than that presented in Chen et al. (1999). How-
ever, in order to achieve ease of exposition, strict assumptions are employed.
The approach below also differs in notation. Where Taylor expansions are
required, multi-index notation is used, along with results from Folland (1990,
2020), which results allow for reducing Taylor expansion continuity require-
ments to twice continuously differentiable.

It is believed that strict assumptions can be used at this stage without any
loss of generality, and at the same time to facilitate introduction of notation
and vocabulary, which will be employed later in sections 12.3 and 12.4 for
analysis of CSUD and the CSUD search strategy respectively.

The assumptions required for asymptotic convergence of unconstrained
single-sided SPSA are now introduced.

Assumption 12.2.1 (Loss Topology). Θ ∈ Rp. L(Θ) : Rp → R is strictly
convex and at least of class C2 (two times continuously differentiable). (A result
from Folland, 1990 is used so that the approximation of the remainder of a second
order Taylor expansion only requires existence of the second derivative.) Further,
let Θ∗ be the minimum, and B(Θ∗, r)p ⊂ Rp be an open ball of radius r, where
0 < r < ∞. Then ∀Θ ∈ B(Θ∗, r)p, L(Θ) is bounded, and has bounded derivatives.
In general ∀ Θ ∈ Rp, L(Θ) is bounded below at L(Θ∗).

Assumption 12.2.1 states that the unknown loss function is well-behaved
and has a unique minimum. If at some point inside the bounding ball, true
loss became infinite, it would not be possible to calculate a numeric gradi-
ent. Therefore L(Θ) must be bounded, and posses bounded derivatives so
that gradient approximations can be computed; so that gradient approxi-
mations converge to the true gradient.

Assumption 12.2.2 (Measurement Errors). ε ∼ i.i.d., E|ε| < ∞, Eε2 = σ2
ε <

∞.

That is, measurement errors are independently and identically distributed
(i.i.d.); and have finite mean and variance. Note that 0 mean measurement
error is not required. i.i.d. distributions are required however, as these make
proof dynamics easier.

Assumption 12.2.3 (Iterate Dynamics). sup
t
‖Θ̂t‖ < ∞ almost surely. Θ̂t →

Θ∗ infinitely often.
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Assumption 12.2.3 is of theoretical value when conducting a generalised
proof. It is a reminder of an obvious practical insight, namely that input esti-
mates must themselves remain bounded in each iteration. If input estimates
Θ̂t start exploding, then something must be wrong in the update equation
(12.2). The second statement indicates that different input iteration paths,
for example originating from different initial values, should converge to the
same unique minimum.

Assumption 12.2.4 (Mean ODE Dynamics). Let t denote time. Let g(Θ) be
the gradient of L(Θ). By Assumption 12.2.1, g(Θ) is continuous. Let Z(t) be
a differentiable function. Then as t → ∞, the differential equation dZ(t)/dt =
−g(Z(t)) converges to a fixed point at Θ∗.

Assumption 12.2.4 follows from the fact that at the minimum, the gra-
dient is 0. Therefore if Z(t) is used to search through g(·), then at the fixed
point with dZ(t)/dt = −g(Z(t)) = 0, the minimum is achieved and the search
stops. Note that this result is established with respect to the unknown loss
function gradient.

Assumptions 12.2.1 to 12.2.4 establish the theoretical requirements un-
der which SPSA, when seen as an optimiser, could discover the minimum
of the unknown loss function. However, L(Θ) cannot be observed directly.
Only Y(Θ) can be sampled, and therefore additional conditions are needed
to ensure that any measurement error or stochasticity does not countermand
true loss topology. Additionally over iterations and input updates, it must
also be possible to approximate the true gradient. The remaining assump-
tions achieve this result.

Assumption 12.2.5 (Step Sizes, αt and µt). ∀ iterations t, the input update step
size (learning rate) αt > 0, the perturbation step µt > 0. Further, limt→∞ αt = 0,
limt→∞ µt = 0, ∑∞

t=0 αt = ∞, but ∑∞
t=0 α2

t /µ2
t < ∞. The update-step, perturbation-

step ratio boundedness condition is critical for achieving asymptotic behaviour.

Assumption 12.2.5 embodies the most important aspect of SPSA learn-
ing, where learning refers to the correct discovery of the unique minimum
Θ∗. With each input update iteration (12.2), the learning rate αt captures
what is being learned from the current gradient estimate. As the input iter-
ate Θ̂t approaches the minimum Θ∗, ideally input updates as well as input
perturbations must be diminished, as this would reduce oscillations around
the minimum.
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An approximation of the unknown loss function Hessian would provide
an input update step with the best information, and a similar technique
could be used for scaling perturbation steps. However such computations
are costly. Assumption 12.2.5 indirectly implies decay limits for update and
perturbation step sizes, αt and µt respectively. The purpose of these decay
limits is to induce discovery of the minimum as update iterations go to in-
finity.

Assumption 12.2.5 cannot induce by itself discovery of the unknown loss
function minimum. The manner in which inputs are perturbed is critical to
SPSA success.

Assumption 12.2.6 (Perturbations). Let ∆t be a p-dimensional perturbation vec-
tor at iteration t. Then ∀ t and ∀ i ∈ p, ∆ti ∼ i.i.d. and symmetric about 0.
Further |∆ti| < ∞, E(∆ti) = 0, E(∆2

ti) < ∞, E(1/∆ti) < ∞, and E(1/∆2
ti) < ∞.

Consequently, note that Prob(∆ti = 0) = 0 (Spall, 1992).

Assumption 12.2.6 presents some unusual implications. Most impor-
tantly, while perturbation mean must be 0, the perturbation probability dis-
tribution must have no mass at the mean. Therefore the perturbations must
not come from uni-modal distributions. Spall (2003, Ch. 7) suggests unit
Bernoulli, segmented uniform, or U-shaped distributions.

Finally, restrictions must be specified on the interactions between ob-
served loss Y(·) and perturbations ∆.

Assumption 12.2.7 (Stochastic Interactions). Define input history Tt ≡ {Θ̂0,
. . . , Θ̂t}, errors ε+

t ≡ ε(Θ̂t + µt∆t) and εt ≡ ε(Θ̂t). Assume ETt ,∆t(ε
+
t − εt) =a.s.

0, where ETt ,∆t(·) is the conditional expectation given input history and the current
perturbation; that is ETt ,∆t(·) ≡ E(· | Tt, ∆t). Perturbation ∆t is independent of
Tt and therefore, ETt(ε

+
t − εt) =a.s. 0. Further when Yt(·) = Lt(·) + εt, then

∀t, i : E

[(
Yt(·)
∆ti

)2
]

= E

[
1

∆2
ti

]
E
[
Yt(·)2

]
< ∞ (12.5a)

∀t, i 6= h : E
[

Yt(·)2

∆ti∆th

]
= E

[
1

∆ti

]
E
[

1
∆th

]
E
[
Yt(·)2

]
< ∞. (12.5b)

(12.5a) and (12.5b) ensure that the estimator ĝS
t (θ̂ti) in (12.4) has a finite 2nd mo-

ment.
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Assumption 12.2.7 essentially states that using perturbed inputs to gen-
erate observed loss does not add any systematic bias into the observed re-
sults, and additionally does not cause probabilistic instability in the sense
of unbounded second moments.

It should be noted that perturbation step sizes µt and the distribution
of perturbations ∆t are determined by the analyst, and can be constructed
to satisfy all assumptions. In cases where SPSA is applied to an unknown
loss function however, it is generally not possible to verify any assumptions
relating to Y(·) and L(·). In such cases, the quality of the SPSA results should
be assessed using empirical output, with output evidence being checked for
violations of assumptions.

12.2.1 Taylor Expansions

Taylor expansions play a key role in developing bias and convergence prop-
erties. Using multi-index notation, relevant Taylor expansions are defined
using Folland (1990, 2020), and then briefly discussed.

For a vector of dimension p, let β be a multi-index defined as

β = (β1, β2, . . . , βp), βi ∈ N
p
0

|β| =
p

∑
i=1

βi, β! =
p

∏
i=1

βi!
(12.6)

where N
p
0 is the p dimensional set of natural numbers including 0. Further,

for any vector z ∈ Rp, z = (z1, . . . , zp), define zβ = (zβ1
1 , . . . , zβp

p ). Then, for
any Θ ∈ Rp, partial derivatives may be expressed as

∂βY(Θ) = ∂
β1
1 . . . ∂

βp
p =

∂|β|Y(Θ)

∂θ
β1
1 . . . ∂θ

βp
p

. (12.7)

For example, let p = 3 and β = (1, 1, 0), then

∂(1,1,0)Y(Θ) =
∂2Y(Θ)
∂θ1∂θ2

. (12.8)
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For any Θ ∈ Rp, using multi-index notation and assuming L(·) is at least
of class C2, the below Taylor expansions can be defined

L(Θt + µt∆t) = ∑
|β|≤2

µ
β
t

∂βL(Θt)
β!

∆β
t + R2(µt∆t)

= L(Θt) + µt ∑
|β|=1

∂βL(Θt)∆
β
t +

1
2

µ2
t ∑
|β|=2

∂βL(Θt)∆
β
t

+ R2(Θt, µt∆t) (12.9a)

L(Θt − µt∆t) = ∑
|β|≤2

(−µt)
β ∂βL(Θt)

β!
∆β

t + R2(−µt∆t)

= L(Θt)− µt ∑
|β|=1

∂βL(Θt)∆
β
t +

1
2

µ2
t ∑
|β|=2

∂βL(Θt)∆
β
t

+ R2(Θt,−µt∆t) (12.9b)

where the R(·) denotes the remainder, |β| = p is an indexing short-hand,
and p is the dimension of the input vector. For example, with two inputs
(i.e. p = 2), |β| = 2 expands to β ∈ {(2, 0), (0, 2), (1, 1)}.

From Folland (1990, p. 235), the remainder term in multi-index notation
is expanded as,

R2(Θt, h) =

∑
|β|=2

hβ
∫ 1

0
(1− ν)

[
∂βL(Θt + νh)− ∂βL(Θt)

]
dν

(12.10)

where ν ∈ (0, 1), h = ±µt∆t. Further, from Folland (1990), it is established
that

|R2(Θt, h)| ≤ M

6
µ3

t

(
∑

i
|∆ti|

)3

(12.11)

where 0 < M < ∞.
Note that if L(·) is quadratic additive, then the remainder R2(Θt, h) in

(12.10) becomes 0, and consequently the 2nd order Taylor expansions in
(12.9a) and (12.9b) become exact. In non-quadratic cases, by Assumption
12.2.5, µt → 0 and by Assumption 12.2.6, |∆ti| < ∞. Consequently, the
remainder in equation (12.11) vanishes as t→ ∞.
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12.2.2 The Bias of the Gradient Estimate

By definition ĝS
t (·) in (12.4) is a stochastic function estimate. Given the input

vector Θ̂t at iteration t, it is necessary to show that for the ith element θ̂ti, the
bias

lim
t→∞

B
ĝS

t
ti = lim

t→∞
ETt

[
ĝS

ti(Θ̂t)− gi(Θ̂t)
]

= 0. (12.12)

That is, asymptotically speaking, the gradient approximation approaches
the true gradient.

Using the definition of the loss function in (12.1) together with the single-
sided gradient approximation (12.4), and taking expectations yields

ETt

[
ĝS

ti(Θ̂t)
]

= ETt

[
L(Θ̂t + µt∆t)− L(Θ̂t)

µt∆ti
+

(ε+ − ε)
µt∆ti

]
(12.13a)

= ETt

µt ∑|β|=1 ∂βL(Θ̂t)∆
β
t

µt∆ti

+

ETt

 1
2 µ2

t ∑|β|=2 ∂βL(Θ̂t)∆
β
t + R2(Θ̂t, µt∆)

µt∆ti

 (12.13b)

where Assumption 12.2.7 and the Taylor expansion in (12.9a) have been
used.

Expanding the multi-index terms in (12.13b), simplifying and re-arranging

ETt

[
ĝS

t (θti)
]

= ETt

[
∂L
∂θti

+
1

∆ti
∑
j 6=i

∂L
∂θtj

∆tj

]
+

µtETt

[
1
2

∂2L
∂θ2

ti
∆ti + ∑

j 6=i

∂2L
∂θti∂θtj

∆tj +

1
2∆ti

∑
j 6=i

∂2L
∂θ2

tj
∆2

tj +
1

∆ti
∑
j 6=i

∑
h 6=i

∂2L
∂θtj∂θth

∆tj∆th

]

+ ETt

[
R2(Θ̂t, µt∆t)

µt∆ti

]
. (12.14)
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Applying expectations to the perturbation terms, expanding ∂L/∂θti as gi(Θ̂t)
further simplifying, and re-arranging, the bias at iteration t is found as

B
ĝS

t
ti = ETt

[
ĝS

ti(Θ̂t)− gi(Θ̂t)
]

=

µt

2
ETt

[
1

∆ti

]
∑
j 6=i

∂2L
∂θ2

tj
ETt

[
∆2

tj

]
+

ETt

[
R2(Θ̂t, µt∆t)

µt∆ti

]
. (12.15)

As (12.15) shows, the single-sided SPSA gradient estimate is biased. Com-
puting the specific magnitude of the bias for iteration t requires knowledge
of the (unknown) loss function L(·), the perturbation step size µt, and the
distribution of ∆t.

However, with Assumptions 12.2.1 and 12.2.6, which invoke bounded-
ness of 2nd order loss derivatives, and existence of 2nd order perturbation
moments respectively, a further result may be derived

lim
t→∞

B
ĝS

t
ti = 0 (12.16)

for all θti.
Using Assumptions 12.2.1 and 12.2.6, for some finite bounds d, d[−1], d[2]

l[2] > 0, it is established that

|∆i| ≤ d,
∣∣∣∣ETt

[
1

∆ti

]∣∣∣∣ ≤ d[−1],∣∣∣ETt

[
∆2

ti

]∣∣∣ ≤ d[2], and
∣∣∣∣ ∂2L
∂Θ2

t

∣∣∣∣ ≤ l[2]. (12.17)

Then the first term in (12.15) is bounded by

−µt
B1

2
≤ µt

2
ETt

[
1

∆ti

]
∑
j 6=i

∂2L
∂θ2

tj
ETt

[
∆2

tj

]
≤ µt

B1

2
(12.18)

where B1 = (p− 1)d[−1]l[2]d[2]. Therefore by (12.18), as µt → 0, the first term
in (12.15) vanishes to 0.
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SPSA
Method

Bias of ith gradient element at kth iteration Asymptotic
Bias

Double-
Sided

1
µt

ETt

[
1

∆ti

]
ETt

[
R2(Θ̂t, µt∆t)−

R2(Θ̂t,−µt∆t)
]

0

Single-
Sided

ETt

[
1

∆ti

](
µt

2 ∑
j 6=i

∂2L
∂θ2

tj
ETt

[
∆2

tj

]
+

1
µt

ETt

[
R2(Θ̂t, µt∆t)

] )

0

TABLE 12.1: Gradient bias by gradient approximation method

To show convergence to 0 of the remainder term in (12.15), the bound in
(12.11) is used to establish

−µ2
t

MB2

6
≤ −µ2

t
M

6
(∑i|∆ti|)3

∆ti
≤ R2(Θ̂t, µt∆t)

µt∆ti

≤ µ2
t

M

6
(∑i|∆ti|)3

∆ti
≤ µ2

t
MB2

6
(12.19a)

∣∣∣∣∣∣∣∣
(

ETt

[
R2(Θ̂t, µt∆t)

µt∆ti

])µ2
t
MB2

6

−µ2
t

MB2

6

∣∣∣∣∣∣∣∣ ≤ µ2
t

MB2

3
(12.19b)

where B2 = p3d2 and 0 < M < ∞. (12.19a) states that all occurrences of the
remainder term must be bounded. Therefore as indicated by (12.19b), the
expectation of the remainder term is also bounded. If µt → 0, then µ2

t
MB2

3 →
0, and the remainder term in (12.15), that is, the left term in (12.19b), is
enveloped to 0.

In sum, the enveloping results in (12.18) and (12.19b) show that asymp-
totically, ĝS

t (Θ̂t) is an unbiased estimator of g(Θ̂t), in the sense that ∀ i,
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B
ĝS

t
ti = ETt

[
ĝS

ti(Θ̂t)− gi(Θ̂t)
]
→ 0. Further, the bounds on the expanded

remainder term in (12.19a) indicate that as with double-sided SPSA (Spall,

1992, 1997), in single-sided SPSA, B
ĝS

t
ti = O(µ2

t ).
Table 12.1 presents the bias properties of the double-sided and single-

sided estimators of the gradient g(·). It is seen that SPSA gradient esti-
mators can be asymptotically unbiased. However, at any iteration t, the
double-sided gradient has a smaller bias than the single-sided SPSA gradi-
ent estimates.

12.2.3 Almost Sure Convergence of the Parameter Estimate

This section shows that lim
t→∞

Θ̂t =a.s. Θ∗ (almost surely convergence).
Chen et al. (1999) present proofs for the asymptotic properties of single-

sided SPSA with relatively relaxed assumptions. For example, Chen et al.
(1999) reduce the loss function triple differentiability requirement found in
Spall (1992) to only twice continuous differentiability, as is also done here
via Folland (1990).

However, Chen et al. (1999) trade-off such relaxations for additional
proof complexity. Here, the general approach discussed among others in
Ljung (1978) is followed, and a simpler proof is presented, where notation
is used, which closely mirrors computational quantities.

To start, equation (12.2) is rewritten as

Θ̂t+1 = Θ̂t − αt ĝS
t (Θ̂t) (12.20a)

= Θ̂t − αt

(
ĝS

t (Θ̂t) + g(Θ̂t)− g(Θ̂t)

+ETt

[
ĝS

t (Θ̂t)
]
− ETt

[
ĝS

t (Θ̂t)
])

(12.20b)

= Θ̂t − αtg(Θ̂t)− αtB
ĝS

t
t − αtξt (12.20c)

where the bias and error terms are defined as

B
ĝS

t
t = ETt

[
ĝS

t (Θ̂t)− g(Θ̂t)
]

= ETt

[
ĝS

t (Θ̂t)
]
− g(Θ̂t),

ξt = ĝS
t (Θ̂t)− ETt

[
ĝS

t (Θ̂t)
]

.
(12.21)

Intuitively, one can see that a steady state solution to (12.20c) exists at
Θ∗ where g(Θ∗) = 0. Provided the bias and error terms are bounded and
tend to 0, given Assumptions 12.2.3 and 12.2.4, the iteration in (12.20c) will

256



Chapter 12. Constrained Perturbations Stochastic Search

converge to Θ∗. The behaviour of the bias and error terms in (12.20c) are
now formalised.

Proposition 12.2.1 (Convergence). Given Assumptions 12.2.1 to 12.2.7 and the
iteration rule (12.20c), as t→ ∞, Θ̂t → Θ∗ a.s.

Proof. Consider the N period forward-shifted representation of (12.20c)

Θ̂t+N − Θ̂t = −
N−1

∑
j=0

αt+jg(Θ̂t+j)−
N−1

∑
j=0

αt+jB
ĝS

t+j
t+j −

N−1

∑
j=0

αt+jξt+j (12.22)

where N − 1 ≥ t. It is necessary to show that lim
t→∞

Θ̂t+N − Θ̂t =a.s. 0. In the
below discussion, N is a shorthand for N > t.
The Bias Term:

From Assumption 12.2.5, (12.19a) (boundedness) and (12.19b) (a.s. con-
vergence), it follows that

lim
t→∞

N−1

∑
j=0

αt+jB
ĝS

t+j
t+j = lim

t→∞
αtB

ĝS
t

t + · · · + lim
t→∞

αt+N−1B
ĝS

t+N−1
t+N−1 =a.s. 0 (12.23)

The Error Term:
From Assumptions 12.2.6 and 12.2.7, with history {Tt} given, {αtξt}

forms an independent, mean zero sequence. Define Mt = ∑t−1
j=0 αjξ j, and

note that ETt [Mt+1] = Mt. Therefore {Mt} forms a martingale.

For any v ∈ Rp, let ‖v‖ denote the Euclidean norm, ‖v‖ ≡
√

∑i v2
i .

Following Yin and Kushner (2003, Ch. 5, Theorem 2.1), Doob’s martin-
gale inequality is invoked. For any η > 0, η ∈ R

Prob

(
sup

N≥j≥t
‖Mj −Mt‖ ≥ η

)
≤ 1

η2 E
[
‖MN −Mt‖2

]
. (12.24)
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Since MN −Mt = ∑N−1
j=0 αt+jξt+j, the right hand side of (12.24) can be written

as

1
η2 E

∥∥∥∥∥N−1

∑
j=0

αt+jξt+j

∥∥∥∥∥
2
 =

1
η2 E

 p

∑
i=1

(
N−1

∑
j=0

αt+jξ(t+j)i

)2
 =

1
η2 E

[
p

∑
i=1

e′i Aei

]

=
1
η2

p

∑
i=1

tr
(

AE
[
eie′i
])

=
1
η2

p

∑
i=1

N−1

∑
j=0

α2
t+jEξ2

(t+j)i

(12.25a)

≤ 1
η2

p

∑
i=1

∞

∑
j=t

α2
j Eξ2

ji ≤
1
η2

p

∑
i=1

∞

∑
j=t

α2
j E
[(

ĝS
ji(Θ̂j)

)2
]

(12.25b)

≤ p (L + 2E)D

η2

∞

∑
j=t

α2
j

µ2
j

(12.25c)

where for notational ease

a =


αt
...

α(N−1)

 , A = aa′,

ei =


ξti
...

ξ(N−1)i

 , E[eie′i] =


Eξ2

ti
. . .

Eξ2
(N−1)i

 (12.26)

and, the following properties have been used

E
[
ξ jiξ j′i

]
= E

[
ETj′

[
ξ jiξ j′i

]]
= E

[
ξ jiETj′

[
ξ j′i

]]
= 0, t ≤ j < j′ ≤ N − 1

(12.27a)

Eξ2
ji = E

[
ĝS

ji(Θ̂t)2
]
− E

[(
ETj

[
ĝS

ji(Θ̂t)
])2
]

≤ E
[

ĝS
ji(Θ̂t)2

] (12.27b)
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E
[

ĝS
ji(Θ̂t)2

]
= E

(L(Θ̂j + µj∆j)− L(Θ̂j) + ε+
j − εj

µj∆ji

)2


≤ 1
µ2

j
(L + 2E)D

(12.27c)

E
[(

L(Θ̂j + µj∆j)− L(Θ̂j)
)2
]
≤ L

Eε2 ≤ E, E

( 1
∆ji

)2
 ≤ D

(12.27d)

where 0 < D, E, L < ∞ are bounds. Regarding L, from Assumption 12.2.6
the perturbations are bounded. Assumption 12.2.1 implies that for any arbi-
trary Θ and r > 0, the loss function L(Θ) is bounded on B(Θ, r). Therefore on
B(Θ, r), all events of the squared loss term in (12.27d) are always bounded,
and consequently, its expectation is also bounded.

Using equations (12.24) and (12.25a) to (12.25c)

∞

∑
t=0

Prob

(
sup

N≥j≥t
‖Mj −Mt‖ ≥ η

)

≤ p (L + 2E)D

η2

∞

∑
t=0

∞

∑
j=t

α2
j

µ2
j

< ∞ (12.28)

since from Assumption 12.2.5, as t→ ∞, ∑∞
j=t α2

j /µ2
j → 0.

Given the result in (12.28), the Borel-Cantelli Lemma (Durrett, 2019, Ch.
5, Theorem 2.3.1) states that Prob(supN≥j≥t‖Mj −Mt‖ ≥ η i.o.) = 0, where
i.o denotes infinitely often. Consequently as t→ ∞, supN≥j≥t‖Mj−Mt‖ →a.s

0. That is, the error term converges to 0 almost surely.
The Mean ODE term:

The convergence of the mean ODE term ∑N−1
j=0 αt+jg(Θ̂t+j) requires some

additional conditions on N. Yin and Kushner (2003), Ljung (1978), and
Metivier and Priouret (1984) all provide mean ODE convergence presen-
tations, which work well in the present context. The full arguments are not
repeated here. In outline, looking at the first part of (12.22), one can see
that the steady state for Θ̂ = Θ̂−∑N−1

j=0 αt+jg(Θ̂t+j) can only be reached if for
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some time indices t∗ > t, g(Θ̂t∗) = 0. By definition, this can only happen at
Θ̂ = Θ∗ since g(Θ∗) = 0. Given any initial condition Θ̂0 6= Θ∗, g(·) provides
corrective direction and magnitude updates, ∑∞

t=0 αt = ∞ ensures continuing
updates, and αt → 0 leads to convergence.

12.3 CSUD

Theoretical conditions are now presented under which CSUD converges to
the roots of a loss function. Given the strictly convex loss function assump-
tion employed in section 12.2, in principle, constraints are not necessary.
Even if the input iterate increases temporarily, eventually it must converge.

In practice, however, it becomes desirable to guard against large input
iterate deviations, or to restrict input value ranges. For example, compu-
tational numerical range is limited, and underflow or overflow may occur.
Furthermore, when measurement error variance overwhelms perturbation
step size µt, this can lead to incorrect gradient approximations, which can
cause divergence. Therefore, in practice, it is common to apply truncation
constraints on the input updates.

Constraining input updates is sufficient to address the issues discussed
above. However, there are also circumstances, where it is necessary to apply
constraints to mask out potentially illegal input values, for example when
an input value must be between 0 and 1. Finally constraining both input
updates and perturbations creates well-defined partitions of input space.
Such well-defined partitions can help focus on a region of interest, or allow
one to reduce the globally strictly convex loss function requirement to a loss
function with local strict convexity in the constrained partition.

The CSUD input update and gradient approximation rules are presented
next. The CSUD input update rule is specified as

Θ̂t+1 = Θ̂t − αt ĝC
t (Θ̂t)− αtZtk (12.29)

where Ztk is a corrective term (Yin & Kushner, 2003, Ch. 5), which ensures
that Θ̂t+1 ∈ Zk, with Zk denoting the constrained input space. That is,
(12.29) contains a projection constraint which is applied to input updates.
The subscript k on Zk indicates that multiple constraint sets, subject to terms
discussed after Assumption 12.3.1, may be present. In other words, it is
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possible to run CSUD in multiple partitioned constraint sets Zk of a larger
input space.

Using indicator functions, the gradient estimator for the ith element of
Θ̂t is defined as

ĝC
ti(Θ̂t) = 1S+

ti ĝS+
ti (Θ̂t) + 1S−

ti ĝS−
ti (Θ̂t) + 1D

ti ĝD
ti (Θ̂t) (12.30)

where ĝD
ti (Θ̂t) is the gradient approximation for double-sided SPSA defined

in (12.3), and

ĝS+
ti (Θ̂t) =

[
Y(Θ̂t + µt∆t)−Y(Θ̂t)

µt∆ti

]
,

ĝS−
ti (Θ̂t) =

[
Y(Θ̂t)−Y(Θ̂t − µt∆t)

µt∆ti

]
, (12.31)

1S+
ti =

1 if Θ̂ti − µt∆ti /∈ Zk

0 otherwise

1S−
ti =

1 if Θ̂ti + µt∆ti /∈ Zk

0 otherwise

1D
ti =

1 if Θ̂ti ± µt∆ti ∈ Zk

0 otherwise
(12.32)

where Zk indicates the input constraint set. In words, if at the tth iteration
double-sided perturbations remain in the constraint set, then a double sided
gradient is computed for the ith element of the input vector. Otherwise,
a single-sided gradient approximation with perturbations in the direction
opposite to the violated boundary is used.

Figure 12.1 provides a visual illustration of the operation of the CSUD
gradient approximator (12.30) for a single input loss function. The grey area
marked Zk represents the input constraint. Note that the constraint applies
in the horizontal direction. However, for visual clarity, the constraint zone is
extended vertically as well. At point B, marked green, where a double-sided
perturbation would remain inside the constraint, the double-sided pertur-
bation is chosen. At points A (blue) or C (red), where a double double-sided
perturbation would exceed the constraint, a single-sided perturbation in the
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θ
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(θ
)

Zk

A
B

C

FIGURE 12.1: CSUD behaviour with a single input loss function L(θ). Zk indi-
cates the constraint zone. At point A, the dashed blue line indicates that a dou-
ble sided perturbation would violate the constraint. Accordingly, to remain in
the constraint zone Zk, a single-sided gradient in the opposite direction, indi-
cated by the solid black line is calculated. Point C is evaluated similarly. At
point B, the constraint Zk is not binding, and a double sided perturbation is

used in approximating the gradient.

opposite direction (marked black) is applied.

12.3.1 Background

Note that constraining either side of the double-sided perturbation defined
in (12.3), would immediately violate the restrictions imposed by Assump-
tion 12.2.6 on the perturbations. In particular, perturbations must be sym-
metrically distributed about 0, with 0 mean, but with no mass on a 0 out-
come. It could be assumed that as t → ∞, perturbation constraints would
cease to be binding, and consequently an initially asymmetric perturbation
distribution would converge to a symmetric one. However, even with such
an assumption, any unilaterally constrained (double-sided) perturbation in-
terval would become unbalanced, and lead to an over or underestimation
of the gradient. So, in addition to a distributional assumption, for any con-
strained perturbations, it would be necessary to computationally rebalance
the denominator of the gradient estimator in (12.3).

Such a re-balancing is of course feasible by scaling (dampening) the
denominator of a constrained-perturbation double-sided gradient estimate
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down from 2µt∆ti to the appropriate sized interval. However, due to the in-
herent symmetry of double-sided SPSA, this would imply that the incoming
input vector was not Θ̂t, but another slightly altered input.

Such a set-up has been simulated elsewhere, where a dampening con-
stant d < 1 was arbitrarily picked and applied to constrained double-sided
gradient estimates. Surprisingly, once the dampening factor was tuned, ac-
ceptable results were achieved. However, it is suspected that the most ef-
fective value of this dampening constant may depend on the underlying
estimation problem.

In order to avoid further theoretical, computational, and estimation com-
plexities, the simpler alternative presented here was developed. As shown
in (12.30), (12.31), and (12.32), this simple alternative consists of using con-
strained single and unconstrained double sided perturbations.

12.3.2 CSUD Assumptions

The theoretical requirements for the convergence of CSUD to minimum loss
in the constrained input zone are not very different from those of uncon-
strained single-sided SPSA. The CSUD convergence assumptions are now
presented.

Assumption 12.3.1 (Constrained Loss Topology). Let {Zk} be a countable col-
lection of compact subsets of Rp, and L(Θ) : Zk → R is strictly convex and at least
of class C2 (two times continuously differentiable). Further, L(Θ) is bounded, has
bounded derivatives, and has a unique minimum Θk∗ on Zk. In general ∀ Θ ∈ Zk,
L(Θ) is bounded below at L(Θk∗). Assume that there is at least one such subset Zk.

Assumption 12.3.1 requires that the loss function be strictly convex over
the constrained input space Zk, which is being investigated. This could in
theory lead to the use of loss functions, which are not strictly convex outside
of the constrained input space. If multiple constraint sets Zk are present and
parameter space partitioning is used, then

⋂
k Zk = ∅ must hold. This is re-

quired so that each partitioned parameter space can be identified uniquely.

Assumption 12.3.2 (Measurement Errors). Same as Assumption 12.2.2.

Assumption 12.3.3 (Iterate Dynamics). The second part of Assumption 12.2.3
is retained. However, since any constraint sets {Zk} are by definition bounded, the
finite norm assumption is no longer needed.
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Assumption 12.3.4 (Mean ODE Dynamics). The prerequisites of Assumption
12.2.4 apply. However, it is now required that for any Θ ∈ Zk, as t → ∞, the
differential equation dZ(t)/dt = −g(Z(t)) moves towards point Θk∗.

In short, the imposition of constraint sets is addressed by requiring that a
local minimum exists in any constraint set, and that a path to this minimum
exists from any point inside the constraint set. However, note that there no
longer exists any assurance that a constraint set minimum Θk∗ is also the
global minimum over the unconstrained domain of the loss function. By
implication it is no longer required that g(Θk∗) = 0. Hence, the mean ODE
dynamics may create a persistent drift, absorbed however, by the constraint
boundaries.

For example in Fig. 12.1, the constrained minimum is also the global loss
minimum, but it is easy to see that by shifting the gray constraint zone to
the left or to the right, one can achieve a constrained minimum, where this
is not the case.

The weakening of the previous assumptions from section 12.2 seems odd
from a stochastic optimisation point of view, where one would always want
to find the global minimum. However, it helps to prepare for a shift from
stochastic optimisation towards stochastic search, where search costs may
influence the amount of resources available towards finding a global mini-
mum. In such cases, one may instead be willing to look for the second-best,
third-best, or the first-available minimum.

Incidentally, if the loss function domain is fully partitioned into separate
search zones, one could attempt to find the global minimum by only sam-
pling a subset of the search zones, perhaps guided by a prior on the global
minimum eligibility of each sample search zone. Such rational needle-in-
the-haystack search problems are well-known and formulated using radial
basis functions, see for example Abedinia and Amjady (2016). CSUD could
be generalised in this direction; however this is not discussed in this work.

Assumption 12.3.5 (Step Sizes, αt and µt). Same as Assumption 12.2.5.

Assumption 12.3.6 (Perturbations). Same as Assumption 12.2.6.

Assumption 12.3.7 (Stochastic Interactions). In addition to Assumption 12.2.7,
let ε−t ≡ ε(Θ̂t − µt∆t). Assume ETt ,∆t(εt − ε−t ) =a.s. 0, ETt ,∆t(ε

+
t − ε−t ) =a.s. 0,

ETt(εt − ε−t ) =a.s. 0, and ETt(ε
+
t − ε−t ) =a.s. 0, the latter two being implied by the

independence of ∆t.
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Since CSUD applies single- as well as double-sided perturbations, As-
sumption 12.3.7 also requires that double-sided perturbations do not add
any systematic bias to observed loss. There is also a need for an additional
assumption on constraint behaviour.

Assumption 12.3.8 (Constraint Behaviour). On any constraint set Zk with ini-
tial condition Θ̂k0 ∈ Zk, on subsequent updates for given Θ̂ti, the measure of the
event (Θ̂ti + µt∆ti /∈ Zk ∧ Θ̂ti − µt∆ti /∈ Zk) is zero.

Assumption 12.3.8 is needed for proving unbiasedness of the constrained
gradient estimator. Effectively, it is stipulated that when a single-sided per-
turbation is applied in either direction, then the resulting input in one of
the directions must remain inside the constraint zone. In practice, one can
construct Zk and pick Θ̂k0 so that this assumption holds.

12.3.3 Bias of the CSUD Gradient Estimate

It is necessary to show that the bias of the ith component of the constrained

gradient estimate is asymptotically zero, B
ĝC

t
ti = lim

t→∞
ETt

[
ĝC

ti(Θ̂t)− gi(Θ̂t)
]

=
0. Since the indicator function constructs (12.32) are independent of the gra-
dient approximators in (12.31) and (12.3)

ETt

[
ĝC

ti(Θ̂t)
]

= ETt

[
1S+

ti

]
ETt

[
ĝS+

ti (Θ̂t)
]

+ ETt

[
1S−

ti

]
ETt

[
ĝS−

ti (Θ̂t)
]

+ ETt

[
1D

ti

]
ETt

[
ĝD

ti (Θ̂t)
] (12.33a)

= wS+
ti ETt

[
ĝS+

ti (Θ̂t)
]

+ wS−
ti ETt

[
ĝS−

ti (Θ̂t)
]

+ wD
ti ETt

[
ĝD

ti (Θ̂t)
] (12.33b)

where for any event e ∈ {S+, S−, D}, the weight we
ti is defined as the proba-

bility of that event at iteration t for element i, that is, ETt [1
e
ti] = Prob(eti|Tt) ≡

we
ti. Note that by Assumption 12.3.8, ∑e we

ti = 1.
Apply Taylor expansions to the right-hand side gradient approximation

terms in (12.33b), simplify and re-collect terms to get

ETt

[
ĝC

ti(Θ̂t)
]
− ETt

[
gi(Θ̂t)

]
∑

e
we

ti =
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µt

(
wS+

ti − wS−
ti

)
2

ETt

[
1

∆ti

]
∑
j 6=i

∂2L
∂θ2

tj
ETt

[
∆2

tj

]
+

2wS+
ti + wD

ti
2

ETt

[
R2(Θ̂t, µt∆t)

µt∆ti

]
−

2wS−
ti + wD

ti
2

ETt

[
R2(Θ̂t,−µt∆t)

µt∆ti

]
(12.34)

ETt

[
ĝC

ti(Θ̂t)− gi(Θ̂t)
]

= O(µ2), lim
t→∞

µt = 0 (12.35)

where in going from (12.34) to (12.35), ∑e we
ti = 1 has been used as implied by

Assumption 12.3.8. Furthermore the remainder approximation of Folland
(1990) is used, and the previous bound results from (12.19a) and (12.19b)
have been applied.

In sum, with the updated Assumptions 12.3.1 to 12.3.8, it can be shown
that each component of the CSUD gradient estimator ĝC

t (Θ̂t) is asymptoti-
cally unbiased.

12.3.4 Almost sure convergence of CSUD

Given a constraint set Zk and an initial stating point Θ̂k0 ∈ Zk, it is necessary
to show that Θ̂t →a.s Θk∗. Following Yin and Kushner (2003, Ch. 5.1), the N-
period shifted version of the one-period constrained update equation (12.29)
is rewritten as

Θ̂t+N − Θ̂t = −
N−1

∑
j=0

αt+jg(Θ̂t+j)−
N−1

∑
j=0

αt+jB
ĝC

t+j
t+j

−
N−1

∑
j=0

αt+jξt+j −
N−1

∑
j=0

αt+jZk,t+j (12.36)

where N − 1 ≥ t, and the bias and error terms are respectively defined as

B
ĝC

t
t = ETt

[
ĝC

t (Θ̂t)− g(Θ̂t)
]

= ETt

[
ĝC

t (Θ̂t)
]
− g(Θ̂t),

and ξt = ĝC
t (Θ̂t)− ETt

[
ĝC

t (Θ̂t)
]

.
(12.37)

Using the techniques introduced in Proposition 12.2.1, almost sure con-
vergence of the CSUD input estimate is now demonstrated.
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Proposition 12.3.1 (CSUD Convergence). Given Assumptions 12.3.1 to 12.3.8
and the iteration rule (12.29), if Θk∗ ∈ Zk and g(Θk∗) = 0, then as t→ ∞, for any
such Zk, Θ̂t → Θk∗ a.s.

Proof. Consider the N period forward-shifted representation shown in (12.36).
Given any conforming Zk, it is necessary to show that lim

t→∞
Θ̂t+N − Θ̂t =a.s. 0.

This result implies that Θ̂t →a.s Θk∗. In the below discussion, N is a short-
hand for N > t.
The Mean ODE term: Yin and Kushner (2003) provides a mean ODE con-
vergence presentation, which works well in this context. The argument is
not repeated here in detail. The overview argument presented in Proposi-
tion 12.2.1 continues to hold here, as long as Θk∗ ∈ Zk and g(Θk∗) = 0.
The Constraint Projection Term: The final term in (12.36) represents ac-
crued corrections, which have accumulated to ensure that Θ̂j ∈ Zk for j = t +
1, · · · , t + N. By Assumption 12.3.1, Θk∗ lies in Zk. Therefore lim

t→∞
∑t

j=0 αtZm,t <

∞, and consequently lim
t→∞

∑N−1
j=0 αt+jZm,t+j = 0. In other words over time, the

first (mean ODE) term in (12.36) will move the input estimate towards Θk∗,
therefore eventually, the correction terms will tend to 0. Hence as long as
Θk∗ ∈ Zk and g(Θk∗) = 0, it follows that,

Prob
(

lim
t→∞

∑N−1
j=0 αt+jZm,t+j = 0

)
= 1.

Comments: In the mean ODE term and constraint projection term argu-
ments above, it is assumed that Θk∗ ∈ Zk and g(Θk∗) = 0. This is necessary
for the application of standard proof arguments. However, the possibility
of gradient drift, where g(Θk∗) 6= 0 remains, in which case the standard
arguments no longer produce the desired results. This possibility is not
addressed any further here, however, will be commented on in section 12.5.
The remainder of this proof, which uses standard approaches, is not affected
by any gradient drift.
The Bias Term:

From (12.35), each bias term in the sum asymptotically converges to 0.

Hence, it is established that Prob
(

lim
t→∞

∑N−1
j=0 αt+jB

ĝC
t+j

t+j = 0
)

= 1.

The Error Term:
From Assumptions 12.3.6 and 12.3.7 given {Tt}, {αtξt} forms an in-

dependent, mean zero sequence. Define Mt = ∑t−1
j=0 αjξ j, and note that

ETt [Mt+1] = Mt. Therefore {Mt} forms a martingale. Once more, following
Yin and Kushner (2003, Ch. 5, Theorem 2.1), Doob’s martingale inequality

267



Chapter 12. Constrained Perturbations Stochastic Search

is invoked. For any η > 0, η ∈ R

Prob

(
sup

N≥j≥t
‖Mj −Mt‖ ≥ η

)
≤ 1

η2 E
[
‖MN −Mt‖2

]
. (12.38)

Developing the right hand side of (12.38) as in Proposition 12.2.1 yields

1
η2 E

∥∥∥∥∥N−1

∑
j=0

αt+jξt+j

∥∥∥∥∥
2
 ≤ 1

η2

p

∑
i=1

∞

∑
j=t

α2
j E
[(

ĝC
ji (Θj)

)2
]

(12.39a)

≤ 1
η2

p

∑
i=1

∞

∑
j=t

α2
j E

[(
1S+

ji ĝS+
ji (Θj)+

1S−
ji ĝS−

ji (Θj) + 1D
ji ĝD

ji (Θj)
)2
] (12.39b)

≤ 1
η2

p

∑
i=1

∞

∑
j=t

α2
j ∑

e
ve

jiE
[(

ĝe
ji(Θ̂j)

)2
]

(12.39c)

where e ∈ {S+, S−, D}. Result (12.39c) follows from (12.39b) since the indi-

cator functions are independent of the gradient approximators,
(

1e
ji

)2
= 1e

ji,

E
[
1e

ji

]
= Prob(eji) ≡ ve

ji, and given (12.32) and Assumption 12.3.8, for dis-

tinct events eji, e′ji ∈ {S+
ti, S−ti , Dti}, it is the case that E

[
1e

ji1
e′
ji

]
= Prob(1e

ji ∩
1e′

ji ) = 0.
Next the expectation terms in (12.39c) are evaluated and the enveloping

result is established. Define bounds such that

E
[

ĝS+
ji (Θ̂j)2

]
= E

(L(Θ̂j + µj∆j)− L(Θ̂j) + ε+
j − εj

µj∆ji

)2


≤ 1
µ2

j
(L + 2E)D,

(12.40a)
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E
[

ĝS−
ji (Θ̂j)2

]
= E

(L(Θ̂j)− L(Θ̂j − µj∆j) + εj − ε−j
µj∆ji

)2
≤ 1

µ2
j
(L + 2E)D,

(12.40b)

E
[

ĝD
ji (Θ̂j)2

]
= E

(L(Θ̂j + µj∆j)− L(Θ̂j − µj∆j) + ε+
j − ε−j

2µj∆ji

)2
≤ 1

µ2
j
(L + 2E)D,

(12.40c)

E
[(

L(Θ̂j ± µj∆j)− L(Θ̂j)
)2
]
≤ L,

E
[(

L(Θ̂j + µj∆j)− L(Θ̂j − µj∆j)
)2
]
≤ L,

(12.40d)

Eε2 ≤ E, E

( 1
∆ji

)2
 ≤ D (12.40e)

where 0 < D, E, L < ∞ are bounds. Regarding the construction of L,
from Assumption 12.3.6 the perturbations are bounded. Assumption 12.3.1
implies that for any arbitrary Θ ∈ Zk and radius r > 0, the loss function
L(Θ) is bounded for the open ball B(Θ, r). Therefore on B(Θ, r), all events of
the squared loss terms in (12.40d) are always bounded, and consequently,
the expectations are also bounded.

Using the results in (12.40a) to (12.40e) in equation (12.39c), and the fact
that from Assumption 12.3.8, ∑e ve

ji = 1, simplification yields

∞

∑
t=0

Prob

(
sup

N≥j≥t
‖Mj −Mt‖ ≥ η

)

≤ p (L + 2E)D

η2

∞

∑
t=0

∞

∑
j=t

α2
j

µ2
j
< ∞ (12.41)

since from Assumption 12.3.5, as t→ ∞, ∑∞
j=t α2

j /µ2
j → 0.

Given the result in equation (12.41), as before the Borel-Cantelli Lemma
Durrett (2019, Ch. 5, Theorem 2.3.1) states that Prob(supN≥j≥t‖Mj−Mt‖ ≥
η i.o.) = 0, where i.o denotes infinitely often. Consequently as t → ∞,
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supN≥j≥t‖Mj −Mt‖ →a.s 0. That is, the error term converges to 0 almost
surely.

12.4 CSUD Search Strategy

The theoretical requirements for using CSUD as a search strategy (tool) are
developed here. For providing search scores, a quadratic loss function is
used of the form

Y(Θ) = [m(Θ)−m∗]′ S [m(Θ)−m∗] (12.42)

where m(Θ) is an r-dimensional performance measurement, m∗ is a perfor-
mance measurement target, and S is an r x r diagonal matrix of weights.
The form of the loss function can be varied. However, quadratic loss func-
tions are easy to specify, twice differentiable, and have no Taylor expansion
remainder, improving at least in theory asymptotic performance.

Also note that by design, the loss function (12.42) is strictly convex with
respect to the performance measure m(Θ). However, no claims are made
regarding loss function convexity with respect to the underlying inputs Θ,
which form the real area of interest. In fact, for two different inputs Θ and
Θ′, it is possible to have equal performance measures m(Θ) = m(Θ′); in
such a case both Θ and Θ′ would yield equal search scores. In a context
where multiple underlying inputs produce the same search scores, input
constraints, such as those employed by CSUD help to keep the search prob-
lem manageable and assist in focusing on specific input value ranges of in-
terest.

12.4.1 Search Problem Specification

Let R(Ψ, Θ) : (Rq, Rp) → Ro, (p, q, o ≥ 1, 2, · · ·), be a vector valued stochas-
tic function, where the function input space has been partitioned into opti-
mising parameters Ψ, and performance tuning hyper-parameters Θ.

The aim is to optimise R jointly with respect to the parameters Ψ and
hyper-parameters Θ. Unfortunately the structure of the function R is such
that

opt
Ψ,Θ

R(Ψ, Θ) (12.43)
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is too difficult or too costly to solve jointly. For example, R may have such
a form that it is linear, or log-linear in the parameters, but non-linear in the
hyper-parameters.

In (12.43), the term opt indicates an optimisation operator such as max or
min. Suppose that the input space of the function R can be partitioned such
that for any fixed Θ̄, max

Ψ
R(Ψ, Θ̄) can be computationally optimised. Fur-

ther suppose that a mapping function M can be constructed. This mapping
function maps multiple realizations of max

Ψ
R(Ψ, Θ̄) to a statistical perfor-

mance measure with at least a mean and variance. Then, both Θ and Ψ can
be optimised by using a (two-stage) minimax strategy with a wrapper loss
function Y(Θ)

min
Θ

Y

(
M

({
max

Ψ
R (Ψ, Θ)

}N

1

))
(12.44)

where the performance statistic M is computed using N repetitions.
(12.44) represents the general search problem formulation. To the au-

thor’s knowledge, Widrow and Hoff (1960) initially proposed the technique
of using a tractable loss function to assess an intractable objective func-
tion. This technique was later generalized in Rumelhart and McClelland
(1987) and Rumelhart et al. (1986), to devise the back-propagation algo-
rithm, which to date remains the primary method for training artificial neu-
ral networks (LeCun et al., 2012). While the CSUD search strategy shares
mathematical similarities with back-propagation, the notable differences are
(a) analytical derivatives are not used, and (b) the inner function has its own
maximisation objective.

Recall that M(·) is a mapping function, which is applied to repeated
measurements of the objective function R(·). For notational convenience,
let m(Θ) denote the output of the mapping function M(·), which in ex-
panded notation would include repeated sampling and maximisation with
respect to Ψ. The notation m(Θ) facilitates focusing on hyper-parameter
loss minimisation. Then it is straightforward to note that (12.42) represents
a quadratic loss function implementation of the more general form (12.44).
The theoretical requirements for (12.42) to produce asymptotically conver-
gent minimum loss search score results are formalised next.
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12.4.2 CSUD Search Strategy Assumptions

Assumption 12.4.1 (Search Strategy Topology). Θ ∈ Rp, m(Θ) ∈ Rr. Let
{Zk} be a countable collection of compact subsets of Rr such that

⋂
k Zk = ∅.

The search function L(m(Θ)) : Rp → Rr → R is strictly convex in m and at
least of class C2 (two times continuously differentiable). For any Θk ∈ Zk, the
measurement function m(Θk) is bounded; L(m(Θk)) is bounded, and has bounded
derivatives.

Further, let m∗ be the unique minimum of L(m). Let there be at least one Θk∗ ∈
Zk such that ‖m(Θk∗)−m∗‖ is minimized. Assume that there is at least one such
subset Zk.

Assumption 12.4.1 indicates that it is no longer guaranteed that the loss
function L(m(Θ)) has a unique minimum in Θ. However, it is required that
the loss function must be constructed in such a way that in any chosen con-
straint set with Θk ∈ Zk, the measurements m(Θk) must produce a distance
measure to the loss function minimum m∗. This distance measure can then
in turn be used for ranking and selection. One can think of m∗ as the mea-
surement target.

Assumption 12.4.2 (Performance Mapping, Errors). Given some fixed Θ̄ ∈ Zk

and the associated behaviour solution set ΩΘ̄
ψ∗ , let M(·) be a reductive mapping,

which transforms the output of the behaviour solution set into r-dimensional per-

formance criteria, M
({

R
(

ΩΘ̄
ψ∗ , Θ̄

)})
: R
|ΩΘ̄

ψ∗ |o→ Rr. Assume that the mapped
performance criteria output of M({·}) can be equivalently represented in simplified
form by

m = m̂(Θ) + ε, ε ∼ i.i.d, m is of size r (12.45a)

E [ε] = 0 (12.45b)

E|ε2
i |< ∞, Eε3

i = 0,

E|ε4
i |< ∞, i ∈ {1, · · · , r}

(12.45c)

E
[
εε′
]

= Σ =


σ2

1
. . .

σ2
r

 . (12.45d)

Furthermore, since for any t, the iterate Θ̂t, and also its perturbations Θ̂t±µt∆t are
by design bounded, then m̂(·) is bounded. Consequently m̂(Θ̂t) and m̂(Θ̂t ± µt∆t)
have defined and finite moments up to and including order 4.
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Assumption 12.4.2 states that each estimated performance criterion can be
represented as the sum of a central estimate and a random error term, which
may be heteroscedastic, that is, the variance of each performance criterion
may differ.

Assumption 12.4.2 is strict but reasonable. Regarding the errors ε, given
(12.45b), in (12.45c) symmetry is imposed about 0 and finite kurtosis is as-
sumed. If for all Θ̂t ∈ Zk with positive measure, m̂(Θ̂t) is bounded, then
its moments up to any order would also be bounded on Zk. Addition-
ally, cross-correlation of performance criteria is not permitted. The algo-
rithm operator designs the reductive mapping M(·). Given that M(·) uses
repeated measurements, it can be argued that the output form hypothesised
in (12.45a) is consistent with the mean obtained from the operation of a cen-
tral limit theorem. Here however, this issue is not considered any further.

The i.i.d. assumption in (12.45a) implies that in any iteration t, ETt [εt] =
0 and that ETt [εtε

′
t] = Σ.

Assumption 12.4.3 (Iterate Dynamics). Same as Assumption 12.3.3.

Assumption 12.4.4 (Mean ODE Dynamics). Let t denote time. Let g(m(Θ)) be
the gradient of L(m(Θ)). By Assumption 12.4.1, g(m(Θ)) is continuous in m. Let
Z(t) be a differentiable function in m. Then as t → ∞, the differential equation
dZ(t)/dt = −g(Z(t)) converges towards a fixed point at m∗ such that ‖m(Θk∗)−
m∗‖ is minimised for some Θk∗ ∈ Zk.

Note that Assumption 12.4.4 does not produce a fixed point result in the
traditional sense. However, it is required that the iterate of interest Θ̂t will
produce at least one outcome such that its measurement mapped distance
from m∗ is minimised. This approach is employed in robustness techniques
(Hansen & Sargent, 2008), where finite deviations from an optimum are ac-
commodated.

Assumption 12.4.5 (Step Sizes, αt and µt). Same as Assumption 12.3.5.

Assumption 12.4.6 (Perturbations). Same as Assumption 12.3.6.

Assumption 12.4.7 (Stochastic Interactions). Same as Assumption 12.3.7.

Assumption 12.4.8 (Constraint Behaviour). Same as Assumption 12.3.8.

It is also assumed that the maximization step in (12.44) has solutions.
This requirement is added as a reminder that the search strategy must re-
ceive useful information to ensure meaningful search results.
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Assumption 12.4.9 (Existence of Maxima). Given a constraint set Zk, for any
Θ̄ ∈ Zk, repeated applications of max

Ψ
R (Ψ, Θ̄) produces a Θ̄-contingent opti-

mised behaviour solution set ΩΘ̄
ψ∗ .

Repeated applications of the maximisation in Assumption 12.4.9 can be seen
as mini-batches. Because R(·) is stochastic, repeated optimisation of Ψ for
given Θ̄ help to establish a central tendency for the value of Ψ. In general,
mini-batch size would depend on the variance of R(·). The higher the vari-
ance, the larger a batch size would be required.

Given Assumption 12.4.2 and (12.45), the quadratic loss function in (12.42)
can be expanded as

Y(Θ) = [m̂(Θ)−m∗ + ε]′ S [m̂(Θ)−m∗ + ε] (12.46a)

= [m̂(Θ)−m∗]′ S [m̂(Θ)−m∗] + ε(Θ) (12.46b)

= L(Θ) + ε(Θ) (12.46c)

where ε(Θ) = ε′Sε + 2ε′S [m̂(Θ)−m∗].
There are two important observations regarding (12.46c). Firstly, note

that the canonical SPSA loss function decomposition is achieved, as initially
shown in (12.1), consisting of observed loss, unobserved loss, and additive
error. This decomposition allows one to focus on hyper-parameter Θ search.

Secondly the error term ε(Θ) includes a quadratic component, and there-
fore has a non-zero finite mean. E [ε(Θ)] = tr(SΣ) < ∞. However, in the
SPSA / CSUD context, for errors ε(Θ) and ε(Θ′) from any two draws Y(Θ)
and Y(Θ′), E [ε(Θ) −ε(Θ′)] = 0. Furthermore Assumption 12.4.2 on errors ε,
ensures that Assumption 12.4.7 on stochastic interactions continues to hold.

Given some initial Θ̂0 ∈ Zk, (12.44) is solved step-wise iteratively in two
successive stages

Stage1 : M

({
max

Ψ
R
(
Ψ, Θ̂t

)}N

1

)
→ m̂(Θ̂t) + εt (12.47a)

Stage2 : ĝC
t (Θ̂t)→ Θ̂t+1 = Θ̂t − αt ĝC

t (Θ̂t)− αtZk. (12.47b)

At each iteration t given Θ̂t, stage 1 obtains N samples of maxΨ R(Ψ, Θ̂t),
and then computes the corresponding performance statistics. Stage 2 im-
plements the loss function in (12.46a) and the corresponding CSUD gradi-
ent and update equations (12.29) to (12.32). When the iteration budget is
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completed, the final (Ψ, Θ̂) tuple is extracted as solution candidates.

12.4.3 Bias of the CSUD Search Strategy Gradient Estimate

As before, it is necessary to show that the bias of the ith component of the

constrained gradient estimate is asymptotically zero, B ĝC
t

ti = lim
t→∞

ETt

[
ĝC

ti(Θ̂t)

- gi(Θ̂t)
]

= 0. Taylor expansions of the loss function in (12.46b) are used, and
the expanded gradient formula (12.33b) from section 12.3.3 is applied.

Note that the use of Taylor expansions in the context of (12.46b) is subject
to some considerations in practice. In particular, the intermediate targeting
measurement function m̂(Θ) must be differentiable in Θ. This is likely to
be the case for summary statistics such as the mean, but may not apply to
non-parametric statistics such as the median. In future works, Assumption
12.4.1 could be re-written to reflect this. However, here all topology related
assumptions have been kept in the same format for narrative simplicity.

Given Assumptions 12.4.2 and 12.4.7, the conditional expectations of er-
ror difference terms

(ε+ − ε)
µt∆ti

,
(ε− ε−)

µt∆ti
, and

(ε+ − ε−)
2µt∆ti

(12.48)

evaluate to 0. Then arguments (12.34) and (12.35) from section 12.3.3 are
applied. These arguments show that each component of the CSUD search
strategy gradient estimator ĝC

t (Θ̂t) remains asymptotically unbiased.

12.4.4 Almost sure convergence of the CSUD Search Strat-

egy

Using the techniques introduced in Proposition 12.2.1 and 12.3.1, almost
sure convergence is now outlined of the CSUD search strategy hyper-para-
meter iterate Θ̂t to a non-unique result Θk∗ ∈ Zk.

Proposition 12.4.1 (CSUD Search Strategy Convergence). Given Assumptions
12.4.1 to 12.4.9, quadratic loss (12.46), and the iteration rule (12.47b), given any
initial Θ̂0 ∈ Zk, if g(m(Θk∗)) = 0, then as t → ∞, Θ̂t → Θk∗ a.s., where however
Θk∗ may not be unique.

Proof. The arguments in Proposition 12.3.1 continue to apply. The N period
shifted representation of the update equation in (12.47b) is used. The N
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period shifted equation continues to have the form shown in (12.36) and
(12.37).
For the mean ODE, bias, and constraint projection terms, the arguments and
comment in Proposition 12.3.1 apply without any modifications. However,
the argument for the error terms is altered as follows.
The Error Term: Using the arguments in Propositions 12.2.1 and 12.3.1,
which lead to (12.25b) and (12.39c), it is established that

1
η2 E

∥∥∥∥∥N−1

∑
j=0

αt+jξt+j

∥∥∥∥∥
2
 ≤ 1

η2

p

∑
i=1

∞

∑
j=t

α2
j ∑

e
ve

jiE
[(

ĝe
ji(Θ̂j)

)2
]

(12.49)

where e ∈ {S+, S−, D} and Prob(eji) ≡ ve
ji.

Next the expectation terms in (12.49) are evaluated, and then the en-
veloping result is established. For any two independent Θ̂a, Θ̂b ∈ Zk and
e ∈ {S+, S−, D}, consider the commonly occurring gradient approximation
term

E

(Y(Θ̂a)−Y(Θ̂b)
µj∆ji

)2


=
1
µ2 E

( 1
∆ji

)2
 E

[(
L(Θ̂a)− L(Θ̂b) + εa − εb

)2
]

≤ 1
µ2 E

( 1
∆ji

)2
 E

[(
L(Θ̂a)− L(Θ̂b)

)2
+
(

εa − εb
)2
]

≤ 2
µ2 (L + E)D

(12.50a)

where E

( 1
∆ji

)2
 ≤ D (12.50b)

and 0 < D, E, L < ∞ are bounds. The details for the derivation of E and L

are in Appendix D.
Using the result (12.50a) in (12.49), and the fact that from Assumption

12.4.8, ∑e ve
ji = 1, simplification yields

∞

∑
t=0

Prob

(
sup

N≥j≥t
‖Mj −Mt‖ ≥ η

)
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≤ 2p (L + E)D

η2

∞

∑
t=0

∞

∑
j=t

α2
j

µ2
j

< ∞ (12.51)

since from Assumption 12.4.5, as t→ ∞, ∑∞
j=t α2

j /µ2
j → 0.

Given the result in (12.51), as t → ∞, supN≥j≥t‖Mj −Mt‖ →a.s 0. That
is, the error term converges to 0 almost surely.
Non-uniqueness of Θk∗: The standard proof approach so far has shown
that the CSUD search strategy can asymptotically approximate the gradient
of the unknown loss function. This gradient drives the loss function com-
ponent m̂(Θ̂t) towards m̂(Θk∗) such that ‖m̂(Θk∗) − m∗‖ is minimised. By
Assumption 12.4.1 the uniqueness of m∗ is required, however the unique-
ness of Θk∗ is not guaranteed.

12.5 Discussion

This chapter presents asymptotic convergence proofs of the input iterates Θ̂t

for unconstrained single-sided SPSA, CSUD, and the CSUD search strategy.
In the asymptotic proofs, the employed standard modern techniques

rely on the properties of martingales. The techniques employed originate
from automated root finding and are best suited for strictly convex func-
tions over the unconstrained input domain.

In automated root finding problems, one looks for the function root,
which is an optimum at which the gradient is 0. Starting from an initial
input value Θ̂0, the function is traversed according to a gradient driven up-
date rule. In such cases, standard convergence theory states that automated
traversal will eventually locate the function root.

In unconstrained single-sided SPSA, as in all other SPSA algorithms, the
main innovation is that in addition to automated function traversal towards
the root, the gradient itself is being approximated over time. Hence over
iterations, as the gradient quality improves, so does traversal towards the
function root.

In practice, unconstrained single-sided SPSA, along with all other SPSA
derivatives, must be carefully calibrated initially (Spall, 2003, pp. 190-191).
Otherwise in practice, due to the instabilities introduced by traversing a
function using an approximated gradient, especially in the early iterations,
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the input iterate might diverge and lead to a numerical overflow or under-
flow, or to large oscillations which increase convergence time.

One approach to dealing with SPSA instability is presented in Bhatna-
gar et al. (2013, pp. 52-65 ), who employ deterministic perturbations. Alter-
natively, as Spall (2003, p. 195) indicates, input iterate constraints may be
used. In this context, constraining input iterates constitutes an elegant way
of helping the function root search through any instabilities, while reducing
the need for costly calibration.

CSUD constrains not only input iterates, but also the input perturba-
tions used in gradient approximation. This would help in circumstances
where perturbations are too large, or lead to function evaluation at illegal
values. Additionally, CSUD only uses single-sided SPSA in the event of
a binding perturbation constraint, otherwise using double-sided SPSA. As
noted in Table 12.1, double-sided SPSA has smaller bias than single-sided
SPSA. Therefore when perturbation constraints are seldom binding, CSUD
will approximate double-sided SPSA efficiency.

The most significant consequence of constraining inputs is that addi-
tional assumptions are required regarding loss function topology. In partic-
ular, for standard martingale convergence proofs to work with constrained
inputs, one must at least assume that the function root lies inside the con-
strained domain. However, in CSUD, where additionally perturbations are
being constrained, it is additionally necessary that the initial input iterate
must be selected from within the constraint zone. In practice this added
requirement is easy to fulfil.

There is a further subtlety, which the CSUD convergence proposition
12.3.1 does not fully address. Assumption 12.3.1 introduces the notion of
constraint sets Zk, asserts that the loss function is strictly convex for any
Θk ∈ Zk, and further requires the existence of a local minimum Θk∗.

While it is not immediately obvious, these requirements define a prob-
lem, which differs from the automated root finding problem. In particular,
the local minimum Θk∗ may occur at the constraint boundary possibly with
non-zero gradient. A non-zero gradient impacts the outline of the mean ODE
term component of proposition 12.3.1. In proposition 12.2.1 for the conver-
gence of unconstrained single-sided SPSA, the mean ODE term proof relies
on the discovery of a 0 gradient. In CSUD the discovery of such a 0 gradi-
ent is no longer guaranteed. However, any input iterate update drift caused
by a non-zero gradient would be absorbed by the constraint. Currently, the
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proofs presented here do not explicitly deal with this eventuality. Improv-
ing the proofs to address this shortcoming could be an interesting future
task. In practice, if a constrained CSUD iterate exhibits decaying bounces
towards the lower or upper constraint limit, then the analyst should con-
sider moving the impinged bound.

The CSUD search strategy departs even further from the automated root
finding context. As with CSUD, due to constraints, the possibility exists
that a non-zero gradient may obtain at constraint boundaries. Further, the
CSUD search strategy uses a performance measurement target to tune the
hyper-parameters of another model. Therefore, it is possible that there are
not any hyper-parameter combinations, which fully satisfy the performance
measurement target, in which case a non-zero gradient may continue to ex-
ert hyper-parameter update drift even when not at a constraint boundary.
The mean ODE term proof in proposition 12.4.1 does not fully deal with this
issue, and addressing the potential effects of such residual update drift con-
stitutes another interesting area of future research. In practice, if the CSUD
search strategy hyper-parameter trajectory shows a gradual creep in one or
multiple parameters, while maintaining decreasing or constant loss, then
one may suspect an update drift situation. However, if the drifting hyper-
parameter(s) are associated with similar search strategy loss rankings, then
such hyper-parameter combinations can be regarded as equally ranked can-
didates.

Finally, it is also possible for the CSUD search strategy to produce dis-
tinct hyper-parameter outcomes, each of which have similar performance
measures, and consequently similar loss function rankings. In other words,
the CSUD search strategy cannot guarantee a unique optimal result, as for
example is expected from the canonical automated root finding exercise.
The proof of proposition 12.4.1 extends the standard proof technology to its
limit. There may be better, more comprehensive, or easier proof approaches.
This once more could be an interesting area of future research. For example,
it would be interesting to see whether the proofs can be carried out using a
version of the burst learning model presented in chapter 10.
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Chapter 13

Application: Neural Network
Hyper-parameter Tuning

This chapter presents a case study of the CSUD search strategy as an artifi-
cial neural network (ANN) hyper-parameter tuner. ANN hyper-parameter
tuning is a well known problem with both industrial and commercial appli-
cations, and has received a considerable amount of attention in computing
literature. Well-known and high-performing ANN tuning techniques exist.
This chapter investigates how the proposed implementation of the CSUD
search strategy fares in an ANN tuning context.

This chapter is presented as a self-contained unit. First an introduction
to ANN tuning is presented, followed by a brief review of the literature.
Then using a small neural network model with the Fashion MNIST data set
(Xiao et al., 2017), the CSUD search strategy implementation is presented
and discussed.

13.1 ANN Tuning

Due to truth table compression, which produces prediction uncertainty
(Widrow & Hoff, 1960), average artificial neural network (ANN) prediction
and consequently validation accuracy cannot reach 100% (in non-training
data). The question arises as to what level of validation accuracy is accept-
able, how one can most quickly attain the desired level of validation accu-
racy, and to what extent can the chosen model be fine-tuned reliably and
reproducibly? These questions lie at the core of the ANN training, valida-
tion, and tuning pipeline.

As ANNs can be very large, with thousands, sometimes millions or bil-
lions of network weights and many hyper-parameters, the main challenge
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in ANN hyper-parameter tuning is to mitigate the dimensional cost of a
pure grid search. There are four general mitigation strategies: (1) distri-
butional, (2) progressive resource allocation, (3) genetic, and (4) gradient
based.

Using the expected improvement criterion to assess the contribution of
hyper-parameter variations, Bergstra et al. (2011) present Gaussian process,
and tree-structured Parzen hyper-parameter optimizers. They parallelise
the iterative search process by using place-holder or replacement values for
performance threshold returns. Snoek et al. (2012) discuss Bayesian hyper-
parameter optimisation, a distributional method where hyper-parameters
are directly drawn from an iteratively evolving Gaussian process.

As a pure resource allocation tuner, L. Li et al. (2018) introduce Hyper-
band, where the number of hyper-parameter configurations are seen as ban-
dit arms. Using a trade-off between the number of bandit arms and the
number of arm-pulls, Hyperband develops pay-off and stopping criteria,
then progressively reduces the number of configurations, which eventually
converge to the best hyper-parameter configuration.

Distributional tuning methods can be coupled together with resource al-
location methods. For example, Bayesian hyper-parameter tuning can be
coupled with a resource allocation scheduler like the Asynchronous Succes-
sive Halving Algorithm ASHA (L. Li et al., 2020). ASHA supports industrial
scale parallelisation, early termination, and can be used in settings where
hyper-parameter configurations exceed parallel processing capacity. ASHA
parallelises the Successive Halving Algorithm, where for a small number
of configurations, resource capped trials are executed. After each execution
batch, a small number of top performing configurations are carried forward
with an increased resource cap. Eventually, the best performing configu-
ration gets to be tested with the most resources. Combining pure random
search with ASHA can provide a lower computational cost alternative to
Bayesian optimisation.

In terms of genetic algorithm driven ANN tuners, A. Li et al. (2019) in-
troduce Population Based Training (PBT), a genetic search algorithm with
early termination and check-pointing support applied to a collection (i.e.,
population) of hyper-parameter varied networks. PBT also supports selec-
tion criteria which may not be differentiable. Parker-Holder et al. (2020)
present PB2, a variant of PBT, where hyper-parameters are perturbed not
randomly but by Gaussian process bandits. Their approach minimises the
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number of hyper-parameter perturbations, which do not lead towards vi-
able outcomes. Here PBT is used, as it is the conceptually simpler alterna-
tive.

In gradient based hyper-parameter optimisation (Bengio, 2000), hyper-
parameters are updated via the implicit function theorem, using gradient
information derived from a model scoring function. Lorraine et al. (2020)
extend Bengio’s approach to potentially millions of hyper-parameters. Gra-
dient based approaches are attractive because a high quality gradient pro-
vides a shortcut through the hyper-parameter grid towards the optimum.
However, the scoring function must be differentiable and possess at least
one optimum over the hyper-parameter grid. In practice, hyper-parameter
scoring is usually conducted using validation loss, with the validation loss
gradient driving the hyper-parameter updates. Further, the ANN validation
loss gradient is computed using automatic differentiation, which is possible
when known differentiable activation and loss functional forms are used.

The CSUD search strategy can be seen as a gradient approximation driven
hyper-parameter optimiser, where the search scoring function is evaluated
at randomly perturbed hyper-parameter values, with the gradient being ap-
proximated and asymptotically achieved. From this perspective, one can
immediately see that compared to automatic differentiation gradient meth-
ods, the CSUD search strategy will present with increased computational
complexity, as every gradient approximation requires two distinct hyper-
parametrised ANN evaluations. However, the random perturbations na-
ture of CSUD, may lead to interesting hyper-parametrised ANN configu-
rations, that might have been ordinarily missed. Further, in cases where
automatic differentiation is too difficult, the CSUD search strategy makes it
possible to conduct gradient based ANN tuning.

13.2 The Training, Validation, and Tuning Pipeline

In general, tuning an ANN is a complex undertaking with critical sequential
steps. Firstly, every hyper-parameter configured ANN to be tuned must be
trained to a high enough standard. Secondly when training is completed,
ANN performance must be measured using data not seen during training.
That is, the validation error must be computed. The validation loss gradient
must be computed for gradient based tuners from a single validation error
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measurement, and in the case of CSUD, from two validation error measure-
ments. In turn, this gradient is used to compute hyper-parameter updates;
then the cycle is repeated. Since ANN training is time and resource inten-
sive, and since ANN tuning may require the training of many alternative
ANNs, it is noted that ANN tuning is a costly process.

13.2.1 ANN Training

ANN training is by far the costliest step, and efforts to speed up train-
ing whilst reducing the risk of over-training have received much attention.
Adam by Kingma and Ba (2014) is generally considered to be a fast ANN
training algorithm, which is also resistant to overtraining. It belongs to the
class of iterative update stochastic approximation algorithms, where param-
eter updates make use of scaled gradient inputs. In Newton-Raphson like
approaches, gradients are scaled by the loss function inverse Hessian or its
approximation (Spall, 2003, pp. 27-30). However, direct computation or ap-
proximation of the inverse Hessian is costly and can produce instabilities
(Bishop, 2006, pp. 249-256). In Adam, the incoming gradient is smoothed
and also normalised. The smoothing and normalisation work together to (1)
achieve gradient scaling, and (2) apply bounds to the update magnitudes
(Kingma & Ba, 2014, pp. 2-3). Hence, Adam avoids the need for costly in-
verse Hessian computations, but retains the advantage of gradient scaling.
This makes Adam comparatively fast to converge.

Could CSUD, or SPSA be used to train an ANN? In principle, the an-
swer to this question is yes. Gradient smoothing, for example as used in
Adam, has been discussed among others by Spall and Cristion (1994), who
present an unnormalised gradient smoothing technique for SPSA. Zhu et
al. (2020) discuss the computational cost of the Hessian and introduce an in-
verse Hessian approximation technique, which reduces computational cost
from O(p3) to O(p2), where p denotes the number of parameters. They re-
port real-data results with an empirical loss function and the airfoil self-
noise data set, where their SPSA implementation for training a small ANN
achieves lower loss than Adam. They do not discuss whether in their imple-
mentation, SPSA updates all parameters of the network, or just the output
layer parameters, with back-propagation being used for hidden layer up-
dates. Also their study does not present any validation accuracy results,
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Method Epochs Training
Loss

Validation
Loss

Training
Accuracy

Validation
Accuracy

Adam 20 0.2305 0.2431 0.9150 0.9097

SPSA 20 0.8530 0.8790 0.6882 0.6758

Adam 50 0.1785 0.2289 0.9328 0.9192

SPSA 50 0.7487 0.7618 0.7286 0.7248

Adam 1000 0.1011 0.3058 0.9619 0.9169

SPSA 1000 0.5374 0.5601 0.8076 0.7998

TABLE 13.1
Could SPSA be used for ANN training? Fashion MNIST ANN training
reference benchmarks. Adam outperforms unconstrained double-sided SPSA
at 20, 50, and 1000 iterations.

making it difficult to assess how their lower training loss translates into
prediction accuracy.

Using Fashion MNIST data, the use of unconstrained double-sided SPSA
(12.1.1) is tested for training by forward pass, all weights of an ANN with
30,573 trainable weights. As Table 13.1 indicates at 20, 50, and 1000 train-
ing epochs, compared to Adam, unconstrained double-sided SPSA remains
slow to converge, with Adam achieving lower loss and higher accuracy for
training and validation respectively. Therefore, this chapter retains the use
of Adam for ANN training.

13.2.2 ANN Validation and Tuning

The most important aspect of ANN validation is the use of data, which has
not been presented to the ANN during training. ANN validation therefore
is conducted with unseen data, typically reporting validation loss or vali-
dation accuracy. It is possible to design a custom validation score function,
however, validation loss is used here.

Statistically evaluating a completed hyper-parameter tuning pass against
any alternatives is important but has not received much consideration in the
literature. This area is addressed by proposing an evaluation methodology
based on pairwise non-parametric testing of a repeated performance metric,
for example, validation accuracy. The use of the Dwass-Steele-Critchlow-
Fligner all-pairs test is proposed. While the proposed method is resource
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intensive, it yields results, which can be statistically tested for the null hy-
pothesis of performance equality, thereby providing insight into the relative
efficacy of each alternative hyper-parameter configured ANN.

The next section describes the CSUD search strategy implementation
used for ANN tuning.

13.3 CSUD Search Strategy Implementation

The CSUD search strategy implementation used here differs slightly from
the one presented in section 12.4.

Specifically, finite delays to the learning rate αt and perturbation step
µt decay schedules are permitted. Such a delay is conducted via the use
of hold and span operations, where hold indicates the number of delays,
and span indicates the duration of each delay in CSUD iterations. For ex-
ample, hold = 2, span = 2 implies that given a learning rate sequence
{α1, α2, α3, . . . }, the learning rate in iterations 1 and 2 will be α1, and in
iterations 3 and 4, α2; then in subsequent iterations will continue from α3

onwards as usual. The perturbation step µt is likewise synchronized. This
modification improves search speed. Since the altered learning rate and
perturbation step sequences are of finite length, proposition 12.4.1 can be
updated relatively easily; however, this is not demonstrated here.

Validation loss is measured by sparse categorical cross entropy, a loss
function which deviates from the quadratic loss function (12.42) employed
by the CSUD search strategy in section 12.4. This change in loss function
may require re-working of the error structure in Assumption 12.4.2, and
possibly further assumption updates. Once more, here these issues are not
addressed formally. Instead, the current chapter focuses on empirical re-
sults.

13.4 Methodology

The Fashion MNIST (Xiao et al., 2017) data set is used with a convolu-
tional neural network architecture, which is illustrated in Fig. 13.1. Two
models are considered, model A and model B, the former without and the
latter with L2 regularisation, which applies to the network loss function a
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FIGURE 13.1: Convolutional network architecture for use with Fashion MNIST.
Coloured layers contain model A and B tunable hyper-parameters, which are in
white typeface. Additional model B hyper-parameters are in dark gray. Light
gray layers are not tunable. In convolutional and dense layers, the number of
neurons ranges from 8 to 160. In computations, integer neuron numbers are
mapped to the unit interval. Dropout range is from 0 to 0.51. L2 regularization

scaling is from 0 to 0.30.

quadratic regularisation penalty based on the number of trainable network
weights.

In convolutional neural network (ANN) tuning, frequently the learn-
ing rate and convolution window related parameters are tuned. However,
at 28x28 pixels, Fashion MNIST image data resolution is relatively small,
and the tuning opportunities for convolution window size, especially for
a multi-layer architecture such as the one used here are limited. Further,
Adam’s automatic gradient scaling makes initial selection of the ANN learn-
ing rate resilient to over or under specification. Therefore, here learning
rate or convolution window parameters are not tuned. Further, the number
of (maximum) training epochs are fixed at 20, a duration at which Adam
achieves good results.

The goal here is to investigate the effects of layer size, dropout, and L2
regularisation on ANN validation accuracy, and tuning parameters have
been selected accordingly. As Fig. 13.1 indicates, model A has six tunable
hyper-parameters: the number of neurons for three convolutional and one
dense layer, 1_conv, 2a_conv, 2b_conv, and 3_d; and two dropout settings,
1_do, and 2_do. Model B has ten tunable hyper-parameters: all those listed
under model A, plus L2 regularisation applied to model A’s convolutional
and dense layers, 1_conv_l2, 2a_conv_l2, 2b_conv_l2, and 3_d_l2.
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Tuning Algorithm Criterion Settings Passes

ASHA Bayes min loss_val samples = 50 3

ASHA Random min loss_val samples = 50 3

PBT min loss_val population = 24 3

CSUD final loss_val iterations = 60, α1 = 0.01,
hold = 2, span = 2 3

Training Algorithm Criterion Settings Epochs

Adam min loss_trn α = 0.001 20

TABLE 13.2
Tuning and training algorithm configuration settings.

In convolutional and dense layers, the number of neurons to be tuned
ranges from 8 to 160. In tuning searches, the 8 to 160 integer range is
mapped to the unit interval. Tunable dropout ranges from 0 to 0.51. For
L2 regularisation, the L2 scaling factor is between 0 and 0.30. In Fig. 13.1,
tunable model A hyper-parameters are in white. Additional model B hyper-
parameters are in dark gray. Non-tuned hyper-parameters appear in green.

Having presented the ANN architecture and tunable hyper-parameters,
the tuning and assessment procedure, consisting of two stages, is discussed
next. Firstly the tuning stage runs the to be evaluated hyper-parameter
tuning algorithm. Four tuning algorithms are considered: ASHA random,
ASHA Bayes, population based training (PBT), and CSUD. ASHA denotes
use of the resource scheduler, the asynchronous successive halving algo-
rithm introduced in section 13.1. At the end of a tuning pass, performance
is assessed via validation loss. Each tuning algorithm is run 3 times, yield-
ing 3 tuning passes each for the ASHA random, ASHA Bayes, PBT, and
CSUD tuners. Table 13.2 and Table 13.3 provide all tuning and evaluation
stage configuration settings.

The ASHA random, ASHA Bayes, and PBT tuners all employ resource
scheduling techniques, and minimise validation loss over their respective
tuning budgets. CSUD also minimises validation loss over its iteration bud-
get. However, in CSUD the final budgeted iteration hyper-parameter com-
bination is chosen by default. This is because, in general, CSUD is expected
to converge asymptotically, and it is assumed that as iterations progress,
hyper-parameter combinations will lead to networks with lower validation
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Evaluation Statistic Criterion Settings Sample Size

DSCFa pairwise testing acc_val p-value = 0.01 25

Training Algorithm Criterion Settings Epochs

Adam min loss_trn α = 0.001 20
aDSCF stands for the Dwass-Steele-Critchlow-Fligner all-pairs test
(Konietschke et al., 2015).

TABLE 13.3
Evaluation stage configuration.

loss. In practice, however, stochasticity or oscillations could slow down
CSUD convergence, or lead to an overshoot. Hence, the strategy of naively
assuming that the last iteration will also yield the optimised choice may not
always be appropriate.

As Table 13.3 depicts, in the second, the performance evaluation stage,
the hyper-parameter architecture selected in each tuning pass is trained for
25 separate times with randomised initial weights. Then the results are used
to generate a sampling distribution for validation accuracy (the assessment
metric), which is then evaluated using non-parametric pairwise equality
tests. The Dwass-Steele-Critchlow-Fligner all-pairs test (DSCF, Konietschke
et al., 2015) is used to assess among all tuning passes, statistically significant
validation accuracy differences at a p-value of 0.01.

The tuning stage and data generation for the evaluation stage were im-
plemented in Ray-Tune (Liaw et al., 2018), on three separate computers,
each equipped with an NVIDIA RTX 3060 card, however without using
Ray-Tune’s distributed features to farm-out a single task across multiple
computers. Thus parallelisation was limited solely to the Tensorflow (Abadi
et al., 2015) features provided for use with a single graphics card.

13.4.1 Hyper-Parameter Mapping

As Fig. 13.1 indicates, layer size ranges from 8 to 160 neurons, while dropout
ranges from 0 to 0.51, and L2 regularisation ranges from 0 to 0.30. The
scale difference in layer size against dropout, or L2 regularisation, is quite
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large. In order to apply similar perturbation scales in CSUD for all hyper-
parameters, the layer size range is mapped to the unit interval, with 0 indi-
cating 8 and 1 indicating 160.

13.5 Results

Fig. 13.2 shows ANN hyper-parametrisations discovered for model A after
three distinct tuning passes of each tuning algorithm, and displays valida-
tion accuracy violin plots produced consequent to 25 training sessions for
each tuning pass discovered hyper-parametrisation. The columns on the
left display from left to right, tuning algorithm, mean validation accuracy,
total trainable weights, and hyper-parameter configuration.

The hyper-parameters column display order is 1_conv, 1_do, 2a_conv,
2b_conv, 2_do, and 3_d, with layer abbreviations as discussed in Fig. 13.1.

The violin plots on the right present validation accuracy densities cor-
responding to 25 training sessions with mean validation accuracy ±1SE
marked in each violin plot. Results are grouped by tuning algorithm, and
then in order of descending mean validation accuracy.

Fig. 13.2 reveals that for the Fashion MNIST ANN model A, compared
to CSUD and PBT (population based training), the ASHA Bayes and ASHA
random algorithms produce in general higher validation accuracy clusters.

PBT displays hyper-parametrisations with lowest dropout for both drop-
out layers. The CSUD hyper-parametrisation with analysis ID G displays a
violin plot with a long left tail, indicating that this hyper-parametrisation
may be more sensitive to initial training weight values. This sensitivity may
have been caused by the combination of a small initial convolutional layer
1_conv = 32 and a first dropout layer with very low dropout 1_do = 0.01.
The most consistent performance in terms of high mean validation accu-
racy is produced by the ASHA random tuner, followed by the ASHA Bayes,
CSUD and PBT tuners.
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FIGURE 13.2: Model A tuning passes and validation accuracy from 25 repeated
training sessions. Configuration on the left. Violin plots with mean valida-
tion accuracy ±1SE on the right. Bayesian and random tuners perform well.
Hyper-parametrisations with larger total number of weights have higher mean

validation accuracy. Details in text.

Are the differences in mean validation accuracy statistically significant?
Fig. 13.3 shows the model A pairwise comparison matrix of mean validation
accuracy with p-value results using the DSCF all-pairs tests (Konietschke et
al., 2015). Rows and columns are grouped by tuning algorithm. Each tun-
ing algorithm grouping contains 3 passes with randomly initialised weights.
Each cell contains p-values resulting from pairwise comparison of equality
of mean validation accuracy obtained from 25 separate training runs con-
ducted at the respective hyper-parametrisations reported in Fig. 13.2.
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FIGURE 13.3: Fashion MNIST model A pairwise comparison matrix of mean
validation accuracy with p-values using the DSCF criterion. Rows and
columns are grouped by tuning algorithm. P-values obtained from pairwise
comparison of mean validation accuracy using 25 separate training runs. Cells
with p-values less than 0.01, where the null hypothesis of equality of mean val-
idation accuracy is rejected, are coloured in red. For PBT and ASHA random,
the null hypothesis of equal mean validation accuracy could not be rejected
within each group at a significance level of 0.01. Green cells indicate CSUD
tuning results show some overlap with ASHA random and ASHA Bayes. Fur-

ther details in text.

Cells with p-values less than 0.01, where the null hypothesis of equality of
mean validation accuracy is rejected, are coloured in red.

Results indicate that PBT and random tuning groups produce ANN hyper-
parameter configurations where the null hypothesis of equal mean valida-
tion accuracy could not be rejected within each group at a significance level
of 0.01. Tuning algorithm cross-group comparisons show that based on pair-
wise comparisons of mean validation accuracy at a significance level of 0.01,
the ASHA random, ASHA Bayes, and CSUD algorithms show some over-
lap.

At significance level 0.01, ASHA Bayes versus ASHA random and CSUD
versus ASHA random cross-group comparisons do not exhibit statistically
significantly different mean validation accuracy results for 6 of 9 possible
combinations. CSUD versus ASHA Bayes cross-group comparisons do not
exhibit statistically significantly different mean validation accuracy results
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for 4 of 9 possible combinations. In contrast, PBT tuned model A hyper-
parametrisations yield mean validation accuracy outcomes, which in cross-
group comparison terms are largely statistically significantly different.

Fig. 13.4 shows model B ANN hyper-parametrisations discovered after
three distinct tuning passes of each tuning algorithm, and displays valida-
tion accuracy violin plots produced consequent to 25 training sessions for
each tuning pass discovered hyper-parametrisation. The columns on the
left display from left to right, tuning algorithm, mean validation accuracy,
total trainable weights, and hyper-parameter configuration.

The hyper-parameters column display order is 1_conv, 1_conv_L2, 1_do,
2a_conv, 2a_conv_L2, 2b_conv, 2b_conv_L2, 2_do, 3_d, 3_d_l2, with layer ab-
breviations as discussed in Fig. 13.1. Therefore the only difference between
Fashion MNIST models A and B is the addition of L2 regularisation error,
applied to the three convolutional layers 1_conv, 2a_conv, 2b_conv, and to
the dense pre-output layer 3_d.

In model B, the application of dropout and L2 regularisation within
the same ANN architecture may not be the best design. Typically, either
dropout or L2 regularisation may be applied, as the two methods could
create adverse interactions, leading to poor learning. However, it is inves-
tigated to what extent the presented tuning algorithms would be able to
negotiate this type of challenging architecture.

In Fig. 13.4, the violin plots on the right present validation accuracy den-
sities corresponding to 25 training sessions with mean validation accuracy
±1SE marked in each violin plot. Results have been grouped by tuning
algorithm, and then in order of descending mean validation accuracy.

Note that with the complex Fashion MNIST model B, dropout versus
L2 regularisation ANN architecture, the ASHA Bayes and CSUD tuners,
with the exception of CSUD analysis ID F, produce higher mean validation
accuracy and tighter violin plot clusters.
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FIGURE 13.4: Model B tuning passes and validation accuracy from 25 repeated
training sessions. Configuration on the left. Violin plots with mean validation
accuracy ±1SE on the right. Bayesian and CSUD tuners perform well while

random and PBT tuners, which rely on pure randomisation do less well.

In contrast the PBT and ASHA random tuners, which solely rely on random
search, produce substantially lower mean validation accuracy results.

Further note that the best performing ASHA Bayes ANN hyper-parametri-
sations all favour dropout over L2 regularisation. A review of ASHA Bayes
analysis IDs A, B, and C reveals that for all cases, and in all layers, L2 regu-
larisation is set to 0. Also dropout is used sparingly with analysis ID B and
C only exhibiting high stage 2 dropout 2_d of 0.51 and 0.33 respectively. Fi-
nally, note that ASHA Bayes tuned architectures tend to favour layer sizes at
range boundaries. ASHA Bayes analysis ID A produces the largest network
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with 1, 647, 840 trainable weights, and with the highest mean validation ac-
curacy of 0.9329. Almost all layers for case analysis ID A have the layer
maximum of 160 neurons.

CSUD tuner produced ANN hyper-parametrisations demonstrate greater
hyper-parameter and mean validation accuracy variability. All CSUD hyper-
parametrisations exhibit boundary range values. Layer neurons are either
at 8 or 160, L2 regularisation is either 0 or 0.30, and dropout is either 0 or
0.51. CSUD tuning passes consisted of 60 iterations. The above results sug-
gest that possibly 60 iterations is not sufficient to achieve convergence, and
that instead boundary range oscillations are being obtained. It could also be
that for the complex model B architecture, range boundary hyper-parameter
values give better results. These possibilities are not discussed further here.

CSUD analysis ID F produces a violin plot with large variation and a
mean validation accuracy of only 0.6114. The hyper-parametrisation for
this case reveals mixed use of dropout and L2 regularisation. For exam-
ple 1_conv_L2 = 0.30 and 2a_conv_L2 = 0.30, while 2_do = 0.51. Further the
initial convolution layer 1_conv, and the dense pre-output layer 3_d consist
of only 8 neurons. It appears this ANN architecture may be quite sensitive
to the initial random ANN weights, leading to wide variations in training,
and consequently in mean validation accuracy.

CSUD analysis IDs D and E produce opposing models, with case D
favours L2 regularisation, while case E favours dropout. CSUD caseE pro-
duces, with 65, 738 trainable weights, the smallest neural network. Smaller
ANNs typically have a smaller memory footprint and faster inference speed.
CSUD case E provides an interesting model for circumstances, where infer-
ence speed and mean validation accuracy trade-offs are acceptable.

The PBT and ASHA random tuners yield ANN hyper-parametrisations
primarily with inside-boundary values; with mixed dropout and L2 regu-
larisation. The resulting models produce comparatively lower mean valida-
tion accuracy outcomes, suggesting that the ASHA Bayes and CSUD tuners
produce hyper-parametrisations with commensurately improved mean val-
idation accuracy. It is believed the comparatively improved performance of
the ASHA Bayes and CSUD tuners results from the use of additional dis-
tributional information for the former, and validation loss gradient for the
latter tuner.
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FIGURE 13.5: Fashion MNIST model B pairwise comparison matrix of mean
validation accuracy with p-values using the DSCF criterion. Rows and
columns are grouped by tuning algorithm. P-values obtained from pairwise
comparison of mean validation accuracy, using 25 separate training runs. Cells
with p-values less than 0.01, where the null hypothesis of equality of mean
validation accuracy is rejected, are coloured in red. Both cross-group and intra-
group pairwise mean validation accuracy comparisons generally show statisti-

cally significant differences at significance level 0.01. Details in text.

For the more complex model B Fashion MNIST ANN, both the ASHA Bayes
and CSUD tuners offer an improvement over undirected random search.

Are the differences in mean validation accuracy statistically significant?
Fig. 13.5 shows model B pairwise comparison matrix of mean validation ac-
curacy with p-value results using the DSCF all-pairs tests (Konietschke et
al., 2015). Rows and columns are grouped by tuning algorithm. Each tun-
ing algorithm grouping contains 3 passes with randomly initialised weights.
Each cell contains p-values resulting from pairwise comparison of equality
of mean validation accuracy obtained from 25 separate training runs con-
ducted at the respective hyper-parametrisations reported in Fig. 13.4. Cells
with p-values less than 0.01, where the null hypothesis of equality of mean
validation accuracy is rejected, are coloured in red.

Fig. 13.5 indicates that both cross-group and intra-group pairwise mean
validation accuracy comparisons generally show statistically significant dif-
ferences at significance level 0.01. Fig. 13.4 shows that the outlier CSUD case
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F has large standard error. Consequently one fails to reject the null hypoth-
esis of equal mean validation accuracy between CSUD case F and PBT case
I; and CSUD case F and ASHA random cases K, or L. One also fails to reject
the null hypothesis of equal mean validation accuracy between PBT case H
and ASHA random cases J, or K; and between ASHA random case J and K.

However given the above exceptions, the remaining pairwise mean val-
idation accuracy comparisons support the notion that in general the tuners
produce hyper-parametrisations with mean validation accuracy outcomes,
which are statistically significantly different. Hence, with the more com-
plex model B Fashion MNIST architecture, even repeated applications of
the same tuner may produce ANN configurations, which produce statisti-
cally significantly different mean validation accuracy, implying that these
configurations can be regarded as distinct possibilities.

Furthermore in general, mean validation accuracy results statistically
significantly differ among the different tuners, with ASHA Bayes produc-
ing the highest, and CSUD producing the second highest mean validation
accuracy outcomes.

13.6 Discussion

Two Fashion MNIST ANN architectures are considered, model A and model
B, differing by the addition of L2 regularisation loss to the latter. The pres-
ence of both dropout and L2 regularisation make model B more difficult to
tune with respect to validation loss.

ASHA Bayes, ASHA random, CSUD, and PBT tuners are employed. For
each tuning algorithm, model A or model B architectures are tuned three
times. Subsequently, the resulting ANN hyper-parametrisations are trained
25 times with random initial weights, and then after training, validation
accuracy is assessed.

Looking at mean validation accuracy, it is found that ASHA random per-
forms well for the simple model A, but poorly for the more complex model
B, in the sense that under identical resource constraints as indicated in Ta-
ble 13.2, subsequent validation accuracy results are worse for model B. The
PBT tuner performance slightly improves in relative terms for model B. In
contrast ASHA Bayes performs well in tuning both models A and B, while
CSUD performance improves as model complexity increases. However, for
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both model A and B, CSUD validation accuracy and hyper-parametrisation
results show relatively higher variation.

Unlike ASHA random and PBT, which use resource management with
random search, both ASHA Bayes and CSUD employ additional informa-
tion, which increases algorithm specificity; this increased specificity appears
to help in achieving good tuning results with the more complex model B.
ASHA Bayes uses iteratively evolving Gaussian mixtures, which increas-
ingly focus on hyper-parameter regions associated with lower validation
loss. The CSUD search strategy uses iteratively improving validation loss
gradient approximations to drive hyper-parameter updates in the direction
of lower validation loss.

Between ASHA Bayes and the CSUD implementation however, based
on the results, ASHA Bayes appears to perform better in terms of mean
validation accuracy, especially as model complexity increases. It is proposed
this is because of the more greedy exploitation behaviour of ASHA Bayes,
which tends to produce more condensed posterior distributions. In contrast,
as discussed in section 12.4, the CSUD search strategy specification may not
lead to discovery of a unique optimised hyper-parameter selection. Under
such circumstances of non-uniqueness, given that CSUD approximates both
the loss gradient and the hyper-parameter updates, it may take longer to
converge; this lengthened convergence lag may in the short run, lead to
increased variation in hyper-parameter selections as has been observed.

Due to its convergence lag, it is possible that CSUD will provide more
comprehensive coverage than ASHA Bayes in the sense of visiting a larger
area of the hyper-parameter search space.

When compared to ASHA Bayes, the implementation of CSUD is more
computationally intensive due to requiring two loss function measurements
per tuning iteration for gradient approximation. Another cp-SPSA vari-
ant called constrained measurement reuse with single-sided perturbations
(CMR), derived from Algorithm 1 (SPSA2-1UR, measurement reuse) intro-
duced in Abdulla and Bhatnagar (2006) has been tested elsewhere. CMR
reduces the number of loss function measurements from two to only one
measurement per iteration after the initial iteration.

However, in terms of asymptotic efficiency, the measurement reuse
SPSA2-1UR algorithm (Abdulla & Bhatnagar, 2006) and by extension CMR,
perform worse than single-sided and double-sided SPSA, both of which are
components of CSUD. Despite hyper-parameter range constraints, CMR
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while requiring less computation time, has not performed better than the
CSUD tuner presented here. It is suspected this may be due to CMR’s de-
creased asymptotic efficiency. Hence, reducing the computational demands
of CSUD, while retaining or improving its tuning outcomes could benefit
from further research.

In sum, the CSUD search strategy shows some promise as an ANN tuner,
but more research is needed to determine in which specific area and in what
manner it may be best employed.
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Conclusion

This thesis contributes to the field of nonrational computational technolo-
gies. Inspired by human Iowa Gambling Task (IGT) outcomes, and the role
of the vmPFC and emotion in human decision making, this work uses such
IGT outcomes to automatically calibrate and assess nonrational Q-learning
models. This automatic calibration is conducted via CSUD search, a nonra-
tional search technology additionally developed in this work.

The concept of nonrationality is expressed via two different pathways.
In Q-learning, nonrationality is formulated as exponential learning rate de-
cay coupled with a finite but unknown time horizon. In CSUD search, on
the other hand, nonrationality is modelled as a departure from stochastic
optimisation leading to a search algorithm, which satisfices in the sense of
foregoing theoretical guarantees of finding a global minimum.

Simulation based IGT Q-learning modelling is conducted, where the
key model parameters consisting of the initial learning rate, learning rate
decay, and exploration are automatically calibrated by CSUD search so as
to produce simulated mean fraction of good deck f̄G outcomes residing in
corresponding normal versus vmPFC impaired human outcome catchment
zones. Q-learning exploration is modelled using a variety of techniques in-
cluding the ε-Greedy and Boltzmann rules.

Simulation results produce two major findings, (a) high learning rate
decay leads to VMF impairment commensurate outcomes, and (b) to match
human outcomes exploration must be high. A further, more detailed key
result is demonstrated with respect to the joint assessment of the original,
re-shuffled, and random IGT environments. Based on jitter plot assessment
and np-M/ANOVA analysis, it is shown that neither ε-Greedy nor Boltz-
mann exploration appear to provide a convincing view of human explo-
ration. In jitter plots, ε-Greedy software agents show bi-modal fG densities,
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however, with little or no mass on f̄G. In contrast, Boltzmann agents achieve
unimodal fG densities, with some mass at f̄G, while failing to achieve an in-
catchment zone f̄G match for the random IGT. Based on jitter plots, ε-Greedy
exploration appears too dispersed, while Boltzmann exploration appears
too concentrated.

For ε-Greedy exploration, simulation fG outcome np-M/ANOVA nor-
mal versus VMF impaired factor analysis produces, as expected from corre-
sponding human results, a failure to reject the null hypothesis of no factor
effects in the re-shuffled IGT. A corresponding failure to reject this factor ef-
fect null, however, does not obtain with Boltzmann exploration. Finally, the
chapter 10 burst learning model is able to produce unimodal fG jitter plots
for normal configured ε-Greedy agents in the original and random IGT en-
vironments. This appears to suggest that ε-Greedy exploration, at least with
respect to the IGT, proposes a better representation of human exploration.

As has been noted in the cognitive models in section 2.4 and elsewhere
(Daw, 2011; Findling et al., 2019), Boltzmann exploration is commonly em-
ployed in psychological models of decision making. The results here ques-
tion why Boltzmann exploration, other than for being rationally pleasant, is
actually used in decision making.

The simulation methodology employed here, however, differs from the
maximum likelihood based individual fitting techniques used in psychol-
ogy (Piray et al., 2019; Wilson & Collins, 2019). The methodology employed
here uses representative agents, which are calibrated using averaged human
outcomes. It would be interesting to see to what extent the current results
can be achieved in human driven verification studies, where for example
learning rate decay and ε-Greedy exploration are assessed via maximum
likelihood. If, for example, human exploration had directed and random
components (Wilson et al., 2014), then one might expect ε-Greedy explo-
ration to be able to provide a generalist catch-all exploration implementa-
tion.

It is believed that the key results reported above provide evidence of
heuristic learning strategies. An exponentially decaying learning rate pro-
vides a learning freeze, in effect enforcing a finite time horizon. On the other
hand, in the context of the No Free Lunch theorems (Wolpert & Macready,
1997), high exploration can be seen as a way to maintain some generalised
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search capability without specifically committing to a particular search al-
gorithm. Hence, high exploration can be a rule of thumb to mitigate in-
complete probabilistic information. Wilson et al., 2014 state that directed
exploration may be used increase learning from the more informative op-
tions. In a statistical context, as is well known in Monte Carlo sampling,
the only way to assess the tail of a distribution is by drawing more sam-
ples. In a finite choice context, such a strategy would manifest itself as high
exploration.

From an algorithmic perpective, the nonrational burst learning model
is interesting because the re-setting learning rate mechanics may provide
an alternative to the more computationally expensive but accurate inverse
Hessian driven learning rates (step sizes). This potential of the burst model,
however, needs additional research.

CSUD and CSUD search provide further exciting computational meth-
ods for assessing regions of a model space while ensuring that the assessed
area is constrained to avoid numerical under- or overflow errors, illegal val-
ues, or overlap of the to be assessed input value spaces. Compared to an-
alytical gradient descent, CSUD is computationally more costly as gradient
approximation requires two loss evaluations, and input and perturbation
constraints must be checked at each iteration. The use of nonrational CSUD
search is tested in an ANN tuning contest with mixed performance out-
comes. It appears that the use of CSUD to embed gradient information may
produce models, which perform better than those derived via PBT or ASHA
random search; but this result is only obtained with a more complex model.
ASHA Bayes tuning, however, produces results, which are better than those
of CSUD search tuning. The further study of CSUD search in ANN tuning
could be of interest.

Finally, it would be of interest to investigate the properties of models,
which use burst learning style learning rate re-setting for both parameter
optimisation and hyper-parameter tuning. While this is a natural extension
of the current work, it has not been attempted.

This brings the readers to the end of this work. The author thanks the
readers for their interest and patience, and hopes that some of the ideas
presented here will prove to be of value.
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IGT Yield Structures

The yield structures for the original, re-shuffled, reversed IGT, and SGT are
presented below. Rewards are coloured black, whereas fines appear in red
boxes.

A.1 Original IGT

Decks A B C D

Reward 100 100 50 50

Order
1
2
3 150 50
4
5 300 50
6
7 200 50
8
9 250 1250 50

10 350 50 250
1 1
12 350 25
13 75
14 250 1250
15 200
16
17 300 25
18 150 75
19
20 50 250

Decks A B C D

Reward 100 100 50 50

Order
21 1250
22 300
23
24 350 50
25 25
26 200 50
27 250
28 150
29 75 250
30 50

3 1 350
32 200 1250
33 250
34 25
35 25 250
36
37 150 75
38 300
39 50
40 75

Source: Bechara et al., 1994, p. 9.
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A.2 Re-shuffled IGT

Decks A B C D

Reward 100 100 50 50

Order
1 250 1250 50
2 350 50 250
3 1250
4 350 25
5 75
6 250
7 200
8
9 300 25

10 150 75
11
12 50 250
13 1250
14 300
15
16 350 50
17 25
18 200 50
19 250
20 150

Decks A B C D

Reward 100 100 50 50

Order
21 75 250
22 50
23 350
24 200 1250
25 250
26 25
27 25 250
28
29 150 75
30 300
31 50
32 75
33
34
35 150 50
36
37 300 50
38
39 200 50
40

Source: Fellows and Farah, 2005, p. 59, described in Tasks.

A.3 Random IGT

The random IGT is implemented as a randomised (without replacement)
version of A.1. When the random pool for a deck is deleted it is re-initialised.
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A.4 Reversed IGT

Decks E F G H

Fine 100 50 100 50

Order
1
2 350
3 1250
4 25 250
5 50
6 300
7 200
8 75 250
9 25 150

10 75
11 1250 50
12
13 25 350
14
15 250
16 25
17 75 200
18 150
19
20 75 300 250

Decks E F G H

Reward 100 50 100 50

Order
21 1250
22 300
23
24 25 350
25 75
26 50 150
27 200
28 250
29 75
30 25 250
31 150
32 200
33 1250 350
34 50 250
35 50
36
37 25 200
38 350
39 75
40 50

Source: Bechara et al., 2000, p. 2193.
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A.5 Soochow Gambling Task (SGT)

Decks A B C D

Fixed

Yield
200 100 200 100

Order
1
2
3
4
5 1250 750 1250 750
6
7
8
9

10 1250 750 1250 750
11
12
13
14
15 1250 750 1250 750
16
17
18
19
20 1250 750 1250 750

Decks E F G H

Fixed

Yield
200 100 200 100

Order
21
22
23
24
25 1250 750 1250 750
26
27
28
29
30 1250 750 1250 750
31
32
33
34
35 1250 750 1250 750
36
37
38
39
40 1250 750 1250 750

Source: Adapted from Chiu et al., 2008, Table 1. For comparison purposes
with the other IGT environments, the table above reports both rewards and
fines. Note that the random beneficial or adverse outcome occurs with prob-
ability 0.2.
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Deck Looping Behavior

(A) ε-Greedy Agent (B) Boltzman Agent

FIGURE B.1: Normal agents deck looping versus exploration at mean fraction
of cards per deck at 100th draw. The dashed line represents the 40th card. In
general, as exploration increases, deck looping decreases on average, but espe-
cially for the ε-Greedy case, some agents continue to loop. As expected from
the soft-max constraint, Boltzmann agent violin plots approximate a unimodal
symmetric distribution, while ε-Greedy agent violin plots tend to bi-modality

and skewness for most decks and IGT variants.

In this appendix, Fig. B.1 to Fig. B.3 depict observed deck looping behaviour
for simple ε-Greedy and Boltzmann software agents, and for normal (con-
trol) random IGT subjects.

Fig. B.1 depicts normal behaviour configured software agent deck loop-
ing behaviour. Fig. B.2 depicts vmPFC impaired behaviour configured soft-
ware agent deck looping behaviour. In general, in software agents, as ex-
ploration increases, deck looping decreases.
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(A) ε-Greedy Agent (B) Boltzman Agent

FIGURE B.2: vmPFC Impaired agents deck looping versus exploration at mean
fraction of cards per deck at 100th draw. The dashed line represents the 40th

card. In general, as exploration increases, deck looping decreases on average,
but especially for the ε-Greedy case, some agents continue to loop. As expected
from the soft-max constraint, Boltzmann agent violin plots approximate a uni-
modal symmetric distribution, while ε-Greedy agent violin plots tend to bi-

modality and skewness for most decks and IGT variants.

In Fig. B.3 in the random IGT variant in Steingroever et al. (2018), as
indicated by the violin plot mass extending above the dashed line at 0.40,
individual healthy subjects exhibit looping behaviour in decks B, C, and D.

Comparison of violin plot shapes shows that in the random IGT variant,
human violin plot behaviour is somewhere between that of the ε-Greedy
and Boltzmann agents with unimodal shapes skewed in the direction of
looped decks. Further research is needed to characterise software agent and
human subject violin plot behaviour across the different IGT variants.
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FIGURE B.3: Steingroever et al. (2018), healthy subjects, mean fraction of cards
per deck at 100th draw. The dashed line represents the 40th card. On aver-
age, for each deck, the mean fraction of cards chosen is below 0.40. However,
with the exception of Deck A, skewed unimodal violin plots indicate that some
proportion of individual subjects exhibit deck looping. Deck looping is most

notable for Deck B.
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Learning Rate Decay Grid
Construction

Given (3.9b), one wishes to construct a finite size learning rate decay λ grid
such that the grid passes though λa and λb, with f samples before λa, g
samples between λa and λb, and h samples after λb. A grid is generated by
decrementing or incrementing λ proportionally. This operation produces a
grid, which is dense at areas of rapid change in the mean fraction of good
decks f̄G metric. This task is achieved with the following Scala algorithm.

1 def sampleFromIntervalWithPowerDecay(x1: Double, x2: Double, pre:

Int, steps: Int, post: Int): Vector[Double] = {

2 require (x1 > 0 && x2 > 0, "x1 $x1 and x2 $x2 must be positive")

3 require(x2 > x1, s"x2 $x2 must be greater than x1 $x1")

4 def increase(v: Double, by: Double): Double = v*by

5 def decrease(v: Double, by: Double): Double = v/by

6 val pStep = math.pow(x2/x1, 1d/steps)

7 var buffer = x1

8 val seq2 = Seq(x1) ++ (for (_ <- 1 to steps + post) yield {

9 buffer = increase(buffer, pStep)

10 buffer

11 })

12 buffer = x1

13 val seq1 = for (_ <- 1 to pre) yield {

14 buffer = decrease(buffer, pStep)

15 buffer

16 }

17 (seq1.sorted ++ seq2).toVector

18 }

19 sampleFromIntervalWithPowerDecay(a, b, f, g, h)

309



Appendix D

CSUD Search Strategy a.s.
Convergence: Error Term Bounds

For any two independently drawn Θ̂a, Θ̂b ∈ Zk and e ∈ {S+, S−, D}, con-
sider the expectation term E

[(
L(Θ̂a)− L(Θ̂b) + εa − εb)2

]
. It is necessary to

establish some bounds with reference to the loss function in (12.46). The
expectation term is expanded to get

E
[(

L(Θ̂a)− L(Θ̂b)
)2

+
(

εa − εb
)2

+2
(

L(Θ̂a)− L(Θ̂b)
) (

εa − εb
)] (D.1a)

L(Θ̂a) =
(
m(Θ̂a)−m∗

)′
S
(
m(Θ̂a)−m∗

)
,

L(Θ̂b) =
(

m(Θ̂b)−m∗
)′

S
(

m(Θ̂b)−m∗
) (D.1b)

εa = εa′Sεa + 2εa′S
(
m(Θ̂a)−m∗

)
,

εb = εb′Sεb + 2εb′S
(

m(Θ̂b)−m∗
)

.
(D.1c)

The cross-term in (D.1a) is considered first. Since L(·) and ε are independent,
the cross term evaluates to

E
[

L(Θ̂a)− L(Θ̂b)
]

E
[
εa − εb

]
= E

[
L(Θ̂a)− L(Θ̂b)

]
(tr(SΣ)− tr(SΣ)) = 0. (D.2)

Next consider the expectation of the squared error difference term in (D.1a):
E
[(

εa − εb)2
]

= E
[
εa2

+ εb2
]
− 2E [εa] E

[
εb] < E

[
εa2

+ εb2
]
, since εa and εb

are independent and E [εa] = E
[
εb] = tr(SΣ) > 0. The independence of

εa and εb follows from the error structure in (D.1c), ε ∼ i.i.d. Further Θ̂a,
Θ̂b ∼ independently given the construction of perturbations in Assumption
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12.4.6. Next expand the squared error terms

εa2
+ εb2

=
(

εa′Sεa + 2εa′S
(
m(Θ̂a)−m∗

))2

+
(

εb′Sεb + 2εb′S
(

m(Θ̂b)−m∗
))2 (D.3a)

=
(

εa′Sεa
)2

+ 4εa′Sεaεa′S
(
m(Θ̂a)−m∗

)
+
(

εb′Sεb
)2

+ 4εb′Sεbεb′S
(

m(Θ̂b)−m∗
)

+ 4
(

εa′S
(
m(Θ̂a)−m∗

))2
+ 4
(

εb′S
(

m(Θ̂b)−m∗
))2

(D.3b)

=
r

∑
i=1

s2
i

(
εa4

i + εb4

i

)
+

r

∑
i=1

r

∑
j 6=i

sisj

(
εa2

i εa2

j + εb2

i εb2

j

)
(D.3c)

+ 4
r

∑
i=1

s2
i εa3

i
(
mi(Θ̂a)−m∗i

)
+ 4

r

∑
i=1

s2
i εb3

i

(
mi(Θ̂b)−m∗i

)
+ 4

r

∑
i=1

r

∑
j 6=i

sisjε
a2

i εa
j

(
mj(Θ̂a)−m∗j

)
+ 4

r

∑
i=1

r

∑
j 6=i

sisjε
b2

i εb
j

(
mj(Θ̂b)−m∗j

)
(D.3d)

+ 4
r

∑
i=1

s2
i εa2

i
(
mi(Θ̂a)−m∗i

)2
+ 4

r

∑
i=1

s2
i εb2

i

(
mi(Θ̂b)−m∗i

)2

+ 4
r

∑
i=1

r

∑
j 6=i

sisjε
a
i εa

j
(
mi(Θ̂a)−m∗i

) (
mj(Θ̂a)−m∗j

)
+ 4

r

∑
i=1

r

∑
j 6=i

sisjε
b
i εb

j

(
mi(Θ̂b)−m∗i

) (
mj(Θ̂b)−m∗j

)
.

(D.3e)

In (D.3b) to (D.3e), re-group and colour code as follows: black for error
terms, blue and gray for vanishing terms, and red for non-negative moment-
bounded cross-terms.

Taking expectations and using Assumption 12.4.2, the gray coloured
cross-terms and blue coloured 3rd order error terms vanish to yield

E
[(

εa − εb
)2
]
≤ E

[
εa2

+ εb2
]

= 2E (D.4)

where

E = tr
(
S2Σ̃ + S2ΣM̃

)
+

r

∑
i=1

r

∑
j 6=i

sisjσ
2
i σ2

j < ∞ (D.5a)
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S2 =


s2

1
. . .

s2
r

 ,

Σ̃ =


σ4

1
. . .

σ4
r

 , Σ =


σ2

1
. . .

σ2
r


(D.5b)

M̃ =


m̃1

. . .

m̃r

 ,

E
[(

mi(Θ̂a)−m∗i
)2
]

, E
[(

mi(Θ̂b)−m∗i
)2
]
≤ m̃i < ∞.

(D.5c)

Finally consider the squared loss terms. Since the loss functions in (D.1b)
are non-negative

E
[(

L(Θ̂a)− L(Θ̂b)
)2
]
≤ E

[
L(Θ̂a)2 + L(Θ̂b)2

]
. (D.6)

Next expand the right hand side of (D.6) to get

L(Θ̂a)2 + L(Θ̂b)2

=

(
r

∑
i=1

si (ma
i −m∗i )

2

)2

+

(
r

∑
i=1

si

(
mb

i −m∗i
)2
)2

=
r

∑
i=1

s2
i (m

a
i −m∗i )

4 +
r

∑
i=1

s2
i

(
mb

i −m∗i
)4

+
r

∑
i=1

r

∑
j 6=i

sisj

(
(ma

i −m∗i )
2
(

ma
j −m∗j

)2

+
(

mb
i −m∗i

)2 (
mb

j −m∗j
)2
)

. (D.7)

Taking expectations of (D.7), and using Assumption 12.4.2

E
[

L(Θ̂a)2 + L(Θ̂b)2
]
≤ 2tr

(
S2 ˜̃M

)
+ 2

r

∑
i=1

r

∑
j 6=i

sisjm̃im̃j = 2L (D.8)

where
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˜̃M =


˜̃m1

. . .
˜̃m1

 ,

E
[(

mi(Θ̂a)−m∗i
)4
]

, E
[(

mi(Θ̂b)−m∗i
)4
]
≤ ˜̃mi < ∞, (D.9)

and S2 and m̃i are from (D.5b) and (D.5c) respectively. It has now been
determined that

E
[(

L(Θ̂a)− L(Θ̂b) + εa − εb
)2
]
≤ 2L + 2E. (D.10)
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