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ABSTRACT 

 

Video frame interpolation (VFI) aims to synthesize an in-

termediate frame between two consecutive original frames. 

Most existing methods simply linearly combine the warped 

frames, leading to a loss of image texture. Since moving 

objects usually have similarities in consecutive frames, we 

propose a similarity-aware video frame interpolation method 

(SAIN) that searches patches with similar texture in the em-

bedding space from input frames to extract features and cap-

ture image details. To gather the frame details and restore 

image texture, SAIN incorporates an implicit neural repre-

sentation learning from similar patches to enrich image de-

tails and refine outputs in frame synthesis networks. Exper-

iments demonstrate that SAIN preserves image texture and 

enhances interpolated image quality significantly.  

  

Index Terms— VFI, Implicit Neural Representation, 

Similar Patches Aggregation, Restore Image Texture 

 

1.  INTRODUCTION 

 

Generally, low frame rate video displays fewer images per 

second and requires less storage space and bandwidth, but it 

is more likely to cause aliasing and yields abrupt motion 

artifacts. On the contrary, high frame rate videos effectively 

alleviate visual artifacts such as flicker, motion blur, and 

discontinuousness, and can provide a better visual experi-

ence.  Due to the increase in temporal resolution by synthe-

sizing intermediate frames between existing consecutive 

frames, video frame interpolation (VFI) has shown enor-

mous potential in visual quality enhancement. Unfortunate-

ly, it is hard to accurately estimate intermediate frames be-

cause of diverse factors, such as occlusions, tiny objects 

with large or nonlinear motions, and lighting conditions. 

Flow-based methods utilize optical flow to warp the input 

frame to obtain the intermediate frame. These models can be 

linear or nonlinear according to whether considering the 

object's acceleration [16]. One common approach for flow-

based methods is to estimate the optical flow 𝐹0→1 and 𝐹1→0 

between two input frames 𝐼0 and 𝐼1 and then calculate 𝐹𝑡→0  

   
First frame, 𝐼0            Second frame, 𝐼1 

   
DAIN[2]              BMBC[14] 

   
    RIFE[6]              SAIN (Ours)  

Fig. 1.  A challenging example of VFI. Compared to the 

existing frame interpolation methods, our approach can re-

store more image texture details on the man’s hair and face 

and produce a high-quality result. 

 

and 𝐹𝑡→1  from the perspective of the synthesizing target 

frame 𝐼𝑡 . The interpolation result can then be obtained by 

backward warping 𝐼0  and 𝐼1  according to 𝐹𝑡→0  and 𝐹𝑡→1 . 

Recently, Huang et al. [6] proposed a method that directly 

generates intermediate optical flows to improve efficiency 

and achieves real-time speed. 

Traditional flow-based video interpolation methods are in-

capable of capturing large motions between frames and 

prone to average or linearly combined warped frames, lead-

ing to a loss of image texture and blur artifacts at motion 

boundary. To improve the quality of the VFI result, we note 

that self-similarity is a vital property of video frames, which 

can be utilized to capture the detailed texture from consecu-



 

 

tive frames, in order to produce more precise intermediate 

frames. To be more specific, we search similar patches from 

input frames to extract features, capture similar image de-

tails, and integrate the implicit function to generate interme-

diate frames. 

We make the following contributions in this work: 

• We propose the SAIN method that integrates similar 

patches by searching similar neighboring patches in the 

embedding space and extracting hierarchical features for 

high-quality frame synthesis. 

• We incorporate the implicit neural representation to en-

rich image texture and fine-tune the interpolation results 

in the frame synthesis network. 

• Experiments demonstrate that SAIN preserves more im-

age texture details and alleviates motion blur artifacts. 

 

2. METHODOLOGY 

 

In this section, we first provide an algorithm overview of our 

frame interpolation algorithm, SAIN. Then we elaborate the 

similar patch aggregation method that can be utilized to cap-

ture the detailed features from consecutive frames. Next, we 

describe the frame synthesis network, which incorporates the 

implicit neural representation to generate interpolated frames 

as a critical component to refine output and generate a high-

quality result. Finally, we provide the implementation details 

of the proposed model. 

 

2.1.  Overview 

 

Given two input frames 𝐼0 and 𝐼1, our goal is to synthesize 

an intermediate frame 𝐼𝑡 at time 𝑡. Traditional frame interpo-

lation methods commonly warp the input frames and aver-

age or linearly combine two warped frames, which usually 

causes smoothness in local image details. Considering that 

objects in consecutive frames may have the same image 

texture, we aggregate similar patches of the frames, extract 

the features, and then generate interpolated frames to enrich 

the detailed information. We adopt IFNet [6] to estimate the 

intermediate optical flow directly, while extracting contex-

tual features and aggregating similar patches from raw in-

puts. Subsequently, we apply the backward warping to sam-

ple the input frames and contextual features, which are then 

concatenated and fed into the frame synthesis network with 

the implicit neural representation to generate the interpolat-

ed frames. The overall pipeline of SAIN is shown in Fig. 2. 

 
Fig. 3. An illustration of the similar patches aggregation. For 

each patch of one input frame, we search 𝑘 similar patches 

from another frame and aggregate them together to and gen-

erate similar pictures 𝑆𝑘. 

 

2.2.  Similar patches aggregation 

 

Synthesize intermediate frames from the warped frames 

directly will cause blur and a lack of image texture. Since 

moving objects usually have similarities in consecutive 

frames, aggregating image texture from adjacent frames to 

enrich frame details is an instinctive idea. Inspired by Inter-

nal Graph Neural Network (IGNN) [18], we consider self-

similarity as an important property to assist VFI. Specifical-

ly, raw images are cropped to a specific size to integrate 

similar patches. For each patch of one input frame, we 

search 𝑘 similar patches from the other frame and aggregate 

them together. To speed up the calculation, we adopt the 

Fig. 2.  The proposed SAIN diagram. Given two consecutive input frames 𝐼0 and 𝐼1, SAIN integrates IFNet [6] to estimate the 

intermediate flow 𝐹𝑡→0 and 𝐹𝑡→1 directly and extracts pyramid contextual features from raw inputs separately. Then it warps 

the input frames and corresponding context feature maps. Additionally, we find 𝑘 similar patches and aggregate them togeth-

er to assist the for fusion and refine step. Finally, the warped input frames and feature pyramids are fed into the frame synthe-

sis network to generate the interpolation result 𝐼𝑡.  

 



 

 

PyINN library implemented by CuPy to convert each pixel 

block into column vectors. The embedding features are ex-

tracted by the pre-trained first three layers of VGG19 [19]. 

The 𝑘 similar patches are obtained based on the Euclidean 

distance calculated in the embedding space: 

          (1) 

where 𝒙 is the coordinate of 𝐼0 and 𝒚 is that of 𝐼1, ENC en-

codes patches to the embedding space, and d is the Euclide-

an distance between embedding features. Finally, the closest 

𝑘 pixel blocks within a given window size are aggregated as 

𝑆𝑘 for each pixel block:  

                      (2) 

2.3.  The structure of the frame synthesis network 

 

The implicit neural representation takes an image coordinate 

and the 2D deep features around the coordinate as inputs to 

predict the RGB value at a given coordinate as an output. To 

utilize the implicit neural representation in our frame syn-

thesis network, we first generate a coarse interpolation 

frame, then concatenate the input frames, backward warping 

frames, and coarse interpolation output, and then feed them 

into an encoder to generate a feature map. After that, the 

extracted features are fed into the implicit neural representa-

tion to predict the RGB value according to the given coordi-

nates. The network for generating coarse immediate frames 

consists of four transpose convolution layers, which adopts 

the sigmoid function as an activation function. After obtain-

ing the coarse results, we input them into an encoder con-

sisting of convolution layers and eight residual blocks. Fi-

nally, the RGB value is queried from the extracted features 

by implicit function 𝑓𝜃, consisting of a 5-layer MLP, with an 

activation function of ReLU and 256 hidden dimensions. 

The detailed architecture of the frame synthesis network is 

illustrated in Fig. 4. 

 
Fig. 4.  The structure of our frame synthesis network.  

 

2.4.  Implementation details 

 

The loss function to train the neural network consists the 

TripLoss to suppress the residual artifacts, the classic recon-

struction loss [20], and the leakage loss from the IFNet [6]. 

TripLoss The target frame retains the residual of the mov-

ing object in  𝐼0 and 𝐼1, and the position of the moving ob-

ject in  𝐼𝑡 has an unclear boundary in many traditional meth-

ods. We consider that the result may retain a part of the orig-

inal image 𝐼0 and 𝐼1. Inspired by the triplet loss in the face 

comparison problem, we propose the TripLoss to stimulate 

what needs to be retained in the frames and suppress unnec-

essary residuals: 

(3) 

Reconstruction Loss [20] The reconstruction loss function 

is commonly used in video interpolation to model the recon-

struction quality: 

 (4) 

where 𝜌(𝑥) = √𝑥2 + 𝜖2   is the Charbonnier penalty func-

tion. We set the constant 𝜖 to 10−6.  

Leakage Loss [6] Intermediate flow approximation labels 

generated by IFNet in an end-to-end network: 

 (5) 

The total loss to train the neural network is the weighted 

sum of the three losses:  

     (6) 

where we set 𝜆1 = 0.01 and 𝜆2 = 0.01. 

Training Dataset Vimeo-90K dataset [17] is a large-scale 

and high-quality video dataset provided by the Massachusetts 

Institute of Technology. It contains 89,800 video clips in 

different scenarios with various actions from vimeo.com, 

which can be used for video interpolation, denoising, 

deblocking, and super-resolution tasks. There are 51313 

triples in the training set and 3782 triples in the validation 

set. The image resolution in this dataset is 448 × 256. Be-

sides, we adopt LiteFlownet [7] to generate immediate flow 

as labels to train the distilled optical estimation networks. 

Training Strategy We implement SAIN in PyTorch, 

iteratively train it on the Vimeo90K dataset for 200 epochs 

and set weight decay to 10-3. The learning rate reduces grad-

ually from 10−4 to 0. For data augmentation, frames are 

randomly cropped, flipped horizontally or vertically, and 

inverted by the temporal order. We use a batch size of 18 and 

train our model on two Nvidia 2080Ti GPUs. It takes about 

eight days to converge. 

 

3. EXPERIMENTS 

 

3.1.  Comparison with state-of-the-arts 

 

We compare SAIN with several state-of-the-art VFI meth-

ods, including DAIN [2], BMBC [14], and RIFE [6]. The 

evaluation results in terms of PSNR and SSIM are given in 

Table 1. It is obvious that our method is superior to DAIN, 

BMBC, and RIFE on both measurements. The visual 

comparison of SAIN and state-of-the-art methods are shown 

in Fig. 5. SAIN can align the content well and show excellent 

performance for objects with large motions. It is also clear 

that the results of SAIN are free of flicking of subtitles. 



 

 

Table 1. Quantitative comparison (PSNR (dB) and SSIM) on 

Vimeo90K. The best results are shown in red. 

Metrics DAIN[2] BMBC[14] RIFE[6] SAIN (Ours) 

PSNR 34.64 35.01 35.35 35.74 

SSIM 0.9753 0.976 0.9772 0.9787 

 

3.2. Ablation study 

 

Here we aim to demonstrate the effectiveness of utilizing the 

following three important parts in the frame synthesis 

network: synthesizing with the coarse results (R), 

incorporating the implicit neural representation (INF), and 

synthesizing with aggregated similar patches (SA). The 

results of using none of them in the network, only INF, 

R+INF,  and R+SA+INF are shown in Table 2. 

 

Table 2. The analysis of the frame synthesis network struc-

ture. The best results are shown in red and the second best 

ones are shown in blue with underlines. 

Method 
Vimeo90K[17]  UCF101[15]  M.B.[1] 

PSNR SSIM  PSNR SSIM  IE 

None 35.35 0.9772  35.17 0.9688  2.0813 

INF 35.20 0.9752  34.41 0.9612  2.0278 

R+INF 35.58 0.9784  35.17 0.9689  2.0864 

R+SA+INF 35.74 0.9787  35.20 0.9691  2.0835 

 

Without generating coarse results, the model does not per-

form well on the Vimeo90K and UCF101 datasets. Incorpo-

rating implicit neural representation in the frame synthesis 

network facilitates the performance of SAIN. It is also obvi-

ous that aggregating similar patches contribute to a substan-

tial improvement on the Vimeo90K dataset. 

 
  (a) original frame    (b) w/o TripLoss  (c) w/ TripLoss  (d) GT  

Fig. 6.  A visual comparison to demonstrate the effective-

ness of the TripLoss. 

 

4. CONCLUSION 

 

In this work, we propose SAIN, a VFI method searching 

similar patches from input frames to capture image details. 

Traditional methods synthesize intermediate frames directly 

is subject to a lack of detailed texture and blur. We take self-

similarity property into consideration and aggregate image 

texture from adjacent frames. SAIN incorporates an implicit 

neural representation from similar patches to enrich image 

details and refine outputs. The visual comparison shows that 

SAIN can restore image texture and enhance interpolated 

image quality significantly. 
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Fig. 5.  A visual comparison of SAIN and state-of-the-art methods, with zoomed-in images for better visualization.  
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