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A B S T R A C T

Given the constraints of remote communication and the unpredictability of the environment, autonomous
planetary landing mechanisms are expected to achieve the high criteria of autonomy and provide optimal
trajectory in future space exploration missions. As the results, applying Deep Reinforcement Learning (DRL)
techniques into autonomous landing has produced encouraging findings. Due to the black-box nature of deep
learning algorithms, one of the main concerns regarding the robustness of DRL is its vulnerability to adversarial
attacks. This constraint prevents the transfer of DRL-based autonomous landing schemes from simulation to
real-world applications. In this article, we explore how the DRL-based autonomous landing will be impacted
by adversarial attacks and how to protect the system effectively and efficiently. To achieve this, a Long Short
Term Memory (LSTM) based adversarial attack detector is been proposed. The proposed method adopts the
explainability measurement of the target DRL scheme and flag the detection of adversarial attacks when acting.
The proposed method is built and tested on 3D digital terrain model of Candidate Landing Site for 2020
Mission in Jezero Crater to simulate the landing scenario on the Mars. The experimental results demonstrate
the proposed methodology can effectively detect adversarial attacks when acting on DRL agent with a high
confidence in detection accuracy.
1. Introduction

Autonomous planetary landings are critical events in space explo-
ration, where spacecraft must safely descend onto the surface of ce-
lestial bodies such as Mars, the Moon, or asteroids. Traditional landing
systems rely on pre-programmed trajectories and sensor-based feedback
to guide the descent. However, these methods can be limited by un-
certainties in the environment, unpredictable terrain, and unforeseen
obstacles [1,2].

Artificial Intelligence (AI) has made remarkable progress in tackling
intricate challenges over the last decade. Whilst growing the number
of studies are being conducted on integrating such approaches into
space exploration missions [3], recent studies have shown encour-
aging outcomes when applying Deep Reinforcement Learning (DRL)
techniques to achieve autonomous planetary landings [4–6]. In DRL-
based autonomous planetary landing, the problem is formulated as
a Markov sequential decision-making problem, where an agent (lan-
der) continuously interacts with the environment and learns to make
decisions based on sensory input, such as camera images and radar
measurements. Then, the agent receives rewards or penalties based on
its actions. Over the time, the agent refines its policy to achieve safe
and optimal landing trajectories.

∗ Corresponding author.
E-mail addresses: ziwei.wang.3@city.ac.uk (Z. Wang), nabil.aouf@city.ac.uk (N. Aouf).

Today, visual camera is one of the preferred sensors in many au-
tonomous applications because of its excellent performance and afford-
ability in comparison to other types of sensors, such as radars and
LiDARs [7]. Recent research also tries to bring visual camera as pri-
mary sensor into various space exploration missions, such as spacecraft
relative pose estimation [8] and autonomous planetary landing [9].
However, one of the main concerns regarding the robustness of Deep
Learning (DL) techniques is its vulnerability to adversarial attacks [10].
Adversarial attacks aim to make small perturbations to the input images
that are imperceptible to human vision and can significantly affect the
decision made by the model [11]. The danger of adversarial attacks
for DRL-based autonomous planetary landing guidance and control is
that it can compromise the safety and performance of the lander and
cause the failure of landing on the ground. For example, an attacker
could temporarily perturb the images that the DRL receives from its
camera, such that the lander would misclassify the terrain and resulting
in the lander colliding with the terrain. Therefore, it is critical to
develop effective and efficient methods to safeguard the DRL-based
autonomous landing systems from adversarial attacks, and to ensure the
robustness and resilience of the autonomous landing system in future
space exploration missions.
vailable online 2 August 2024
094-5765/© 2024 The Author(s). Published by Elsevier Ltd on behalf
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.actaastro.2024.07.052
Received 24 May 2024; Received in revised form 2 July 2024; Accepted 28 July 20
of IAA. This is an open access article under the CC BY license

24

https://www.elsevier.com/locate/actaastro
https://www.elsevier.com/locate/actaastro
mailto:ziwei.wang.3@city.ac.uk
mailto:nabil.aouf@city.ac.uk
https://doi.org/10.1016/j.actaastro.2024.07.052
https://doi.org/10.1016/j.actaastro.2024.07.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2024.07.052&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Acta Astronautica 224 (2024) 37–47Z. Wang and N. Aouf

o
d
o
g
p
d
p
p

2

b
a

2

l
a
l
T
f
i

𝐿

Owing to the black-box nature of the algorithms, DRL models
typically exhibit a lack of transparency. This results in a challenge for
people to comprehend the decision-making processes of these model.
To address this challenge, various eXplainable AI (XAI) techniques
are proposed to make the decision-making processes of AI models
comprehensible [12–14]. By applying XAI methods to DRL, users can
understand the basis on which decisions are made by the DRL models
in response to relevant observations. The mechanisms employed by
XAI methods elevate the potential for their utilisation in detecting
adversarial attacks on DRL models.

This work endeavours to showcase an innovative exploration of
the susceptibility of DRL-based autonomous planetary landing guidance
and control systems against digital adversarial attacks targeting camera
input images. Furthermore, it proposes a novel methodology for the
detection of such adversarial attacks upon their occurrence. To this end,
this paper makes the following contributions:

• Firstly, a 3D simulator for vision-based planetary landing is in-
troduced. The simulator is not only rendering the camera view
of candidate landing site, but also involves physical interactions
between the lander and the environment to accurately simulate
the planetary landing scenario.

• Secondly, we design and train a vision-based DRL scheme for
Mars landing guidance and control, which is subsequently formu-
lated as the target DRL system against adversarial attacks.

• Then, the Fast Gradient Sign Method (FGSM) [15] is utilised to
generate invisible perturbations in the input images, introducing
a range of FGSM attack configurations to illustrate the effects of
digital adversarial attacks on the DRL scheme.

• Subsequently, an LSTM-based detection mechanism is proposed,
leveraging the explainable SHapley Additive exPlanation (SHAP)
values [12] from the DRL-based landing guidance and control
system to identify adversarial attacks affecting the input images.

The paper is organised as follows: Section 2 provides an overview
f current DRL-based autonomous planetary landing algorithms and
iscusses existing methods for detecting adversarial attacks. Section 3
utlines the proposed design of the vision-based DRL Mars landing
uidance and control scheme, the adoption of FGSM attacks on the
ose estimator, and the design of the LSTM-based adversarial attack
etection scheme. Section 4 presents the test experiment results of the
roposed adversarial attack detector. Finally, Section 5 concludes the
aper and discusses avenues for future work.

. Background and related works

This section introduces a review of the current approaches of DRL-
ased autonomous Planetary landing approaches, XAI and adversarial
ttacks for DRL models.

.1. DRL-based autonomous planetary landing

Gaudet et al. [5] proposed a six Degree of Freedom (DOF) Mars
anding scheme by Proximal Policy Optimization (PPO) [16]. PPO is

type of on-policy reinforcement learning algorithm that the agent
earns from the same policy it uses to interact with the environment.
ypically, PPO employs a clipping mechanism within the objective
unction to constrain the policy update to a specified range, as shown
n Eq. (1).
𝐶𝐿𝐼𝑃 (𝜃) = �̂�𝑡

[

min(𝑟𝑡(𝜃)�̂�𝑡, clip(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)�̂�𝑡)
]

(1)

This precaution prevents substantial alterations that could otherwise
result in performance deterioration. This approach enhances PPO’s
stability and efficiency in handling large-scale optimisation problems,
as well as its robustness to hyperparameter settings. This DRL-based
landing scheme proposed by Gaudet et al. [5] aims to provide direct
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commands to each thruster, enabling the lander to successfully reach
the target location with the desired velocity and minimal fuel consump-
tion. To achieve this, the DRL scheme takes the estimated lander’s states
as its observation, including the error between expected velocity and
current velocity, lander’s attitude and altitude, the angular velocity,
and estimated time to land. This work demonstrated that DRL is capable
of providing guidance and control to enable the lander to perform a
soft landing at a desired pose and velocity, even with a large various
distance capability.

Xu et al. [17] demonstrated DRL-based 6 DOF landing control
framework and compared the performance of three off-policy DRLs, in-
cluding Deep Deterministic Policy Gradient (DDPG) [18], Twin Delayed
DDPG (TD3) [19] and Soft Actor Critic (SAC) [20]. DDPG employs
a deterministic policy to select actions and a critic network to esti-
mate the Q-value. As an off-policy DRL algorithm, DDPG reuses past
experiences sampled from previous interactions with the environment
to enhance sample efficiency. TD3 is an extension of DDPG which
aims to reduce the overestimation. TD3 introduces twin Q-networks
to reduce the overestimation of Q-values. It employs a delayed pol-
icy update method to stabilise training process and proposes target
policy smoothing to reduce variance. Unlike DDPG and TD3, SAC
employs a stochastic policy and incorporates an entropy regularisation
mechanism. SAC aims to maximise both the expected return and the
entropy of the policy, thereby encouraging the agent to engage in more
exploration during the early training phase. SAC has demonstrated
substantial performance improvements in various DRL tasks, especially
in complex environments with high-dimensional observation and action
spaces. The framework introduced by Xu et al. [17] defined the DRL’s
action space as the thrust outputs of the engines, while the observation
space encompasses the lander’s velocity deviation, relative position,
and attitude, as well as the sine and cosine values of the attitude angles.
The comparative analysis by Xu et al. [17] under identical simulation
conditions suggests that SAC outperforms DDPG and TD3 in tracking
the trajectory with the reference velocity during soft landing scenarios.

In addition to utilising the lander’s numerical status (position, atti-
tude, velocity, etc.) as the DRL’s observation, recent studies have also
investigated enhancing the observation space with information from
real sensors.

Scorsoglio et al. [9] combined the images taken by the onboard
camera with altimeter data (position, velocity, estimated time to land)
of the lander as observations for the DRL policy, considering a 3 DOF
lunar soft landing scenario. To obtain an accurate image view of the
landing site (terrain), they built a landing simulator in Blender to
render the images obtained from the onboard camera. Their experi-
mental results show that combining optical and altimeter data enables
autonomous landing on planetary bodies. Besides the image and al-
timeter data, Ciabatti et al. [6] considered incorporating LiDAR input
into the DRL’s observations. In their DRL framework, the policy takes
a combination of RGB image views of the terrain, LiDAR point cloud
data indicating the distance between the lander and the terrain, and
altimeter data of the lander’s relative position and attitude. They also
proposed a transfer learning approach in which the DDPG is initially
trained on a simulated lunar landing site and then transferred to other
planetary landing sites.

2.2. Explainability in deep learning

XAI is a technique that offers insights into the decision-making pro-
cesses of DL models. The objective of XAI is to establish a transparent
framework in which AI decisions are comprehensible and trustworthy
to humans. It seeks to demystify the ‘‘black box’’ nature of DL models
by delivering explanations that are intelligible to human experts, thus
promoting accountability and trust in AI systems.

Lundberg and Lee introduced SHAP values as a method for in-
terpreting machine learning models, that drawing on the concept of
Shapley values from game theory [12]. SHAP values assign an impor-

tance score to each feature for a given prediction, thereby highlighting
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each feature’s importance. Through the analysis of SHAP values, hu-
mans can understand how predictions of complex machine learning
models are made by considering SHAP values of each input feature.

Contrastive Gradient-based (CG) saliency map is introduced by
Simonyan et al. [21], which serves as a visual explanation tools for
DL models. This method generates a heatmap where the magnitude of
the model’s gradients signifies the importance of input variables. The
heatmap accentuates regions in the input image that, if altered, would
affect the output class. Users can consult the heatmap to discern the
features most critical to the model’s prediction.

Similar to CG saliency map, Class Activation Mapping (CAM) [22]
creates visual explanation maps by identifying the spatial locations
in the input image that are most influential to a particular predic-
tion. CAM proves especially useful for image classification tasks using
Convolutional Neural Networks (CNNs). Building upon this, Gradient-
weighted Class Activation Mapping (Grad-CAM) by Selvaraju et al. [23]
offers visual explanations for a broader spectrum of CNN-based meth-
ods. Grad-CAM employs the gradients of any target concept channelling
into the final convolutional layer to generate a localisation map, spot-
lighting the pivotal areas in the input image for predicting the concept.
These XAI techniques elucidate the workings of CNNs, enabling a
clearer understanding of their predictive behaviours.

2.3. Adversarial attacks on DRL and detection

Ilahi et al. [24] provide a comprehensive review of recent ap-
proaches to adversarial attacks on DRL models, as well as the current
methodologies for defending these attacks. Lin et al. [25] proposed
a frame prediction module to detect adversarial attacks and provide
action suggestions to maintain DRL’s performance. This method detects
adversarial examples by comparing the action distributions from both
the current observed frame and a predicted frame. If an adversarial
attack is detected, the agent will make actions based on the predicted
frame rather than the adversarial frame. The experimental results
demonstrate that the method can achieve an accuracy of 60%–100%,
depending on the technique used to generate adversarial examples.

Havens et al. [26] examine a scenario in which a policy learning
process is subjected to adversarial attacks at predetermined intervals.
They propose a Meta Learned Advantage Hierarchy (MLAH) framework
wherein the agent simultaneously learns both nominal and adversarial
sub-policies, enabling it to detect adversarial attacks effectively.

Xiang et al. [27] proposed an adversarial attack detection method
for an automatic pathfinding task, which considers five factors: energy
point gravitation, key point gravitation, path gravitation, included
angle, and the placid point. By analysing these factors, they were able
to calculate the probabilities of an adversarial attack on the robot. Their
experimental results show that the proposed adversarial attack detector
achieves a detection precision of approximately 70% on their target
task.

Previous work from our group, Hickling et al. [28] introduced both
a CNN-based and an LSTM-based adversarial attack detector for DRL-
guided Uncrewed Aerial Vehicles (UAVs). Simulation results indicate
that the LSTM-based detector achieves a 90% detection accuracy within
the DRL model. Furthermore, it outperforms the CNN-based detector in
terms of both accuracy and speed, fulfilling the real-time requirements
essential for DRL-based UAV guidance.

Based on the review of recent approaches in this section, the adop-
tion of DL-based techniques for future space exploration offers sig-
nificant advantages to researchers and engineers. However, the vul-
nerability of such DL schemes can be a bottleneck when deploying
these techniques into real applications. To the best of our knowledge,
there is currently no literature examining the impact of adversarial
attacks on DRL-based planetary landing GNC, nor how to detect these
adversarial attacks in this scenario. This work proposes, for the first
time, an adversarial attack detection scheme to address the detection
39

of adversarial attacks in DRL-based planetary landing GNC.
Fig. 1. Dataflow of the planetary landing simulator.

3. Methodology

In this section, we introduce a newly designed planetary landing
simulator, developed to generate reliable vision data and enable phys-
ical interactions between the DRL actions and the environment in a
predetermined planetary landing scenario. A monocular vision-based
DRL system has been trained to provide guidance and control, facili-
tating a soft landing at the targeted position and velocity. Following
this, FGSM attacks are employed on the optical input data to produce
an adversarial image, which serves to assess the impact on the DRL
system. SHAP values are utilised to create XAI signatures for both the
adversarial and normal input images. Lastly, we propose and train an
LSTM-based adversarial attacks detector that learns to discern normal
and adversarial SHAP values, effectively detecting adversarial attacks
on the vision-based DRL system.

Our objective is to ultimately develop an adversarial attack detec-
tion scheme for the DRL-based planetary landing GNC system. This
system employs the SHAP values explainability mechanism from the
DRL agent to interactively detect and flag potential adversarial attacks
while the DRL agent is in operation.

3.1. Planetary landing simulator

The planetary landing simulator consists of two main components:
a optical data generator and a 3 DOF lander dynamics. The 3 DOF
controller takes the engine actions command as its inputs and outputs
the relative position of the lander, while the optical data generator
takes the relative position and outputs the relevant vision view. Fig. 1
demonstrates the top-level design of the planetary landing simulator.

3.1.1. Optical data generator
To generate reliable vision data for the planetary landing scenario,

a 3D model was constructed using Blender [29], which is an open-
source suite specifically designed for 3D modelling, animation, and
rendering. Both a HiRISE Digital Terrain Model (DTM) and textures
of the Candidate Landing Site for the 2020 Mission in Jezero Crater
on Mars were imported to simulate a realistic ground model [30]. The
candidate landing site is depicted with dimensions of approximately
14 km × 7 km in the 𝑥 and 𝑦 direction. Furthermore, we enhanced
the surface texture with additional orange colouration to improve the
realism of the candidate landing site’s appearance. Fig. 2 illustrates the
rendered texture and view of the 3D terrain.

The lander’s onboard camera is oriented towards the ground. This
camera is configured to have a focal length of 35 mm, a sensor size
of 36 mm × 36 mm. This camera configuration is determined by the
size limitations of the selected DTM model and landing range. The
camera’s field of view (FOV) is designed to fit within the dimensions
of the DTM model, allowing the DRL agent to sufficiently explore the
terrain without the FOV extending beyond the terrain model. Fig. 3(a)
illustrates an example of the relative camera’s FOV at 1200 m above
the landing site. The camera output is configured for 24 × 24 RGB
images. Despite the low resolution of our configuration, the DRL still
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Fig. 2. Rendered view of the candidate landing site for the 2020 Mission in Jezero
Crater. The origin is the expected landing position with a relative position of (0,0,0).
The red and green arrows indicate the 𝑥 and 𝑦 directions and 𝑧-axis is shown in blue
and aligned upward to the ground. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Example of rendered camera view at 1200 m above the origin. (a) The yellow
square shows the camera’s FOV under our current configuration. (b) Image resolution
of 1024 × 1024 pixels. (c) Image resolution of 24 × 24 pixels. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

demonstrates good performance in test experiments. Additionally, both
the DRL training process and the Blender rendering process benefit
from the low-resolution output, as it contains less learnable parameters
and requires fewer computational resources. Therefore, in this case, we
decided to configure the output resolution as 24 × 24. Figs. 3(b) and
3(c) illustrate the rendered camera output from Blender.

3.1.2. Lander dynamics
In this paper, the physical motion of the 3 DOF Mars landing guid-

ance and control system is considered, while the spacecraft’s attitude,
its orientation relative to the flight path, are not considered. Instead of
the relative position of the lander being controlled by the individual
action of each thrust, we formulate the relative position of the lander
that is controlled by the forces of the thrusts in 𝑥, 𝑦 and 𝑧 directions. The
simulator takes into consideration mass variations although assuming
a constant mass distribution, i.e. the centre-of-gravity of the lander is
fixed with respect to the geometric frame. The relative position of the
lander, controlled by the thrusts, is then given by Eqs. (2)–(6).

𝑃 = 𝑃 + 𝑣 × 𝛿𝑡 (2)
40

𝑡 𝑡−1 𝑡
𝑣𝑡 = 𝑣𝑡−1 + 𝛿𝑣 (3)

𝛿𝑣 = 𝛿𝑎 × 𝛿𝑡 (4)

𝛿𝑎 = 𝐹
𝑚

(5)

𝐹 = 𝐹𝑇ℎ𝑟 + 𝐹𝑎𝑒𝑟𝑜 (6)

where the 𝑃𝑡 and 𝑃𝑡−1 indicate the relative position of the lander at
time 𝑡 and 𝑡 − 1. 𝑣𝑡 and 𝑣𝑡−1 denote the velocity at time 𝑡 and 𝑡 − 1,
respectively. 𝛿𝑣 represents the change in velocity, 𝛿𝑎 represents the
acceleration at time 𝛿𝑡 and 𝑚 represents the lander’s mass. 𝐹 , 𝐹𝑇ℎ𝑟 and
𝐹𝑎𝑒𝑟𝑜 indicate the resultant force, thrusts’ forces and aerodynamic drag
forces, respectively. The aerodynamic drag forces, 𝐹𝑎𝑒𝑟𝑜, are calculated
based on the atmospheric properties retrieved directly from the Mars
Climate Database (MCD) v.5.2 [31]. Typically, the atmospheric prop-
erties in our simulator involve the atmosphere density, speed of sound,
wind velocity along 𝑥 direction, wind velocity along 𝑦 direction and
wind velocity along 𝑧 direction. The aerodynamic drag forces are then
computed by Eq. (7).

𝐹𝑎𝑒𝑟𝑜 =
1
2
𝜌𝑉 2𝐶𝐷(𝑀𝑎)𝑆 (7)

where 𝜌 is the atmosphere density, 𝐶𝐷 is the lander drag coefficient as
a function of the Mach number (𝑀𝑎), 𝑆 is the lander reference area,
and 𝑉 is the lander velocity relative to the fluid velocity expressed in
the landing site frame.

In our implementation, we assume that the engines can provide
thrust forces along the 𝑥, 𝑦 and 𝑧 directions. In the 𝑥 and 𝑦 directions,
the thrust forces can be positive or negative, within the range of the
maximum thrust’s force and minimum thrust’s force. In the 𝑧 direction,
the thrust force only operates downward to the ground, where the
thrust force should be between 0 and 𝐹𝑀𝐴𝑋 . In this case, the fuel
consumption is computed by integrating the mass flow rate, as shown
in Eq. (8).

𝛿𝑚 =
‖𝐹‖

𝑔0𝐼𝑠𝑝
(8)

where 𝛿𝑚 indicates the fuel consumption. ‖𝐹‖ is the normalised thrust
forces. 𝑔0 and 𝐼𝑠𝑝 donate the standard gravity and specific impulse of
the engine, respectively.

3.2. Vision-based soft landing DRL

The soft landing controller can be treated as a Markov Decision
Problem, where the agent chooses an action 𝑎𝑡 ∈  ⊂ R, corroding to
the input observation state, 𝑠𝑡 ∈ , at the time step 𝑡. Then, the agent
receives a reward, 𝑟𝑡 and the new observation state, 𝑠𝑡+1.

To address the continuous action space of the planetary landing sce-
nario, we employ the SAC framework, which is proposed by Haarnoja
et al. [20]. The SAC is an off-policy actor–critic model that utilises a
stochastic policy. It is designed to maximise the entropy of the policy,
thus promoting exploration. The temperature parameter 𝛼 determines
the relative importance of the entropy term versus the reward in
the objective function, balancing the trade-off between exploration
(entropy) and exploitation (reward). A higher value of 𝛼 emphasises
exploration, encouraging the policy to assign probabilities to a variety
of actions, while a lower value of 𝛼 emphasises the reward, fostering a
more deterministic policy that focuses on actions with higher expected
returns. In this case, the objective function of the SAC framework can
be seen as:

𝐽 (𝜋) = E(𝑠𝑡 ,𝑎𝑡)∼𝜌𝜋

[

∑

𝑡
𝛾 𝑡(𝑟(𝑠𝑡, 𝑎𝑡) + 𝛼(𝜋(⋅|𝑠𝑡)))

]

(9)

where 𝐽 (𝜋) is the objective function, 𝜌𝜋 denotes the state–action dis-
tribution according to policy 𝜋, 𝑟(𝑠 , 𝑎 ) is the reward function, 𝛾 is the
𝑡 𝑡
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discount factor, 𝛼 is the temperature parameter, and  represents the
entropy of the policy.

Additionally, the SAC utilises the ‘clipped double-Q trick’ [19] to
mitigate overestimation bias in value approximation. With high entropy
in the policy, the aim is to explicitly encourage exploration. This
approach motivates the policy to assign equal probabilities to actions
with identical or nearly identical Q-values. It also ensures that the
policy does not collapse into a pattern of repeatedly selecting a specific
action, which could exploit any inconsistencies in the approximated Q
function. Hence, the Q-network in SAC will be represented as:

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑝[min
𝑖=1,2

𝑄𝜃𝑖 (𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log𝜋(𝑎𝑡+1|𝑠𝑡+1)] (10)

where 𝑄𝜃𝑖 are the critic networks parameterised by 𝜃𝑖 and 𝑝 represents
he transition probability.

The parameters of the policy 𝜋 and the Q-networks are updated
through gradient ascent and descent, respectively. The policy param-
eters are updated to maximise the expected return plus entropy, while
the Q-network parameters are updated to minimise the Bellman resid-
ual. The updates can be expressed as:

∇𝜙𝐽 (𝜋𝜙) = E𝑠𝑡∼𝜌𝜋 ,𝑎𝑡∼𝜋𝜙 [∇𝜙 log𝜋𝜙(𝑎𝑡|𝑠𝑡)(𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝛼 log𝜋𝜙(𝑎𝑡|𝑠𝑡))] (11)

∇𝜃𝐽 (𝑄𝜃) = E(𝑠𝑡 ,𝑎𝑡)∼[∇𝜃(𝑄𝜃(𝑠𝑡, 𝑎𝑡) − (𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾E𝑠𝑡+1∼𝑝[min
𝑖=1,2

𝑄𝜃𝑖 (𝑠𝑡+1, 𝑎𝑡+1)

−𝛼 log𝜋(𝑎𝑡+1|𝑠𝑡+1)]))2]

(12)

where  is the replay buffer from which mini-batches are sampled.

3.2.1. DRL model
Recent investigations involving the integration of optical data into

DRL observations still require additional state information from the
environment, such as LiDAR [6] and the altimeter data [6,9]. In our
approach, the DRL framework solely relies on vision data for its ob-
servations, which can potentially reduce the power consumption and
computational needs of the required sensors.

At each time step, the proposed DRL takes the image at current time
step, 𝐼𝑡, and image at last time step, 𝐼𝑡−1 as its observation state, as
shown in Eq. (13).

𝑜𝑏𝑠𝑡 = [𝐼𝑡, 𝐼𝑡−1] (13)

The feature extractor consists a CNN with three convolutional layers.
Each convolutional layer employs 3 × 3 convolution kernels with a
stride of 1, and padding is applied. This is followed by a LeakyReLU
activation function with a negative slope of 0.01. The outputs of the
last convolutional layer for 𝐼𝑡 and 𝐼𝑡−1 are concatenated and then fed
into three fully-connected (FC) layers, which output a 1-D tensor with
a size of 16. The output tensor serves to further process the features
for the subsequent decision-making steps of the SAC model. Fig. 4
demonstrates the overall design of the CNN-based feature extractor.

Then, the SAC model takes the output from the feature extrac-
tor and feeds it into its critic and actor networks. In this case, the
SAC model employs different architectures for the critic and actor
networks. Typically, the actor network is marginally deeper than the
critic network. Our rationale for adopting a deeper actor is that it may
facilitate better exploration–exploitation trade-offs, given that a deeper
network introduces more nonlinearity. Specifically, in our approach
where the image serves as the sole input, we employed for a deeper
actor to manage the rich features of image-based input, thereby it
could potentially achieve an improved exploration–exploitation trade-
off. Fig. 5 illustrates the integrated SAC agent of feature extractor, the
critic network and the actor network.

Due to the texture quality of the DTM model in the proposed
planetary landing simulator, the images captured by the camera may
become blurred as the lander descends closer to the ground. This could
41

potentially challenge the feature extractor’s ability to handle varying
Fig. 4. Feature extractor for handling image input.

Fig. 5. Integrated SAC model of the feature extractor, the critic network and the actor
network.

qualities of input images. Additionally, from a practical perspective,
the camera may not consistently maintain image quality over a long de-
scent range. The details of the captured images can change as the lander
descends closer to the ground. For instance, the perspective from which
the camera views the landscape could change as the lander descends.
This can reveal new details that were not visible from a higher altitude.
Employing different DRL agents to continuously provide guidance over
the trajectory could also enhance system performance. In this context,
we propose to employ three separate SAC agents to manage the landing
process. Whilst other altitude thresholds could also be considered, in
our current solution, we have chosen 400 m and 30 m as the thresholds
for different agents to act, based on our observations of the rendered
outputs. Fig. 6 illustrates the integration of the three SAC agents with
the planetary landing simulator.

3.2.2. Reward function
To achieve a soft landing, first we trained the agent to maintain a

steady descent velocity. Then, a relative reward will be given based on
the difference between the lander’s velocity and the expected velocity.
Fuel composition is also considered to allow the agent to output accu-
rate engine control commands while minimising fuel consumption over
the trajectory. The overall reward function for training the proposed
SAC agents can be formulated as:

𝑟 = 𝛼𝑟𝑣𝑒𝑙𝑜 + 𝛽𝑟𝑓𝑢𝑒𝑙 + 𝑟𝑙𝑜𝑠𝑡 + 𝑟𝑏𝑜𝑛𝑢𝑠 + 𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (14)

where 𝑟𝑣𝑒𝑙𝑜 is the reward for maintaining the desired velocity and 𝑟𝑓𝑢𝑒𝑙
is reward based on the fuel consumption. 𝑟 represents a penalty
𝑙𝑜𝑠𝑡
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Fig. 6. Integrated three SAC agents with the planetary landing simulator. Each agent
operates within its designated altitude range, ensuring effective handling of the varying
image quality during the descent.

applied if the agent’s observation moves out of the simulated area.
𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠 donates the bonus to be given if the agent reaches the target
osition with expected soft landing velocity and 𝑟𝑏𝑜𝑛𝑢𝑠 is the extra

bonus given if lander’s current velocity is within certain range of expect
velocity. 𝛼 and 𝛽 are two weights for relevant reward item.

To calculate the velocity reward, we follow the methodology pro-
ided by Gaudet et al. [5], where the lander is expected to follow
n estimated velocity at each time step. In this case, the 𝑟𝑣𝑒𝑙𝑜 will be
alculated by:

𝑣𝑒𝑙𝑜 = ‖𝑣 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡‖ (15)

𝑡𝑎𝑟𝑔𝑒𝑡 = −𝑣0(
�̂�

‖�̂�‖
)(1 − 𝑒𝑥𝑝(−

𝑡𝑔𝑜
𝜏
)) (16)

𝑡𝑔𝑜 =
‖�̂�‖
‖�̂�‖

(17)

�̂� =

{

𝑝 − [0, 0, 15], 𝑝𝑧 > 15
[0, 0, 𝑝𝑧], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

�̂� =

{

𝑣 − [0, 0,−2], 𝑝𝑧 > 15
𝑣 − [0, 0,−1], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(19)

𝜏 =

{

20, 𝑝𝑧 > 15
100, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20)

where the velocity reward is calculated by normalise the difference
between lander’s current velocity, 𝑣, and the target velocity, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡. 𝑣0
onates the lander’s initial velocity, 𝑝 indicates the lander’s current
osition and 𝜏 is a hyperparameter used to make the lander achieve
he soft landing when close to the ground. When the lander’s current
elocity is within a certain magnitude, 𝑟𝑏𝑜𝑛𝑢𝑠 will be given by following
onditions:

𝑏𝑜𝑛𝑢𝑠 = 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 (21)

𝑥 =

{

0.05, |𝑣𝑥 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡𝑥 | < |0.2𝑣𝑡𝑎𝑟𝑔𝑒𝑡𝑥 |
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(22)

𝑦 =

{

0.05, |𝑣𝑦 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡𝑦 | < |0.2𝑣𝑡𝑎𝑟𝑔𝑒𝑡𝑦 |

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(23)

𝑧 =

{

0.05, |𝑣𝑧 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡𝑥 | < |0.2𝑣𝑡𝑎𝑟𝑔𝑒𝑡𝑧 |
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(24)

ther parameters in the reward function, Eq. (14), are described in
able 1.
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able 1
eward function parameters.
Parameter Value Condition

𝛼
−0.1 𝑝𝑧 > 30
−0.5 𝑝𝑧 ≤ 30

𝛽 −0.05
𝑟𝑓𝑢𝑒𝑙 Eq. (8)

𝑟𝑙𝑜𝑠𝑡
−100 Pure black pixel in image ≥ 20%
0 Pure black pixel in image < 20%

𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠
40 ||𝑝|| < 5 and 𝑝𝑧 ≤ 0 and ||𝑣|| < 2
0 otherwise

3.3. Adversarial attacks

In this paper, the adversarial examples are produced by utilising
FGSM attacks. [15]. The objective of FGSM attacks is to introduce
minimal distortions to the original input images, thereby maximising
the loss function of the neural network. The adversarial generation
process for an input image 𝑥 through an FGSM attack is calculated by
Eq. (25).

𝑥′ = 𝑥 + 𝜖 × 𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝜃, 𝑥, 𝑦)) (25)

where 𝜖 represents the magnitude of the perturbation, which quantifies
the intensity of the attack. 𝐿 denotes the loss associated with the input
𝑥 and the corresponding target output 𝑦. The term ∇𝑥𝐿 computes the
gradient of the loss with respect to the input image 𝑥, given the true
label 𝑦, while 𝜃 symbolises the parameters of the trained model. In this
ase, the efficacy of the FGSM attack can be modulated by adjusting
he value of 𝜖.

In practical applications, the perturbation parameter 𝜖 must be
sufficiently small to render the alterations on the input image imper-
ceptible to the human eye, yet substantial enough to markedly affect
the decision-making of the DRL model. The value of 𝜖 is constrained

ithin the interval [0, 1]. Specifically, a value of 0 indicates that the
adversarial image remains identical to the original input image, devoid
of any perturbation. Conversely, a value of 1 signifies that the adver-
sarial image will exhibit perturbations that are significantly distorted to
human vision. Fig. 7 illustrates an example of applying FGSM attacks
to onboard camera view of the proposed vision-based soft landing DRL
at position of [−1200, 100, 1200] 𝑚 with 𝜖 = 5∕255.

3.4. Explanability and adversarial attacks detector

3.4.1. Explanability via DeepSHAP
The nature of DL models often leaves users with mere predictive

outcomes, devoid of insights into the underlying reasons for their accu-
racy or errors. To bridge this gap, XAI techniques have been developed
to interpret the decision-making processes of neural networks models.
These techniques provide interpretative insights when there is a shift
in the model’s predictions. In this research, we introduce an innovative
adversarial attacks detection method that leverages XAI techniques.
This method utilises the variation in SHAP values of input images as
an indicator to detect the occurrence of adversarial attacks.

Building upon the foundational work of DeepLIFT, as presented by
Shrikumar et al. [32], user approximates Shapley values for deep neural
networks. This approximation, known as DeepSHAP, is facilitated by
linearising the network’s non-linear components. The process involves
employing a reference input distribution, which allows for a linear
approximation to calculate the expected model’s value.

Nevertheless, the direct computation of SHAP values for image-
based inputs is computationally expensive due to the very high pixel
count in the input images. Employing DeepSHAP necessitates the
derivation of Shapley values for each individual pixel across all output
neurons. To circumvent this computational cost, our approach calcu-

lates SHAP values for the output from the feature extractor, rather than
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Fig. 7. An example of applying FGSM attacks to the input image. (a) The original input image. (b) Perturbation patch with 𝜖 = 5∕255. (c) Resultant adversarial image.
the input image itself. As previously illustrated in Fig. 5, our envisioned
vision-based DRL model incorporates a feature extractor that reduces
the feature maps from the preceding convolutional layer to a 16-feature
output. Consequently, SHAP values are computed solely for these 16
feature outputs. This saving in the computation makes the generation
of SHAP values for the vision-based DRL could potentially meet the
critical implementation time constraints.

3.4.2. Adversarial attacks detector
To efficiently identify adversarial attacks on the vision-based DRL

landing scheme, we propose an LSTM-based detection mechanism. This
detector is designed to evaluate the SHAP values emanating from the
feature extractor’s outputs, indicating whether an adversarial attack
is occurred in the vision inputs. The LSTM, a variant of Recurrent
Neural Networks (RNNs) renowned for its performance in sequential
data analysis, such as speech recognition, is leveraged here due to
its inherent capacity to mitigate the long-term dependency challenges
that plague traditional RNNs [33]. Its architecture facilitates the re-
tention and conveyance of information across sequences, ensuring that
valuable insights from earlier time steps are not disregarded.

In the proposed method, SHAP values are computed for each re-
spective output neuron within the DRL framework. This contrasts with
adversarial attacks on a conventional classification CNN, which typ-
ically alter only the final output label. In the context of DRL, an
adversarial incursion over certain time steps may influence all output
neurons, potentially leading to erroneous decisions that could result
in the lander crashing on terrains or mislanding. It is reasonable to
postulate that a degree of interdependency exists among these output
neurons. Consequently, the construction of an LSTM-based detector for
adversarial attacks is posited to yield high levels of detection accuracy
due to its ability to capture these dependencies.

Fig. 8 delineates the architecture of the proposed detector for adver-
sarial attacks. This detector processes the SHAP values derived from
the feature extractor of the vision-based DRL scheme, which yields a
total of 16 output features. Given that the DRL system in question
operates within a 3-D action space, the SHAP values assume a matrix
form of (3, 16). To input the SHAP values into the proposed adversarial
detector, SHAP values are structured as sequential data with a length of
3. The output of the detector is a Boolean value, either 𝑇 𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒,
signifying the presence or absence of adversarial attacks.

4. Experimental results

To assess the proposed methodology, three sets of experiments have
been conducted. The first experiment involved training the vision-
based DRL models using the proposed planetary landing simulator. The
second experiment entailed generating SHAP values for the trained
DRL model under both normal and adversarial examples. Subsequently,
these SHAP values were utilised to train and validate the proposed
adversarial attack detector. Finally, the vision-based DRL model and the
adversarial attack detector were integrated to evaluate the detector’s
performance within the operational loop
43
Fig. 8. Proposed adversarial attack detector. The LSTM layer has 64 units and ReLu
is applied as the activation function for the LSTM layer. FC layers in the format of
(𝑢𝑛𝑖𝑡𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛). The output layer of the adversarial detector, which is also formed
from the FC layer and outputs a Boolean to detect adversarial attacks.

Table 2
Planetary landing simulator configuration.

Parameter Value

Initial position [−1200, 100, 1200] ± [100, 10, 100] m
Initial velocity [11, −1.5, −11] ± [1, 0.5, 1] m/s
Initial lander mass 300 kg
Max thrust force [1500, 1500, 1500] N
Min thrust force [−1500, −1500, 0] N

Frame rate 1 frame/s if altitude > 30 m
2 frame/s if altitude ≤ 30 m

4.1. Performance of the vision-based DRL

Table 2 illustrates the configuration settings of the planetary lander
simulator, which is designed to emulate the soft landing process on
Mars.

As discussed in previous section, three DRLs operate in a sequential
manner. The first DRL agent (𝐴𝑔𝑒𝑛𝑡 1) is active when the altitude
exceeds 400 m. The second DRL agent (𝐴𝑔𝑒𝑛𝑡 2) takes over at altitudes
ranging from 400 m down to 30 m. Finally, the third DRL agent
(𝐴𝑔𝑒𝑛𝑡 3) assumes control at altitudes below 30 m, as described in
Fig. 6. In this scenario, the three DRL agents are trained in a sequential
process. Initially, 𝐴𝑔𝑒𝑛𝑡 1 is trained. Subsequently, 𝐴𝑔𝑒𝑛𝑡 2 undergoes
training using the states provided by 𝐴𝑔𝑒𝑛𝑡 1. Finally, 𝐴𝑔𝑒𝑛𝑡 3 is trained
based on the initial states produced by 𝐴𝑔𝑒𝑛𝑡 2.
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Fig. 9. Testing results for the proposed vision-based Soft Landing DRL over 100 episodes. (a) The thrust forces made by the agents against landing time step. (b) The relevant
velocity against landing time step. (c) The relevant position against landing time step. (d) The mass of the lander against landing time step.
Table 3
DRL training hyperparameters.

Parameter Value

Batch size 2048
Learning rate 1 × 10−4

Optimizer Adam
Action noise 0.1
Discount factor 0.99
Soft update coefficient 0.005
Replay buffer size 1,000,000

In this experiment, all three agents are trained with the Adam
optimizer using a fixed learning rate of 1×10−4. The batch size is set to
2048. Additionally, to encourage the agents to have more exploration
in the environment, Gaussian noise is applied to the DRL’s actions
with a mean of 0 and a standard deviation of 0.1. Details of training
hyperparameters are listed in Table 3. Then, the DRL models are tested
with 300 random episodes initialised based on the configurations in
Table 2 and achieves a of 100% in successful landing conditions that
is defined in Table 1. Fig. 9 demonstrates a landing example controlled
by the proposed vision-based DRL with 100 test episodes.
44
4.2. Adversarial attacks detector

As mentioned in Section 3, the SHAP values are computed at the
output of the feature extractor in the proposed DRL scheme. The
feature extractor contains 16 output neurons, therefore, 16 values are
calculated for each output neuron of the DRLs, resulting 3 × 16 output
SHAP values.

In this study, SHAP values are derived by the DeepSHAP algo-
rithm [12]. This algorithm determines SHAP values for given inputs
through an integration process over a set of background samples. It
approximates SHAP values by aggregating the discrepancies between
the expected output of the DL model on these background samples and
the actual output of the current model. For this purpose, 1000 states
are randomly chosen from the operational environment to calculate
the downsampled features at the feature extraction stage. These images
constitute the background dataset for the DeepSHAP explainer. In the
development of the adversarial attack detector, we utilise 30,000 SHAP
value sets for normal instances and another 30,000 for adversarial
instances. Adversarial samples are generated by attacking the proposed
DRLs at a random time step with random 𝜖 values: 20∕255, 15∕255,
10∕255, 5∕255, and 1∕255. Following this, 6000 perturbed samples are
randomly selected for each epsilon value to compute the respective
SHAP values. Thus the dataset consists of a total of 60,000 examples.

To train the proposed adversarial attack detector, the dataset is
divided into training and testing sets using an 0.8 train–test split,
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Fig. 10. Overview of integrated experiment. Images are generated by the Planetary Landing Simulator, then pass through the Adversarial Attack Generator and FGSM-based attacks
are applied to perturb the images. Then, the vision-based DRL output the relative actions to the Planetary Landing Simulator to get next state of the lander. Subsequently, SHAP
values are generated on the output of the feature extractor and pass through the Adversarial Detector to output 𝑇 𝑟𝑢𝑒∕𝐹𝑎𝑙𝑠𝑒 statement indicating whether adversarial attacks are
nvolved.
able 4
STM training hyperparameters.
Parameter Value

Batch size 256
Initial learning rate 1 × 10−3

Optimizer Adadelta
Learning rate decay Exponential decay
Validation split 0.2
Early termination 200
Maximum epochs 10,000

Table 5
LSTM training and testing accuracy.

Dataset size Accuracy

Training 48,000 96.89%
Testing 12,000 97.16%

yielding 48,000 samples for training and 12,000 for testing. The adver-
sarial attack detector is trained over 10,000 epochs using the Stochastic
Gradient Descent (SGD) method coupled with the Adadelta optimizer.
The training process is set with batch size of 256 and starting learning
rate of 1e–3 with Exponential Learning Rate Decay applied. To enhance
training efficiency, early termination is employed if the validation loss
does not decrease over. Details of training hyperparameters are listed
in Table 4.

Upon completion of training, evaluating the trained adversarial
attack detector over the whole dataset, it achieved a training accuracy
of 96.89% and an accuracy of 97.16% on the test set, which have been
reported in Table 5. The experimental result indicates that the proposed
adversarial attack detector reliably identifies adversarial attacks tar-
geting the vision-based DRL during the planetary landing phase with
considerable precision.

4.3. Integrated DRLs and adversarial attacks detector

The final experiment is designed to assess the performance of the
proposed adversarial attack detector during the operation of the DRLs,
as well as to evaluate the impact of adversarial attacks on the vision-
based DRL landing scheme. Fig. 10 illustrates the on-the-loop test that
integrates the planetary landing simulator, the vision-based DRLs, and
the adversarial attack detector.

This experiment utilises the FGSM attacks with 𝜖 values chosen
from 20∕255, 15∕255, 10∕255, 5∕255, and 1∕255. Each 𝜖 value undergoes
esting across 30 episodes. In this scenario, the FGSM attacks are
nitiated at a random time step during the episode and continue to
45
Table 6
Experimental results of how the DRL will be effected by the adversarial attack and the
accuracy of adversarial attack detector for various 𝜖 values.
𝜖 Successful landing Detection accuracy

20∕255 0% 99.64%
15∕255 3.33% 99.76%
10∕255 20% 99.39%
5∕255 40% 98.94%
1∕255 100% 84.0%
Average 48.67% 96.35%

perturb the image for the subsequent 30 time steps or until the lander
makes contact with the ground. The detection accuracy is calculated as
following:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑝𝑢𝑡𝑠

× 100% (26)

where the 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 is characterised by the condition where
input frames subjected to an adversarial attack are identified as 𝑇 𝑟𝑢𝑒
and those without an adversarial attack are identified as 𝐹𝑎𝑙𝑠𝑒.

Table 6 presents the experimental results of the detection accuracy
of the adversarial attack detector while the DRL is in operation for
different 𝜖 values in FGSM attack. The impact of adversarial attacks on
the vision-based DRL has been assessed, as indicated by the ‘Successful
Landing’ metric in Table 6. A ‘Successful Landing’ occurs when the
lander touches down and the normalised position error is within 5
metres of the target landing site, and the normalised velocity is below
2 m/s, as detailed in Table 1.

From the test results, the proposed adversarial attack detector suc-
cessfully identifies incoming FGSM attacks with an average accuracy of
96.35% using test 𝜖 values. As the 𝜖 value decreases, indicating fewer
perturbations to the input images, there is a slight decline in detection
accuracy. However, this corresponds with an increase in the successful
landing rate. The detection accuracy for adversarial attacks experiences
a more pronounced decrease when 𝜖 = 1/255, attributable to the
minimal perturbation applied to the input image. Despite this, the
lander achieves the successful landing criteria in all test episodes under
these conditions. This outcome implies that the feature extractor within
the proposed DRL is capable of producing highly accurate features,
even with minor adversarial perturbations. Consequently, the lander
is still able to arrive at the target location with the desired velocity.
For higher perturbations, i.e. 𝜖 ≥ 5/255, the adversarial attack detector
demonstrates a high level of confidence in identifying incoming FGSM
attacks. However, strong perturbations to the input images can lead to
poor performance in the current vision-based DRL guidance scheme.
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5. Conclusion

This study initiates an investigation into the effects of adversarial
attacks on a vision-based DRL framework for guidance and control in
planetary landing. A planetary landing simulator is developed to gener-
ate optical data along with corresponding aerodynamic parameters for
the target landing scenario. The paper introduces a DRL scheme that
employs the SAC policy, relying solely on visual data for observation.
The research then delves into the vulnerability of the vision-based
DRL to FGSM attacks. Following this, an adversarial attack detector
is introduced, utilising SHAP value-based explanations to pinpoint
adversarial manipulations in input images. A series of experiments are
conducted to assess the efficacy of the vision-based DRL in landing
guidance and control, the influence of adversarial attacks on DRL
performance during the landing phase, and the effectiveness of the
newly proposed adversarial attack detector. The experimental results
show that the proposed adversarial attack detector performs robustly in
detecting adversarial attacks, achieving an average of 96.35% detection
rate while DRL is operating on the simulation environment.

Based on the findings from this paper, there are some research
avenues that can be further explored to improve the robustness of
employing the DRL-based approach in future space exploration mis-
sions. On the one hand, the experimental results indicate that the
vision-based DRL guidance scheme lacks the robustness to ensure a
satisfactory success rate for landing under adversarial attacks. Training
DRLs against adversarial attacks on the dynamics of the environment
could be a future strategy to improve the robustness of DRL-based
techniques in future space exploration missions.

On the other hand, while the proposed LSTM-based detector demon-
strates high accuracy in identifying adversarial attacks, our current
work has not thoroughly examined the actual recourse following the
detection of these attacks. The integration of the DRL-based guidance
scheme with the adversarial attack detector to develop adversarial
defence mechanisms presents a promising avenue for future work.
Specifically, upon detection of an adversarial attack, exploring meth-
ods to rectify the actions of DRL systems could improve the overall
performance of the planetary landing guidance scheme.
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