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Abstract: Bioimpedance is a diagnostic sensing method used in medical applications, ranging from
body composition assessment to detecting skin cancer. Commonly, discrete-component (and at
times integrated) circuit variants of the Howland Current Source (HCS) topology are employed
for injection of an AC current. Ideally, its amplitude should remain within 1% of its nominal
value across a frequency range, and that nominal value should be programmable. However, the
method’s applicability and accuracy are hindered due to the current amplitude diminishing at
frequencies above 100 kHz, with very few designs accomplishing 1 MHz, and only at a single
nominal amplitude. This paper presents the design and implementation of an adaptive current source
for bioimpedance applications employing automatic gain control (AGC). The “Adaptive Howland
Current Source” (AHCS) was experimentally tested, and the results indicate that the design can
achieve less than 1% amplitude error for both 1 mA and 100 µA currents for bandwidths up to 3 MHz.
Simulations also indicate that the system can be designed to achieve up to 19% noise reduction
relative to the most common HCS design. AHCS addresses the need for high bandwidth AC current
sources in bioimpedance spectroscopy, offering automatic output current compensation without
constant recalibration. The novel structure of AHCS proves crucial in applications requiring higher
β-dispersion frequencies exceeding 1 MHz, where greater penetration depths and better cell status
assessment can be achieved, e.g., in the detection of skin or breast cancer.

Keywords: bioimpedance; bioelectrical impedance; electrical impedance; impedance spectroscopy;
Howland current source; AC current source

1. Introduction

Bioelectrical impedance or bioimpedance measurements (BIMs) involve injecting a very
low alternating electric current into a biological tissue sample and directly deriving the
sample’s impedance from the measurement of the resulting voltage [1,2]. This technique has
been established across a wide range of applications, including lung disease diagnosis and
detection (Electrical Impedance Tomography—EIT) [3], cancerous tissue characterisation
and segregation [4], neuromuscular disease assessment [5], cardiac output monitoring [6],
body composition analysis [7], knee monitoring [8], and food quality assessment [9], to
name a few.

The accuracy of bioimpedance measurements heavily relies on that of the front-end
instrumentation [10,11], which comprises two main stages, the current injection and the
voltage measurement circuitry. The design of the latter can vary, with common topolo-
gies including synchronous detection (or demodulation) [12], synchronous sampling [13], or
magnitude and phase [14]. On the other hand, the design of the current injection instrumen-
tation usually involves an AC current source comprising a signal generator connected to
a voltage-to-current converter [15,16]. For precise BIM, the current source must deliver a
constant-amplitude (less than 1% amplitude variability [17,18]) AC current over a wide
range of loads, typically from hundreds of Ω to tens of kΩ—respectively requiring injected
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currents of a few mA down to tens of µA (sub-mA). Desired bandwidths range from 1 kHz
to several MHz; however, nonidealities degrade the output impedance of current sources
at high frequencies [19]. Consequently, the output current amplitude drops with frequency,
relative to its intended nominal value, resulting in considerable accuracy degradation. This
reduction in output current is herein termed (and also in [18]) as “current amplitude error”
or simply “current error”.

1.1. Current Source Topologies

With the exception of some application-specific integrated circuit (ASIC) realisations
(e.g., [18]), the majority of bioimpedance circuitry makes use of discrete component versions
of the Howland Current Source (HCS) [20,21], which is a voltage-controlled current source
(VCCS) topology. In the last few decades, several HCS variants have been suggested to
improve the initial design’s performance, mostly aiming to improve output impedance so
as to avoid current fluctuations with frequency and load impedance [20].

The Enhanced Howland Current Source (EHCS) in Figure 1a achieves stability and
high-output impedance through precise matching of the feedback resistors, with the
transconductance determined by R5. While it enhances output voltage swing compared to
the basic HCS, its grounded load configuration is undesirable for biomedical applications.
Moreover, like other topologies, it still exhibits output impedance degradation.
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Figure 1. Some evolutionary topologies of the Howland Current Source (HCS) for enhanced output
swing (a,b), enhanced output impedance (c), and higher bandwidth (d), specifically showcasing
(a) Enhanced HCS (EHCS) [20], (b) Mirrored Enhanced Howland Current Source (MEHCS) [15],
(c) EHCS with buffered feedback [19], and (d) MEHCS with feedback control [22].
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The Mirrored Enhanced Howland Current Source (MEHCS, Figure 1b) is widely
considered the best performing topology due to its true differential output and its overall
simplicity and robustness relative to other designs [15,22]. Still, like all open-loop current
sources, MEHCS also has drawbacks, including feedback resistor mismatches; operational
amplifier limitations; stray capacitances in tracks and cables; and other issues degrading its
output impedance, with the topology exhibiting more than 1% current error for bandwidths
over a few hundred kHz [16]. The buffered feedback topology in Figure 1c features the same
transconductance as EHCS. A buffer added in the positive feedback of the current source
improves the matching of resistors R1-4 and increases the output impedance, albeit not very
significantly [19,22]. This topology is more appropriate for grounded load applications, as
adopting it in a mirrored topology further increases mismatches, increases common mode
error, and reduces output swing.

Other design variations that have been made towards improving the HCS output
impedance include using a general impedance converter (GIC) [17] or a negative impedance
converter (NIC) [23]. However, the improvements made by these circuits are very limited,
with no adaptability, as NIC and GIC do not work at all frequencies and need recalibration
for every frequency change [17,22]. One of the better performing designs, the NIC Tietze
circuit [24], achieved a reported 1 MHz bandwidth; however, the current error was 2.33%
and thus higher than 1%.

The current-to-voltage feedback topology [22] (CTVF-MEHCS—Figure 1d) features
similar transconductance to MEHCS. It compensates for leakage current by sensing the
output current and providing negative feedback to the MEHCS input, thereby effectively
increasing the output impedance at higher frequencies. Experimental results employing
this technique reported approximately a 1.5% error for a 1mA current amplitude over a
1MHz bandwidth, a significant improvement over MEHCS. However, its suitability for
sub-mA output current is compromised, as accuracy degrades when generating lower
current amplitudes. Additionally, the resistor matching requirements are greater than
MEHCS [22].

1.2. Need for Higher Bandwidth

At frequencies near and above 1 MHz, the tissue properties monitored are asso-
ciated mainly with intracellular structures like cell membranes and organelles (part of
β-dispersion bioimpedance frequency band) [1,25]. Being able to monitor biological tis-
sue accurately at frequencies above the abovementioned instrumentation limitations is
crucial in bioimpedance applications like skin, oral, and breast cancer detection and assess-
ment [26,27]. Still, to the authors’ knowledge the “barrier” of sub-1% error over 1 MHz for
mA and sub-mA current amplitudes has not yet been surpassed.

To overcome this barrier, the work presented here introduces and experimentally
evaluates a MEHCS-based automatic gain control (AGC) design offering a high-bandwidth
(3 MHz) adaptive current source achieving significantly low amplitude error. We term
this the “Adaptive Howland Current Source” (AHCS), and we implement it in a discrete-
component realisation, in line with the majority of the relevant literature [20]. This novel
design adjusts the gain of the current driver automatically, to maintain the current output’s
accuracy, regardless of any output impedance degradation.

2. Methods
2.1. AGC Architecture

The system presented here employs a standard automatic gain control (AGC) mech-
anism for amplitude stabilisation, utilising a variable gain amplifier (VGA). In a typical
VGA-based AGC loop—like that in Figure 2—the input signal Vi passes through the VGA
to produce the output level Vo to be stabilised [28]. The detector’s output (Vdet) is compared
against a desired output amplitude reference voltage (Vref), producing an error signal (Ver).
That is then integrated, producing a gain control feedback voltage (Vc) and dynamically
adjusting the VGA gain, thus stabilising the output to an amplitude (Vo) that tracks Vref.
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2.2. System Design

As shown in the block diagram in Figure 3, with switches s1 on and s2 off, the
system operates as an open-loop MEHCS with a transconductance gm converting the
input sinusoidal voltage Vin(t) to output current Iout(t). As mentioned, its amplitude
should ideally be constant to a nominal value Iout, irrespective of its frequency. However, as
its amplitude drops due to the leakage current Ileak “lost” through the output impedance—
which decays at higher frequencies—the output current becomes IoutER < Iout (Equation (1)):

IoutER = Iout − Ileak (1)
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Once the automatic gain control (AGC) stage is on (s1 off, s2 on), the output current
Iout(t) of the MEHCS is continuously monitored through a transimpedance stage with a
gain of 1/gm, whose output amplitude is ideally Vsense = Iout/gm = Vin if the output current
has the nominal value Iout. When the output current amplitude changes, Vsense = IoutER/gm
̸= Vin. The gain GCOR by which the present output IoutER needs to be multiplied to achieve
the nominal output current Iout is given by Equation (2):

GCOR =
Iout

IoutER
=

Iout

Iout − Ileak
=

Iout
gm

Iout−Ileak
gm

=
Vin

Vsense
(2)
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To compare their values, peak detectors extracting the amplitudes Vsense and Vin are
connected differentially to a comparator. As indicated in Equation (3), its output Vcomp(t)
assumes a “high” or a “low” state, represented respectively by a positive (+Vsettle) or a
negative (−Vsettle) DC voltage, depending on which of the inputs is higher. Once the inputs
become equal, the comparator generates an oscillatory output at double the frequency
of the injected signal, which is the dominant ripple frequency at the output of the peak
detectors [29].

Vcomp(t) =


+Vsettle, Vsense < Vin (comparator output high DC)
−Vsettle, Vsense > Vin (comparator output low DC)
Vosc(t), Vin = Vsense (comparator output oscilates)

(3)

The oscillatory output of the comparator can be ideally approximated as a square
wave with amplitude Vsettle and frequency ωx. The Fourier series (up to 3rd harmonic)
gives Equation (4):

Vcosc(t) =
4Vsettle

π

(
sin(ωxt) +

1
3

sin(3ωxt) +
1
5

sin(5ωxt) +
1
7

sin(7ωxt)
)

(4)

The comparator is connected to an integrator with high time constant τ. The inte-
grator’s time constant is designed to be much higher than 1/ωx, assuming the dominant
frequency of the comparator output oscillation when inputs are equal is the same as that of
the injected signal or higher. The integrator’s output Vfb(t) is described by Equation (5),
where Vfb0 is the integrator initial output at t = 0, assumed to be zero.

Vf b(t) =
1
τ

∫
Vcomp(t)dt + Vf b0 (5)

When Vcomp(t) assumes its high or low DC value, the integrator output will respec-
tively be a positive or a negative ramp given by Equation (6).

Vf b(t) =

{
Vsettle

τ t, integrator outputing a + ive ramp
Vsettle

τ t, integrator outputing a − ive ramp
(6)

In the case examined here, Vsense < Vin and the integrator will be a positive ramp. The
integrator output controls the gain of a variable gain amplifier (VGA), whose initial gain
is unity. Consequently, the amplitude of the VGA’s output Vtrack can be expressed using
Equation (7):

Vtrack(t) = Vin(t)
(

1 + Av f b(t)
)

(7)

where Avfb(t) = Vfb(t)/1V is the integrator output expressed as unitless gain.
Thus, for IoutER < Iout, the amplitude of the MEHCS input voltage (now Vtrack) will

ramp up in value until the transimpedance output amplitude reaches a value equal to Vin.
At that point, the comparator will start oscillating (Equation (3)), resulting in the integrator
output shown in Equation (8), comprised of a high frequency triangular wave (due to the
square wave nature of Equation (4)) around a dc value VfbDC:

Vf b(t) =

Vf bDC − 4VsettleTx
2π2τ

(
cos(ωxt) + 1

9 cos(3ωxt) + 1
25 cos(5ωxt) + 1

49 cos(7ωxt)
) (8)

Given that τ >> Tx, the triangular wave can be considered a ripple of negligible
amplitude, and therefore the integrator output will settle at DC voltage VfbDC, whose
unitless value expressed as gain is AvfbDC. Replacing Avfb(t) in Equation (7) with AvfbDC
and dividing both sides by gm, the input to MEHCS will now settle to a Vtrack value that
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will generate the desirable Iout rather than IoutER generated by the open-loop MEHCS as
given by Equation (9) (expressed as amplitudes):

Iout = IoutER

(
1 + Av f bDC

)
⇒

⇒ 1 + Av f bDC = Iout
Iout−Ileak

⇒
⇒ 1 + Av f bDC = GCOR

(9)

The AGC ensures that the integrator output and thus the VGA gain will settle to the
value necessary for compensating the current error through scaling the input voltage to the
MEHCS, rather than by attempting to increase the output impedance as seen in most of the
aforementioned topologies. Attempting to compensate by somehow adding Ileak is also not
straightforward, as it would have to be AC and precisely in phase with Iout.

2.3. Circuit Design

During the design phase of the AHCS circuit, critical factors, including feedback
resistor network tolerances, op-amp matching (same die amps) and open-loop gain, and
PCB layout were considered to ensure a desirable output. In the implementation of the
AHCS circuit in Figure 4, the MEHCS stage is comprised of U9 and U10 op-amps, with its
input driven by a unity gain single-to-differential amplifier (U8) to increase common mode
rejection, reduce DC offsets, and thus enhance load capability [30]. In the open loop (sw1 to
Vin), the output current Iout, flowing through Rsense and through the load ZL, is given by

Iout = gmVin (10)

where gm is the transconductance of the MEHCS, given by [11]

gm =
Rh4

Rh3 × Rh5
(11)
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Figure 4. Schematic diagram of the AHCS circuit.

In MECHS, achieving high-output impedance requires Rh1 to Rh4 to be highly matched,
high-value resistors [15] (in the range of 0.1–1 MΩ). Here, 0.01% tolerance 100 kΩ resis-
tors were used. With the feedback on, the output current is continuously monitored via
sensing resistor Rsense (inserted twice for output symmetry) and the sensing instrumen-
tation amplifier U5, with gain Av_sense, designed so that its output equals the MEHCS
input voltage:

Av_sense =
1

gm ∗ Rsense
(12)
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The output current is now derived by replacing Vin with Vtrack in (10). Vtrack is
the output of the AGC stage, comprised of two precision peak detectors (U1,2 and U3,4
combined with Rr1–3, Cr1,2, and D1-4); a comparator (U6); an integrator (Rint, Cint); and a
VGA realised through an AD734 multiplier, with the base gain set to unity through a 1V DC
reference to avoid a multiplication by zero. The AGC continuously monitors and compares
the peak values of both Vin and Vsense. If the amplitude of Iout (i.e., Vsense) starts dropping,
the comparator output becomes high, causing the integrator output to ramp up, effectively
increasing Vtrack. Once the feedback achieves Vsense = Vin, the comparator starts oscillating,
causing Vint to stabilise to a settled value. The measured voltage Vmeas across the load ZL is
given by U11, the measuring instrumentation amplifier, with a gain of AV_meas.

2.4. Experimental Setup

The experimental setup in Figure 5a was configured to assess the performance of
AHCS for a range of loads and frequencies. The setup features a power supply, a signal
generator to generate the Vin, an oscilloscope, and a DAQ module transferring data to a PC.
In line with the literature, the circuit was tested using a set of resistive loads. A photograph
of the AHCS circuit board is shown in Figure 5b, with its main stages labelled.

Sensors 2024, 24, 4357 7 of 20 
 

 

_   
+  

_   
+  

Dr1
Dr2

Rr1

Cr1

Rr3

_   +  

1V

Cr2

Rr2

Rint

Cint

_   
+  

_   
+  

Dr4
Dr3

Rr1

Cr1

Rr3

Cr2

Rr2

_   
+  

   IA

_  
 
+ 

_ 
+ 

Rh1

Rh3

Rh4

Rh2

Rh5

R s
en

se

_ 
+ 

Rh1

Rh3

Rh4

Rh2

Rh5

R s
en

se

Ei1

Ei2

ZL _ 
+ 

IA

Em2

Em1
Vmeas

Vsense

Vin

Vtrack

U1 U4
U2 U3

U6

U7

U5

U9

U10

U11

AGC stage

MEHCS electrodes

U8
sw1

V U
8o

+
V U

8o
-

Vint*

 
Figure 4. Schematic diagram of the AHCS circuit. 

2.4. Experimental Setup 
The experimental setup in Figure 5a was configured to assess the performance of 

AHCS for a range of loads and frequencies. The setup features a power supply, a signal 
generator to generate the Vin, an oscilloscope, and a DAQ module transferring data to a 
PC. In line with the literature, the circuit was tested using a set of resistive loads. A pho-
tograph of the AHCS circuit board is shown in Figure 5b, with its main stages labelled. 

 
Figure 5. (a) Photograph of the AHCS experimental setup. (b) Photograph of the AHCS circuit board 
with the main stages labelled. 

3. Results and Discussion 
3.1. Frequency Response 

The raw data presented in Figure 6 for the open-loop configuration (MEHCS) at 1 
kHz for a load of 2 kΩ load and an output current Iout of 1 mA indicate that the amplitudes 
of Vsense and Vmeas were respectively 1 V and 2 V, as expected. However, as shown in Table 
1, their amplitudes decline at higher frequencies due to the degradation of output imped-
ance, as described in the literature. 

This is shown in Figure 6b for 3 MHz, where Vsense ≠ Vin and Vsense, Vmeas reached ap-
proximately half of their nominal values, indicating a reduction of approximately 50% in 
the amplitude of the generated current. However, when the AGC was enabled, the multi-
plier output amplitude Vtrack increased to compensate for the observed loss in Iout. This 
compensation continues until Vsense = Vin. At this point, the integrator ceases to charge, and 
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3. Results and Discussion
3.1. Frequency Response

The raw data presented in Figure 6 for the open-loop configuration (MEHCS) at 1 kHz
for a load of 2 kΩ load and an output current Iout of 1 mA indicate that the amplitudes of
Vsense and Vmeas were respectively 1 V and 2 V, as expected. However, as shown in Table 1,
their amplitudes decline at higher frequencies due to the degradation of output impedance,
as described in the literature.

Table 1. MEHCS and AHCS measured peak outputs.

f (Hz) Vsense (V) Vmeas (V)
MEHCS AHCS MEHCS AHCS

1k 1.018 1.021 2.011 2.002
10k 1.020 1.011 2.002 2.016

100k 1.032 1.012 2.014 2.015
500k 0.861 1.021 1.620 2.015
1M 0.600 1.016 1.201 2.013
3M 0.211 1.001 0.480 2.011

Load = 2 KΩ. Rsense = 100 Ω. IA gains: AV_sense = 10, AV_meas =1. Nominal Iout = 1 mA. Vin = 1 V.
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Figure 6. Raw data: input and output voltages of the system in open and closed loop for a 2 kΩ load:
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This is shown in Figure 6b for 3 MHz, where Vsense ̸= Vin and Vsense, Vmeas reached
approximately half of their nominal values, indicating a reduction of approximately 50%
in the amplitude of the generated current. However, when the AGC was enabled, the
multiplier output amplitude Vtrack increased to compensate for the observed loss in Iout.
This compensation continues until Vsense = Vin. At this point, the integrator ceases to charge,
and Vtrack stabilises at its final value. The impact of the Automatic Gain Control (AGC)
mechanism of the AHCS is demonstrated in columns 3 and 5 of Table 1. It is also illustrated
in Figure 6c, for the same input as in Figure 6b, where both voltages are restored very close
to their nominal amplitudes in Figure 6a.

Figure 7 shows the output current as a function of frequency derived by dividing the
measured Vsense with AV_sense across loads ranging from 1 kΩ to 5 kΩ. Measurements were
taken with an applied voltage of 1 V, with and without the AGC enabled. It is evident that
the injected output current of AHCS remained stable at 1 mA over a wider bandwidth
than with MEHCS. This was particularly evident with a resistive load of 1 KΩ, where
a bandwidth of 3 MHz was attained, in contrast to MEHCS, which achieved acceptable
accuracy (≤1% error) only up to 100 KHz for the same load.

This is better illustrated in Figure 8, where the percentage errors of the trends in
Figure 7 are presented. The figure illustrates all output current errors for loads ranging
from 1 kΩ to 5 kΩ and the resulting mean error across all loads for all frequencies for the
two systems. Significant errors from 100 KHz and above were observed from MEHCS
compared to AHCS, for which output current decline (≥1%) occurred only for higher loads
above 500 KHz. It could be seen that AHCS demonstrated significantly improved accuracy
over a much wider bandwidth compared to the conventional MEHCS, especially for a
1 KΩ load, the load for which the highest reported bandwidth of 1 MHz was shown to be
achieved with a 1.5% error in [22]. AHCS exhibited a sub-1% error for up to 3 MHz, i.e.,
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a significantly lower error for three times the bandwidth, to our knowledge never reported before.
With the same load, MEHCS recorded a 7% error at 500 KHz and 73% error at 3 MHZ. An
error just above 1% was achieved for the same bandwidth of 3 MHz for a 2 KΩ load. It can
be observed from Figures 7 and 8 that the AHCS performed better and accurately up to
1 MHz for all the loads and up to 3 MHZ for 1 KΩ.
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Figure 9 illustrates Vmeas for MEHCS and AHCS as a function of load for specific
frequencies. The data of Figure 7 indicate that MEHCS exhibits inaccuracy above 100 kHz,
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and this is clearly illustrated in Figure 9 for all loads 500 kHz and above. This limitation
in bandwidth hinders the reliable assessment of bioimpedance tissue properties for a
wide range of samples when using MEHCS. In contrast, the implementation of AHCS
compensates for these limitations and delivers well-manifested improvement in bandwidth
performance. The voltage responses obtained using AHCS remained accurate for all loads
up to frequencies of 500 kHz.
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Figure 9. Measured output voltage of MEHCS and AHCS compared to the ideal result as a function
of load at frequencies from 1 kHz to 3 MHz with Iout = 1 mA. The legend for all traces is located at
the top of subplot (b).

3.2. Performance for Smaller Output Current

This expanded bandwidth capability enables precise measurements of impedance
across a broader range of frequencies in the β-dispersion, as mentioned previously. In
addition to the above, and similarly to the previous figures, Figure 9 also illustrates that
AHCS exhibits exceptional accuracy even at higher frequencies, specifically up to 3 MHz,
for loads up to 2 kΩ. This performance is noteworthy as it ensures reliable voltage responses
and accurate bioimpedance measurements, even when these involve higher load tissues
and at high frequencies, well beyond the capabilities of conventional MEHCS.

Designers of bioimpedance instrumentation prioritise output current amplitudes
in the mA range, to maximise the signal strength relative to noise and thus improve
impedance measurement reliability. Nevertheless, in specific applications, e.g., in cell
culture experiments, or for high-contact impedance microelectrodes, sub-mA currents
are necessary [31]. However, existing designs like CTVF-MEHCS cannot supply sub-mA
currents [22].

Figure 10 was obtained using the same procedure as Figure 7, but with an output Iout
of 100 µA, achieved by setting Vin = 100 mV for the same transconductance as described in
Equation (11). The frequency response in Figure 10 showed a similar trend to that observed
in Figure 7 and was further analyzed in Figure 11.
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MEHCS and AHCS for all loads at all frequencies. (b) Same as (a) scaled to low error values (up to
5%), highlighting the performance of AHCS for 1 kΩ.

Figure 11 illustrates that AHCS enhances performance even for sub-mA currents. The
accuracy and bandwidth results for AHCS are comparable for both 1 mA and 100 µA,
as evidenced by the percentage error graphs in Figures 8 and 11, respectively, where the
output current error is below 1% for 3 MHz for a load of 1 kΩ. In contrast, while with 1 mA
Iout MEHCS achieved less than 1% percentage error for all loads at 100 kHz (Figure 8),
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Figure 11 indicates that when sourcing 100 µA at the same frequency, errors up to 4%
are observed.

3.3. Output Impedance—Fully Differential Measurement

The performance of the AHCS, demonstrated for a range of frequencies and loads, is
based on the AGC essentially adjusting Iout to compensate for output current losses due
to output impedance decay with frequency. Still, the measurement of the system’s output
impedance over the full bandwidth is of interest for comparison with prior state of the
art. Assuming a high op-amp open-loop gain and very low and equal resistor tolerances,
the minimum output impedance ZO,min for a single-ended MEHCS can be calculated as in
Equation (13) [20,21]:

ZO,min(γ) =
R ∗ Rh5

2γ(R + Rh5)
(13)

assuming that Rh1 = Rh2 = Rh3 = Rh4 = R. The factor γ represents resistor toler-
ances. Measuring the output impedance of MEHCS is a complicated procedure and often
inaccurate. This is because the output impedance is conventionally derived through mea-
surements between one output terminal and the ground, in accordance with modelling the
circuit as two single-ended HCS current sources in series, as shown in Figure 12a.
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output impedances. (b) Measurement configuration used here for determining the output impedance
of AHCS.

As such, the total impedance is then calculated as twice the measured single-ended
output impedance [24], represented in Figure 12a by Zout1,2. According to [22], this can
lead to errors.

Here, we initially attempted to measure the full differential ZO using the E4980A
precision LCR meter/impedance analyser, but the measurement was erroneous in low
frequencies due to the MEHCS/AHCS output stage essentially connected as an open circuit
with the power on. Therefore, a different approach was adopted to achieve a more accurate
measurement. A known, well-characterised resistive load, ZL = 999 Ω, was connected at the
output of the MEHCS/AHCS to ensure the output stage operated as a closed-circuit Norton
equivalent, and the input to the system was grounded. Using the E4980A, a measurement
of ZT = Zo||ZL was carried out from 20 Hz to 1 MHZ, as illustrated in Figure 12b. This
was performed with both the AGC disabled (MEHCS) and enabled (AHCS), allowing for
the output impedances of both MEHCS and AHCS to be derived from Equation (14) and
generating the data for Figure 13.

ZO =
ZTZL

ZL − ZT
(14)
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Figure 13. Output impedance as a function of frequency for MEHCS and AHCS.

It can be observed from the results in Figure 13 that both MEHCS and AHCS exhibited
a similar trend, with AHCS exhibiting higher output impedance at lower frequencies, up to
100 kHz.

3.4. Tracking Speed

The response time of HCS-based designs mostly depends on the settling time of the
op-amps used (in the absence of feedback capacitors). ACHS exhibits longer response
time following abrupt input amplitude changes because of the AGC’s integrator (here
chosen to be τ = 12 ms, which is sufficiently lower than our lower injected signal frequency
of 1 kHz). In Figure 14, the integrator’s settling time was measured to be 42.2 ms at
maximum Vin bandwidth (3 MHz) with a typical load (1kΩ), with the feedback off and
then on. It is noteworthy that this may not be a significant concern in most bioimpedance
applications. Exceptions include applications where fast changes need to be monitored
(e.g., plethysmography [32,33]) or where specific frame rates across multiple channels are
required (e.g., electrical impedance tomography (EIT [34]).
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3.5. Noise

As mentioned previously, MECHS requires Rh1–4 to be in the order of 0.1–1 MΩ,
which results in increased thermal noise. During our performance analysis of AHCS, it
became apparent that the AGC improving output current accuracy over a higher bandwidth
independently of the system’s output impedance allows for the use of lower value resistors
in the MECHS sub-stage. This reduces the overall noise exhibited at the output node. Error
sources in MEHCS (Figure 15) can be identified through the analysis of half of the circuit
(single-ended HCS with grounded load). The noise sources detailed in the figure translate
to output- and input-referred RMS noise voltages, En,out and En,in, respectively.
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En,in has three components (Equation (15)): the internal op-amp voltage noise Env (not
considered here, as it is not affected by the size of Rh3 and Rh4); the internal current-
introduced noise Eni; and the resistor-related noise (thermal) Enr (Equation (17)).

En,in =
√

E2
nv + E2

ni + E2
nr (15)

Eni =

√(
InRa)

2 + (I nRb)
2 (16)

Enr =
√
(Enr_a)

2 + (Enr_b)
2 (17)

and
Enr_a,b =

√
4kTRa,bBWn (18)

where BWn = noise bandwidth of the op-amp, k = 1.38 × 10−23 J/K (Boltzmann’s const.);
In = RMS noise current, and T = temperature (K). Ra and Rb correspond to the two feedback
branches, as follows:

Ra = Rh3 ∥ Rh4 =
Rh3Rh4

Rh3 + Rh4
(19)

Rb = ((R h5 ∥ RL)+Rh2) ∥ Rh1 (20)

Consequently, the total output-referred RMS noise voltage is

En,out = Av_CLEni (21)
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The contribution of the noise sources to the output current is

Iload,TN =

√(
E2nv + E2

ni + E2nr

R2
h5

)
(22)

Figure 16 demonstrates the noise spectrum for MEHS and AHCS for different loads.
MEHCS is demonstrated with 100 kΩ Rh values, as it is not operational for lower values,
while lowering Rh values to 5 kΩ for the AHCS (still operational in Figure 17) allows for
improved noise performance, with AHCS achieving 17% lower noise for a 1 kΩ load and
19% lower noise for a 5 kΩ load within the bandwidth of interest.
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Rh3, Rh4, and (Rh3 + Rh5) and AHCS when using 5 kΩ instead. MEHCS does not work with resistor
values lower than 100 kΩ, while AHCS does.
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Equations (16), (17), and (22) further indicates that selecting large values for Rh3 and
Rh4 increases the noise levels in the MEHCS design. Attempting to lower the value of the
Rh resistors from 100 kΩ (as used in the experiments) to 5 kΩ results in Iout degradation
for the MEHCS. This is shown in the respective simulated Iout frequency responses in
Figure 17a, where MEHCS delivers the nominal current of 1 mA, and Figure 17b, where
the current delivered is lower than the nominal and changes for different loads. Figure 17c
indicates that the same reduction in Rh values does not affect the Iout frequency response of
AHCS, which is 1 mA independent of load. Simulations were carried out in single-ended
half-circuits with grounded loads.

3.6. Component Tolerance

The precision foil resistors used for Rh1–Rh5 and Rsense have a TCR (temperature
coefficient of resistors) of ±2.0 ppm/◦C and a tolerance of ±0.01%. Nominal and calcu-
lated values for a 1 kΩ resistance of the same type as Rsense are presented in Table 2 for
temperatures −20 ◦C, 0 ◦C, and 40 ◦C.

Table 2. Calculated resistance of the sense resistor (Rsense) at −20◦ and 40◦ extreme temperature
variations.

Rref Nominal
(Ω) TCR (ppm/◦C) Ta

(◦C) Ra Measured (Ω)

1000 2 −20 999.906
1000 2 0 999.946
1000 2 40 1000.026

The impact of temperature on ACHS components and particularly the current sensing
resistor Rsense was further examined through LTSpice simulations, spanning temperatures
from −20 ◦C to 40 ◦C, with a temperature coefficient set to the specified 2.0 ppm/◦C as per
the precision foil resistor datasheet. The reference temperature was set at 27 ◦C.

Ra = Rre f

(
1 + TCR

(
Ta − Tre f

))
(23)

Replacing the Rh resistors with Rα, calculated using Equation (23), AHCS was once
more assessed by generating its frequency responses for a range of loads (Figure 18). The
graphs demonstrate that extreme temperature variations do not have a significant effect on
the system’s performance.
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4. Performance Overview

The overall performance of the AHCS system is summarised in Table 3, in comparison
with six other architectures of AC current sources, including an ASIC approach [18] featur-
ing an OTA-based design. The AHCS architecture achieves a higher bandwidth than the
ASIC for a less than 1% output current amplitude error. It also achieves outputs as low as
100 µA, lower than the 500 µA reported in [16]. The total harmonic distortion (THD) was
measured to be less than 0.2% for 2 mA p-p output current. The system was also simulated
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with RC loads (Figure 19) comprising a 1 kΩ resistor in parallel with capacitors ranging
from 5 nF to 30 nF. The bandwidth exhibited was stable for all loads.

Table 3. Main features of AHCS and comparison with other designs.

Architecture CTVF-MEHCS
[22]

EHCS
[35]

Differential
Sinusoidal

Current
Gen [36]

OTA—Based
ASIC
[18]

Differential
Difference
Amplifier

(DDA)
[37]

OTA and DDA
(ASIC)

[38]
ACHS

(This Work)

Bandwidth
< 1% Iout err. ≤10 kHz <100 Hz 90 kHz ≤1 MHz ≤1 MHz ≤200 kHz ≤3 Mhz

THD -- -- 0.81% @
250 µAp-p

0.69% @
5 mAp-p
0.53% @
2 mAp-p

-- -- <0.2% @
2 mAp-p

Size and
complexity -- -- 5 mm × 5 mm 6.18 mm2 -- 0.21 mm2 15.5 cm ×

8.5 cm
Max Output

Current 2 mAp-p <1.4 Apk 350 µAp-p 5 mAp-p 20 mA 0.7 mAp-p 2 mAp-p

Output
Impedance

3.16 MΩ @ 10 kHz.
1.99 MΩ @ 100 kHz

<32 KΩ @1 MHz
-- >100 KΩ @

90 kHz

665 KΩ @
100 kHz
372 kΩ @
500 kHz

<100 K @
1 MHz 40 @ 30 kHz

1 MΩ @ 1 kHz
200 KΩ @
100 kHz.

<1 kΩ @1 MHZ
Output current

accuracy
<1%eror @ 10 kHz

<2% @ 1 MHz
68.5% @10 MHz

<0.5% @
<100 Hz ≤1% @ 90 kHz <1%eror @

1 MHz
<1%eror @

1 MHz -- <1% @ 1 mA @
3 MHz

Supply Voltage 18 V ±25 V 1.25 V 18 V --- ±0.8 ±15 V

Technology Discrete Discrete 0.18 µm
CMOS

0.6 µm
CMOS HV Discrete 0.65 nm

CMOS Discrete
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5. Conclusions

Conventional fixed-gain AC current source designs, commonly used in bioimpedance
applications, exhibit output current amplitude decline at higher frequencies, limiting their
bandwidth to around 100 kHz. Modified Enhanced Howland Current Source (MEHCS)
design variants have shown promise with 1 MHz bandwidth and low output current errors
of 1.5%. However, there remains a need for achieving less than 1% current errors, higher
bandwidths, and operation with sub-mA currents in various bioimpedance applications, a
feat not yet attained by existing optimised designs.

In this paper, we introduced the Adaptive Howland Current Source (AHCS), which
surpasses current systems by achieving sub-1% output current error over a bandwidth three
times greater than the highest reported, including performance at smaller (100 µA) currents.
We presented a discrete-component realisation in line with most of the relevant literature,
and its performance surpassed even ASIC realisations. AHCS incorporates an Automatic
Gain Control (AGC) to adapt input voltage amplitude, autonomously compensating for
output current degradation. In contrast to conventional optimisation approaches, AHCS
enhances accuracy across a broader bandwidth by dynamically adjusting the current driver
reference voltage based on actual injected current output, offering flexibility for swept
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frequency applications and high performance for low amplitude currents, as needed in cell
culture experiments.

AHCS’s strength lies in maintaining constant amplitude AC current outputs with great
accuracy over a significantly wider bandwidth, albeit with trade-offs such as increased
complexity, power consumption, system size, and settling time. Despite these considera-
tions, AHCS’s wide bandwidth operation offers substantial performance improvements,
making it conducive for highly accurate bioimpedance measurements at high frequencies.
The envisioned applications encompass extending bioimpedance monitoring methods
beyond research settings into mainstream clinical practice, assessing conditions like skin
and oral cancer.
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