

City, University of London Institutional Repository

Citation: Kasapidis, G., Paraskevopoulos, D., Mourtos, I. & Repoussis, P. (2025). A Unified

Solution Framework for Flexible Job Shop Scheduling Problems with Multiple Resource
Constraints. European Journal of Operational Research, 320(3), pp. 479-495. doi:
10.1016/j.ejor.2024.08.010

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/33482/

Link to published version: https://doi.org/10.1016/j.ejor.2024.08.010

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

European Journal of Operational Research xxx (xxxx) xxx
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Discrete optimization

A unified solution framework for flexible job shop scheduling problems with
multiple resource constraints
Gregory A. Kasapidis a,∗, Dimitris C. Paraskevopoulos b, Ioannis Mourtos c,
Panagiotis P. Repoussis d

a University of Liverpool Management School, University of Liverpool, Liverpool, UK
b Bayes Business School (formerly Cass), City St George’s, University of London, London, UK
c Department of Management Science and Technology, School of Business Athens University of Economics and Business, Athens, Greece
d Department of Marketing and Communication, School of Business Athens University of Economics and Business, Athens, Greece

A R T I C L E I N F O

Keywords:
Scheduling
Flexible Job Shop Scheduling
Constraint Programming
Adaptive Large Neighbourhood Search
Resource constraints

A B S T R A C T

This paper examines flexible job shop scheduling problems with multiple resource constraints. A unified
solution framework is presented for modelling various types of non-renewable, renewable and cumulative
resources, such as limited capacity machine buffers, tools, utilities and work in progress buffers. We propose
a Constraint Programming (CP) model and a CP-based Adaptive Large Neighbourhood Search (ALNS-CP)
algorithm. The ALNS-CP uses long-term memory structures to store information about the assignment to
machines of both individual operations and pairs of operations, as encountered in high-quality and diverse
solutions during the search process. This information is used to create additional constraints for the CP solver,
which guide the search towards promising regions of the solution space. Numerous experiments are conducted
on well-known benchmark sets to assess the performance of ALNS-CP against the current state-of-the-art.
Additional experiments are conducted on new instances of various sizes to study the impact of different
resource types on the makespan. The computational results show that the proposed solution framework is
highly competitive, while it was able to produce 39 new best solutions on well-known problem instances of
the literature.
1. Introduction

The flexible job shop scheduling problem (FJSSP) has attracted
significant attention in the literature (Brucker & Schlie, 1990) due to
its importance and wide applicability. The FJSSP provides a flexible
base model that can be used to model industry driven (Li et al., 2020)
and rich (Mokhtari & Dadgar, 2015) production scheduling problems.
Nevertheless, resource constraints are missing from the archetypal
FJSSP, although such constraints play a critical role when modelling
real life scheduling problems. Li and Gao (2020) mention that the shop
scheduling literature with resource and buffer constraints is scarce, and
it is thus a promising research area.

Resources can be classified as renewable, non-renewable and cumu-
lative. The resources that are not permanently consumed are referred
to as renewable. For example, utility resources, like electricity, are
consumed and renewed at any time, while a maximum consumption
limit is imposed. Also, tools and special equipment can be considered as
renewable resources; however, they can only be consumed as discrete

∗ Corresponding author.
E-mail addresses: gkasapid@liverpool.ac.uk (G.A. Kasapidis), dimi@city.ac.uk (D.C. Paraskevopoulos), mourtos@aueb.gr (I. Mourtos), prepousi@aueb.gr

(P.P. Repoussis).

units. On the other hand, non-renewable resources are permanently
consumed, and they are replenished only at specific times following
a given policy. Lastly, cumulative resources, such as inventory buffers,
have a fixed capacity that is consumed when finished or semi-finished
items are added to the storage space and replenished when items are
removed.

Researchers have been studying the effect of resource constraints on
scheduling problems for a long time (Błażewicz et al., 1986; Słowiński,
1980, 1981; Węglarz, 1981). One of the most prevalent problems of
the literature is the resource-constrained project scheduling problem
(RCPSP) that examines the consumption of several renewable resources
required for processing a set of activities (Brucker et al., 1999; Debels
& Vanhoucke, 2007; Patterson et al., 1990). The combination of renew-
able and non-renewable resources is prevalent in papers that examine
the multi-mode RCPSP (Chakrabortty et al., 2020; Coelho & Van-
houcke, 2011; Elloumi et al., 2017; Muritiba et al., 2018; Van Peteghem
& Vanhoucke, 2014). On the other hand, the parallel production or con-
sumption of non-renewable resources has attracted less attention in the
https://doi.org/10.1016/j.ejor.2024.08.010
Received 7 November 2022; Accepted 11 August 2024
Available online 12 August 2024
0377-2217/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

Please cite this article as: Gregory A. Kasapidis et al., European Journal of O
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

perational Research, https://doi.org/10.1016/j.ejor.2024.08.010

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
mailto:gkasapid@liverpool.ac.uk
mailto:dimi@city.ac.uk
mailto:mourtos@aueb.gr
mailto:prepousi@aueb.gr
https://doi.org/10.1016/j.ejor.2024.08.010
https://doi.org/10.1016/j.ejor.2024.08.010
http://creativecommons.org/licenses/by/4.0/

G.A. Kasapidis et al. European Journal of Operational Research xxx (xxxx) xxx
RCPSP literature (van der Beek et al., 2024; Hanzálek & Šůcha, 2017),
while cumulative or storage resources have also been studied (Gehring
et al., 2022; Hanzálek & Šůcha, 2017). A comprehensive survey on
RCPSP variants is given by Hartmann and Briskorn (2022).

The RCPSP can be considered as a generalization of various shop
scheduling problems, including the FJSSP. Regarding shop scheduling
problems with resource constraints, the existing body of literature is
not sufficiently organized. Indicatively, one can find different names
and terminologies in different papers for describing the same type of
resources. The vast majority of papers consider only one specific type
of resource, while (to our knowledge) there is no model or method that
can take into account different types of resources. In this paper, we or-
ganize the literature of shop scheduling with various types of resource
constraints and present a unified solution framework for solving the
FJSSP with resource constraints.

This paper contributes to the existing body of literature in numerous
ways. First, a detailed literature review is performed, the different
types of resources are identified and clarified and the literature of shop
scheduling problems with resource constraints is classified with respect
to the resource types. Second, a Constraint Programming (CP) formu-
lation is proposed for modelling the problem with all known types of
resources; this CP model is used to derive optimal solutions and lower
bounds. Third, a novel CP-based adaptive large neighbourhood search
(ALNS-CP) is presented, which imposes additional constraints based
on operation-to-machine and operation-pair-to-machine assignments.
Fourth, a thorough experimentation on well-known benchmark data
sets of the literature showed that the ALNS-CP is highly competitive
compared to the current state-of-the-art, while it outperforms the off-
the-shelf CP solver. Lastly, various computational experiments have
been conducted on new problem instances with resource constraints
in order to study the effect of various resource types on the makespan.

The remainder of the paper is organized as follows: Section 2
reviews the recent literature on shop scheduling problems. Next, Sec-
tion 3 presents a CP formulation of the FJSSP with resource con-
straints. The proposed solution framework and all the key algorithmic
components are presented in Section 4. Computational results from
experiments on various benchmark data sets are presented in Section 5.
We conclude in Section 6, where pointers for future research are also
provided.

2. Literature review

Table 1 provides a summary of the papers from the shop scheduling
literature, that consider cumulative, renewable and non-renewable re-
sources. Regarding cumulative resources, the most prominent types are
the Work-in-Progress (WIP) inventories and Limited Capacity Buffers
(LCB). Both of them refer to storage capacity restrictions on the pro-
duction floor. In the case of renewable resources, we consider human,
equipment, tools and other resource types. The latter includes re-
sources, such as utilities, that cannot be classified either as human,
equipment or tool resources. The last column represents non-renewable
resources, such as supplies and raw materials.

We have reviewed 47 papers published from 2000 to 2022. One
may observe that the vast majority of papers focuses on a specific
resource type, while only a handful of papers address more than one
resource type. In particular, Liu et al. (2017) and Sha et al. (2021)
examine both renewable and non-renewable resources, while Wong
et al. (2009) and Novas and Henning (2014) study both cumulative
and renewable resources. There exist no papers that consider simultane-
ously LCB resources with other types of resources, and the combination
of non-renewable and cumulative resources.

Out of the 47 reviewed papers, 17 consider renewable resources in
the form of personnel (Agnetis et al., 2014; Campos Ciro et al., 2016;
Elmaraghy et al., 2000; Latorre-Núñez et al., 2016; Lei & Guo, 2014; Li
et al., 2016; Zhang et al., 2021) and manufacturing equipment, such as
tools, masks or fixtures (Beezão et al., 2017; Bitar et al., 2016; Chan
2
et al., 2006; Fan et al., 2022; Figielska, 2014; Latorre-Núñez et al.,
2016; Novas & Henning, 2014; Soares & Carvalho, 2020; Wong et al.,
2009; Zeballos et al., 2010), while eight consider utility renewable
resources (e.g., electricity) and other generic resources (Fanjul-Peyro
et al., 2017; Figielska, 2018; Fleszar & Hindi, 2018; Li et al., 2019; Liu
et al., 2017; Nguyen et al., 2019; Sha et al., 2021; Waldherr & Knust,
2017). Cumulative resources are mostly encountered in the form of LCB
buffers (Brucker et al., 2006; Liu et al., 2018; Trabelsi et al., 2012; Yau-
rima et al., 2009). In this category, we also include papers that address
the so-called Blocking Job Shop Scheduling Problem (BJSSP) (Dabah
et al., 2019; Mascis & Pacciarelli, 2002; Meloni et al., 2022; Mogali,
Barbulescu, & Smith, 2021; Mogali, Smith, & Rubinstein, 2021) as a
special case of LCB resources with zero capacity. Papers that consider
non-renewable resources, mostly include contributions that focus on
the single machine scheduling problem (Grigoriev et al., 2005; Györgyi
& Kis, 2017). In most cases, non-renewable resources refer to specific
supply and consumption rates (Györgyi & Kis, 2019; Hashimoto &
Mizuno, 2021).

Fig. 1(a) provides an overview of the literature regarding the most
prevalent solution methodologies. Specifically, 26 out of 47 papers
present exact solution approaches. The majority of these papers are
MIP-based models, while very few present CP-based algorithms (No-
vas, 2019; Novas & Henning, 2014; Zeballos et al., 2010). There
exist some approximation algorithms (Györgyi & Kis, 2017, 2018;
Hashimoto & Mizuno, 2021) and Column Generation solution meth-
ods (Figielska, 2018). Regarding heuristic methodologies, 11 papers
present heuristic solution frameworks that consider problem-specific
information (Andrade-Pineda et al., 2020; Azzi et al., 2012; Herr &
Goel, 2016; Mascis & Pacciarelli, 2002; Trabelsi et al., 2012; Wald-
herr & Knust, 2017) as well as dispatching rules (Elmaraghy et al.,
2000). Regarding meta-heuristic algorithms, the majority of papers
present genetic algorithms (GA) (Chan et al., 2006; Elmaraghy et al.,
2000; Latorre-Núñez et al., 2016; Wong et al., 2009) and other GA-
based solution frameworks (Fan et al., 2022; Li et al., 2016; Soares &
Carvalho, 2020; Zhang et al., 2021). Tabu search is another popular
solution method that can be found in Gröflin et al. (2011), Aschauer
et al. (2017, 2018) and Dabah et al. (2019). Lastly, there is a small
amount of papers that present other types of meta-heuristics, such
as particle swarm optimization (Wong et al., 2009), ant colony opti-
mization (Belaid et al., 2012; Campos Ciro et al., 2016), local search
algorithms (Bitar et al., 2016; Boufellouh & Belkaid, 2020; Mogali,
Barbulescu, & Smith, 2021; Pranzo & Pacciarelli, 2016) as well as large
neighbourhood search (Beezão et al., 2017).

Fig. 1(b) provides an overview of the popular problem variants.
The Job Shop Scheduling Problem (JSSP), the Flow Shop Scheduling
Problem (FSSP) as well as the FJSSP, are the most popular problem
variants. There exists only a handful of papers that study the original
JSSP (Agnetis et al., 2014; Brucker et al., 2006). On the other hand, the
Dual-Resource Constrained Job Shop Scheduling Problem (DRCJSSP)
and the Blocking Job Shop Scheduling Problem (BJSSP) are the most
widely used variants. More specifically, the BJSSP is mostly used to
study cumulative LCB resources with zero capacity (Dabah et al., 2016,
2019; Mogali, Barbulescu, & Smith, 2021; Oddi et al., 2012), while the
DRCJSSP considers only human resources (Elmaraghy et al., 2000; Lei
& Guo, 2014; Li et al., 2016). The FSSP (Belaid et al., 2012; Figielska,
2014, 2018; Trabelsi et al., 2012; Waldherr & Knust, 2017) is also
popular, since it can be used to model assembly line environments
with resource constraints. Furthermore, other FSSP variants like the
Hybrid Flow Shop Scheduling Problem (Azzi et al., 2012; Latorre-
Núñez et al., 2016; Yaurima et al., 2009) and the Permutation Flow
Shop Scheduling Problem (Boufellouh & Belkaid, 2020) have attracted
significant research interest. The generalized FJSSP (Brucker & Schlie,
1990) comes third (Aschauer et al., 2017, 2018; Chan et al., 2006;
Liu et al., 2017; Novas, 2019). Next, the so-called Flexible Manu-
facturing System (FMS) problem is often used to study renewable

resources (Soares & Carvalho, 2020; Zeballos et al., 2010), while the

G.A. Kasapidis et al. European Journal of Operational Research xxx (xxxx) xxx
Table 1
Literature overview.

Cumulative Renewable Non-renewable

WIP LCB Human Equipment Other

Elmaraghy et al. (2000) – – ✓ – – –
Mascis and Pacciarelli (2002) – ✓ – – – –
Grigoriev et al. (2005) – – – – – ✓

Brucker et al. (2006) – ✓ – – – –
Chan et al. (2006) – – – ✓ – –
Wong et al. (2009) ✓ – – ✓ – –
Yaurima et al. (2009) – ✓ – – – –
Zeballos et al. (2010) – – – ✓ – –
Gröflin et al. (2011) – ✓ – – – –
Azzi et al. (2012) ✓ – – – – –
Trabelsi et al. (2012) – ✓ – – – –
Belaid et al. (2012) ✓ – – – – –
Novas and Henning (2014) ✓ – – ✓ – –
Lei and Guo (2014) – – ✓ – – –
Agnetis et al. (2014) – – ✓ – – –
Figielska (2014) – – – ✓ – –
Bitar et al. (2016) – – – ✓ – –
Latorre-Núñez et al. (2016) – – ✓ ✓ – –
Li et al. (2016) – – ✓ – – –
Campos Ciro et al. (2016) – – ✓ – – –
Herr and Goel (2016) – – – – – ✓

Aschauer et al. (2017) – ✓ – – – –
Beezão et al. (2017) – – – ✓ – –
Waldherr and Knust (2017) – – – – ✓ –
Fanjul-Peyro et al. (2017) – – – – ✓ –
Liu et al. (2017) – – – – ✓ ✓

Györgyi and Kis (2017) – – – – – ✓

Liu et al. (2018) – ✓ – – – –
Aschauer et al. (2018) – ✓ – – – –
Fleszar and Hindi (2018) – – – – ✓ –
Figielska (2018) – – – – ✓ –
Györgyi and Kis (2018) – – – – – ✓

Novas (2019) ✓ – – – – –
Dabah et al. (2019) – ✓ – – – –
Li et al. (2019) – – – – ✓ –
Nguyen et al. (2019) – – – – ✓ –
Györgyi and Kis (2019) – – – – – ✓

Soares and Carvalho (2020) – – – ✓ – –
Boufellouh and Belkaid (2020) – – – – – ✓

Andrade-Pineda et al. (2020) – – – – – ✓

Mogali, Barbulescu, and Smith (2021) – ✓ – – – –
Mogali, Smith, and Rubinstein (2021) – ✓ – – – –
Zhang et al. (2021) – – ✓ – – –
Hashimoto and Mizuno (2021) – – – – – ✓

Sha et al. (2021) – – – – ✓ ✓

Fan et al. (2022) – – – ✓ – –
Meloni et al. (2022) – ✓ – – – –
d

Unrelated Parallel Machine Scheduling (UPM) problem serves as a base
model to study renewable resources where operations have different
resource requirements depending on the machine that they are assigned
to Fanjul-Peyro et al. (2017), Fleszar and Hindi (2018), Li et al. (2019).
Lastly, the Single-machine Scheduling (SSP) problem has also received
some attention (Györgyi & Kis, 2017, 2018; Hashimoto & Mizuno,
2021; Herr & Goel, 2016) and has been used as the test bed to examine
the properties of non-renewable resources.

In terms of objective functions, 34 out of 47 papers consider the
makespan as the primary objective. Despite the addition of resource
constraints, the main concern remains to minimize the completion
time of the production schedule. Some papers consider the maximum
lateness and tardiness and these objectives are encountered when due
and release dates of jobs are present (Grigoriev et al., 2005; Györgyi &
Kis, 2017; Herr & Goel, 2016; Nguyen et al., 2019). Alternative objec-
tives include the carbon footprint minimization (Liu et al., 2017), the
machine idle cost (Chan et al., 2006), the maintenance cost (Boufellouh
& Belkaid, 2020) and also the minimization of the amount of tools
used (Zeballos et al., 2010). Lastly, we also notice that 36 out of 47
papers consider only a single objective, while only 11 papers consider

multiple objectives.

3
3. Modelling framework

3.1. Notation

This section presents the CP model of the FJSSP with multiple types
of resource constraints. For consistency, we adopt the notation used
by Kasapidis et al. (2021) for the FJSSP with arbitrary precedence
graphs. Let 𝐽 = {1,… , 𝑙} denote the set of jobs, 𝑀 = {1,… , 𝑚}
enote the set of machines, and 𝛺 = {1,… , 𝑛} denote the set of all the

operations. The set 𝑀𝑖 denotes the set of available machines, where an
operation 𝑖 can be processed. Additionally, let 𝜔−

𝑖 and 𝜔+
𝑖 denote the

single job predecessor and successor operations of an operation 𝑖 (if
any). For completeness, let 𝛺−

𝑖 = {𝜔−
𝑖 } and 𝛺+

𝑖 = {𝜔+
𝑖 } denote two sets

that include the predecessor and successor operation of an operation 𝑖,
respectively. If an operation 𝑖 has no job predecessor and/or successor
operations, then 𝛺−

𝑖 = ∅ and/or 𝛺+
𝑖 = ∅, respectively. The flexibility

𝑓 of the problem describes the average number of machines available
per operation of the problem and can be calculated as: 𝑓 = 1

𝑛
∑𝑛

𝑖=1 |𝑀𝑖|.
Lastly, symbols 𝑖◦𝑗 and 𝑖∗𝑗 are used to denote the first and the last
operations of a job 𝑗 ∈ 𝐽 , respectively.

The above notation is extended by introducing new nomenclature
for modelling renewable, non-renewable and cumulative resources. Let

G.A. Kasapidis et al. European Journal of Operational Research xxx (xxxx) xxx
Fig. 1. Overview of the shop scheduling literature with resource constraints.
𝑅 = {1,… , 𝐿𝑅} denote a set of arbitrary non-renewable resources, with
zero initial inventory, and let 𝑇 = {1,… , 𝐿𝑇 } be a set of renewable tool
resources that may be required during the processing of an operation.
The number of available instances of a tool 𝑟 ∈ 𝑇 is denoted by �̄�𝑟. This
means that no more than �̄�𝑟 instances of 𝑟 can be used simultaneously
for the entire duration of the schedule. Let 𝑇𝑖 ⊆ 𝑇 denote the set of
required tools for an operation 𝑖. Also, let 𝑈 = {1,… , 𝐿𝑈 } be a set
of renewable utility resources. This type of resource is consumed by
a machine 𝑘 ∈ 𝑀 for processing an operation 𝑖 (e.g., consumption
of a utility). Similarly, each resource 𝑟 ∈ 𝑈 has a hard consumption
limit denoted by �̄�𝑟. The requirements of a resource 𝑟 ∈ 𝑈 for the
processing of an operation 𝑖 ∈ 𝛺 on a machine 𝑘 ∈ 𝑀𝑖, is denoted
by 𝑢𝑖,𝑘,𝑟. Note that, 𝑢𝑖,𝑘,𝑟 ≥ 0 ∀𝑟 ∈ 𝑈,∀𝑖 ∈ 𝛺,∀𝑘 ∈ 𝑀𝑖. Given the fact
that the tool and utility resources are both renewable, tools could be
modelled using the formulation of utility resources with 𝑢𝑖,𝑘,𝑟 = 1,∀𝑘 ∈
𝑀𝑖. Nevertheless, for the sake of simplicity, we choose to keep their
representation separate.

Let 𝑊 = {1,… , 𝐿𝑊 } be a set of cumulative resources in the form
of WIP buffers. The main motivation behind this resource type is that
it can be used to represent work-in-progress buffers that store non-
renewable resources. In particular, for each non-renewable resource
𝑟 ∈ 𝑅, the associated cumulative resource is denoted by 𝑊𝑟, while the
maximum capacity of a cumulative resource 𝑧 ∈ 𝑊 is denoted by �̄�𝑧.
Also, every machine is equipped with a limited capacity buffer. This
is used to temporarily ‘‘hold’’ operations that have been processed on
the corresponding machine, but cannot leave the machine, until the
processing of their job successor has started. In other words, the job
operation currently completed at a given machine can proceed when
the machine of their job successor becomes available, and this is the
so-called blocking effect. The size of the limited capacity buffer of a
machine 𝑘 ∈ 𝑀 is denoted by 𝑦𝑘.

Every job 𝑗 ∈ 𝐽 can be associated with two sets of resources
𝑅−
𝑗 , 𝑅

+
𝑗 ⊆ 𝑅 that correspond to the resources required to initiate the

processing of a job, and produced once the job processing finishes. Note
that, there cannot exist a resource that is both required and produced
by a job, i.e., 𝑅−

𝑗 ∩ 𝑅+
𝑗 = ∅, ∀𝑗 ∈ 𝐽 . Nevertheless, there can exist jobs

𝑗 ∈ 𝐽 that do not require or produce resources, i.e., 𝑅+
𝑗 = ∅ ∧ 𝑅−

𝑗 = ∅.
The amount of a resource 𝑟 ∈ 𝑅−

𝑗 ∪ 𝑅+
𝑗 required or produced by a

job 𝑗 is denoted by 𝑄𝑗,𝑟. The required job resources are consumed
when the first operation of a job 𝑗, 𝑖◦𝑗 starts being processed, while the
resources are produced when the last operation of the job 𝑖∗𝑗 finishes
being processed. A Table with the symbols and their corresponding
descriptions can be found on Appendix A of the online companion.

3.2. A motivating example

To demonstrate the effect of the resource constraints on the
makespan, we present a small example of an FJSSP problem with
resource constraints. Let us consider a problem with 𝑙 = 4, 𝑛 = 5,

𝑚 = 3, 𝐿𝑇 = 2 and 𝐿𝑈 = 1. Also, |𝑀𝑖| = 1, ∀𝑖 ∈ 𝛺, which means that

4
every operation can be assigned to exactly one machine, and |𝑇𝑖| = 1,
∀𝑖 ∈ 𝛺, which means that every operation requires a single tool. The
information of the problem is presented in Table 2. We also assume that
the limited capacity buffer of every machine 𝑘 ∈ 𝑀 has zero capacity,
i.e. 𝑦𝑘 = 0, and that the available instances for the tool resources are
�̄�1 = 3 and �̄�2 = 1.

Fig. 2(a) presents the Gantt chart of an optimal schedule and the
consumption of 𝑈1 when no resource constraints are imposed. The
value of the objective 𝐶𝑚𝑎𝑥 is 15, while the maximum consumption
of 𝑈1 is 6 units. If a tighter consumption limit is considered for 𝑈1,
i.e., �̄�1 = 4, the operations 𝑂𝑃 (2) and 𝑂𝑃 (3) have to be executed
after operation 𝑂𝑃 (5), so that the resource consumption limit is re-
spected. This results in an increased value of the objective by 4 units,
i.e. 𝐶𝑚𝑎𝑥 = 19 (see Fig. 2(b)). Furthermore, if limited capacity buffers of
zero capacity are also considered, some operations are prevented from
starting right after their machine predecessors. As shown in Fig. 2(c),
𝑂𝑃 (4) is forced to start five time units later, increasing the makespan
to 𝐶𝑚𝑎𝑥 = 20. Lastly, if tool resources are also present, the execution of
𝑂𝑃 (4) (and subsequently the makespan) is further shifted by 3 units,
since operations 𝑂𝑃 (2) and 𝑂𝑃 (4) require the same tool available in
one instance only, as shown in Fig. 2(d). Evidently, even for very small
problems, resource constraints may cause a significant increase to the
makespan, and the impact is even more significant when combinations
of resource constraints are considered.

3.3. A constraint programming formulation

The literature has shown that CP is particularly effective for solving
not only variants of the FJSSP (Kasapidis et al., 2021; Latorre-Núñez
et al., 2016) but also variants of the RCPSP which can be considered as
a generalization of the FJSSP (Gómez Sánchez et al., 2023). CP methods
use global constraints, which encapsulate sets of simpler constraints.
These constraints enable the design of simpler and more compact
formulations, while they are usually connected to efficient filtering
algorithms that can aid the domain filtering process and the constraint
propagation. Specifically for scheduling problems with resource con-
straints, there exist the ‘cumulative’ (Aggoun & Beldiceanu, 1993) and
the ‘disjunctive’ (Carlier, 1982) global constraints. The common basis
between our CP-model and the majority of CP methodologies that have
been developed for FJSSP variants with resource constraints and the
RCPSP is the set of these global constraints.

The effectiveness of the latest CP frameworks on production
scheduling applications is highlighted in the detailed literature review
of Prata et al. (2024), who show that the majority of the publica-
tions study variants of shop-scheduling problems and more generic
scheduling problems with resource constraints, like the RCPSP. In
particular, Novas (2019) developed a CP model to solve a complex
resource constrained FJSSP with lot/sub-lot streaming, no-wait con-
straints and a shared WIP buffer. The proposed methodology was

adopted and adapted by Zeballos et al. (2010) for solving a resource

G.A. Kasapidis et al.

a
t
c

European Journal of Operational Research xxx (xxxx) xxx
Table 2
Example instance of a FJSSP with resource constraints.

Operation Job Predecessor Machine Processing time Utility consumption Tool

1 1 – 1 5 1 1
2 1 1 2 3 3 2
3 2 – 2 6 3 1
4 3 – 1 10 1 2
5 4 – 3 10 1 1
Fig. 2. Gantt charts and resource consumption plots for different resource constraint combinations.
A
p
i
t

constrained Flexible Manufacturing System problem that focuses on the
allocation of production jobs to machines and the allocation of tools
to the available workstations. With regards to the RCPSP, researchers
have been using these global constraints to develop models for more
generalized scheduling problems. More specifically, Trojet et al. (2011)
propose a CP model based on the cumulative constraint to solve an
RCPSP with additional energy consumption constraints. Kreter et al.
(2018, 2017) propose new CP models that incorporate novel constraint
propagators for the RCPSP and the resource availability cost problem
(RACP) with calendar constraints, respectively. The authors conducted
extensive computational experiments that showed how lazy clause
generation combined with tailor-made constraint propagators can be
used to significantly improve the performance of the CP, compared not
only to other state-of-the-art CP solvers, but also to MILP formulations.

In this paper, we adopt the IBM CP Optimizer nomenclature. The
IBM CP Optimizer employs the so-called ‘‘interval’’ variables that can
be used to represent a task or an activity. The interval variables are
defined by three integer attributes, a starting time, an ending time and
a duration of the interval. In the context of CP solvers, the interval
variables may be defined as optional variables, i.e., they may or may
not be present in a feasible solution of a problem. According to Laborie
et al. (2018), the domain of an interval variable 𝑎 is defined as:
𝑑𝑜𝑚(𝑎) = {⊥} ∪ {[𝑠, 𝑒) ∶ 𝑠, 𝑒 ∈ Z, 𝑠 ≤ 𝑒}, where 𝑠, 𝑒 are the earliest start
nd latest completion times of 𝑎, respectively. The symbol ⊥, is used
o denote the truth value ‘‘False’’, i.e., ⊥ signifies a proposition that
annot be true under any circumstances. The CP Optimizer provides a
 f

5
large set of function expressions, constraint expressions and cumulative
function expressions that can be applied on interval variables. This rich
framework lends itself well to model complex scheduling problems with
a wide variety of constraints. More specifically, function expressions
can be used to access information regarding interval variables during
the search, constraint expressions can be used to construct constraints
that involve designated model variables by utilizing function expres-
sions, while cumulative function expressions can be used to describe
the contribution of interval variables to discrete linear functions over
time. We also refer the reader to Novas (2019) and Kasapidis et al.
(2021) for a more comprehensive description of interval and sequence
interval variables of the CP Optimizer.

During the search process, the CP optimizer progressively reduces
the domains of all the variables of the problem. When the domain of
an interval variable 𝑎 becomes a singleton set, i.e., |𝑑𝑜𝑚(𝑎)| = 1, the
variable is labelled as ‘‘fixed’’ and is denoted by 𝑎. Subsequently, if the
domain of all the decision interval variables is reduced to a singleton
set, a valid solution for the problem has been found. At this point, an
interval variable 𝑎 ∶ ⊥ ∩ 𝑑𝑜𝑚(𝑎) = ∅, is also labelled as ‘‘present’’ in
the solution, while a variable 𝑎 ∶ 𝑑𝑜𝑚(𝑎) = {⊥} is labelled as ‘‘absent’’.

bsent variables are not considered by any constraint expression of the
roblem as if they were never defined. On the other hand, when a fixed
nterval variable 𝑎 is present, several function expressions can be used
o calculate the attributes associated with the interval variable. The
unction expressions that are used in this paper are presented below:

G.A. Kasapidis et al.

c
i

European Journal of Operational Research xxx (xxxx) xxx
i. 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝑎) defines a function expression that returns true
when the interval variable 𝑎 is present in the incumbent solution
of the CP Optimizer, and false otherwise.

ii. 𝐸𝑛𝑑𝑂𝑓 (𝑎) defines a function expression that returns the comple-
tion time of the interval variable 𝑎 in the incumbent solution of
the CP Optimizer if 𝑎 is present.

iii. 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝑎) defines a function expression that returns the start
time of the interval variable 𝑎 in the incumbent solution of the
CP Optimizer if 𝑎 is present.

Moreover, the following constraint expressions are used to define
onstraints that involve interval and/or sequence interval variables,
.e., ordered lists of interval variables:

i. 𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑎, 𝑏) denotes a constraint between two interval
variables 𝑎, 𝑏 that ensures the start time of variable 𝑏 will be
greater or equal to the end time of variable 𝑎.

ii. 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑎, 𝐵) denotes a constraint that sets the domain of
interval variable 𝑎 to the set 𝐵, i.e., if 𝑎 is present in the
incumbent solution, then exactly one of the interval variables
𝑏 ∈ 𝐵 is also present in the incumbent solution. Also, the
attributes (start time, completion time and length) of 𝑎 and 𝑏
will be identical.

iii. 𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝜎) denotes a constraint on a set of variables 𝜎 that
ensures there are no overlapping time windows between any
interval variables included in 𝜎.

Discrete linear functions in the IBM CP Optimizer are modelled
using the notion of step-wise functions, which are special cases of
piece-wise linear functions. A piece-wise linear function is a function
comprised of a number of segments, so that the function per segment
is linear (Leenaerts & Bokhoven, 1998). A step-wise function is a special
case of a piece-wise linear function, where the derivative of the function
per segment is equal to zero, i.e., the function has a constant value
per segment. Given that, the IBM CP Optimizer offers the so-called
cumulative function expressions that can be used to define step-wise
functions over the time-span of interval variables. Moreover, using
constraint expressions, the values of these functions can be constrained
as required. In this paper, we use the following expressions to model
the consumption and production of resources:

i. 𝑃𝑢𝑙𝑠𝑒(𝑎, ℎ) defines a cumulative function whose value is equal
to ℎ during the execution time window of an interval variable 𝑎
and 0 otherwise, if 𝑎 is present in the solution.

ii. 𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝑎, ℎ) defines a cumulative function whose value is
equal to ℎ at the start of the interval variable 𝑎, if 𝑎 is present
in the solution.

iii. 𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝑎, ℎ) defines a cumulative function whose value is
equal to ℎ after the end of the interval variable 𝑎, if 𝑎 is present
in the solution.

iv. 𝐴𝑙𝑤𝑎𝑦𝑠𝐼𝑛(𝐸, 𝑎, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) denotes a constraint that limits the val-
ues of the cumulative function expression 𝐸 within the domain
[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] for the time interval defined by the interval variable
𝑎, if 𝑎 is present in the solution.

Given the above, the examined problem can be modelled as follows.
For every operation 𝑖 ∈ 𝛺, a decision interval variable 𝜏𝑖 is defined. In
addition, a decision interval variable 𝜙𝑖,𝑘 is defined for every machine
𝑘 ∈ 𝑀𝑖, with its length set to 𝜂𝑖,𝑘, where 𝜂𝑖,𝑘 is used to denote the
processing time of operation 𝑖 on the machine 𝑘. In order to calculate
the waiting times of operations in limited capacity buffers, for every
operation 𝑖 ∈ 𝛺 and a corresponding machine 𝑘 ∈ 𝑀𝑖, we define the
decision variable 𝜙𝑏

𝑖,𝑘. The length of the decision interval variable 𝜙𝑏
𝑖,𝑘

is not fixed, since the waiting time of any operation on its machine is
not known beforehand. We also define a set 𝜇𝑖 = {𝜙𝑖,𝑘,∀𝑘 ∈ 𝑀𝑖} to
represent all the available execution modes per operation 𝑖, i.e., all the

different machines where an operation 𝑖 can be processed. The set 𝜇𝑖

6
is also used to denote the domain set of variable 𝜏𝑖. Lastly, a sequence
interval decision variable 𝜎𝑘 is defined per machine 𝑘 for the set of
interval variables 𝜎𝑘 = {𝜙𝑖,𝑘,∀𝑖 ∈ 𝛺}. The cumulative function that
accumulates the usage of the limited capacity buffer of a machine 𝑘 is
denoted by 𝑌𝑘. The CP formulation is given below:

minimize𝐶𝑚𝑎𝑥 (1)

subject to the conditions given by Eqs. (2) to (14) in Box I.
The objective (1) refers to the minimization of the makespan. Con-

straints (2) are used to enforce a unique selection of the available modes
for the interval variable 𝜏𝑖 out of the set 𝜇𝑖. Constraints (3) are used
to cover the precedence relationships, i.e., each operation 𝑖 can start
as soon as its single job predecessor 𝜔−

𝑖 ∈ 𝛺−
𝑖 (if any) has finished.

Constraints (4) ensure that the interval variables included in 𝜎𝑘 do not
overlap, since a machine can execute only one operation at a time.
They also ensure that each operation starts after its machine predeces-
sor has finished. Constraints (5) and (6) are used to accumulate the
consumption of utility and tool resources, respectively. They also make
sure that the utility resource consumption limits as well as the available
tool instances are respected. Constraints (7)–(11) are used to describe
the usage of limited capacity buffers. In more detail, Constraints (7)
impose a waiting time on a buffer that belongs to the machine where
the operation was processed. Constraints (8) accumulate the usage
of the machine waiting buffers, while Constraints (9) make sure that
processing on a machine can start only when the corresponding buffer
is not full. Constraints (10) and (11) define the duration of the waiting
of an activity to the machine buffer. More specifically, Constraints (10)
ensure that waiting on the buffer starts immediately after processing on
the machine finishes, while Constraints (11) ensure that the activity is
removed from the buffer, when the job successor of an operation starts
being processed. Constraints (12) are used to accumulate the produc-
tion and consumption of each generalized resource, while Constraints
(13) accumulate the usage of resources on their corresponding work in
progress buffer. Lastly, Constraint (14) is responsible for the calculation
of the makespan.

4. The adaptive large neighbourhood search-constraint program-
ming method

Large neighbourhood search (LNS) is a meta-heuristic algorithm
that was first introduced by Shaw (1998), which is similar to the ruin
and re-create mechanism proposed by Schrimpf et al. (2000). More
specifically, at each iteration, a part of the solution is destroyed and
then repaired using destruction and repair operators, respectively. The
adaptive LNS is an extension of LNS first introduced by Ropke and
Pisinger (2006). ALNS uses multiple destruction and repair operators,
which are favoured based on their performance during the search. The
literature has shown that ALNS is effective in solving a wide variety
of problems like vehicle routing (Hellsten et al., 2020; Kovacs et al.,
2012) and shop scheduling (Rifai et al., 2016; Song et al., 2022). We
refer the reader to Pisinger and Ropke (2007) for a more comprehensive
description of the ALNS.

There exists literature on solution methodologies that combine
ALNS and CP frameworks. Palpant et al. (2004) developed an LNS-
CP algorithm for the Resource Constrained Project Scheduling Problem
(RCPSP), which decomposes the main problem into subproblems and
subsequently calls a CP solver to solve the sub-problems and com-
pose a complete solution. Hojabri et al. (2018) developed a similar
scheme for the VRP with multiple synchronization constraints. Their
CP-based ALNS uses well-established destruction operators from the
VRP literature, while a CP model is used to solve the main prob-
lem. Sacramento et al. (2020) propose a more generic math-heuristic
ALNS for solving the Port Scheduling Problem. The authors used a CP
solver as a search intensification mechanism to further improve local
optima produced by a local search heuristic. Recently, similar hybrid
algorithms have been proposed for shop scheduling problems. Abreu

G.A. Kasapidis et al.

a
v
a
e
i
a
c
d
T
t
d
t
C
s
s
C
m
p

F
u
r
a
t
d
a
&
r
t
p
u
i
o
m

European Journal of Operational Research xxx (xxxx) xxx
𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝜏𝑖, 𝜇𝑖) ∀𝑖 ∈ 𝛺 (2)

𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑖) ≥ 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑗) ∀𝑖 ∈ 𝛺,∀𝑗 ∈ 𝛺−
𝑖 (3)

𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝜎𝑘) ∀𝑘 ∈ 𝑀 (4)
𝑛
∑

𝑖=1

∑

𝑘∈𝑀𝑖

𝑃𝑢𝑙𝑠𝑒(𝜙𝑖,𝑘, 𝑢𝑖,𝑘,𝑟) ≤ �̄�𝑟 ∀𝑟 ∈ 𝑈 (5)

𝑛
∑

𝑖=1|𝑟∈𝑇𝑖

𝑃𝑢𝑙𝑠𝑒(𝜏𝑖, 1) ≤ �̄�𝑟 ∀𝑟 ∈ 𝑇 (6)

𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑏
𝑖,𝑘) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑖,𝑘) ∀𝑖 ∈ 𝛺,∀𝑘 ∈ 𝑀𝑖 (7)

𝑌𝑘 =
𝑛
∑

𝑖=1
𝑃𝑢𝑙𝑠𝑒(𝜙𝑏

𝑖,𝑘, 1) ∀𝑘 ∈ 𝑀,𝑘 ∈ 𝑀𝑖 (8)

𝐴𝑙𝑤𝑎𝑦𝑠𝐼𝑛(𝑌𝑘, 𝜙𝑖,𝑘, 0, 𝑦𝑘) ∀𝑖 ∈ 𝛺,∀𝑘 ∈ 𝑀𝑖 (9)

𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜙𝑏
𝑖,𝑘) = 𝐸𝑛𝑑𝑂𝑓 (𝜙𝑖,𝑘) ∀𝑖 ∈ 𝛺,∀𝑘 ∈ 𝑀𝑖 (10)

𝐸𝑛𝑑𝑂𝑓 (𝜙𝑏
𝑖,𝑘) = 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑗) ∀𝑖 ∈ 𝛺,∀𝑗 ∈ 𝛺+

𝑖 ,∀𝑘 ∈ 𝑀𝑖 (11)
∑

𝑗∈𝐽 |𝑟∈𝑅+
𝑗

𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑖∗𝑗 , 𝑄𝑗,𝑟) −
∑

𝑗∈𝐽 |𝑟∈𝑅−
𝑗

𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑖◦𝑗 , 𝑄𝑗,𝑟) ≥ 0 ∀𝑟 ∈ 𝑅 (12)

∑

𝑟∈𝑅|𝑊𝑟=𝑧

{

∑

𝑗∈𝐽 |𝑟∈𝑅+
𝑗

𝑆𝑡𝑒𝑝𝐴𝑡𝐸𝑛𝑑(𝜏𝑖∗𝑗 , 𝑄𝑗,𝑟) −
∑

𝑗∈𝐽 |𝑟∈𝑅−
𝑗

𝑆𝑡𝑒𝑝𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝜏𝑖◦𝑗 , 𝑄𝑗,𝑟)
}

≤ �̄�𝑧 ∀𝑧 ∈ 𝑊 (13)

𝐶𝑚𝑎𝑥 ≥ 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑖) ∀𝑖 ∈ 𝛺 (14)

Box I.
u
p
s

𝑝

c
o
i
s
c
i
a
T
s
i
i
e

nd Nagano (2022) proposed an ALNS-CP algorithm for a complex
ariant of the open-shop scheduling problem that incorporates non-
nticipatory sequence-dependent setup times. The authors highlight the
fficiency of the hybrid scheme, especially when large scale problem
nstances are considered. Lastly, Yunusoglu and Yildiz (2023) studied
variant of the FJSSP with lot streaming, setup and transport resource

onstraints. A CP-based LNS algorithm was proposed that uses a single
estruction operator to remove a set of variables from the solution.
he authors proposed a custom branching strategy to guide the CP
owards the near-optimal repair of the partial solution. One of the major
ifferences of our ALNS-CP is that we use information gathered from
he search history to extract useful constraints that are fed into the
P model. These constraints are used to purposefully fix part of the
olution, that belongs to high quality solutions encountered during the
earch, while re-solving the remaining part of the solution by calling the
P solver. We describe, in the following of the paper, the reasons that
ake this scheme particularly efficient in solving job shop scheduling
roblems with resource constraints.

The aim of the ALNS-CP is to solve efficiently a wide variety of
JSSP variants with resource constraints. In particular, the ALNS-CP
ses well-known destruction operators that are effective for a wide
ange of scheduling problems, according to the relevant literature. In
ddition, we propose new operators that use the search history to guide
he search to promising regions of the solution space. Traditionally, the
estruction operators in ALNS are used to remove some elements from
solution, or in other words to destruct a part of a solution (Ropke
Pisinger, 2006), and subsequently heuristic procedures are used to

epair that semi-complete solution. To the contrary, in our ALNS-CP,
he destruction operators produce a set of extra constraints to preserve
art of the solution, while at the same time reconstruct the remaining
nfixed part of the solution by calling the CP solver. Based on this,
nstead of destruction operators we use the term constraint extraction
perators throughout the paper, as it is more appropriate. It is worth

entioning that the proposed scheme can easily be adapted to solve j

7
even more enhanced shop scheduling variants by simply altering the
underlying CP model.

Algorithm 1 provides an overview of the proposed ALNS-CP. First,
the solution sets 𝐸 ,𝑇 are initialized. The set 𝐸 stores the ‘elite’
solutions encountered during the search, while 𝑇 is used to store the
solutions of the current search trajectory. Then, an initial solution 𝑠
is obtained by the CP solver using the 𝐶𝑃𝑆𝑜𝑙𝑣𝑒𝐹𝑢𝑙𝑙 meta-method. In
general, the CP solver is initialized using three arguments, (a) a start
solution, (b) a set of constraints to satisfy, and (c) a time limit. In
this case, no starting solution is used, the default set of constraints 
(Constraints (1)—(14)) is provided, while a self-tuned parameter 𝜃 is
sed as the time limit. The main loop of the algorithm consists of four
hases: (a) the operator selection, (b) the constraint generation, (c) the
olution reconstruction and (d) the improvement phase.

At the operator selection phase, a constraint extraction operator
is selected from the group of available operators  . Note that,

the selection is done in a roulette wheel fashion, which favours the
operators that perform better at each iteration (see Section 4.3 for more
details). The framework uses seven constraint extraction operators that
are presented in Section 4.1. At the constraint generation phase, a set
of constraints ́ is generated as a result of the application of 𝑝. Every
onstraint 𝑐 ∈ ́ refers to an operation-to-machine assignment or an
peration-to-operation relationship that could be fixed or neglected
n the current iteration of the algorithm. The additional constraints
ignificantly narrow the solution space and as a result the CP Solver
an find an optimal solution, given the remaining non-fixed variables,
n short computational times. The set of constraints ́ is appended with
dditional constraints that are created by using the solutions of 𝑇 .
hese constraints ensure that every time the CP solver is called, the
earch typically avoids revisiting solutions that have been encountered
n the past. This rationale is inspired by the Tabu Search principle,
ntroduced by Glover and Laguna (1997) according to which solution
lements (or solution structures) are stored in a ‘‘tabu’’ list (our tra-

ectory list) so that the local search algorithm (our CP solver) avoids

G.A. Kasapidis et al.

t
s
f
r
d
𝑠

s
a
i
s

o
t
t
n
t
c


o
w

c
t
L



4

R
o
s
A
i
o
𝑖
i
r
p
o
o

4

w
m
o

𝐷

European Journal of Operational Research xxx (xxxx) xxx
revisiting them during the search. This process is described in more
detail in Section 4.2.2.

At the reconstruction phase, the CP solver solves the problem using
the 𝐶𝑃𝑆𝑜𝑙𝑣𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 meta-method. This method is used to denote
hat the CP-solver iteratively explores the search space for improved
olutions. The search continues until no further improvement can be
ound within the specified time limit. Upon completion, the method
eturns a set of solutions  that includes all the encountered solutions
uring the search. This time the CP solver is initialized with solution
as the starting point of the search, the combined set of constraints
∪ ́, and 𝜃 as the time limit per iteration of the solver. Next, every

olution 𝑠 ∈  is inserted into 𝐸 as long as it satisfies specific criteria
s described in Section 4.2. Note that the size of the population 𝐸

s controlled by the parameter 𝑁𝐸 . Lastly, 𝑠 is replaced by the best
olution of  in terms of the makespan.

The improvement phase focuses on further improving the quality
f the solution 𝑠 obtained earlier if 𝐶𝑠

𝑚𝑎𝑥 < 𝐶 �̂�
𝑚𝑎𝑥, where �̂� denotes

he best solution found so far in terms of the makespan. The aim is
o intensify the search in the region of the solution space around the
ew best solution 𝑠. For this purpose, the CP solver is called by using
he following parameters: 𝑠 as the starting solution, the original set of
onstraints  and the time limit 𝜃. Next, the solution 𝑠 is inserted to
𝐸 and, 𝑇 if possible, the adaptive parameters 𝜌 and 𝜃 are updated

(see Section 5.1 for more details) and the framework continues to the
next iteration. Lastly, the overall solution framework terminates when
no improvement to the best solution found is observed for a number of
𝐺 iterations.

Algorithm 1 ALNS - CP
Require: 𝐺, 𝑁𝐸 , 𝑁𝑇 , 
1: 𝐸 ← ∅, 𝑇 ← ∅, 𝑔 ← 0, �̂� ← ∅, ́ ← ∅
2: 𝑠 = CPSolveFull(∅, , 𝜃)
3: while 𝑔 < 𝐺 do
4: 𝑝 = SelectOperator() ⊳ 1. Operator Selection
5: ́ = 𝑝(𝑠, 𝜌, 𝑇) ⊳ 2. Constraint Extraction
6:  ← CPSolveSequential(s, ́ ∪ , 𝜃) ⊳ 3. Solution Reconstruction
7: for each �́� ∈  do
8: AddSolutionToPool(�́�, 𝐸)
9: end for

10: 𝑠 = argmin
∀�́�∈

𝐶𝑠
𝑚𝑎𝑥

11: if 𝐶𝑠
𝑚𝑎𝑥 < 𝐶 �̂�

𝑚𝑎𝑥 then ⊳ 4. Improvement Phase
12: 𝑠 ← CPSolveFull(𝑠, , 𝜃)
13: 𝑔 ← 0, 𝑇 ← 0, �̂� ← 𝑠
14: end if
15: UpdateAdaptiveParameters(𝜌, 𝜃)
16: AddSolutionToPool(𝑠, 𝑇)
17: AddSolutionToPool(𝑠, 𝐸)
18: 𝑔 ← 𝑔 + 1
19: end while
20: return �̂�

4.1. The constraint extraction operators

A core component of our ALNS-CP is the set of the constraint
extraction operators. The basic version of ALNS removes some elements
or structures of the solution by using destruction operators, and subse-
quently re-inserts the removed elements back into the solution by using
repair operators. In our proposed ALNS-CP, the constraint extraction
operators play the role of the destruction operators. At each iteration,
a set of operations 𝐷 ⊂ 𝛺 is selected. Instead of removing these
perations and trying to re-insert them with a heuristic mechanism,
e form a set of constraints ́ that is appended to the original set of

constraints . In this way, we preserve a part of the solution, while
‘‘destructing’’ and ‘‘rebuilding’’ the remaining part. The number of
operations selected by every operator is equal to 𝜌𝑛, where 0 < 𝜌 ≤ 1
is a self-tuned parameter. In the following, we describe in detail the
proposed constraint extraction operators.
 (

8
4.1.1. The time window operator
Given the current solution 𝑠, the time window operator selects the

operations that are being processed within a time window [𝑤𝑠𝑡𝑎𝑟𝑡, 𝑤𝑒𝑛𝑑],
and stores them in a set 𝐷. Subsequently, the machine assignments and
the machine precedence relationships of the remaining operations are
fixed. The size of the time window is calculated based on the number
of selected operations 𝜌𝑛. In particular, the operator assumes that every
operation 𝑖 ∈ 𝛺, has a contribution of 𝐶𝑠

𝑚𝑎𝑥
𝑛 to the makespan. Therefore,

since 𝜌𝑛 operations are removed, the corresponding time span is 𝜌𝐶𝑠
𝑚𝑎𝑥

and it is described in Eq. (15) below:

�̄� = |𝑤𝑒𝑛𝑑 −𝑤𝑠𝑡𝑎𝑟𝑡| = 𝜌𝐶𝑠
𝑚𝑎𝑥. (15)

The start of the time window 𝑤𝑠𝑡𝑎𝑟𝑡 ∈ [0, 𝐶𝑠
𝑚𝑎𝑥 − �̄�] is selected at

random. Then, the set 𝐷 is populated as follows:

𝐷 = {𝑖 ∶ 𝑖 ∈ 𝛺 ∧ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑖) ≤ 𝑤𝑒𝑛𝑑 ∧ 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑠𝑖) ≥ 𝑤𝑠𝑡𝑎𝑟𝑡}. (16)

Note that, 𝜏𝑠𝑖 is used to denote the value of the variable 𝜏𝑖 in a solution 𝑠.
For every operation 𝑖 ∈ 𝛺⧵𝐷, its machine assignment is enforced to

the corresponding value in 𝑠 by imposing the following set constraints:

́𝑀 = {𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑖,𝑘) = 1, ∀𝑘 ∈ 𝑀𝑖 ∶ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠
𝑖,𝑘) = 1 ∀𝑖 ∈ 𝛺 ⧵𝐷}

(17)

The machine precedence relationships for all the operations of 𝛺⧵𝐷
are enforced using the following set of constraints:

́𝑅 = {𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝜏𝑖, 𝜏𝑗) ∀𝑘 ∈ 𝑀𝑖 ∩𝑀𝑗 ∶

𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠
𝑖,𝑘) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠

𝑗,𝑘) ∧ 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑠𝑖)

≤ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑗), 𝑖 ≠ 𝑗 ∀𝑖, 𝑗 ∈ 𝛺 ⧵𝐷} (18)

Constraints (17) and (18) ensure that all the operations that are pro-
essed outside the time window [𝑤𝑠𝑡𝑎𝑟𝑡, 𝑤𝑒𝑛𝑑], are processed following
he same order and on the same machine as denoted by the solution 𝑠.
astly, the set of constraints ́ is defined as follows:

́ = ́𝑀 ∪ ́𝑅 (19)

.1.2. The block operator
This operator was first introduced by Palpant et al. (2004) for the

CPSP. In this paper, we adapt it for the FJSSP. The goal of this
perator is to select 𝜌𝑛 operations that are processed in parallel in a
olution 𝑠. Algorithm 2 presents an overview of the block operator.
t first, an operation 𝑖 ∈ 𝛺 is selected at random and it is inserted

nto the set 𝐷 and a queue structure 𝑄. In an iterative fashion, the
perator removes the first operation 𝑗 from 𝑄. Then, every operation
that satisfies 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑖) ≤ 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑠𝑗) ς 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑠𝑖) ≥ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑗)

s added to 𝐷 and appended to 𝑄. This process is repeated until the
equired number of operations 𝜌𝑛 is selected. The constraint generation
rocess for this operator is identical to the time window extraction
perator and therefore, Eqs. (17)–(19) can be used to populate the set
f constraints ́.

.1.3. The machine removal operator
This operator focuses on a random subset of machines �̄� ⊆ 𝑀 ,

here |�̄�| = 𝜌𝑚. Next, all the operations that are scheduled on any
achine 𝑘 ∈ �̄� in a solution 𝑠 are stored in 𝐷. More specifically, the

peration set 𝐷 is populated as follows:

= {𝑖 ∶ 𝑖 ∈ 𝛺 ∧ ∃𝑘 ∈ �̄� ∶ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠
𝑖,𝑘) = 1} (20)

Similarly to the time window and the block operators, the Eqs. (17)–
́
19) can be used to extract the required constraints stored in set .

G.A. Kasapidis et al.

m
a

s

e


𝑂

a
s

i
f
o
o



T
o
s
s

4

s
𝐴
v

c



𝑂
a
a
s

4

e
a
1







4

R
s
t
m
b
e
s
w

𝑂

s

f
t

𝐵

m

𝐷

T
s
𝑖
c
w
i



c
{
{
{

European Journal of Operational Research xxx (xxxx) xxx
Algorithm 2 The block operator
Require: s, 𝜌, n
1: Select at random 𝑖 ∈ 𝛺
2: Create queue 𝑄, 𝐷 ← ∅
3: 𝑄.push(𝑖)
4: 𝐷 = {𝑖}
5: while |𝐷| < 𝜌𝑛 do
6: 𝑗 ← 𝑄.pop()
7: 𝑉 ← ∅
8: for each 𝑖 ∈ 𝛺 ∶ 𝑖 ∉ 𝐷 do
9: if 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑖) ≤ 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑠𝑗) ς 𝐸𝑛𝑑𝑂𝑓 (𝜏𝑠𝑖) ≥ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜏𝑠𝑗) then

10: 𝑉 = 𝑉 ∪ {𝑖}
11: end if
12: end for
13: Shuffle 𝑉
14: for each 𝑖 ∈ 𝑉 do
15: 𝑄.push(𝑖)
16: 𝐷 = 𝐷 ∪ {𝑖}
17: end for
18: end while
19: return

4.1.4. The Machine Assignment Operator I
The main aim of the Machine Assignment Operator I (MAO-I) is to

identify operation-to-machine assignments that typically exist in high
quality solutions. To extract this information, we use the set of elite
solutions 𝐸 and a memory structure 𝑂𝑀 , which we call a frequency

ap. This memory structure is populated using the information from
selected subset of solutions 𝑆 ⊂ 𝐸 , with |𝑆| = 𝜆𝑁𝐸 , where 𝜆 is

a parameter (see Sections 5.1 and 5.2 for more details). In particular,
𝑂𝑀 is represented by a two-dimensional matrix and holds the informa-
tion regarding the assignment of single operations to machines. Every
element 𝑂𝑀𝑖,𝑘 reflects the preference of an operation 𝑖 ∈ 𝛺 to be
cheduled at the machine 𝑘 ∈ 𝑀𝑖.

The frequency map 𝑂𝑀 is initialized as follows: At first, the set of
lite solutions 𝑆 is populated by randomly selecting 𝜆𝑁𝐸 solutions from
𝐸 . Next, all elements of 𝑂𝑀 are calculated using the formula below:

𝑀𝑖,𝑘 = 1
|𝑆|

∑

𝑠∈𝑆
𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠

𝑖,𝑘). (21)

Note that, 𝜙𝑠
𝑖,𝑘 is used to denote the value of the variable 𝜙𝑖,𝑘 in

solution 𝑠, while the normalization of Eq. (21) using the number of
elected solutions, ensures that 0 ≤ 𝑂𝑀𝑖,𝑘 ≤ 1.

After the initialization of the frequency map 𝑂𝑀 , the operator
MAO-I populates the set 𝐷 with a random selection of 𝜌𝑛 operations.
Next, the operator identifies a set of operation-to-machine assignments
𝐴𝑖 ⊆ 𝑀𝑖 ∶ 𝑂𝑀𝑖,𝑘 ≤ 𝜉 ∀𝑘 ∈ 𝑀𝑖,∀𝑖 ∈ 𝐷. The parameter 𝜉 is used to
mplicitly control the size of 𝐴𝑖, i.e., the smaller the value of 𝜉 is, the
ewer elements of 𝑂𝑀 are selected. More information about the values
f the parameter 𝜉 are presented in Section 5.1. At a next step, the set
f constraints ́ is populated as follows:

́ = {𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑖,𝑘) = 0 ∀𝑘 ∈ 𝐴𝑖,∀𝑖 ∈ 𝐷} (22)

In the special case where 𝐴𝑖 = ∅, no constraints are extracted.
he elements of 𝑂𝑀 that have lower values typically represent rare
peration-to-machine assignments, and by imposing the associated con-
traints, we enforce the CP model to exclude them from any new
olution obtained during the search.

.1.5. The machine assignment operator II
Similar to MAO-I, MAO-II populates the set 𝐷 by using a random

election of 𝜌𝑛 operations. This operator identifies a set of assignments
𝑖 ⊆ 𝑀𝑖 ∶ 𝑂𝑀𝑖,𝑘 ≥ 1 − 𝜉,∀𝑘 ∈ 𝑀𝑖,∀𝑖 ∈ 𝐷. As a result, the smaller the

alue of 𝜉 is, the more elements of 𝑂𝑀 are selected. Next, the set of 𝑟

9
onstraints ́ is populated as follows.

́ = {𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑖,�́�) = 1 �́� = argmax
∀𝑘∈𝐴𝑖

(𝑂𝑀𝑖,𝑘),∀𝑖 ∈ 𝐷}. (23)

Again, if 𝐴𝑖 = ∅, no constraints are extracted. The elements of
𝑀 that have high values represent frequent operation-to-machine
ssignments, which are considered to be desirable solution features,
nd therefore, we enforce the CP model to include them in any new
olution obtained during the search.

.1.6. The machine assignment operator III
MAO-III combines the operators MAO-I and MAO-II. Specifically, for

very operation 𝑖 ∈ 𝐷, two sets of operation-to-machine assignments
re defined: 𝐴1

𝑖 ⊆ 𝑀𝑖 ∶ 𝑂𝑀𝑖,𝑘 ≤ 𝜉, ∀𝑘 ∈ 𝑀𝑖 and 𝐴2
𝑖 ⊆ 𝑀𝑖 ∶ 𝑂𝑀𝑖,𝑘 ≥

− 𝜉, ∀𝑘 ∈ 𝑀𝑖. Next, two sets of constraints are generated as follows:

́1 = {𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑖,𝑘) = 0, ∀𝑘 ∈ 𝐴1
𝑖 ,∀𝑖 ∈ 𝐷} (24)

́2 = {𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑖,�́�) = 1, �́� = argmax
∀𝑘∈𝐴2

𝑖

(𝑂𝑀𝑖,𝑘),∀𝑖 ∈ 𝐷} (25)

Lastly, the set of constraints ́ is defined as follows.

́ = ́1 ∪ ́2. (26)

.1.7. The Operation Relationship Operator
Similarly to operators MAO-I, MAO-II, and MAO-III, the Operation

elationship Operator (ORO) also uses a frequency map 𝑂𝑅 which
tores the frequency of operation pair-to-machine assignments. In par-
icular, the 𝑂𝑅 frequency map is represented by a three-dimensional
atrix that holds the information regarding the precedence relationship

etween a pair of operations scheduled at the same machine. Every
lement 𝑂𝑅𝑖,𝑗,𝑘 includes the frequency that an operation 𝑖 ∈ 𝛺 is
cheduled (not necessarily immediately) before an operation 𝑗 ∈ 𝛺,
here 𝑗 ≠ 𝑖, at a particular machine 𝑘 ∈ 𝑀𝑖 ∩𝑀𝑗 :

𝑅𝑖,𝑗,𝑘 = 1
|𝑆|

∑

𝑠∈𝑆
𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠

𝑖,𝑘) ∧ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠
𝑗,𝑘)

∧
(

𝐸𝑛𝑑𝑂𝑓 (𝜙𝑠
𝑖,𝑘) ≤ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜙𝑠

𝑗,𝑘)
)

(27)

Note that the normalization of Eq. (27) using the number of selected
olutions |𝑆| = 𝜆𝑁𝐸 , ensures that 0 ≤ 𝑂𝑅𝑖,𝑗,𝑘 ≤ 1.

Given the initialization of the frequency map 𝑂𝑅, ORO proceeds as
ollows: Let (𝑖, 𝑗) denote a pair of operations 𝑖, 𝑗 ∈ 𝛺. Also, let set 𝐵 be
he set of all pairs of the operations of the problem:

=
⋃

∀𝑖,𝑗∈𝛺,𝑖≠𝑗
(𝑖, 𝑗). (28)

Given the set 𝐵, ORO identifies a set of operation pairs (𝑖, 𝑗) and a
achine 𝑘, 𝐷𝑘 that is defined as follows:

𝑘 = {(𝑖, 𝑗) ∶ 𝑂𝑅𝑖,𝑗,𝑘 ≥ 1 − 𝜉} ∀(𝑖, 𝑗) ∈ 𝐵. (29)

The smaller the value of 𝜉 is, the more constraints that are extracted.
he elements of 𝑂𝑅 with high values represent precedence relation-
hips that have been frequently encountered between two operations
and 𝑗 at the machine 𝑘. These precedence relationships are typically
onsidered to be components of high quality solutions, and therefore,
e choose to include them into the new solutions obtained. In our

mplementation, the set of constraints ́ is defined as follows:

́ = {𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝜙𝑖,𝑘, 𝜙𝑗,𝑘) ∀(𝑖, 𝑗) ∈ 𝐷𝑘,∀𝑘 ∈ 𝑀} (30)

It is worth mentioning that the resulting constraints in ́ may be
onflicting with one another. Let us assume the operations
𝑖1, 𝑖2,… , 𝑖𝑜−1, 𝑖𝑜} ∈ 𝛺 that can be scheduled at a machine 𝑘, with 𝐷𝑘 =
(𝑖1, 𝑖2), (𝑖2, 𝑖3),… , (𝑖𝑜−1, 𝑖𝑜), (𝑖𝑜, 𝑖1)} and 𝑜 ≥ 2. The set of constraints
𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝜙𝑖1 ,𝑘, 𝜙𝑖2 ,𝑘), 𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝜙𝑖2 ,𝑘, 𝜙𝑖3 ,𝑘),… , 𝐸𝑛𝑑𝐵𝑒𝑓𝑜

𝑒𝑆𝑡𝑎𝑟𝑡(𝜙𝑖𝑜−1 ,𝑘, 𝜙𝑖𝑜 ,𝑘), 𝐸𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝜙𝑖𝑜 ,𝑘, 𝜙𝑖1 ,𝑘)}, compose a CP model

G.A. Kasapidis et al.

𝐶
d

i

European Journal of Operational Research xxx (xxxx) xxx
that is infeasible. In order to restore feasibility, we choose to ne-
glect the constraint that corresponds to the operation relationship
with the smallest frequency, i.e. 𝑚𝑖𝑛(𝑂𝑅𝑖1 ,𝑖2 ,𝑘, 𝑂𝑅𝑖2 ,𝑖3 ,𝑘,… , 𝑂𝑅𝑖𝑜−1 ,𝑖𝑜 ,𝑘,
𝑂𝑅𝑖𝑜 ,𝑖1 ,𝑘). This procedure is repeatedly applied until all conflicts are
resolved.

4.2. Population management

The proposed ALNS-CP uses a set of elite solutions 𝐸 and an
ordered list of solutions 𝑇 . The former is used to store the high quality
solutions encountered throughout the search history, and the latter is
used to store the trajectory of solutions encountered throughout the
iterations of the algorithm. In this section, we describe the criteria that
we use in order to maintain and update 𝐸 and 𝑇 .

4.2.1. The elite set update criteria
The set 𝐸 is used to store high quality and diverse solutions

encountered during the search. The following criteria are used to
update the set 𝐸 : Let 𝑠𝑏 and 𝑠𝑤 denote the best and the worst solutions
of 𝐸 in terms of the makespan, respectively. Let 𝑑ℎ(𝑠1, 𝑠2) denote
the Hamming distance between two solutions 𝑠1 and 𝑠2 (Kasapidis
et al., 2021). Also, let 𝑑ℎ(𝑠) denote the average Hamming distance of a
solution 𝑠 from the solutions of 𝐸 calculated as:

𝑑ℎ(𝑠) =
1

|𝐸
|

∑

�́�∈𝐸

𝑑ℎ(𝑠, �́�) (31)

Given the above, a solution 𝑠 is always inserted into 𝐸 , when
𝑠
𝑚𝑎𝑥 < 𝐶𝑠𝑏

𝑚𝑎𝑥 ∨ |𝐸
| < 𝑁𝐸 . On the other hand, a solution 𝑠 is always

iscarded when 𝑠 ∈ 𝐸∨𝑑ℎ(𝑠) < min({𝑑ℎ(�́�) ∀�́� ∈ 𝐸}). If there exists a
solution �́� ∈ 𝐸 where (𝐶𝑠𝑏

𝑚𝑎𝑥 < 𝐶𝑠
𝑚𝑎𝑥 < 𝐶𝑠𝑤

𝑚𝑎𝑥) ∧ (𝐶𝑠
𝑚𝑎𝑥 ≤ 𝐶 �́�

𝑚𝑎𝑥) ∧ (𝑑ℎ(𝑠) ≥
𝑑ℎ(�́�)), then ś is replaced by 𝑠. If more solutions exist that satisfy the
above criteria, we choose to replace one that has the largest makespan.
To break ties between solutions ś in terms of the makespan, we remove
the solution that has the smallest Hamming distance 𝑑ℎ(�́�). At any other
case, 𝑠𝑤 is replaced.

4.2.2. The trajectory list update criteria
The list 𝑇 is used to store the 𝑁𝑇 most recently visited solutions

during the search. Its main goal is to prevent the CP solver from
revisiting the same solution during subsequent runs of the CP solver.
A new solution 𝑠 is always appended to the end of the list, while a
solution �́� is removed from the top of the list if |𝑇

| = 𝑁𝑇 .
During the constraint extraction phase, a constraint 𝑐𝑠 is constructed

for each solution 𝑠 ∈ 𝑇 as follows:

𝑐1𝑠 =
⋀

𝑖∈𝛺
𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑖,𝑘) = 1, ∀𝑘 ∈ 𝑀𝑖 ∶ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠

𝑖,𝑘) = 1 (32)

𝑐2𝑠 =
⋀

𝑖∈𝛺

⋀

𝑗∈𝛺∶𝑖≠𝑗

(

𝐸𝑛𝑑𝑂𝑓 (𝜙𝑖,𝑘) ≤ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜙𝑗,𝑘)
)

∧
(

𝐸𝑛𝑑𝑂𝑓 (𝜙𝑠
𝑖,𝑘) ≤ 𝑆𝑡𝑎𝑟𝑡𝑂𝑓 (𝜙𝑠

𝑗,𝑘)
)

,

∀𝑘 ∈ 𝑀𝑖 ∩𝑀𝑗 ∶ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠
𝑖,𝑘) ∧ 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓 (𝜙𝑠

𝑗,𝑘) = 1 (33)

𝑐𝑠 = 𝑐1𝑠 ∧ 𝑐2𝑠 (34)

The constraint 𝑐𝑠 prevents the CP solver from obtaining the solution
𝑠. The set of constraints ́𝑇 is used to store the corresponding con-
straints for all the solutions of 𝑇 , which are appended to the set of
constraints ́ during the constraint generation phase:

́𝑇 = {𝑐𝑠, ∀𝑠 ∈ 𝑇 } (35)

́ = ́ ∪ ́𝑇 (36)

4.3. Constraint extraction operator selection

A common feature of ALNS algorithms is the adaptive selection

of destruction or repair operators. In accordance with the literature, p

10
the proposed ALNS-CP uses a roulette wheel selection mechanism for
choosing the most suitable constraint extraction operator at each iter-
ation. The probability of selecting each operator is calculated based on
its performance during the search. In particular, every operator 𝑝 ∈ 
is associated with a non-negative score 𝑣𝑝. All scores are initialized at
a value (e.g. 100) at the start of the algorithm. Each score is increased
by one when a solution 𝑠 is successfully inserted to 𝐸 and decreased
by one otherwise. Therefore, the selection probability 𝜁𝑝 of an operator
𝑝 is calculated as follows:

𝜁𝑝 =
𝑣𝑝

∑

�́�∈ 𝑣�́�
(37)

As described in Section 4.2.1, the elite set of solutions 𝐸 aims to
maintain a balance between the quality and diversity of elite solutions.
Therefore, this adaptive mechanism rewards the operators not only in
cases when they produce high quality solutions, but also when they
effectively diversify the search.

5. Computational results

This section presents the computational results derived by experi-
ments on benchmark problem instances of the literature for assessing
the performance of the proposed solution framework. Additionally, we
have generated new benchmark problem instances to explore the effect
of different types of resources on the solution schedules.

At first, Section 5.1 describes the adaptive tuning mechanism
adopted. Next, Section 5.2 provides implementation details, as well as
the parameter tuning of the proposed solution framework. Section 5.3
presents the computational results produced by applying the ALNS-
CP and the CP model alone to solve benchmark problem instances of
the literature. Lastly, Section 5.4 presents the results of a thorough
experimentation on new problem instances with different types of
resources.

5.1. The adaptive parameter tuning mechanism

The proposed ALNS-CP algorithm uses six used-defined parameters
𝑁𝐸 , 𝑁𝑇 , 𝐺, 𝛿, 𝛾, 𝜆 that remain constant for the entire run-time of the
algorithm and three self-tuned parameters 𝜌, 𝜉, 𝑡 that are adaptively
tuned during the search.

The parameter 𝑁𝐸 is used to control the size of the elite solution
set 𝐸 . High values of 𝑁𝐸 may delay the convergence, whereas low
values of 𝑁𝐸 may lead to a premature convergence. As described in
Section 4.2.2, the parameter 𝑁𝑇 directly controls the size of the 𝑇 ,
which keeps the trajectory of solutions encountered throughout the it-
erations of the algorithm. Low values of 𝑁𝑇 may cause the algorithm to
get trapped in local minima, while higher values may cause a premature
diversification of the search. Note that, the trajectory list 𝑇 plays the
role of a tabu tenure list, which is a core component in a Tabu Search
algorithm (Glover & Laguna, 1997). The parameter 𝐺 controls the
number of maximum iterations of the algorithm without improvement,
while the parameter 𝜆 controls the portion of 𝐸 that is used by the
extraction operators MAO I–III and ORO, for the initialization of the
frequency maps 𝑂𝑀 and 𝑂𝑅.

The self-tuned parameter 𝜌, that controls the size of the set 𝐷,
is adaptively tuned as follows: In a span of 𝛾 iterations, we record
the number of iterations 𝛾𝑜𝑝𝑡 where the CP solver was able to solve
a problem to optimality. Then, the parameter 𝜌 is updated using the
following recursive equation:

𝜌 = 𝜌 +
2𝛾𝑜𝑝𝑡 − 𝛾

𝛾
𝛿 (38)

where the user-defined parameter 𝛿 controls the maximum increment
of the parameter 𝜌. When the value of 𝜌 and therefore the size of 𝐷
s very small, the CP solver may be able to solve the vast majority of
roblems to optimality, i.e., 𝛾𝑜𝑝𝑡 > 𝛾 and therefore, 𝜌 increases. This
2

G.A. Kasapidis et al.

l
v

l
e
m
a
𝑓
m
a
s

b
o
t
t

c
A
f
m
i

European Journal of Operational Research xxx (xxxx) xxx
allows the construction of larger sub-problems in the next iterations of
the algorithm. On the other hand, if the values of 𝜌 are very high, the CP
solver may not be able to solve a lot of problems to optimality. Follow-
ing Eq. (38), when 𝛾𝑜𝑝𝑡 < 𝛾

2 , 𝜌 decreases so that smaller sub-problems
are explored in the next iterations of the algorithm. Additionally, the
self-tuned parameter 𝜃 controls the time allocated to the CP solver.
This parameter is automatically increased by one when the CP solver
is able to solve a sub-problem to optimality, and decreased by one
otherwise (Hojabri et al., 2018). This adaptive tuning process, controls
parameters 𝜌 and 𝜃 so that the CP solver is able to optimally solve the
argest possible sub-problems, in the shortest amount of time. Note that,
ery small values of 𝛿 may significantly slow down the tuning process.

Lastly, the self-tuned parameter 𝜉 is selected based on the prob-
em flexibility 𝑓 . For example, a low value of 𝑓 indicates that ev-
ry operation can be assigned to a small number of machines. This
eans that the corresponding values for the elements of the 𝑂𝑀

nd 𝑂𝑅 frequency maps are relatively high. Similarly, high values of
mean that an operation can be scheduled to a larger number of

achines and therefore the associated values of the frequency maps
re expected to be relatively low. Based on the above, the rate 𝜉
hould be in principle higher for problems with high values of 𝑓 ,

and lower for problems with lower values of 𝑓 to enable the opera-
tors MAO-I, MAO-II, MAO-III and ORO to select a sufficient number
of operation-to-machine assignments and operation pair-to-machine
assignments. In our implementation, three ranges of values for the
parameter 𝜉 are used: 𝐴𝜉 = {0.01, 0.025, 0.05, 0.075, 0.10} where 𝑓 <
2, 𝐵𝜉 = {0.05, 0.075, 0.10, 0.125, 0.15} where 2 ≤ 𝑓 < 3 and 𝐶𝜉 =
{0.10, 0.125, 0.15, 0.175, 0.20} where 𝑓 ≥ 3. A random value for 𝜉 is
selected from the corresponding range at each iteration.

5.2. Implementation details and parameter tuning

All computational experiments of this paper were conducted by
using the following parameter values: 𝑁𝐸 = 200, 𝑁𝑇 = 25, 𝐺 = 50,
𝛿 = 0.1, 𝛾 = 20 and 𝜆 = 0.5. These values have been chosen after prelim-
inary experiments and we describe in the following the rationale and
the process followed. Regarding the parameter 𝛿, several values were
tested. Higher values deteriorated the performance of the search, since
the size of the generated sub-problems fluctuated between very large
and very small sizes. On the other hand, very low values cause a very
slow convergence of the adaptive tuning process. Similarly, low values
for 𝛾, caused a premature change on the sub-problem size and therefore,
compromise the intensification of the search. On the other hand, high
values of 𝛾 may deteriorate the performance of the algorithm, since the
convergence is also delayed. Preliminary computational experiments
that varied the values of 𝑁𝑇 from 20 to 100 did not show a signifi-
cant impact on the performance of the algorithm. Nevertheless, if this
parameter is neglected, the ALNS-CP tends to revisit past solutions. As
described above, the parameter 𝑁𝑇 resembles the tabu tenure of Tabu
Search algorithms where the commonly accepted range typically falls
between 20 and 30 (Glover & Laguna, 1997), and we therefore set 𝑁𝑇 =
25. To determine a well performing set of values for the parameter 𝑁𝐸 ,
but also the portion 𝜆 of 𝐸 used for the initialization of the frequency
maps, the following experiment was performed. We selected a total
of ten hard-to-solve instances of the FJSSP and the BJSSP literature.
More specifically, for the FJSSP the problem instances 𝑚𝑘06 and 𝑚𝑘10
from 𝐵𝑅𝐷𝑎𝑡𝑎 data set (Brandimarte, 1993), and the problem instances
16𝑎, 17𝑎 and 18𝑎 from the 𝐷𝑃𝐷𝑎𝑡𝑎 (Dauzère-Pérès & Paulli, 1997) data
set were selected. Regarding the BJSSP, five instances were chosen at
random from the benchmark set provided by Lawrence (1984), namely
the instances 𝑙𝑎18, 𝑙𝑎25, 𝑙𝑎30, 𝑙𝑎35 and 𝑙𝑎38. All problems were solved by
using 16 combinations of parameter settings: 𝑁𝐸 ∈ {50, 100, 200, 300}
and 𝜆 ∈ {0.25, 0.50, 0.75, 1.0}. For each combination, ten runs of the
ALNS-CP were performed. The remaining parameters were initialized as
described above. The best computational results were derived by using

𝐸
𝑁 = 200 and 𝜆 = 0.5. i

11
Regarding all experiments conducted in this paper, for every prob-
lem instance, we used ten runs of the ALNS-CP, and we report the
best solution in terms of the makespan. A time limit of 1000 seconds
is applied for every run of the ALNS-CP, if the maximum number of 𝐺
iterations is not reached. Note that, a time limit of 1800 seconds was
used regarding the experiments conducted using the CP optimizer. The
ALNS-CP was developed in C++ and uses IBM ILOG CP Solver 20.1.0
as the CP solver. All experiments were executed using an Intel Xeon
E5-2650 processor with 32 GB of RAM. Lastly, the CP optimizer was
used with the default search configuration.

5.3. Computational experiments on existing benchmark datasets

In this section, we present computational results derived by experi-
ments of the ALNS-CP and the CP model on existing problem instances
of the literature. In particular, Sections 5.3.1–5.3.3 present compu-
tational results for the FJSSP, the BJSSP and the Unrelated Parallel
Machine scheduling problem with Resources (UPMR), respectively.

5.3.1. Comparative performance analysis for the FJSSP
This section presents computational results of experiments on well-

known problem instances of the FJSSP literature. More specifically, the
following benchmark sets are used: the BRData (Brandimarte, 1993),
the BCData (Barnes & Chambers, 1996), the HUData (Hurink et al.,
1994) and the DPData (Dauzère-Pérès & Paulli, 1997). Note that, three
problem groups are included in the benchmark set HUData, namely
edata, vdata and rdata. The performance of the ALNS-CP is compared to
the state-of-the-art algorithms for the FJSSP, namely, the Evolutionary
Algorithm (EA) by Kasapidis et al. (2021), the Scatter Search and Path
Relinking (SSPR) algorithm by González et al. (2015), the Harmony
Search algorithm (HHS) by Yuan et al. (2013), the Hybrid Genetic
Algorithm (hGA) by Gao et al. (2008) and the Discrepancy Search
Algorithm (CDDS) by Ben Hmida et al. (2010).

Table 3 summarizes the computational results for the BRData, DP-
Data and BCData, respectively. The first column contains the name of
the problem instance, while the second column lists the performance
indicators, i.e., the Average makespan (Avg. 𝐶𝑚𝑎𝑥), the Average gap %
(Avg. Gap (%)) from the known lower bounds, the number of optimal
solutions (# Opt) and the Computer Independent CPU time (CICPU)
time, for each benchmark set. Note that, we used the best known lower
bound, according to Mastrolilli and Gambardella (2000), to calculate
the average gap. The remaining columns include the computational
results of the ALNS-CP and the CP model and the computational results
of the state-of-the-art algorithms. The CICPU is calculated based on the
normalization coefficients from Dongarra (1992). Since our CPU is not
included in Dongarra (1992), we use the single thread CPU rating as
reported in 𝑐𝑝𝑢𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘.𝑛𝑒𝑡 in order to calculate the corresponding
normalization coefficient for our machine. As indicated by both Yuan
et al. (2013) and González et al. (2015), ‘‘the comparison between CI-
CPU times is meant to be indicative, because we do not have access
to other information that influences the computation time, such as the
operating systems, the programming language, the compiler selection,
and the overall code quality’’. The average gap (%) per instance is
calculated as 𝐶𝑚𝑎𝑥−𝐿𝐵

𝐿𝐵 , where LB denotes the available lower bound per
instance. The results for the problem instances included in the 𝐻𝑈𝐷𝑎𝑡𝑎
enchmark set are presented in Table 4. Table 4 includes a summary
f the average gap values, i.e., the first column contains the name of
he algorithm, and the next columns include the average gap values for
he 𝑒𝑑𝑎𝑡𝑎, 𝑟𝑑𝑎𝑡𝑎 and 𝑣𝑑𝑎𝑡𝑎 problem groups, respectively.

Overall, the results showcase the effectiveness of the ALNS-CP
ompared to the state-of-the-art algorithms proposed for the FJSSP. The
LNS-CP produced solutions with an average gap of 3.59% and 1.75%

or the BRData and the DPData benchmark sets, respectively, which
akes it the fourth and third best performing algorithm. Also, the EA

s the best performing algorithm for the BRData and DPData, whereas
t comes second for BCData. Regarding the BCData benchmark set, the

G.A. Kasapidis et al.

i

European Journal of Operational Research xxx (xxxx) xxx
Table 3
Summary of computational results for the BRData, DPData and BCData benchmark sets.

Dataset ALNS-CP CP EA SSPR CDDS hGA HHS

BRData

Avg. 𝐶𝑚𝑎𝑥 172.70 172.90 172.20 172.40 172.70 172.60 173.20
Avg. Gap (%) 3.59 3.70 3.17 3.27 3.60 3.54 4.02
Opt. 6 6 6 6 6 6 6
CICPU 1204 9882 824 383 96 91 –

DPData

Avg. 𝐶𝑚𝑎𝑥 2209.44 2216.83 2202.00 2203.50 2211.56 2215.56 2210.22
Avg. Gap (%) 1.75 2.09 1.40 1.47 1.84 2.02 1.78
Opt. 3 3 4 3 1 0 2
CICPU 8622 29 855 6320 1934 2890 6206 6279

BCData

Avg. 𝐶𝑚𝑎𝑥 995.19 995.19 995.33 995.52 997.10 929.60 –
Avg. Gap (%) 0.00 0.00 0.02 0.03 0.19 0.25 –
Opt. 21 21 20 18 7 9 –
CICPU 997 275 968 1138 253 821 –
Table 4
Average gap (%) of various solutions methods for the HUData benchmark set (problem
instances la01 to la40 and mt06/10/20).

Dataset ALNS-CP CP EA SSPR HHS hGA CDDS

edata 2.01 2.07 1.99 2.03 2.11 2.13 2.32
rdata 0.95 1.16 0.94 1.03 1.18 1.17 1.34
vdata 0.02 0.05 0.05 0.04 0.11 0.08 0.11

Table 5
Summary of computational results for the Lawrence (1984) benchmark set.

ALNS-CP CP PTS PBB IGM IFS

Avg. 𝐶𝑚𝑎𝑥 1509.03 1604.98 1501.25 1551.25 1589.13 1602.83
Avg. RPD (%) 1.17 7.23 0.70 2.58 5.11 5.72
Best. (NB) 20 (10) 1 (0) 15 21 7 6
CICPU 31 169 100 080 – – 24 000 85 553

ALNS-CP managed to find optimal solutions for all problem instances,
and ranked as the best performing algorithm. Similarly, regarding the
HUData benchmark set, the ALNS-CP is the second best performing
algorithm for the 𝑒𝑑𝑎𝑡𝑎 and 𝑟𝑑𝑎𝑡𝑎 problem sets (after the EA), while
t performs better than all the state-of-the-art algorithms for the 𝑣𝑑𝑎𝑡𝑎

problem set. In total, the ALNS-CP produced 14 new best solutions for
problem instances of the 𝑟𝑑𝑎𝑡𝑎 and the 𝑣𝑑𝑎𝑡𝑎 problem sets. Detailed
results of the ALNS-CP algorithm and the proposed CP model for all
examined FJSSP problem instances, as well as a detailed performance
comparison to the state-of-the-art, are provided in Appendix B of the
online companion.

5.3.2. Comparative performance analysis for BJSSP
This section assesses the performance of the ALNS-CP for the BJSSP.

The main difference between the BJSSP and the JSSP is the presence
of the blocking constraints (see Section 3.1). Two variants of the BJSSP
exist in the literature, namely the Blocking-With-Swap (BWS) and the
Blocking-No-Swap (BNS). The BWS variant can be considered as a
special case of the FJSSP with resource constraints, where |𝑀𝑖| = 1,
∀𝑖 ∈ 𝛺 and 𝑦𝑘 = 0, ∀𝑘 ∈ 𝑀 , and this is the variant we focus on this
section.

The problem instances of Lawrence (1984) for the JSSP were used as
the test bed for the BJSSP. The performance of the proposed ALNS-CP
and the CP model are compared with the Parallel Tabu Search (PTS) al-
gorithm by Dabah et al. (2019), the Parallel Branch and Bound method
(PBB) of Dabah et al. (2016), the Iterated Greedy Meta-heuristic (IGM)
of Pranzo and Pacciarelli (2016) and the Iterative Flattening Search
(IFS) algorithm of Oddi et al. (2012).

The results of these computational experiments are presented in
Table 5. The structure of the table is similar to the structure of Table 3.
Note that, Table 5 includes the average relative percentage deviation
(Avg. RPD (%)) from the best known solutions instead of the average
gap (%), since lower bound values are not available. The RPD per
instance is calculated as 𝐶𝑚𝑎𝑥−𝐶𝑏

𝑚𝑎𝑥 , where 𝐶𝑏 denotes the best known

𝐶𝑏
𝑚𝑎𝑥 𝑚𝑎𝑥

12
solution per instance. We calculated the corresponding RPD values
using the best known solutions reported by Pranzo and Pacciarelli
(2016), Oddi et al. (2012), Dabah et al. (2016, 2019). Also, since
lower bound values are not available, the number of best solutions is
reported instead of the number of optimal solutions, i.e., the number
of instances that the corresponding algorithm obtained the current best
known solution. Overall, one can observe that the ALNS-CP produced
solutions with an average RPD value of 1.17%, which makes it the
second best performing algorithm compared to the state-of-the-art. The
ALNS-CP managed to obtain ten new best solutions (indicated by a
parenthesis on the table) for the problem instances la14, la15, la26,
la27, la28, la30, la31, la32, la34 and la39 (see Appendix C for detailed
results).

5.3.3. Comparative performance analysis for UPMR
This section assesses the performance of the proposed ALNS-CP

algorithm for the UPMR. The UPMR is an extension of the unrelated
parallel machines scheduling problem (UPM). The main difference
between the UMP and the FJSSP is that operations can be processed
on all the available machines 𝑘 ∈ 𝑀 , with 𝑀𝑖 = 𝑀,∀𝑖 ∈ 𝛺. The UPMR
extends the UPM by considering additional renewable resources. This
problem is also a special case of the FJSSP with resource constraints,
and the resources used in UPMR are a representative example of utility
resources.

For this purpose, the problem instances of Fanjul-Peyro et al. (2017)
were used. This benchmark data set includes two groups of problem
instances. The first includes small-scale problem instances with 8 ≤
𝑙 ≤ 16, while the second includes medium-scale problem instances with
20 ≤ 𝑙 ≤ 30. Since the small-scale problem instances are easy to solve,
in this paper we have only used the medium-scale problem instances,
and we compare our results with the algorithms of Fanjul-Peyro et al.
(2017) and Fleszar and Hindi (2018).

The medium-scale benchmark set includes 450 problem instances
in total and Table 6 presents a summary of the computational results.
The first column includes the number of jobs, and the second column
includes the number of instances that share the same number of jobs.
The next four multi-columns include the computational results of the
algorithms presented by Fleszar and Hindi (2018) (FH), Fanjul-Peyro
et al. (2017) (FP), the ALNS-CP and the CP model, respectively. Each
multi-column includes the number of optimal solutions and the number
of new best solutions obtained by the ALNS-CP in a parenthesis. The
second column presents the average gap (%) per instance group from
the lower bounds reported in Fleszar and Hindi (2018). The last three
rows of the table present the total optimal solutions obtained, the total
average gap (%) and the CICPU time, respectively.

One can observe that the ALNS-CP improves the total average
gap of 450 problem instances by 0.01%, compared to Fleszar and
Hindi (2018), but it needed more computational time. The results also
show that the off-the-shelf CP solver is unable to produce high quality
solutions in short computational times, without the high level guidance
of our ALNS framework. In total, the ALNS-CP obtained 407 optimal

G.A. Kasapidis et al.

z

t

European Journal of Operational Research xxx (xxxx) xxx
Table 6
Summary of computational results for the UPMR.

l # ALNS-CP CP FH FP

Opt (NB) Avg.Gap (%) # Opt Avg.Gap (%) # Opt Avg.Gap (%) # Opt Avg.Gap (%)

20 150 134 (5) 0.08 119 0.21 134 0.10 92 1.08
25 150 138 (5) 0.08 112 0.39 139 0.09 76 2.21
30 150 135 (5) 0.08 88 0.45 135 0.09 79 2.22

Opt. (NB) 407 (15) 319 408 247
Avg.Gap (%) 0.08 0.35 0.09 1.97
CICPU (s) 25 934 224 503 17 848 –
solutions, including 15 new best solutions (see Appendix D for detailed
results).

5.4. Computational experiments on new data sets with multiple types of
resources

In this section, the aim is to study the effect of various resources
types on the solution schedules, and for this purpose, we have gener-
ated new small and large-scale problem instances. Sections 5.4.1–5.4.3
present an analysis of experiments on problems that feature limited
capacity buffers, tool renewable resources and arbitrary resources and
WIP buffers, respectively. For these experiments, the CP model is used
to solve the corresponding problems. Lastly, Section 5.4.4 presents
results on new large-scale problem instances that include all available
resource types. The generated benchmark sets are available in the
following repository: https://github.com/gkasapidis/RCFJSSP.

5.4.1. Computational experiments on problem instances with limited capac-
ity buffers

To study the effect of the limited capacity buffer constraints to the
makespan, a set of ten representative problem instances have been
generated. These problem instances were produced so that they are
large and complex enough, but at the same time solvable to optimality
in a reasonable computational time. The generated problem instances
share the same number of jobs and the same number of machines, but
differ in terms of machine assignments and processing times, while the
buffer capacities are set ≤ 2. We consider three different cases: (a)
ero capacity buffers, (b) random capacity buffers 0 ≤ 𝑦𝑘 ≤ 1,∀𝑘 ∈
𝑀 and (c) unlimited capacity buffers. The computational results are
presented in Table 7. The first four columns present the name of the
problem instance, the number of jobs 𝑙, the number of machines 𝑚 and
he number of operations 𝑛. The next three multi-columns include the

computational results for each case. Each multi-column includes four
columns, that present the lower bound (LB), the makespan (𝐶𝑚𝑎𝑥), the
gap from LB (𝐺𝑎𝑝(%)) and the time required to solve the instance by
the proposed CP model (Time (s)). The last row provides the average
values.

All problem instances were solved to optimality via the proposed
CP model. As the overall capacity of buffers increases, we notice a
decrease of the average makespan as well as the average time required
to solve all problem instances. More specifically, we observe an average
makespan of 95.90 for problem instances with zero capacity buffers. In
the case of random capacity buffers, the average makespan decreases to
93.80, which can be attributed to the fact that machines can store job
operations in the corresponding buffers without blocking the machines.
The same effect is prominent in the case of unlimited buffers, where no
blocking is imposed to any machine, and therefore, the smallest average
makespan of 91.30 is obtained. We can lastly observe that the average
computational time increases as the capacity of the buffers decreases.

5.4.2. Computational experiments on problem instances with tool con-
straints

In this section, we study the effect of the tool resource constraints

with respect to the makespan. For this purpose, ten new problem

13
Fig. 3. Average 𝐶𝑚𝑎𝑥 for different values of 𝛽.

instances were generated with a variable number of jobs and machines
per instance. The number of available tools 𝐿𝑇 was set to 10, whereas
the amount of instances per tool was controlled by the parameter 𝛽 that
varied according to 𝛽 ∈ {10%, 25%, 50%, 75%, 100%}. For example, if ten
operations require a tool 𝑟 ∈ 𝑇 and 𝛽 = 100%, then all operations can
be processed in parallel. In a different case, if 𝛽 = 10% the amount of
tool instances would be limited to 1, and therefore, the operations must
compete for the available tool instances, which leads to waiting times
and prolonged schedules.

The computational results are presented in Table 8. Each multi-
column shows the results for the values of 𝛽 = 10%, 𝛽 = 25%, 𝛽 =
50%, 𝛽 = 75% and 𝛽 = 100% and includes four columns. The first
column presents the lower bound (𝐿𝐵), the second column presents the
makespan (𝐶𝑚𝑎𝑥), the third column presents the gap from LB (𝐺𝑎𝑝(%))
and the fourth column includes the computational time required in
seconds (𝑇 𝑖𝑚𝑒(𝑠)).

One can observe an increase of the makespan as the tool availability
decreases. More specifically, when 𝛽 = 10% the average makespan
is 111.5, whereas when 𝛽 = 100% the average makespan is 103.4.
It is worth mentioning that, the impact on the makespan gradually
decreases as 𝛽 increases. In particular, when 𝛽 increases from 10% to
25%, the makespan decreases by 4.75%, when 𝛽 increases from 25%
to 50%, the makespan decreases by 2.35% and lastly, when 𝛽 increases
from 50% to 75%, the makespan decreases by 0.30%. Given a limited
availability of the tools, we can observe that a good enough value for
𝛽 is 50%, since from that point and on-wards the improvement of the
solution quality is marginal (see Fig. 3).

5.4.3. Computational experiments on problem instances with arbitrary re-
sources and WIP buffers

In this section, we study the effect of cumulative and non-renewable
resources in the form of WIP buffers and arbitrary resources on the
makespan. For this purpose, ten problem instances with resource con-
straints were generated with 𝐿 = 2 and 𝐿 = 10. Three cases are
𝑊 𝑅

https://github.com/gkasapidis/RCFJSSP

G.A. Kasapidis et al. European Journal of Operational Research xxx (xxxx) xxx
Table 7
Computational results on experiments with limited capacity buffers.

Instance 𝑙 𝑚 𝑛 w/ Machine buffers w/o Buffers Unlimited buffers

LB 𝐶𝑚𝑎𝑥 Gap (%) Time(s) LB 𝐶𝑚𝑎𝑥 Gap (%) Time (s) LB 𝐶𝑚𝑎𝑥 Gap (%) Time (s)

lcb0 4 5 102 102 0.00 0.05 102 102 0.00 0.02 102 102 0.00 0.01
lcb1 4 5 95 95 0.00 0.03 95 95 0.00 0.02 88 88 0.00 0.01
lcb2 4 5 88 88 0.00 0.02 91 91 0.00 0.02 88 88 0.00 0.01
lcb3 4 5 95 95 0.00 0.02 95 95 0.00 0.02 95 95 0.00 0.01
lcb4 4 5 99 99 0.00 0.04 101 101 0.00 0.04 93 93 0.00 0.02
lcb5 4 5 98 98 0.00 0.02 105 105 0.00 0.06 95 95 0.00 0.01
lcb6 4 5 92 92 0.00 0.03 92 92 0.00 0.03 88 88 0.00 0.01
lcb7 4 5 84 84 0.00 0.02 86 86 0.00 0.02 84 84 0.00 0.01
lcb8 4 5 88 88 0.00 0.02 92 92 0.00 0.03 86 86 0.00 0.01
lcb9 4 5 97 97 0.00 0.02 100 100 0.00 1.31 94 94 0.00 0.01

Avg 93.8 0.00 0.03 95.9 0.00 0.15 91.3 0.00 0.01
Table 8
Computational results on problems with tool resource constraints.

Instance 𝛽 = 10% 𝛽 = 25% 𝛽 = 50% 𝛽 = 75% 𝛽 = 100%

LB 𝐶𝑚𝑎𝑥 Gap Time (s) LB 𝐶𝑚𝑎𝑥 Gap Time (s) LB 𝐶𝑚𝑎𝑥 Gap Time (s) LB 𝐶𝑚𝑎𝑥 Gap Time (s) LB 𝐶𝑚𝑎𝑥 Gap Time (s)

t0 107 107 0.00 0.39 101 101 0.00 0.17 100 100 0.00 0.01 100 100 0.00 0.01 100 100 0.00 0.01
t1 103 103 0.00 0.61 101 101 0.00 0.49 97 97 0.00 0.19 97 97 0.00 0.18 97 97 0.00 0.52
t2 107 107 0.00 0.32 102 102 0.00 0.33 102 102 0.00 0.18 101 101 0.00 0.26 101 101 0.00 0.21
t3 114 114 0.00 5.08 105 105 0.00 1.40 99 99 0.00 2.66 99 99 0.00 1.76 99 99 0.00 1.34
t4 116 116 0.00 1.20 110 110 0.00 0.28 108 108 0.00 0.53 107 107 0.00 0.33 107 107 0.00 0.35
t5 108 108 0.00 1.84 101 101 0.00 0.95 99 99 0.00 0.57 99 99 0.00 0.23 99 99 0.00 0.34
t6 105 105 0.00 1.57 98 98 0.00 0.78 97 97 0.00 0.48 97 97 0.00 0.56 97 97 0.00 0.60
t7 118 118 0.00 7.22 114 114 0.00 1.89 113 113 0.00 2.69 112 112 0.00 2.11 112 112 0.00 1.60
t8 118 118 0.00 4.16 115 115 0.00 14.20 112 112 0.00 21.90 112 112 0.00 27.25 112 112 0.00 19.98
t9 119 119 0.00 0.24 115 115 0.00 0.50 110 110 0.00 0.36 110 110 0.00 0.45 110 110 0.00 0.75

Avg 111.5 0.00 2.26 106.2 0.00 2.10 103.7 0.00 2.96 103.4 0.00 3.31 103.4 0.00 2.57
Table 9
Computational results on experiments with non renewable resources and WIP buffers.

Instance Small buffers Large buffers No buffers

LB 𝐶𝑚𝑎𝑥 Gap (%) Time(s) LB 𝐶𝑚𝑎𝑥 Gap (%) Time (s) LB 𝐶𝑚𝑎𝑥 Gap (%) Time(s)

r0 82 82 0.00 5.12 71 71 0.00 0.81 63 63 0.00 0.19
r1 69 69 0.00 0.22 65 65 0.00 0.04 37 37 0.00 0.16
r2 54 54 0.00 0.41 54 54 0.00 0.11 33 33 0.00 0.08
r3 69 69 0.00 3.47 65 65 0.00 0.92 50 50 0.00 0.95
r4 64 64 0.00 0.19 62 62 0.00 0.11 45 45 0.00 0.48
r5 72 72 0.00 0.51 70 70 0.00 0.47 53 53 0.00 0.40
r6 72 72 0.00 0.12 69 69 0.00 0.12 42 42 0.00 0.15
r7 99 99 0.00 1.01 85 85 0.00 0.13 57 57 0.00 0.19
r8 79 79 0.00 13.73 71 71 0.00 3.02 65 65 0.00 0.05
r9 74 74 0.00 0.30 63 63 0.00 0.04 44 44 0.00 0.49

Avg 73.4 0.00 2.51 67.5 0.00 0.58 48.9 0.00 0.31
𝐿
w
t
a

i
m
o

considered: (a) low capacity WIP buffers, (b) high capacity WIP buffers
and (c) unlimited capacity WIP buffers.

The computational results are presented in Table 9 that shares
the same structure with Tables 7 and 8. In particular, the table has
three multi-columns and each multi-column shows the results for low
capacity WIP buffers, high capacity WIP buffers and unlimited WIP
buffers. One can observe that the makespan decreases as the size of the
WIP buffer increases. More specifically, we notice an average makespan
of 73.40 for low capacity WIP buffers and an average makespan of
67.50 for high capacity WIP buffers, which corresponds to a decrease of
almost 8%. When unlimited WIP buffers are considered, we notice an
even more significant decrease of the makespan to 48.90, i.e. a 27.6%
decrease from the case of high capacity buffers. We can observe that
the WIP buffers significantly affect the solution quality. Lastly, in terms
of the computational time, we notice that the average time needed to
obtain an optimal solution for small buffers is significantly larger than
the other two cases.
 1

14
5.4.4. Computational experiments on problem instances with combined
resources

In this section, we consider problem instances that feature a com-
bination of all resource types supported by the proposed CP model,
i.e., limited capacity buffers, utility resources, tool resources, arbitrary
non-renewable resources and WIP buffers. In order to generate the
problem instances, the following parameter ranges were used: 10 ≤ 𝑙 ≤
15, 5 ≤ 𝑚 ≤ 10, 5 ≤ 𝜂𝑖,𝑘 ≤ 20, 2 ≤ 𝑓 ≤ 4, 1 ≤ 𝐿𝑇 ≤ 5, 1 ≤ 𝐿𝑈 ≤ 3,
𝑊 = 2, 𝐿𝑅 = 8, 0 ≤ 𝑦𝑘 ≤ 3, 8 ≤ �̄�𝑟 ≤ 10, 1 ≤ �̄�𝑟 ≤ 5. In total,
e generated ten representative problem instances (𝑙𝑐𝑏𝑟𝑡𝑢0 − 𝑙𝑐𝑏𝑟𝑡𝑢9)

hat were solved using the CP model as well as the proposed ALNS-CP
lgorithm.

The computational results are presented in Table 10. The table
ncludes two multi-columns that present the results produced by the CP
odel and the ALNS-CP, respectively. One can observe the superiority

f the ALNS-CP. The ALNS-CP has overall a better average gap of
7.43% compared to 19.11% of the CP model, while this average gap

G.A. Kasapidis et al.

i
D
o

European Journal of Operational Research xxx (xxxx) xxx
Table 10
Computational results on generated large-scale problem instances.

Instance CP ALNS-CP

LB 𝐶𝑚𝑎𝑥 Gap (%) Time (s) 𝐶𝑚𝑎𝑥 Gap (%) Time(s)

lcbrtu0 293 352 20.14 1800 345 18.43 623.45
lcbrtu1 299 312 4.35 1800 312 4.35 179.86
lcbrtu2 258 280 8.53 1800 278 7.36 476.44
lcbrtu3 297 411 38.38 1800 405 29.97 495.88
lcbrtu4 288 322 11.81 1800 314 8.33 604.69
lcbrtu5 276 359 30.07 1800 356 27.90 643.44
lcbrtu6 283 299 5.65 1800 297 4.59 231.97
lcbrtu7 264 290 9.85 1800 288 8.33 283.92
lcbrtu8 256 406 58.59 1800 390 47.27 800.39
lcbrtu9 294 305 3.74 1800 305 3.74 206.70

Avg 333.6 19.11 1800 329 17.43 454.67

is achieved in much shorter computational times. These results indicate
the applicability of the proposed ALNS-CP for solving a wide variety of
flexible job shop scheduling problems with resource constraints.

6. Conclusions and future research

This paper studied the FJSSP with renewable, non-renewable as
well as cumulative resources. A novel unified solution framework was
proposed for solving the FJSSP with and without resource constraints.
This framework consists of an adaptive large neighbourhood search that
uses a CP solver (ALNS-CP) for generating new solutions and exploring
the solution space. In particular, the proposed ALNS-CP uses long-term
memory structures that hold information about single operation-to-
machine assignments and operation pair-to-machine assignments that
have been encountered in high quality and diverse solutions through
the search history. This information is translated into constraint expres-
sions that are imposed to the CP solver. The goal was to guide the CP
solver towards promising regions of the solution space.

To evaluate the performance of the proposed CP model and the
ALNS-CP algorithm, we used well-known benchmark data sets from
the FJSSP, the UPMR and the BJSSP literature. The computational
results show that the ALNS-CP is highly competitive compared to the
state-of-the-art algorithms of the literature for solving flexible job shop
scheduling problems with resource constraints, while it outperforms the
CP solver. Moreover, the ALNS-CP managed to produce 15 new best
solutions for the UPMR problem instances, ten new best solutions for
the BJSSP problem instances and 14 new best solutions for the FJSSP
problem instances.

Three different sets of experiments were conducted using new small-
scale problem instances to study the effect of various resource types
on the makespan. More specifically, we studied the effect of limited
capacity buffers, renewable discrete resources and non-renewable re-
sources combined with WIP buffers. In the first set of experiments, the
focus was on testing various capacities for the machine buffers. The
results showed that the zero capacity buffers caused a 5.03% increase
of the makespan compared to the case of unlimited capacity buffers,
whereas, when random capacity buffers are considered, the makespan
increased by 2.73%. In the second set of experiments, the focus was
on testing various settings for the availability of tools. The results
showed that high quality solutions could be obtained by considering
a 50% tool availability, since higher availability values seemed not to
have any significant effect on the reduction of the makespan. In the
third set of experiments, we studied the effect of small and large WIP
buffers on the makespan. The results showed that small WIP buffers
can have a significant impact on the makespan (e.g., 50.10% increase
compared to the case of unlimited WIP buffers). Lastly, we conducted
computational experiments on new problem instances combining all
resource types. The results verified the superiority of the ALNS-CP
framework compared to solving the problem by using an off-the-shelf
CP solver.
15
In terms of future research, it would be worth considering multiple
resource-related objectives, such as the maximization of the utilization
of buffers, the minimization of resource consumption rates and the min-
imization of energy costs or carbon footprint. Regarding the solution
framework, it would be worth exploring the use of machine learning to
predict a useful set of constraints and enable the CP solver to propagate
constraints more effectively.

CRediT authorship contribution statement

Gregory A. Kasapidis: Writing – review & editing, Writing – orig-
nal draft, Software, Methodology, Investigation, Conceptualization.
imitris C. Paraskevopoulos: Writing – review & editing, Writing –
riginal draft, Supervision, Methodology, Conceptualization. Ioannis
Mourtos: Writing – review & editing, Writing – original draft, Super-
vision. Panagiotis P. Repoussis: Writing – review & editing, Writing
– original draft, Supervision, Conceptualization.

Acknowledgements

The authors would like to gratefully acknowledge support from the
European Commission [FACTLOG Project, award number 869951] and
the Athens University of Economics and Business Research Center.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.08.010.

References

Abreu, L. R., & Nagano, M. S. (2022). A new hybridization of adaptive large
neighborhood search with constraint programming for open shop scheduling with
sequence-dependent setup times. Computers & Industrial Engineering, 168.

Aggoun, A., & Beldiceanu, N. (1993). Extending chip in order to solve complex
scheduling and placement problems. Math and Comp. Model., 17(7), 57–73.

Agnetis, A., Murgia, G., & Sbrilli, S. (2014). A job shop scheduling problem with human
operators in handicraft production. International Journal of Production Research,
52(13), 3820–3831.

Andrade-Pineda, J. L., Canca, D., Gonzalez-R, P. L., & Calle, M. (2020). Scheduling a
dual-resource flexible job shop with makespan and due date-related criteria. Anal.
Oper. Res., 291(1–2), 5–35.

Aschauer, A., Roetzer, F., Steinboeck, A., & Kugi, A. (2017). An efficient algo-
rithm for scheduling a flexible job shop with blocking and no-wait constraints.
IFAC-PapersOnLine, 50(1), 12490–12495.

Aschauer, A., Roetzer, F., Steinboeck, A., & Kugi, A. (2018). Scheduling of a flexible
job shop with multiple constraints. IFAC-PapersOnLine, 51(11), 1293–1298.

Azzi, A., Faccio, M., Persona, A., & Sgarbossa, F. (2012). Lot splitting scheduling
procedure for makespan reduction and machine capacity increase in a hybrid flow
shop with batch production. Int. J. Adv. Manuf. Syst., 59(5–8), 775–786.

Barnes, J. W., & Chambers, J. B. (1996). Tabu search for the flexible-routing job
shop problem. The University of Texas, Austin, TX, Technical Report Series ORP96-10,
Graduate Program in Operations Research and Industrial Engineering, 1–11.

van der Beek, T., Souravlias, D., van Essen, J. T., Pruyn, J., & Aardal, K. (2024). Hybrid
differential evolution algorithm for the resource constrained project scheduling
problem with a flexible project structure and consumption and production of
resources. European Journal of Operational Research, 313(1), 92–111.

Beezão, A. C., Cordeau, J. F., Laporte, G., & Yanasse, H. H. (2017). Scheduling identical
parallel machines with tooling constraints. European Journal of Operational Research,
257(3), 834–844.

Belaid, R., T’Kindt, V., & Esswein, C. (2012). Scheduling batches in flowshop with
limited buffers in the shampoo industry. European Journal of Operational Research,
223(2), 560–572.

Ben Hmida, A., Haouari, M., Huguet, M.-J., & Lopez, P. (2010). Discrepancy search for
the flexible job shop scheduling problem. Computers & Operations Research, 37(12),
2192–2201.

Bitar, A., Dauzère-Pérès, S., Yugma, C., & Roussel, R. (2016). A memetic algorithm to
solve an unrelated parallel machine scheduling problem with auxiliary resources
in semiconductor manufacturing. Journal of Scheduling, 19(4), 367–376.

Błażewicz, J., Cellary, W., Słowiński, R., & Węglarz, J. (1986). vol. 7, Scheduling Under
Resource Constraints: Deterministic Models (pp. 1–359). Basel: J.C.Baltzer AG.

https://doi.org/10.1016/j.ejor.2024.08.010
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb1
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb1
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb1
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb1
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb1
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb2
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb2
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb2
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb3
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb3
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb3
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb3
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb3
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb4
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb4
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb4
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb4
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb4
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb5
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb5
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb5
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb5
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb5
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb6
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb6
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb6
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb7
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb7
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb7
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb7
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb7
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb8
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb8
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb8
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb8
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb8
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb9
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb9
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb9
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb9
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb9
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb9
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb9
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb10
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb10
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb10
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb10
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb10
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb11
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb11
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb11
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb11
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb11
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb12
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb12
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb12
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb12
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb12
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb13
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb13
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb13
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb13
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb13
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb14
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb14
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb14

G.A. Kasapidis et al.

B

B

B

B

C

C

C

European Journal of Operational Research xxx (xxxx) xxx
Boufellouh, R., & Belkaid, F. (2020). Bi-objective optimization algorithms for joint pro-
duction and maintenance scheduling under a global resource constraint: Application
to the permutation flow shop problem. Computers & Operations Research, 122, Article
104943.

randimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search.
Anal. Oper. Res., 41(3), 157–183.

rucker, P., Drexl, A., Mohring, R., Neumann, K., & Pesch, E. (1999). Resource-
constrained project scheduling: Notation, classification, models, and methods.
European Journal of Operational Research, 112(1), 3–41.

rucker, P., Heitmann, S., Hurink, J., & Nieberg, T. (2006). Job-shop scheduling with
limited capacity buffers. OR Spectr., 28(2), 151–176.

rucker, P., & Schlie, R. (1990). Job-shop scheduling with multi-purpose machines.
Computing.

ampos Ciro, G., Dugardin, F., Yalaoui, F., & Kelly, R. (2016). Open shop scheduling
problem with a multi-skills resource constraint: A genetic algorithm and an ant
colony optimisation approach. International Journal of Production Research, 54(16),
4854–4881.

arlier, J. (1982). The one-machine sequencing problem. European Journal of Operational
Research, 11(1), 42–47.

hakrabortty, R. K., Abbasi, A., & Ryan, M. J. (2020). Multi-mode resource-
constrained project scheduling using modified variable neighborhood search
heuristic. International Journal of Production Research, 27(1), 138–167.

Chan, F. T., Wong, T. C., & Chan, L. Y. (2006). Flexible job-shop scheduling problem
under resource constraints. International Journal of Production Research, 44(11),
2071–2089.

Coelho, J., & Vanhoucke, M. (2011). Multi-mode resource-constrained project schedul-
ing using RCPSP and SAT solvers. European Journal of Operational Research, 213(1),
73–82.

Dabah, A., Bendjoudi, A., & Aitzai, A. (2016). Efficient parallel B&B method for
the blocking job shop scheduling problem. 2016 International Conference on High
Performance Computing and Simulation, 784–791.

Dabah, A., Bendjoudi, A., AitZai, A., & Taboudjemat, N. N. (2019). Efficient parallel
tabu search for the blocking job shop scheduling problem. Soft Computing, 23(24),
13283–13295.

Dauzère-Pérès, S., & Paulli, J. (1997). An integrated approach for modeling and solving
the general multiprocessor job-shop scheduling problem using tabu search. Anal.
Oper. Res., 70, 281–306.

Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic algorithm for
the resource-constrained project-scheduling problem. Operations Research, 55(3),
457–469.

Dongarra, J. J. (1992). Performance of various computers using standard linear
equations software. ACM SIGARCH Computer Architecture News.

Elloumi, S., Fortemps, P., & cir Loukil, T. (2017). Multi-objective algorithms to multi-
mode resource-constrained projects under mode change disruption. Computers &
Industrial Engineering, 106, 161–173.

Elmaraghy, H., Patel, V., & Abdallah, I. B. (2000). Scheduling of manufacturing systems
under dual-resource constraints using genetic algorithms. Journal of Manufacturing
Systems, 19(3), 186–201.

Fan, J., Zhang, C., Liu, Q., Shen, W., & Gao, L. (2022). An improved genetic algorithm
for flexible job shop scheduling problem considering reconfigurable machine tools
with limited auxiliary modules. Journal of Manufacturing Systems, 62(November
2021), 650–667.

Fanjul-Peyro, L., Perea, F., & Ruiz, R. (2017). Models and matheuristics for the
unrelated parallel machine scheduling problem with additional resources. European
Journal of Operational Research, 260(2), 482–493.

Figielska, E. (2014). A heuristic for scheduling in a two-stage hybrid flowshop with
renewable resources shared among the stages. European Journal of Operational
Research, 236(2), 433–444.

Figielska, E. (2018). Scheduling in a two-stage flowshop with parallel unrelated
machines at each stage and shared resources. Computers & Industrial Engineering,
126, 435–450.

Fleszar, K., & Hindi, K. S. (2018). Algorithms for the unrelated parallel machine
scheduling problem with a resource constraint. European Journal of Operational
Research, 271(3), 839–848.

Gao, J., Sun, L., & Gen, M. (2008). A hybrid genetic and variable neighborhood
descent algorithm for flexible job shop scheduling problems. Computers & Operations
Research, 35(9), 2892–2907.

Gehring, M., Volk, R., & Schultmann, F. (2022). On the integration of diverging material
flows into resource-constrained project scheduling. European Journal of Operational
Research, 303, 1071–1087.

Glover, F., & Laguna, M. (1997). Tabu Search. Norwell, MA, USA: Kluwer Academic
Publishers.

Gómez Sánchez, M., Lalla-Ruiz, E., Fernández Gil, A., Castro, C., & Voß, S. (2023).
Resource-constrained multi-project scheduling problem: A survey. European Journal
of Operational Research, 309(3), 958–976.

González, M. A., Vela, C. R., & Varela, R. (2015). Scatter search with path relinking for
the flexible job shop scheduling problem. European Journal of Operational Research,
245(1), 35–45.

Grigoriev, A., Holthuijsen, M., & van de Klundert, J. (2005). Basic scheduling problems
with raw material constraints. Naval Research Logistics, 52(6), 527–535.
16
Gröflin, H., Pham, D. N., & Bürgy, R. (2011). The flexible blocking job shop with
transfer and set-up times. Journal of Combinatorial Optimization, 22(2), 121–144.

Györgyi, P., & Kis, T. (2017). Approximation schemes for parallel machine scheduling
with non-renewable resources. European Journal of Operational Research, 258(1),
113–123.

Györgyi, P., & Kis, T. (2018). Minimizing the maximum lateness on a single machine
with raw material constraints by branch-and-cut. Computers & Industrial Engineering,
115, 220–225.

Györgyi, P., & Kis, T. (2019). Minimizing total weighted completion time on a single
machine subject to non-renewable resource constraints. Journal of Scheduling, 22(6),
623–634.

Hanzálek, Z., & Šůcha, P. (2017). Time symmetry of resource constrained project
scheduling with general temporal constraints and take-give resources. Anal. Oper.
Res., 248(1), 209–237.

Hartmann, S., & Briskorn, D. (2022). An updated survey of variants and exten-
sions of the resource-constrained project scheduling problem. European Journal of
Operational Research, 297, 1–14.

Hashimoto, S., & Mizuno, S. (2021). A tight approximation ratio of a list scheduling
algorithm for a single-machine scheduling problem with a non-renewable resource.
Journal of Scheduling, 24(3), 259–267.

Hellsten, E. O., Sacramento, D., & Pisinger, D. (2020). An adaptive large neighbourhood
search heuristic for routing and scheduling feeder vessels in multi-terminal ports.
European Journal of Operational Research, 287(2), 682–698.

Herr, O., & Goel, A. (2016). Minimising total tardiness for a single machine schedul-
ing problem with family setups and resource constraints. European Journal of
Operational Research, 248(1), 123–135.

Hojabri, H., Gendreau, M., Potvin, J. Y., & Rousseau, L. M. (2018). Large neigh-
borhood search with constraint programming for a vehicle routing problem with
synchronization constraints. Computers & Operations Research, 92, 87–97.

Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling
problem with multi-purpose machines. OR Spectr., 225(1981), 223–225.

Kasapidis, G. A., Paraskevopoulos, D. C., Repoussis, P. P., & Tarantilis, C. D. (2021).
Flexible job shop scheduling problems with arbitrary precedence graphs. Prod. Oper.
Manag., 30(11), 4044–4068.

Kovacs, A. A., Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2012). Adaptive large
neighborhood search for service technician routing and scheduling problems.
Journal of Scheduling, 15, 579–600.

Kreter, S., Schutt, A., Stuckey, P. J., & Zimmermann, J. a. (2018). vol. 266, Mixed-
integer linear programming and constraint programming formulations for solving resource
availability cost problems (pp. 472–486). Elsevier B.V..

Kreter, S., Schutt, A., & Stuckey, P. J. a. (2017). Using constraint programming for
solving RCPSP/max-cal. Constraints, 22, 432–462.

Laborie, P., Rogerie, J., Shaw, P., & Vilím, P. (2018). IBM ILOG CP optimizer for
scheduling: 20+ years of scheduling with constraints at IBM/ILOG. Constraints,
23(2), 210–250.

Latorre-Núñez, G., Lüer-Villagra, A., Marianov, V., Obreque, C., Ramis, F., & Neriz, L.
(2016). Scheduling operating rooms with consideration of all resources, post
anesthesia beds and emergency surgeries. Computers & Industrial Engineering, 97,
248–257.

Lawrence, S. (1984). Resource constrained project scheduling: an experimental investigation
of heuristic scheduling techniques (Supplement): Technical report, Graduate School of
Industrial Administration, Carnegie Mellon University.

Leenaerts, D. M. W., & Bokhoven, W. M. G. V. (1998). Piecewise Linear Modeling and
Analysis. Springer New York, NY.

Lei, D., & Guo, X. (2014). Variable neighbourhood search for dual-resource constrained
flexible job shop scheduling. International Journal of Production Research, 52(9),
2519–2529.

Li, Y., Carabelli, S., Fadda, E., Manerba, D., Tadei, R., & Terzo, O. (2020). Machine
learning and optimization for production rescheduling in industry 4.0. Int. J. Adv.
Manuf. Syst., 110(9–10), 2445–2463.

Li, K., Chen, J., Fu, H., Jia, Z., & Fu, W. (2019). Uniform parallel machine scheduling
with fuzzy processing times under resource consumption constraint. Applied Soft
Computing, 82, Article 105585.

Li, X., & Gao, L. (2020). Effective Methods for Integrated Process Planning and Scheduling
(p. 462). Heidelberg: Springer Berlin.

Li, J., Huang, Y., & Niu, X. (2016). A branch population genetic algorithm for
dual-resource constrained job shop scheduling problem. Computers & Industrial
Engineering, 102, 113–131.

Liu, S. Q., Kozan, E., Masoud, M., Zhang, Y., & Chan, F. T. (2018). Job shop scheduling
with a combination of four buffering constraints. International Journal of Production
Research, 56(9), 3274–3293.

Liu, Q., Zhan, M., Chekem, F. O., Shao, X., Ying, B., & Sutherland, J. W. (2017).
A hybrid fruit fly algorithm for solving flexible job-shop scheduling to reduce
manufacturing carbon footprint. Journal of Cleaner Production, 168, 668–678.

Mascis, A., & Pacciarelli, D. (2002). Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3), 498–517.

Mastrolilli, M., & Gambardella, L. M. (2000). Effective neighbourhood functions for the
flexible job shop problem. Journal of Scheduling, 3(1), 3–20.

Meloni, C., Pranzo, M., & Samà, M. (2022). Evaluation of VaR and CVaR for the
makespan in interval valued blocking job shops. International Journal of Production
Economics, 247.

http://refhub.elsevier.com/S0377-2217(24)00628-3/sb15
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb15
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb15
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb15
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb15
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb15
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb15
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb16
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb16
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb16
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb17
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb17
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb17
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb17
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb17
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb18
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb18
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb18
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb19
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb19
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb19
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb20
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb20
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb20
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb20
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb20
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb20
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb20
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb21
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb21
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb21
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb22
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb22
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb22
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb22
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb22
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb23
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb23
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb23
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb23
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb23
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb24
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb24
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb24
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb24
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb24
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb25
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb25
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb25
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb25
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb25
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb26
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb26
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb26
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb26
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb26
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb27
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb27
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb27
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb27
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb27
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb28
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb28
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb28
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb28
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb28
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb29
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb29
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb29
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb30
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb30
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb30
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb30
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb30
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb31
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb31
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb31
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb31
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb31
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb32
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb32
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb32
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb32
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb32
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb32
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb32
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb33
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb33
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb33
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb33
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb33
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb34
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb34
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb34
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb34
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb34
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb35
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb35
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb35
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb35
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb35
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb36
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb36
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb36
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb36
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb36
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb37
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb37
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb37
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb37
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb37
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb38
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb38
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb38
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb38
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb38
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb39
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb39
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb39
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb40
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb40
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb40
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb40
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb40
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb41
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb41
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb41
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb41
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb41
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb42
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb42
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb42
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb43
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb43
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb43
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb44
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb44
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb44
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb44
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb44
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb45
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb45
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb45
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb45
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb45
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb46
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb46
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb46
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb46
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb46
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb47
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb47
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb47
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb47
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb47
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb48
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb48
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb48
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb48
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb48
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb49
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb49
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb49
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb49
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb49
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb50
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb50
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb50
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb50
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb50
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb51
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb51
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb51
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb51
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb51
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb52
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb52
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb52
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb52
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb52
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb53
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb53
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb53
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb54
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb54
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb54
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb54
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb54
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb55
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb55
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb55
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb55
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb55
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb56
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb56
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb56
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb56
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb56
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb57
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb57
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb57
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb58
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb58
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb58
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb58
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb58
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb59
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb59
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb59
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb59
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb59
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb59
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb59
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb60
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb60
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb60
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb60
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb60
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb61
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb61
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb61
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb62
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb62
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb62
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb62
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb62
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb63
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb63
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb63
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb63
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb63
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb64
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb64
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb64
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb64
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb64
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb65
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb65
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb65
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb66
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb66
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb66
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb66
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb66
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb67
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb67
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb67
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb67
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb67
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb68
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb68
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb68
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb68
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb68
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb69
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb69
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb69
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb70
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb70
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb70
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb71
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb71
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb71
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb71
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb71

G.A. Kasapidis et al.

M

M

M

N

N

N

P

P

P

R

R

S

S

S

S

S

S

S

S

T

T

V

W

W

W

Y

Y

Y

Z

European Journal of Operational Research xxx (xxxx) xxx
Mogali, J. K., Barbulescu, L., & Smith, S. F. (2021). Efficient primal heuristic updates
for the blocking job shop problem. European Journal of Operational Research, 295(1),
82–101.

ogali, J. K., Kinable, J., Smith, S. F., & Rubinstein, Z. B. (2021). Scheduling for
multi-robot routing with blocking and enabling constraints. Journal of Scheduling,
24, 291–318.

okhtari, H., & Dadgar, M. (2015). Scheduling optimization of a stochastic flexible
job-shop system with time-varying machine failure rate. Computers & Operations
Research, 61, 31–45.

uritiba, A. E. F., Rodrigues, C. D., & da Costa, F. A. (2018). A path-relinking algorithm
for the multi-mode resource-constrained project scheduling problem. Computers &
Operations Research, 92, 145–154.

guyen, S., Thiruvady, D., Ernst, A. T., & Alahakoon, D. (2019). A hybrid differ-
ential evolution algorithm with column generation for resource constrained job
scheduling. Computers & Operations Research, 109, 273–287.

ovas, J. M. (2019). Production scheduling and lot streaming at flexible job-shops
environments using constraint programming. Computers & Industrial Engineering,
136(October 2018), 252–264.

ovas, J. M., & Henning, G. P. (2014). Integrated scheduling of resource-constrained
flexible manufacturing systems using constraint programming. Expert Systems with
Applications, 41(5), 2286–2299.

Oddi, A., Rasconi, R., Cesta, A., & Smith, S. F. (2012). Iterative improvement algorithms
for the blocking job shop. ICAPS 2012 - Proceedings of the 22nd International
Conference on Automated Planning and Scheduling, 199–206.

Palpant, M., Artigues, C., & Michelon, P. (2004). LSSPER: Solving the resource-
constrained project scheduling problem with large neighbourhood search. Anal.
Oper. Res., 131(1), 237–257.

Patterson, J., Talbot, F., Słowiński, R., & Węglarz, J. (1990). Computational experience
with a backtracking algorithm for solving a general class of precedence and
resource-constrained scheduling problems. European Journal of Operational Research,
49, 68–79.

isinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8), 2403–2435.

ranzo, M., & Pacciarelli, D. (2016). An iterated greedy metaheuristic for the blocking
job shop scheduling problem. J. Heuristics, 22(4), 587–611.

rata, B. A., Abreu, L. R., & Nagano, M. S. (2024). Applications of constraint pro-
gramming in production scheduling problems: A descriptive bibliometric analysis.
Results in Control and Optimization, 14, Article 100350.

ifai, A. P., Nguyen, H. T., & Dawal, S. Z. M. (2016). Multi-objective adaptive large
neighborhood search for distributed reentrant permutation flow shop scheduling.
Applied Soft Computing, 40, 42–57.

opke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40(4),
455–472.

acramento, D., Solnon, C., & Pisinger, D. (2020). Constraint programming and local
search heuristic: A matheuristic approach for routing and scheduling feeder vessels
in multi-terminal ports. Oper. Res. Forum, 1.

chrimpf, G., Schneider, J., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record breaking
optimization results using the ruin and recreate principle. Journal of Computational
Physics, 159(2), 139–171.
17
ha, Y., Zhang, J., & Cao, H. (2021). Multistage stochastic programming approach
for joint optimization of job scheduling and material ordering under endogenous
uncertainties. European Journal of Operational Research, 290(3), 886–900.

haw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. In M. Maher, & J.-F. Puget (Eds.), Principles and practice
of constraint programming — CP98 (pp. 417–431). Berlin, Heidelberg: Springer Berlin
Heidelberg.

łowiński, R. (1980). Two approaches to problems of resource allocation among project
activities – a comparative study. Journal of the Operational Research Society, 31(8),
711–723.

łowiński, R. (1981). Multiobjective network scheduling with efficient use of renewable
and nonrenewable resources. European Journal of Operational Research, 7, 265–273.

oares, L. C. R., & Carvalho, M. A. M. (2020). Biased random-key genetic algorithm for
scheduling identical parallel machines with tooling constraints. European Journal of
Operational Research, 285(3), 955–964.

ong, R., Lau, H. C., Luo, X., & Zhao, L. (2022). Coordinated delivery to shopping
malls with limited docking capacity. Transportation Science, 56(2), 501–527.

rabelsi, W., Sauvey, C., & Sauer, N. (2012). Heuristics and metaheuristics for
mixed blocking constraints flowshop scheduling problems. Computers & Operations
Research, 39(11), 2520–2527.

rojet, M., H’Mida, F., & Lopez, P. (2011). Project scheduling under resource con-
straints: Application of the cumulative global constraint in a decision support
framework. Computers & Industrial Engineering, 61(2), 357–363.

an Peteghem, V., & Vanhoucke, M. (2014). An experimental investigation of meta-
heuristics for the multi-mode resource-constrained project scheduling problem on
new dataset instances. European Journal of Operational Research, 235(1), 62–72.

aldherr, S., & Knust, S. (2017). Decomposition algorithms for synchronous flow shop
problems with additional resources and setup times. European Journal of Operational
Research, 259(3), 847–863.

ęglarz, J. (1981). Project scheduling with continuously-divisible, doubly constrained
resources. Management Sci., 27(9), 1040–1053.

ong, T. C., Chan, F. T., & Chan, L. Y. (2009). A resource-constrained assembly
job shop scheduling problem with lot streaming technique. Computers & Industrial
Engineering, 57(3), 983–995.

aurima, V., Burtseva, L., & Tchernykh, A. (2009). Hybrid flowshop with unrelated
machines, sequence-dependent setup time, availability constraints and limited
buffers. Computers & Industrial Engineering, 56(4), 1452–1463.

uan, Y., Xu, H., & Yang, J. (2013). A hybrid harmony search algorithm for the flexible
job shop scheduling problem. Applied Soft Computing, 13(7), 3259–3272.

unusoglu, P., & Yildiz, S. T. (2023). Solving the flexible job shop scheduling and
lot streaming problem with setup and transport resource constraints. International
Journal of Systems Science, 10.

eballos, L. J., Quiroga, O. D., & Henning, G. P. (2010). A constraint programming
model for the scheduling of flexible manufacturing systems with machine and tool
limitations. Engineering Applications of Artificial Intelligence, 23(2), 229–248.

Zhang, S., Du, H., Borucki, S., Jin, S., Hou, T., & Li, Z. (2021). Dual resource
constrained flexible job shop scheduling based on improved quantum genetic
algorithm. Machines, 9(6).

http://refhub.elsevier.com/S0377-2217(24)00628-3/sb72
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb72
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb72
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb72
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb72
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb73
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb73
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb73
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb73
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb73
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb74
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb74
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb74
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb74
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb74
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb75
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb75
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb75
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb75
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb75
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb76
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb76
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb76
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb76
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb76
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb77
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb77
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb77
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb77
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb77
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb78
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb78
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb78
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb78
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb78
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb79
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb79
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb79
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb79
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb79
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb80
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb80
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb80
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb80
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb80
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb81
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb81
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb81
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb81
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb81
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb81
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb81
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb82
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb82
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb82
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb83
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb83
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb83
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb84
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb84
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb84
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb84
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb84
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb85
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb85
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb85
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb85
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb85
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb86
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb86
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb86
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb86
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb86
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb87
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb87
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb87
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb87
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb87
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb88
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb88
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb88
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb88
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb88
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb89
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb89
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb89
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb89
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb89
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb90
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb90
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb90
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb90
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb90
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb90
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb90
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb91
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb91
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb91
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb91
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb91
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb92
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb92
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb92
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb93
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb93
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb93
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb93
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb93
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb94
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb94
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb94
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb95
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb95
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb95
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb95
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb95
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb96
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb96
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb96
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb96
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb96
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb97
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb97
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb97
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb97
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb97
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb98
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb98
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb98
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb98
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb98
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb99
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb99
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb99
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb100
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb100
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb100
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb100
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb100
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb101
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb101
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb101
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb101
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb101
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb102
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb102
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb102
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb103
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb103
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb103
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb103
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb103
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb104
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb104
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb104
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb104
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb104
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb105
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb105
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb105
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb105
http://refhub.elsevier.com/S0377-2217(24)00628-3/sb105

	A unified solution framework for flexible job shop scheduling problems with multiple resource constraints
	Introduction
	Literature Review
	Modelling Framework
	Notation
	A Motivating Example
	A Constraint Programming Formulation

	The Adaptive Large Neighbourhood Search-Constraint Programming method
	The Constraint Extraction operators
	The Time Window operator
	The Block Operator
	The Machine Removal Operator
	The Machine Assignment Operator I
	The Machine Assignment Operator II
	The Machine Assignment Operator III
	The Operation Relationship Operator

	Population management
	The elite set update criteria
	The trajectory list update criteria

	Constraint Extraction Operator Selection

	Computational results
	The adaptive parameter tuning mechanism
	Implementation Details and Parameter Tuning
	Computational experiments on existing benchmark datasets
	Comparative performance analysis for the FJSSP
	Comparative performance analysis for BJSSP
	Comparative performance analysis for UPMR

	Computational experiments on new data sets with multiple types of resources
	Computational experiments on problem instances with limited capacity buffers
	Computational experiments on problem instances with tool constraints
	Computational experiments on problem instances with arbitrary resources and WIP buffers
	Computational experiments on problem instances with combined resources

	Conclusions and future research
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Supplementary data
	References

