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Abstract

In this thesis we explore various aspects of Calabi-Yau (CY) and G5 manifolds and string
compactifications over them. We do so using techniques taken from the fields of data science
and machine learning (ML).

At first we focus on generating CY manifolds, built as hypersurfaces in toric varieties, with
genetic algorithms. We find new examples CY fourfolds with topology distinct from fourfolds
in existing datasets. We also use these algorithms to generate CY manifolds that satisfy
certain phenomenology constraints.

Knowledge of the Ricci-flat metric on a CY is required to compute particle properties of the
resulting four-dimensional effective field theory. Using ML approximations of the metric, we
compute the Yukawa couplings arising from the Eg X Ejg heterotic string compactified on a
CY threefold X with holomorphic vector bundle V' by computing the bundle-valued harmonic
modes of the Laplacian operator. We consider the particular case where X is a hypersurface
in a single ambient space and V' is a line bundle sum.

Finally, we build a dataset of G5 manifolds via certain contact CY manifolds, called CY links,
and study their topology. We show how neural networks can be used to predict aspects of the
topology of these manifolds, namely their Sasakian Hodge number h?*!, from the list of
weights w defining the CY link. Using symbolic regression we construct an approximate

formula for h*! in terms of w. This serves as the first application of ML to G5 geometry.

Keywords: String Theory, Calabi-Yau Manifolds, G Manifolds, Machine-Learning, String

Compactification
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1 Introduction

In 2024 physics finds itself is in a difficult situation. The Standard Model of particle physics
and the theory of general relativity are able to predict experimental data to extraordinary
high degree of accuracy, however we lack a complete theory of physics that incorporates both
these theories. Despite its tremendous success at predicting the behaviour of particles and
forces, the Standard Model fails to describe gravity and is inconsistent with general relativity.
There are also many free parameters in the Standard Model whose values are not given by the
theory and have to be found experimentally. Ideally, we would like to have a more
fundamental theory that explains why these parameters have the values that they do.
Furthermore, the Standard Model does not explain the origin and nature of dark matter and
dark energy, or why we have an excess of matter over antimatter, or why neutrinos have tiny
yet nonzero masses, or why the cosmological constant is so small. These are important
questions whose answers will no doubt fundamentally change our understanding of the

physical world.

Out of several attempts to combine the Standard Model and general relativity into a
“theory of everything” string theory remains the most promising candidate. In fact, string
theory was originally introduced as a theory describing the strong interaction [1,2], and it was
only later discovered to be a theory of quantum gravity [3-5]. In the theory, zero-dimensional
point particles are replaced by one-dimensional objects called strings, whose vibrational
modes give rise to the different fundamental particles of the Standard Model in some
perturbative sense. At low energies these strings appear point-like and the extended structure
becomes apparent only at the string scale, which is assumed to be about the size of the

Planck length.

Quantum field theory (QFT) is a theoretical framework, connecting special relativity and
quantum mechanics, that treats particles as excited states of their underlying quantum
fields [6, 7]. Just as particles sweep out worldlines, strings sweep out surfaces called
worldsheets and we can formulate a quantised string theory in terms of a two-dimensional
QFT on the worldsheet. Quantising an extended object places constraints on this
two-dimensional field theory. In particular, the field theory must be a conformal field theory
(CFT). There is a one-to-one correspondence between states of the CFT and operators that

describe deformations in the background. These deformations include deformations of the

12



metric, i.e., they include gravitons. As such this theory includes perturbative quantum
gravity and therefore overcomes the non-renormalisability problem in quantum field theory.
Moreover, the extended nature of strings “smears” out the location of interactions which

removes problematic ultraviolet divergences.

Research into string theory is well-motivated since it remains the strongest candidate to
provide a unified fundamental theory of particle physics. There are however several
reasonable arguments against the theory. Firstly, a requirement for the theory to be
self-consistent is that there are extra dimensions of space, in addition to the three that we
experience. Secondly, there are multiple formulations and solutions of string theory. This lack
of uniqueness raises concerns about whether it can offer a definitive description of our
universe. Finally, the theory makes predictions that are often difficult to test experimentally
due to the extremely high energies required to observe its effects. As a result, critics argue
that it lacks empirical evidence to support its validity. Despite these difficulties, we argue
that string theory remains a worthwhile field of study since it provides a framework to explore
connections between seemingly disparate areas of physics. In the worst case scenario where
string theory fails completely as a realistic theory, the concepts and techniques can still
contribute to our understanding of mathematics and fundamental physics. The classic
example is the discovery of mirror symmetry, which was first discovered by physicists in the

context of string theory [8] but is now its own field of study in mathematics.

A key ingredient of most string theory models is supersymmetry since string theory
compactifications that preserve supersymmetry are devoid of problematic tachyons [9]
Superstring theories are ten-dimensional; one time dimension and nine spatial dimensions.
There are five superstring theories [10, 11]: Type I, Type IIA, Type IIB, Heterotic SO(32)
and Heterotic FEg x FEs. All these theories are connected to one another and to
eleven-dimensional M-theory via S and T-dualities. Superstring compactification consists of
reducing the ten-dimensions of superstring theory by choosing a background of the form
My = R x Mg, where Mg is the ten-dimensional background spacetime, R»? is the usual
4-dimensional Minkowski space and Mg is a some six-dimensional compact manifold which
serves as the so-called target space. The process of compactification requires a choice of
compact manifold Mg and the properties of Mg fix almost all features of the lower
dimensional theory, including the masses and charges of particles, the strength of forces and

other physical constants. The low-energy effective field theories that arise from

13



compactifications of superstring theories are given by supergravity theories.

Since we are interested in a theory of gravity, which requires a metric g,,, Ms must be
Riemannian. Furthermore, in order for the associated two-dimensional field theory to be
conformally invariant g, must be Ricci-flat. The requirement of the existence of chiral
fermions enforces that Mg be irreducible. By Berger’s classification [12] this restricts the
choice of holonomy of Mg to be U(3), SU(3) or SO(6). Finally, if we require that N' = 1
supersymmetry is preserved this fixes the holonomy of Mg to be SU(3). All together, these
conditions imply that Mg is a Calabi-Yau manifold of three complex dimensions, often called
a Calabi-Yau threefold. A consistent string model, therefore, with four flat Minkowski
spacetime directions can be built using any Calabi-Yau threefold C'Y3 as the internal target
space. If we take the radius of such a Calabi-Yau manifold to be small then the
ten-dimensional spacetime R x CY; will effectively look just like RY3 and hence is

consistent with observations.

To understand the size of the string landscape (the space of all possible string vacua), one
needs to determine the number of topologically distinct Calabi-Yau threefolds that give rise to
inequivalent effective theories.! It is widely believed that the number of topologically distinct
Calabi-Yau manifolds at any given dimension is finite although no general proof is known. If
this is indeed the case it is clear however, that the set of all Calabi-Yau threefolds is vast.
Wall’s theorem [13] says that simply connected Calabi-Yau threefolds with torsion-free
cohomology are completely classified by: the Hodge numbers h'!' and h'?, the triple
intersection numbers k;;, and the second Chern class ¢;. Two such threefolds with equivalent
data are diffeomorphic and give rise to equivalent effective theories upon compactification.
Using the result of Wall’s theorem, recent works have provided an estimate of ~ 101 for the
number of topologically-inequivalent smooth, simply connected Calabi-Yau threefolds
constructed as hypersurfaces in toric varieties [14,15]. This is a huge amount and this is just
one construction, there are many other methods for constructing Calabi-Yau manifolds.
Clearly there are too many possibilities for us to study each one by hand! This motivates an
algorithmic approach to searching the landscape and identifying Calabi-Yau threefolds with

desirable properties.

!Note that Calabi-Yau threefolds are just one type of compactification space. The full string landscape

contains all types of compactifications.
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We cannot simply state that the Standard Model arises from string theory, we must engineer
a geometry that will yield exactly the required particle content, masses, couplings, etc. This is
what is referred to as “string phenomenology” [8]. Below is a non-exhaustive list of information
about a particular Calabi-Yau threefold that a string phenomenologist would like to have in

order to study the effective theory:
e The Ricci-flat metric g,,, on the manifold.

e Information on sub-structure of the manifold. This includes cycles that can be wrapped

by branes to produce important non-perturbative physics. In particular:

— Divisors (complex codimension one sub-varieties)
— Curves (complex codimension two sub-varieties)

— Special Lagrangian cycles (of real dimension three) or other non-complex subspaces

e Symmetries of the manifold. Calabi-Yau manifolds do not admit continuous isometries,
but discrete symmetries can and do arise, and can play an important physical role.

Applications of such symmetries include:

— The existence of discrete Wilson lines (i.e. gauge fields for which A, # 0 but
Fu =0).

— Orbifolds and orientifolds (i.e., related to singular Calabi-Yau geometries and non-

perturbative physics).

— Flavor/family symmetries/R-symmetry.

e The existence of differential forms. For example, the type of gauge fields, 2-forms (or
more generally, n-forms) that can arise on the threefold. At higher order, interactions in
the potential (e.g. Yukawa couplings) can be computed as trilinear couplings of such

forms.

While many string models have been explored over the years, a model with exactly the
right properties to reproduce the Standard Model remains elusive. One of the first and most
successful approaches to this challenge has been provided by heterotic string theory. A
heterotic string model is specified by four pieces of data, a Calabi-Yau threefold X, the
observable and hidden holomorphic vector bundles V and V on X, each with a structure

group contained in Fjg, and a holomorphic curve C' C X with associated homology class
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W = [C] € Hy(X,Z). Physically, the curve C' is wrapped by five-branes stretching across the
four-dimensional uncompactified space-time. On this data three physical constraints have to

be imposed:

1. Anomaly cancellation: Anomaly cancellation in the heterotic string imposes a
topological condition which relates the Calabi-Yau manifold X, the two vector bundles
and the five-brane class W. For the case of bundles with ¢;(V) = ¢;(V) = 0 it can be

written as co(TX) — co(V) —co(V) = W.

2. Effectiveness: To ensure four-dimensional N’ = 1 supersymmetry the five-brane has to
wrap a holomorphic curve. Hence, the five-brane class W must be chosen such that it
indeed has a holomorphic curve representative C', with W = [C]. Classes W € Hy(X,Z)

with this property are called effective.

3. Stability: The Donaldson-Uhlenbeck-Yau theorem guarantees the existence of a
connection satisfying the Hermitian-Yang Mills equations (and, hence, preserving ' = 1
supersymmetry) on a holomorphic vector bundle, provided this bundle is (poly-)stable.

Hence, both V and V must be (poly-)stable holomorphic vector bundles on X.

Just as Calabi-Yau threefolds are the target space on which ten-dimensional string theory
compactifies to give a four-dimensional effective field theory with minimal supersymmetry,
seven-dimensional G5 holonomy manifolds are the equivalent target space for

eleven-dimensional M-theory.

Despite the lack of an explicit bound and a classification, the birational geometry of
Calabi-Yau manifolds is relatively well-understood via the minimal model program. In
particular, working within the category of algebraic varieties gives us a precise control of the
Kahler cone and more refined linear and homological structures beyond just the cohomology
of the underlying topological space. On the other hand, the state-of-the-art results for the
geometry of compact G5 manifolds pale in comparison, primarily due to the lack of analogous
algebraic techniques. There is no analogous classification program, finiteness bounds on the
cohomology, or a wealth of constructions. It is only recently that some families of Go

manifolds have been constructed.

M-theory compactifications on G5 holonomy manifolds do however have the advantage of
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being largely geometric. The compactification geometry in superstring theory often needs to be
supplemented with additional data. The presence of these additional structures can complicate
the computation of various physical properties in the four-dimensional effective theory. For
instance, we will see later how the computation of Yukawa couplings in Eg x Eg heterotic string
theory is non-trivial due to the presence of the holomorphic vector bundle. This explains one

of the advantages of working with Gy compactifications in M-theory.

1.1 A New Era

Before the advent of computers, all of mathematics and physics was done by hand. When
computers arrived on the scene they were quickly adopted by mathematicians and physicists
to speed up long and difficult computations. Since that time technology has developed
tremendously and now most of us own personal computers that can carry out computations in
a matter of seconds that would take years to compute by hand. Computers have undoubtedly
changed the way we carry out research in science and mathematics, but in recent years a new
tool has emerged that is arguably just as revolutionary - artificial intelligence. In contract to
traditional computer programming where the user tells the computer exactly what to do,
machine learning algorithms are capable of solving problems without explicit instructions.
These tools have been used extensively for many years in experimental physics, engineering,
and other areas of applied physics; by making predictions and extracting patterns from large
datasets generated from simulations of experimental observations. Notably, they have aided
the analysis of large datasets generated by particle colliders like the Large Hadron Collider,

identifying particle signatures amidst noisy data.

Machine learning techniques are often called blackbox, meaning that they are difficult to
interpret and understand due to them having a large number of parameters. One might think,
therefore, that these techniques are ill-suited for application in fields such as theoretical
physics and pure mathematics that prioritize rigor and understanding. On the contrary,
however, machine learning has been used with great success in these fields in the past few
years. The first recorded use of machine learning in string theory was in 2017 [16-19], where
neural networks were used to predict properties of Calabi-Yau manifolds such as Hodge
numbers of volumes, ranks of gauge groups and bundle cohomologies. Since then there has
been an explosion of interest in applying neural networks and other machine learning

algorithms to study Calabi-Yau manifolds and other objects in string theory and algebraic
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geometry. Examples include using siamese neural networks to classify five-dimensional
superconformal field theories [20], studying exchange graphs of cluster algebras with methods
from network science [21,22], learning properties of Clifford algebra invariants with principal
component analysis [23], using natural language processing techniques to study Pachner
graphs of three-manifold triangulations [24] and many more [25-31]. For a review of machine

learning in physics and geometry see [32,33].

One of the main motivations for bringing modern data science methods to string theory is
to deal with the vast amount of data. We just discussed that there exist too many Calabi-Yau
threefolds for us to study the compactification on each one by hand. The question is: Can
machine learning help us identify models within the landscape with desirable properties?
Furthermore, we know that in order to determine the low-dimensional effective field theory
one needs to know the Ricci-flat metric on the Calabi-Yau. Unfortunately, Yau’s proof for the
existence of Calabi-Yau manifolds is not constructive and we do not have a method for
constructing an analytical Calabi-Yau metric. The lack of explicit metrics forms a major
obstacle. With little to no chance of ever discovering analytic expressions for the metrics,
there has been considerable focus on using numerical methods to compute these objects.
Numerous algorithms have been devised for numerically determining Ricci-flat metrics on
Calabi-Yau manifolds, including position-space techniques [34] and spectral methods [35-39].
These numerical methods allow one to approximate the metric, however they are slow and
computationally expensive. Another approach that has developed in recent years is to apply
machine learning techniques, such as neural networks, to approximate the metric [40-48].
Results so far have been very promising, showing impressive accuracy and requiring far less

computing power than existing numerical methods.

Combining these two efforts we are in a position to, for the first time, efficiently pick out
suitable candidate theories from the vast landscape of string models, approximate the Ricci-flat
metric on the Calabi-Yau and with this compute properties of the effective field theory that
arises from this compactification and check if these properties truly match those of observed

particle physics.
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1.2 Outline

The research presented in this thesis is interdisciplinary across three subjects: mathematics,
physics and computer science, which makes it difficult to give a thorough background in all
areas. We assume that the reader is of a mathematical physics background rather than
computer science, and thus our explanation of the machine learning tools used will be more
rudimentary, whereas the string theory and algebraic geometry content will be pitched at the

level of a graduate student.

We begin in Section 2 by giving a general introduction to string theory and string
compactification, and explain why Calabi-Yau manifolds and G5 manifolds are the
appropriate compactification spaces to achieve minimal supersymmetry in four-dimensions
from superstring and M-theory respectively. We also discuss in more detail the process of

string model building for the particular case of the Eg X Fg heterotic string.

In Section 3 we review the necessary parts of algebraic and differential geometry in order
to understand the construction and properties of Calabi-Yau manifolds and (G5 manifolds. We
begin with Berger’s classification of holonomy groups for Riemannian manifolds that connects
to the discussion in the previous section as to why Calabi-Yau manifolds and G5 manifolds
are the compactification spaces that preserve supersymmetry. We then proceed to discuss
Hodge decomposition and de Rham cohomology. Following this we introduce Kahler
manifolds, Dolbeault cohomology and holomorphic vector bundles on complex manifolds.
From Kéhler manifolds we move on to discuss the specific case of Calabi-Yau manifolds. We
cover the definition of a Calabi-Yau manifold, their construction, their topological properties
and moduli spaces of Calabi-Yau manifolds. Finally, we lay the foundations of GG geometry,

specifically we define a G5 structure and its torsion.

Section 4 gives a brief introduction to machine learning, focusing on the algorithms used
to produce the results shown in the later sections, namely: neural networks, genetic
algorithms and symbolic regression. We discuss the training and evaluation procedures as well
as hyperparameter choices in each case. Specific details of the algorithms used are given in

the later sections.

The subject of Section 5 is the generation of Calabi-Yau manifolds with machine learning
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and presents the results published in [49]. We focus on the construction of Calabi-Yau
manifolds as hypersurfaces in toric varieties built from reflexive polytopes. We show how
reflexive polytopes can be generated using genetic algorithms and how constraints can be
added to the fitness function to generate Calabi-Yau manifolds with desired properties. This
introduces a new approach to string phenomenology, whereby the user specifies properties of
the string model which they would like and uses machine learning algorithms to construct

appropriate compactification spaces.

In Section 6, we switch from Calabi-Yau manifolds to GGy manifolds and outline the results
of [50]. We consider a particular type of Gy manifold, called a Calabi-Yau link, and firstly
build a dataset of such manifolds. On this dataset we study two types of topological
invariants: the Crowley-Nordstrom homotopy invariant v and the Hodge numbers {h%° h%1}.
Using a simple feed forward neural network we are able to predict h?! from a set of input
weights w defining the Calabi-Yau link with a high degree of accuracy. Motivated by this
success we apply symbolic regression to this problem and approximate a formula h%! in terms
of w. It is possible that a precise formula exists but none is known and so our results provide

a good starting point for discovering such a formula.

Section 5 and 6 focused on Calabi-Yau and G5 manifolds directly. In Section 7, however,
we instead focus on computing properties of the resulting low-dimensional effective field
theory given some compactification space. Specifically, we look at computing the Yukawa
couplings Arsx from compactifying the Eg X FEg heterotic string on a Calabi-Yau threefold X
with holomorphic vector bundle V. Using machine-learning approximations of the Ricci-flat
metric on X, we are able to calculate the harmonic modes of the bundle-valued Dolbeault
Laplacian operator A which are the necessary ingredients for computing A;sx. Our choices
for X and V are too simple to give physically relevant string models, however this calculation
serves as an example of how one can use the recent machine learning results of approximating
the Calabi-Yau metric to compute Yukawa couplings in the effective field theory. The results
of this section are based on the following published paper [51].

In Section 8, we conclude by emphasising the most important findings and discuss possible

directions for future work.
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2 Physics Background

In this section, we give a very brief overview of some of the basic facts about string theory,
summarising the five superstring theories and M-theory. We introduce the notion of string
compactification and describe the process of string model building for the specific case of
heterotic Fg x Fjg string theory compactified on a Calabi-Yau threefold with holomorphic vector
bundle. We assume the reader is familiar with the basics of string theory and if not refer them

to the following great introductions to the subject [52,53]. We will mostly follow [54].

2.1 The Standard Model

First we must mention the Standard Model (SM) of particle physics. This theory describes
the three fundamental non-gravitational forces: the electromagnetic, the weak and the strong
force, as well as all elementary particles. Any candidate for a “theory of everything”,

including string theory, must ultimately be consistent with the SM.

A key concept of the SM is gauge symmetry of the fields describing the elementary particles.
The gauge group of the SM is
SU(3) x SU(2) x U(1). (1)

This is a local symmetry, meaning its action on the fields is local. All fields under the same
orbit of this action describe the same particle and therefore the particles are characterised by

the representation and charges of the gauge group.?

The global symmetry in the SM is the isometry group of the Minkowski spacetime, which is
the Poincaré group. The Poincaré group is a semidirect product of translations and the Lorentz
group

R x SO(1,3), (2)
where the Lorentz group SO(1,3) is the group of all changes of orthonormal frames in

Minkowski spacetime. Therefore the particles are also in representations of this group.

Fermionic fields are spinor fields on spacetime so fermions split into the two irreducible

spin representation of the Lorentz group, which are called as “left-handed” and

2Throughout this thesis, we will make several references to groups and their representations. For the sake
of space, we will not introduce this topic here but we refer the reader to the following excellent references for

an introduction to group and representation theory [55-57], suitable for physicists.
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“right-handed” fermions.

Bosonic fields are tensorial fields on spacetime. At rank 0, we have two Higgs fields H"
and H? as scalar fields which transform trivially under the Lorentz group. These fields are
responsible for breaking electroweak symmetry (SU(2) x U(1)) and giving mass to the
fermions. At rank 1, we have a vector representation of the Lorentz group. This is associated
with gauge bosons whose fields are vector fields on spacetime with values in the Lie algebra of
the gauge group. They act as mediators for the fundamental forces. The list stops here for

the SM but in string theory we have graviton bosons in the rank 2 tensor representation.

Another ingredient of the SM is the framework of Lagrangians. If ¢ (or v) is a bosonic field
(or fermionic field), then a term in the Lagrangian of the quadratic form m2?¢? (or mape)) is
called a mass term for the particle with mass m. This can be generalised to n fields with the
form m?jgbi(ﬁj (or mijwi@j) where the masses are eigenvalues of m;;, and the eigenvectors are
called mass eigenstates. At the cubic level, we have terms of the form Y;jkwivﬁjgbk where the
scalar Y;j; is called a Yukawa coupling and determines the strength of the interaction between

two fermions v; and v; and a scalar ¢y.

2.2 String Theory

String theory is a theory of one-dimensional fundamental objects, called strings, that propagate
in some target space. These strings can either be open or closed, having the topology of a line
or a circle respectively. Just as a particle traces out a worldline, a string traces out a two-
dimensional worldsheet 3. We study the embedding of the two-dimensional surfaces ¥ into a

D-dimensional ambient spacetime M with coordinates X*, where p=0,1,2,....,D — 1.
X: Y- M. (3)

We choose a parameterisation (o, 7) and describe the embedding by the functions X*(o, 7).

The distinguishing feature of open strings as opposed to closed strings is the existence of
two end points. The dynamics of an open string are determined by the action S but we must
also know the boundary conditions that tell us how the end points move. There are two kinds

of boundary conditions:
e Neumann: J,X* =0 at o =0, .
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Figure 1: Worldsheet diagrams of open and closed strings.

e Dirichlet: 6 X* =0 at 0 =0, .

In the Neumann boundary condition case the ends of the string move freely, whereas in the
Dirichlet boundary condition case the end points of the string at fixed at some constant

position in space.

If we have Dirichlet boundary conditions for some coordinates and Neumann boundary

conditions for the others

0,X*=0fora=0,..,p (4)

X' =clforI=p+1,...,D—1 (5)

then the end points of the string are fixed on a (p + 1)-dimensional hypersurface. This
hypersurface is called a Dp-brane. In perturbative string theory, a D-brane is a
non-perturbative object and instead is a feature of the background. Gauge fields localised on

D-branes are fields in a localised super Yang-Mills theory with unitary gauge group.
If we view the amplitude as a function of the worldsheet of the string, string theory is a

two-dimensional field theory where the amplitude of a given worldsheet configuration is given

by € where S is the action of the corresponding two-dimensional field theory. The action S
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Figure 2: Diagram of two Dp-branes with open strings living along the brane, satisfying
Neumann boundary conditions, as well as open strings with both end attached to one or two

branes, satisfying Dirichlet boundary conditions.

is proportional to the area of the worldsheet

S—_T / qA, (6)

where dA is the area element and T is a constant called the string tension, with units of

energy per unit length.

In this two-dimensional field theory, the fields ¢; are scalar fields whose values correspond
to the values of the coordinates of the points of the worldsheet in its embedding into
spacetime. One can enhance the worldsheet field theory from a classical theory to a quantum
theory. Excitations of the scalar fields correspond to oscillations of the string. The most
remarkable feature of string theory is that it is a theory of quantum gravity because one of
the excitations of the quantum relativistic string gives rise to a massless spin-2 particle, which

one can identify as the graviton.

The action S is invariant with respect to Weyl rescalings of the metric

9as(0) — €M g,5(c) and reparametrisations of the worldsheet 0@ = 6%(0) where a, 3 = 0,1
and (0%, 0') = (7,0). There is a special class of reparametrisations under which the metric is

rescaled by a scalar function of o. Such transformations are called conformal transformations.
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These transformations of the metric can be undone by a Weyl transformation, which does not
affect X*#(o). Therefore, there is a combined symmetry of S(X,¢g) that fixes the g,z and is a
coordinate transformation acting on X*. If the action S(¢;), where ¢; denotes the fields, is
invariant under such coordinate transformations then the field theory is said to be conformally

invariant. Thus string theory can be associated with a two-dimensional conformal field theory.

The original string theories are called bosonic string theories since they only contain a
bosonic spectrum. In this case, conformal symmetry of the worldsheet requires that spacetime
is 26-dimensional. In this case if we look at the ground state of a single free string we find a
negative mass squared. Such particles are called tachyons. The masses of particles in
perturbation theory give the second derivative of the background potential energy at the
point about which the perturbation series is developed, therefore the existence of a tachyon

indicates that the perturbation theory is set up at a point of unstable vacuum.

At the next level up in the spectrum we have massless states. According to Wigner’s
classification [58], massless particles in d-dimensional spacetime are associated with
finite-dimensional irreducible representations (irreps) of the group SO(d — 2). We can
therefore decompose the massless states, which are irreps of SO(24), into a
symmetric-traceless irrep, an anti-symmetric irrep and a singlet. The symmetric-traceless
states are the propagating modes of a massless spin 2 particle, i.e. the graviton. Each

massless particle of the string is therefore associated to a spacetime field in 26-dimensions

G;wa B;wa (ba (7)

where G, is the spacetime metric, B, is a 2-form gauge potential called the B-field and ¢ is
a scalar field called the dilaton. Beyond this states have masses on the order of the string
scale and so their dynamics are irrelevant at low energies and can be neglected in the low

energy action.

The quantum bosonic string exhibits many interesting physical phenomena, but cannot be
probed beyond tree level due to the presence of the tachyon. From now on we will consider a
set of alternative models, collectively known as the superstring which are free of tachyons. For
superstring theory, the local symmetries on the worldsheet are enhanced from the ordinary
conformal group to the N/ = 1 superconformal group with new (fermionic) generators. This

new symmetry group reduces the appropriate spacetime dimension of the theory from 26 to
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10.

There are two types of supersymmetry: worldsheet supersymmetry and spacetime
supersymmetry. Worldsheet supersymmetry is the symmetry of the worldsheet action S under
the worldsheet supersymmetry transformations. On the other hand, spacetime
supersymmetry is a symmetry between tensor fields (bosons) and spinor fields (fermions). As
a well-defined supersymmetric transformation requires an invariant spinor, the spacetime

supersymmetry directly relates to the holonomy of the spacetime.

Closed strings are periodic in their spatial direction, and therefore the fields living on the
worldsheet must also respect this periodicity. For the fermionic fields, this condition plus
Lorentz invariance allows two possible boundary conditions; periodic
(0¥ + 27, 0') = (0, o) or antiperiodic Y* (0¥ + 27, 0') = —# (0%, '), and similarly for
the antiholomorphic fields. This can be summarised clearly by introducing the cylindrical

coordinate w = ¢% + io!:

YH(w +2m) = TP (w) (8)

Y@+ 2m) = e PP (), (9)

where v and # take the values 0 and 1/2. The periodic case where v = 0 is called the Ramond
(R) boundary condition and the antiperiodic case where v = 1/2 is called the Neveu-Schwarz
(NS) boundary condition. Thus, there are four possible ways of putting fermions on the closed

string, giving rise to four sectors in the Hilbert space, the NS-NS, NS-R, R-NS, R-R sectors.

2.3 Compactification

For superstring theories, one can consider the background spacetime as having the form
RY 1 % Xy, (10)

where Xi9_; is a compact oriented Riemannian manifold, called the internal space. This
means we have one time dimension, k£ — 1 extended spatial dimensions and 10 — k& curled up

spatial dimensions.

As we’ve mentioned, spacetime supersymmetry requires an invariant spinor and this is

directly related to the holonomy of the spacetime. In the compactification scenario, the
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compactified background preserves some of the supersymmetry if there exists a covariantly

constant spinor on Xjq_j; that is, there exists some spinor £ such that
Vi€ =0, (11)

where V; is the covariant derivative and [ is an internal space vector index. The generic
holonomy group for a Riemannian d-dimensional manifold is SO(d). Special choices of the
internal space will lead to “reduced holonomy”, where the holonomy group is some subgroup
of SO(d). See the discussion on Berger’s classification in Section 3.1 for more details. A
covariantly constant spinor on X, exists if the minimal spinor representation of d-dimensions

contains a singlet in the decomposition under the holonomy group.

Below we list the relevant manifolds, enumerated by their dimensionality, which preserve
supersymmetry. In Table 1, we present the amount of supersymmetry preserved in the five
superstring theories for various compactifications. This shows how we can construct theories

with 4,8, 16, 32 supercharges in four-dimensions corresponding to N' = 1, 2, 4, 8 respectively.
e d=1(k=9): All 1d manifolds have trivial holonomy.

e d =2 (k = 8):The holonomy group is SO(2) ~ U(1), and only the trivial subgroup gives

rise to a covariantly constant spinor. The only X, with trivial holonomy is 7.

e d =3 (k =T7): The holonomy group is SO(3) ~ SU(2) and again the only relevant

subgroup is the trivial subgroup. The only X5 with trivial holonomy is 7°.

e d =4 (k = 6): The holonomy group is SO(4) ~ SU(2) x SU(2). Again T* has trivial
holonomy. A manifold with SU(2) ~ Sp(1) holonomy is known as a K3 surface. Thus,

the two supersymmetry preserving options are 7% and K3.

e d =5 (k=15): The holonomy group is SO(5). The analysis is identical to d = 4, where we
simply tensor with a circle. Thus the two options are K3 x S! (or some twisted product)

and T°.

e d =6 (k =4): The holonomy group is SO(6) ~ SU(4). The obvious examples are T°
and K3 x T2. SU(3) C SO(6) is another subgroup. A manifold with SU(NN) holonomy is
known as a Calabi-Yau N-fold. The options are therefore CY3, T% and K3 x T? (or some

twisted product).
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e d =7 (k= 3): The holonomy group is SO(7). The obvious examples are 77, K3 x T and
CY3 x St. There is an additional manifold, the so-called Gy-manifold, whose holonomy

group is Go C SO(T).

e d = 8 (k = 2): The holonomy group is SO(8). In this case, there are two reduced
holonomy subgroups: SU(4), which correspond to C'Y; and Spin(7), which leads to

Spin(7)-manifolds. Additionally, we have the obvious product manifolds such as Gy x S*

and CY3 x T2,
k Xjo_r  fraction of supercharges Type [IA  Type IIB  Heterotic / Type I
5) K?)XSl 1/2 N5:2 N5:2 N5:1
4 K3xT? 1/2 Ny=4 Ny =4 Ny =2
CYs 1/4 Ny=2 Ny =2 Ny =1
3 OYgXSl 1/4 ./\/3:4 N3:4 N3:2
Go 1/8 N3 =2 N3 =2 Ny =1

Table 1: Reduced supersymmetry in various superstring compactifications.

For a more thorough introduction to string compactification, we refer the reader to the great

sets of lecture notes [59,60].

Wrapped Branes

Branes are higher dimensional objects and so can wrap internal dimensions or extend across
external dimensions. The case where a brane extends across all £ = 4 external dimensions,
while also possibly wrapping internal dimensions, is called the “spacetime-filling” case.
Alternatively, branes can extend over only some (< 4) of the external dimensions, as well as
possibly some of the internal dimensions, or it can be entirely internal, existing at a point in

external spacetime.

One is interested in brane configurations that do not break Poincaré symmetry and
preserve supersymmetry of the effective field theory in the external spacetime. Note that
gauge fields can take on non-trivial background expectation values in the internal space
without violating Lorentz invariance (but not in the external spacetime). In order to preserve

supersymmetry in the external spacetime, the expectation values of gauge fields localised on
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D-branes must satisfy certain conditions. In the case where the brane wraps an
even-dimensional submanifold of the internal space (holomorphic cycle), the background
gauge fields must satisfy the Hermitian Yang-Mills equations. On the other hand, in the case
where the brane wraps an odd-dimensional submanifold (special Lagrangian cycle) of the

internal space, the background gauge fields must vanish.

Kaluza-Klein Reduction

Consider the scenario of d 4+ 1-dimensional spacetime with one compact dimension X x S?.
Let 2# for u € {0,...,d — 1} denote the non-compact X coordinates and x? the compact S*

d

coordinate with periodicity condition ¢ ~ 2¢ + 2rR. The spacetime momentum operator p,

is a generator of translation and therefore we have the identity
e?miPa = 1 (12)

From this we see that the eigenvalues of momentum along the circle are p; = n/R, where n € Z.
We can thus decompose a massless d+ 1-dimensional field ¢ into an infinite set of Fourier modes
along the compact dimension
inzd
$a’, . a?) =D gu(a®, .. e R (13)
neL

where the ¢,, are d-dimensional fields.

The mass formula for ¢, is

d 2 d—1
n
E2 = Zpup“ = ﬁ —+ Zpup“, (14)
u=0 p=0

In other words, the ¢, field has developed a non-zero mass m? = n?/R?. These modes are
called Kaluza-Klein (KK) modes and arise in more general compactifications £ — X3. In this
case the masses of the fields are inversely proportional to the metric volume of F, where F
denotes the fiber over X. In model building these volumes are chosen to be very small so that

the masses of the KK modes are too small to be detectable by current experiments.

3A fiber bundle is a space E that locally resembles a product space B x F but globally can have a different
topological structure. It is defined by a continuous surjective map 7 : E — B, that in small regions of E behaves
just like a projection from regions of B x F' to B. The map = is called the projection, E the total space, B the

base space and F' the fiber.
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Since in general relativity, the size and shape of F' is dynamical, generically the effective
field theories contain fields, called moduli, which parameterise the geometry of F'. For example,
the dilaton which encodes the total volume of F. Since these moduli fields are not observed
in experiment, naive KK models are ruled out by experiment. There are however ways for
the moduli to obtain masses and for the KK models to become viable. This is called moduli

stabilisation.

2.4 Five Superstring Theories

There are five known superstring theories called type I, type ITA, type IIB, heterotic SO(32)
and heterotic Fg x Eg. These theories contain different combinations of open and closed strings
and branes, have different amounts of supersymmetry, different gauge symmetry and different

matter content. The content of each of these five theories is briefly summarised below.

Type I

Type I theory is the only superstring theory which contains both open and closed strings. This
theory also contains D1-, D5- and D9-branes. The low energy effective theory has N' = 1
supersymmetry and Spin(32)/Z, gauge group. The bosonic fields from the closed sector are
the NS-NS graviton G, the dilaton ¢, the R-R 2-form B, and from the open sector we also have

NS gauge bosons A.

Type 11

Type II theories are theories of closed strings as well as D-branes (D(-1)-, D1-, D3-, D5-, D7-
and D9-branes in IIB and DO-, D2-, D4-, D6-, D8-branes in ITA). The worldsheet theory is
split into left and right moving sectors. In type ITA they have opposite chirality (N = (1,1))
and in type IIB they have the same chirality (N = (2,0)). The left-moving and right-moving
sectors contribute equally and so both theories have N' = 2 supersymmetry in their low

energy effective field theory.

The bosonic fields for type IIA string theory are the graviton G, the NS-NS 2-form B, the
dilaton ¢, and the R-R 1-form C} and the 3-form C5. For type IIB the bosonic fields are the
graviton GG, the NS-NS 2-form B, the dilaton ¢, the R-R 0-form a, 2-form C5 and 4-form C}4
(with self-dual field strength).
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We can consider type II string compactifications on the circle, i.e. R'® x S!'. Under T-
duality, type ITA theory compactified on the circle with radius R is mapped to type IIB theory
compactified on the circle with radius 1/R. Mirror symmetry is a generalisation of T-duality
where the content of type IIA string theory on one Calabi-Yau threefold is exactly the same
content of type IIB string theory compactified on the mirror manifold. Roughly speaking,
mirror symmetry says that for every Calabi-Yau threefold X there exists a mirror Calabi-Yau
threefold Y such that

X)) = h2H(Y) R*HX) = hYH(Y). (15)

Heterotic

In type II superstring theories, we have ten bosons and ten fermions in both the right and left
moving sectors. In heterotic superstring theories we keep the right-handed bosons and
fermions but in the left sector we take the bosonic string bosons. Therefore, heterotic
superstring theories are a heterosis of the 26-dimensional bosonic and the 10-dimensional
superstring theory. The worldsheet theory consists of a left-moving CFT and a right-moving

SCFT.

The matter content consists of 10 right-moving bosons, 10 right-moving fermions, 10 left-
moving bosons and 32 left-moving fermions, which cancel the Virasoro anomaly by bosonisation.
For each of these fermions we need to choose the boundary conditions, i.e. antiperiodic (NS) or
periodic (R). To achieve an anomaly-free theory with A/ = 1 spacetime supersymmetry, there

are just two options:

e SO(32) All of the fermions are in the same sector (NS or R). In this case we can mix these
fermions by an SO(32) transformation without changing the theory and thus SO(32) is
a symmetry of the theory.

o Eg x Eg: Half of the fermions are in the same sector and the other half are in the same
sector. Therefore there are four possibilities: NS-NS, NS-R, R-NS, R-R. Since 16 of the
fermions live in the same sector, we can mix them by an SO(16) transformation, and

similarly for the other 16. The SO(16) representations of the massless excitations are:

— NS-NS: (120,1) + (1,120)
— NS-R: (1,128)

— R-NS: (128,1)
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So the massless states live in the 120 + 128 representation of SO(16), but this is not the
adjoint representation of SO(16) and therefore SO(16) x SO(16) is not the right gauge
group. Instead the gauge group is Eg x Eg since SO(16) is a subgroup of Eg and Eg is
120 + 128 = 248-dimensional.

Heterotic superstring theories are theories of only closed strings and no D-branes. For both
heterotic Fg x Es and SO(32), the bosonic field content consists of the graviton G, the 2-form
B, the dilaton ¢ and the gauge bosons A.

SUSY bosonic content  gauge group

N =(1,1) NSNS:4,B,G
Type ITIA -
NSUSY = 32 RRICl, Cg

N =(2,0) NSNS:, B,G
Type IIB -
NSUSY =32 RRZQ, 02,04
' N =(1,0) NS-NS:¢,B,G
Heterotic Eg X Eg Eg X Eg
NSUS’Y =16 RR:A € eg D eg

N = (1,00 NS-NS:¢,B,G

Heterotic SO(32) Spin(32)/Zs
Ngysy = 16 RR:A € 50(32)
NS-NS:¢, G
N = (1,0) .
Type 1 RR:B Spin(32)/Zs
Nsysy = 16

NS+:A € 50(32)

Table 2: Summary of the supersymmetry, bosonic content and gauge group of five string

theories.

Dualities

The five superstring theories that we have just described: type I, type ITA, type IIB, heterotic
SO(32) and heterotic Fg x Eg, are all related to each other via various dualities. Observables
can be mapped between two theories that are dual to one another to yield equivalent

predictions.

String dualities often link quantities that appear to be separate. For instance, T-duality,
which we saw connects the two type II theories, links large and small distances. There also

exists a T-duality connecting the two heterotic theories. Another duality is S-duality which
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links strong gs and weak 1/gs coupling. A theory with weak coupling can be understood by
means of perturbation theory but a theory with strong coupling cannot. S-duality therefore
allows us to push past the perturbation theory and learn more about the underlying

non-perturbative theory.

Type I theory is S-dual to heterotic SO(32) theory. Furthermore, type IIA theory at the
strong coupling limit g; — oo behaves like an eleven-dimensional theory, where the dilaton
plays the role of the eleventh dimension. In particular, it behaves like a theory on My x S*
where the radius of the circle S' goes to infinity. The full eleven-dimensional theory is called

M-theory. The radius limit is a T-duality, and the strong coupling limit is an S-duality.

M-theory has no dimensionless coupling constant. In the duality with type IIA, both the
gauge coupling ¢gs and the string tension T of type IIA string theory become part of the
geometry. Moreover, the type ITA graviton, dilaton and R-R 1-form are all lifted to be part of
the metric in eleven-dimensions. By KK reduction on a circle, we can connect the M-theory

fields with the fields in ITA, as shown in Table 3.

M-Theory ITA
Gun — Gun graviton
Gw10 - O R-R 1-form
Go,10 — 0] dilaton
Cunp —  Cs R-R 3-form
Chrnio — By NS-NS 2-form

Table 3: M-theory to ITA by KK reduction on S*.

We have already seen that M-theory is T-dual to type IIA and type IIA is T-dual to type
IIB. Combining these dualities we see that we can get type IIB by first compactifying M-theory
on a torus S x S§ to get type IIA on a circle and then T-dualising that circle. In the limit
where the radius of one of the S's goes to infinity, the area of the torus goes to zero. In this
way, one can think of type IIB as a 12d theory where two of the directions look like a zero-
area torus. F-theory can be viewed as a non-perturbative compactification of type IIB. More
generally, this torus can be taken to be an elliptic curve and this may vary over the base space

as an elliptic fibration.
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Figure 3: Web of string dualities.

2.5 FEg x Egx Heterotic Model Building

One of the standard approaches to heterotic string model building is to compactify on a
Calabi-Yau threefold X that admits a principal G C Eg x Eg vector bundle V', where V is a
direct sum of an observable sector bundle V!, whose structure group G! is embedded in the
first Eg factor, and a hidden sector bundle V2, with structure group G? embedded in the

second Fg.

In order for the bundle V! to preserve N' = 1 supersymmetry, its field strength F' must

satisfy the hermitian Yang-Mills equations:
Fj=F;=0, ¢'F;]1d, (16)

where 4, j label the holomorphic coordinates on X, Id is the identity element of G' and the
constant of of proportionality u(V!) is a real number known as the slope and is determined by
the choice of V. The second equation in (16) can be rephrased in terms of the hermitian fiber

metric H:

§IF; = —gi0;A; = —gi0;(H Y (0,H)) o 1d. (17)

J

A metric that satisfies this equation is said to be Hermite-Einstein. Therefore a solution to
the Yang-Mills equations is equivalent to the vector bundle V! being holomorphic and
admitting a hermitian metric H on its fibers which is Hermite-Einstein. Whether there exists
a Hermite-Einstein metric H on V! depends on the so-called stability of the bundle [61,62].
This can often be checked by somewhat laborious algebraic calculations, though the guarantee

of existence is not constructive — even if a given bundle is stable, it is often impossible to find
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an explicit expression for the corresponding Hermite-Einstein metric.

Assuming that X admits a principal G-bundle with G C FEjg, the gauge group in four-
dimensions is given by the commutant of G in Eg. Using the Dynkin diagram of Eg, as shown

in Figure 4, we can get the E7; and Fg subgroups by contracting nodes.

O—0—0-0—0-0-0

Figure 4: Fs dynkin diagram.

Standard Embedding

The scenario when V1! is chosen to be the holomorphic tangent bundle 7T'X of the Calabi-Yau
threefold X with structure group G' = SU(3), is called the standard embedding. In this case,
Eg is broken to Eg since SU(3) is the commutant of Eg within Fg. Note that:

SU@3) x SU((2) x U(1) c SU(5) € SO(10) C Eg. (18)

The breaking of the Fg gauge group to the Standard Model gauge group happens in two
stages; firstly Eg is broken to the GUT group Eg and then Fjy is then broken down further to

the Standard Model gauge group.

When FEg is broken down as

Ey — Eg® SU(B), (19>

the adjoint representation of the Eg, namely 248, decomposes as

248 —» (P(r.R) = (8,1) @ (1,78) @ (3,27) @ (3,27), (20)

where we use r to denote a representation of SU(3) and R, that of Fs. From this, we observe

that the low-energy theory can contain matter transforming as the 1, 27 or 27 of Eg,
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corresponding to bundle moduli, families and anti-families. By KK reduction one finds that
these matter fields come from harmonic 7'X bundle-valued (0, 1)-forms ¢, [10,11]. In other
words, the number of 27 families present in four-dimensions is counted by the number of
harmonic 7' X-valued (0, 1)-forms on X. The number of these harmonic (0, 1)-forms is equal
to the dimension of H'(X,TX). Similarly, the number of 27 anti-families is given by the
dimension of H'(X,T*M). Thus we have

generations of particles ~ H'(X,TX) (21)

anti-generations of particles ~ H'(X,T*X) (22)

The effective theory is determined by a superpotential and a Kahler potential. These objects
are fixed by the geometry of the compactification in the following way. Let 1! be a basis for
H'(X,TX) which is not necessarily harmonic. If there is a singlet in the product r x r’ x r”,

there can be a holomorphic Yukawa coupling of the form

Mo(r, 1, 1) = / QA Tr(! A A, (23)
X

where (2 is the holomorphic (3, 0)-form on X, and the trace indicates a projection to the SU(3)
singlet. Using the above decomposition (20), we denote the four-dimensional chiral superfields
associated via KK reduction to each 1! by C%. The superpotential for these chiral superfields
is then given by

W =k (R, R, R")CLCL CE,, (24)
where we have relabelled the Yukawa couplings by the four-dimensional gauge group, i.e.
their Fg representations. Given that a singlet appears in 8%, 8 - 3 -3, 3% and their conjugates,

the possible types of Yukawa couplings are 13, 1-27-27, 273 and 27’

The above are often known as holomorphic Yukawa couplings as they are quasi-topological
in the sense that A\;jx can be computed using representatives of H'(X,TX) which are not
harmonic (this follows straightforwardly from dQ2 = 0). However, the physical Yukawa couplings
depend on the normalisation of the kinetic terms for the chiral superfields. This normalisation

is fixed by the matter-field Kahler metric, given by

Gry— / Srxd A, (25)
X

which is simply the inner product between harmonic representatives of H'(X,TX). Due to
the need for harmonic forms and the presence of the Hodge star on bundle-valued forms xry,
this depends on knowledge of the Calabi—Yau metric on X, the Hermite-Einstein metric on the

fibres of TX and the zero modes of the Dolbeault Laplacian on (0, 1)-forms valued in T'X.
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Non-Standard Embedding

For the standard embedding, many quantities of interest can be computed using the
techniques of special geometry without needing an explicit metric on X. Unfortunately, it is
difficult to find acceptable minimal supersymmetric Standard Model (MSSM) like physics in
these simple models, so one is forced to consider more general vector bundles. By taking V!
not to be T'X but, for example, a stable SU(4) or SU(5) bundle, one could obtain the more
interesting commutant SU(10) or SU(5) GUTs. This is known as non-standard embedding.
Just as in the standard embedding case, the low energy particle spectrum is determined
through the cohomology of V! and (V!)Y according to the decomposition of the 248 adjoint

representation of Fg.

Various non-standard embedding models have been proposed over the years, including the
spectral cover construction over elliptically fibered Calabi-Yau threefolds [63-66], monad
bundles [67,68], extension bundles [69,70] and sums of line bundles [71-73]. In Section 7 we
will consider the line bundle case and attempt to compute the particle spectrum in this

scenario.

In this section we have discussed the role of Calabi-Yau manifolds in compactification in
string theory without defining them. In the next section we will define explicitly what it means
for a complex manifold to be labelled Calabi-Yau, discuss properties of these manifolds and ways
to construct them. We will also discuss G5 manifolds which are the analogous compactificaiton

space for eleven-dimensional M-theory.
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3 Maths Background

In this section we review parts of algebraic and differential geometry with the goal of
understanding the nature of Calabi-Yau and G5 manifolds. For the sake of space we assume
that the reader is familiar with the basics, such as complex manifolds, fibre bundles, etc. For
a more thorough introduction to the topics discussed in this section we refer the reader to the
following references: for an overview of complex manifolds and Kahler geometry see the
lecture notes by Joyce [74], for a introduction to Calabi-Yau manifolds (suitable for

physicists) see [75] and for an overview of G5 manifolds we refer the reader to [76].

3.1 Riemannian Holonomy Groups

Let V¥ be a connection on a vector bundle £ — X and let « : [0,1] — X be a smooth curve
with v(0) = x and (1) = y. Then 7*(V¥) is a connection on v*(E) — [0, 1]. For each e € E,
there is a unique section s of v*(E) with s(0) = e and v*(V¥) = 0. Define P,(e) = s(1). Then
P, : E, — E, is the parallel transport map.

Definition 3.1 Let V¥ be a connection on a vector bundle E — X. Then the holonomy group

Hol,(V¥) of VF is defined as
Hol,(V¥) := {P, : v is a piecewise-smooth loop based at v} C GL(E,), (26)
where P, is the action on the vector space F, induced by the parallel transport along .

The classification of Riemannian holonomy groups was given by Berger in 1955 [12].

Theorem 3.1 Let M be a simply-connected manifold of dimension n and let g be an irreducible

and non-symmetric Riemannian metric on M. Then exactly one of the following cases holds:
e Hol(g) = SO(n).

e n =2m withm > 2, and Hol(g) = U(M) C SO(2m). A manifold with Hol(g) C U(m) is
called a Kdhler manifold.

e n =2m withm > 2, and Hol(g) = SU(m) C SO(2m). A manifold with Hol(g) C SU(m)

18 called a Calabi- Yau manifold.

e n = 4m with m > 2 and Hol(g) = Sp(m) C SO(4m). A manifold with Hol(g) C Sp(m)
15 called a hyperkahler manifold.
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e n="7 and Hol(g) = Gy C SO(7).
e n =28 and Hol(g) = Spin(7) C SO(8).

In string theory the interest in holonomy groups comes from supersymmetry and the
existence of invariant spinors - the requirement for preserving n supersymmetries is the
existence of n invariant spinors [77]. Let M be an orientable, connected, simply-connected
spin n-manifold for n > 3 and let g be an irreducible Riemannian metric on M. Define N to
be the dimension of parallel spinors on M and if n is even, define N. to be the dimensions of
the spaces of parallel spinors in C*°(SL), so that N = N, + N_. Suppose N > 1. Then, fixing

the orientation, exactly one of the following holds:
e n =4m for m > 1 and Hol(g) = SU(2m), with N, =2 and N_ = 0.

e n=4m for m > 2 and Hol(g) = Sp(m), with N, =m + 1 and N_ = 0.

n=4m+ 2 for m > 1 and Hol(g) = SU(2m + 1), with N, =1 and N_ = 1.

n =7 and Hol(g) = Gy, with N = 1.

n = 8 and Hol(g) = Spin(7), with N; =1 and N_ = 0.

With this we see that Calabi-Yau threefolds and G5 manifolds are the spaces on which
heterotic/type I superstring and M-theory compactify preserving N' = 1 supersymmetry in

four-dimensions.

3.2 Hodge Theory

Let (X, g) be a compact, oriented Riemannian n-manifold. Then the Hodge star operator x

acts on k-forms:

%0 C(A*T*X) — C(A"*T* X). (27)

It satisfies *2 = (—1)¥""F) 50 %=1 = 4%, We define the codifferential
d* : C®(N*T*X) — C°(AF'T*X), (28)

by d* = (—1)’“ *~! dx, and the Laplacian on k-forms Ay = dd* + d*d.

If a, 8 € C®°(A*T*X) we define the Ly inner product as

(@, B2 = /X (o, B)dV, (20)
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where (a, 5) is the pointwise inner product of k-forms using g, and dV, the volume form of g.

The Hodge star is defined so that if o, § are k-forms then oo A 5 = (o, §)dV,. Thus

(a,ﬁ)Lzz/Xa/\*ﬁ. (30)

We write dy,, d; for d,d* acting on k-forms, and H* for KerA; on k-forms, i.e. H*¥(X) =
{a € C°(A*T*X)|Aja = 0}.

Theorem 3.2 (Hodge Decomposition [78]) Let (X, g) be a compact, oriented Riemannian
manifold. Then
C®(NT*M) = HF @ Im(dy,—,) @ Im(dy, ). (31)

In other words, any k-form w on X can be uniquely written as
w=dp10+dj 7+, (32)

where 3 is a (k — 1)-form, v is a (k + 1)-form and w’ is a harmonic k-form (v € KerA,). In

particular, if w is closed then it is not hard to show that + vanishes and hence we have

W = dkflﬁ + w'. (33)

It follows that
HY (X, R) = Kerdy, /Imd,_, (34)
= (H* @ Im(dy,_))/Imd;,_, = H* (35)

Theorem 3.3 Every de Rham cohomology class on X contains a wunique harmonic

representative.

The Hodge star gives an isomorphism * : H* — H"* thus HE,(X,R) = H7.*(X,R). This

is a form of Poincaré duality.

3.3 Kahler Manifolds

Let (X, J) be a complex manifold and g be a Riemannian metric on X. We call g Hermitian
if g = J¢Jlg.q. That is, for all vector fields v,w we have g(v,w) = g(Jv, Jw). Let g
be a Hermitian metric on (X,.J) and define a 2-tensor w = we by wep = JSgw. That is,
w(v,w) = g(Jv,w) for all vector fields v, w. We have wp, = —wgp and therefore w is a 2-form

which we call the Hermitian form of g.
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Definition 3.2 Let g be a Hermitian metric on a complex manifold (X, J), with Hermitian
form w. We call g Kdhler if w is closed, dw = 0. In which case, we call (X, J,g) a Kdihler
manifold and w the Kdhler form.

In local coordinates, the fact that dw = 0 for a Kahler manifold implies

dw = (0 + 0)ig;;dz" A dz = 0. (36)
This implies that
dgi; _ 9935
= Y 37
ozt 9zt (37)
and similarly with z and 2z interchanged. From this we see that locally we can express g;; as
PK
5= . 38
95 = a7 (38)

That is, J = i00K, where K is a locally defined function in the patch whose local coordinates

we are using. K is known as the Kahler potential.

Let (X, J,g) be a Kdhler manifold with Kéahler form w. Then w is a closed real 2-form, so
it has a cohomology class [w] in the de Rham cohomology H3z(X,R). We call [w] the Kahler
class of g.

Consider (p, ¢)-forms C*°(AP?X) on X and define the operators

1 OF(APIX) — C®(APTLOY) (39)
8 : O®(APIX) — C®(APITLY) (40)

by d = 0 + 0, and their adjoints

O : C®°(AP1X) — C™(AP~HIX) (41)
0 : C®°(APIX) — C=(API1X), (42)
by 0 = — % 0% and 0* = — % 0. With these operators we can define the d,0 and

O-Laplacians by Ay = dd* + d*d, Ay = 00* + 0*0 and Ay = 00* + 9*0. For Kihler manifolds

we have Ay = Ay = $A,.

Let HP? denote the kernel of A, acting on (p, ¢)-forms and 5p7q, 5;7(1 denote 0,0 acting on

(p, q¢)-forms. Then we have the following version of the Hodge decomposition theorem:
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Theorem 3.4 Let (X, J,g) be a compact Kihler manifold. Then
C®(AP1X) = HP! @ Im(Dpy1) D Im(5;7q+1). (43)
In other words, any (p, ¢)-form w?? on X can by written as
WP = JaP 1™ 4 5 gt )P (44)
where ' is harmonic with respect to the Laplacian A4, and Dolbeault cohomology satisfies

HE(X) = Kerdy,q/Tmdp g1 (45)

= (K9 @ Tm(9))/Imd 1 = M. (46)

If we write HP4(X) for the subspace of HPT(X; C) represented by forms in H??, then we

have
HYX;C) = @ H"(X), (47)
p+q=k
and HP(X) = H2(X). Hence
HY(X:;C)= P HZU(X). (48)
ptq=k

Observe that complex conjugation takes HP? to HYP. Since HP? = Hg’q(X)7 this implies

that

HEN(X) = HEP(X) (49)
Furthermore * gives

s 1 HP9 — Hn—pn—aq_ (50)

which implies the Poincaré duality style isomorphisms

HPI(X) = H"Pr(X)* (51)
HPU(X) = HPrU(X) (52)

The Betti numbers of X are b¥(X) = dimcH%,(X; C), and the Hodge numbers of X are
hP4(X) = dimc H5(X). We have

(X)) = ) mPUX). (53)

pt+a=Fk

The Hodge star operator ensures
hPU(X) = h"PrI(X), (54)
and using complex conjugation and Kahlerity, we also have
hP(X) = hP(X). (55)
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3.4 Holomorphic Vector Bundles

Let X be a complex manifold of complex dimension n and let V' be a rank-r holomorphic vector
bundle over X. We denote by Q24(V) the space of V-valued (p, ¢)-forms. Explicitly, let {E,}
be a holomorphic frame for V, i.e. on each patch of X, the F, form a basis for C" and have
holomorphic transition functions valued in GL(r,C). A bundle-valued (p, g)-form « can then

be written locally as

a=) o'k, (56)
a=1

where a® € QP4(X) are standard (p, ¢)-forms on X.

0-Operators and Connections
There is a natural 0 operator on V:
oy : Q¥(V) — Q% (V), (57)
such that o € Q%°(V) is holomorphic iff dya = 0. It satisfies the Leibnitz rule
Ov(fe)= [ Ove+0f @ce, (58)
for all e € Q°°(V) and smooth f : X — C. Given Oy there are unique extensions
o QPA(V) — QPITL(V) (59)

with Oy = 5&0, such that
M (a@ce) =dyveAa+e®cda (60)

for e € Q%9(V) and a € OP4(X).

For a holomorphic vector bundle we have 927" o 9% = 0 for all p,q. For any dy, the

operator

Nt o dy - QM(V) = QO2(V) (61)

is of the form e — F})” - e for unique Fp? € QO2(End(V)).

A connection on V is defined by a differential operator
D: Q' (V) — QYV), (62)

such that
D(fe)=f-De+e®df (63)
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for all locally defined holomorphic sections e of E and all locally defined holomorphic

functions f on X.

Let E be a complex vector bundle over (X, J), and G a Hermitian metric on the fibres of

E. A connection D on V is said to be Hermitian if
d(G(s1,$2)) = G(Dsy, s2) + G(s1, Dss), (64)
or equivalently DG = 0 for all sy, s, € Q°(V). There always exists Hermitian connections.
Now let E be a holomorphic vector bundle over X and D a Hermitian connection with

respect to the Hermitian fiber metric G. F{” is then (0, 2)-component of the curvature Fy, =

Q?(End(V)) and since E is holomorphic F{y*> = 0. Furthermore, as D preserves G,
Fy € Q*(Herm™ (V)), (65)

where Herm™ (V') C End(V) is the set of anti-Hermitian transformations with respect to G.
This implies that the (2,0)-component of Fy, is conjugate to the (0,2)-component and thus is

also zero. Therefore, we conclude that Fy is of type (1,1).

Note that compatibility with the holomorphic and Hermitian structures uniquely determines
the connection as the Chern connection of G, which is characterised by a local one-form A.

With respect to a local holomorphic frame, A is given as

A=G10G, (66)

such that D = d + A. Therefore,
DY =0y, =0+A (67)
D% =9y = 0. (68)

Dolbeaut-Type Cohomology

Let E be a holomorphic vector bundle over a complex manifold X of complex dimension n,
with metric ¢ and with the Hermitian fiber metric G. The generalised Hodge star x, maps

QP9(V) to Q*P"=9(V*) and defines an inner product (-,-) as
@ = [ wans= [ @p, (69)
b b
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where dV} is the volume form of g and (o, 8) is given by

[ ,
= p!—q!(a)“ (ﬁ)zl...kpl]..qu gt G (70)

(o, B)

i1.ipi1edq

The adjoint 9, of dy is then defined relative to this inner product as (dya, 8) = (a, 95 8) and
is given explicitly by
By = (=1)""" xy O xv (71)

where 0 is the standard Dolbeault differential.

Using these ingredients, we define the Dolbeault Laplacian as
Agv = 5‘*/5\/ + 5\/5{;, (72)

which is self-adjoint with respect to (-, -). Following from this, one has the Bochner-Kodaira—

Nakano identity [79-82] which relates the dy-Laplacian to the dy-Laplacian as
Ap, = Np, + [F, Al (73)

where A is contraction with the Kéhler form w on X. When V is trivial, so that the curvature
F vanishes, this reduces to the usual relation between the 0- and O-Laplacians on a Kahler

manifold, i.e., Ay = Ap.

We define the Dolbeault cohomologies of V' by

Ker(a07 : QP9(V) — QPatL(V)

HPUX, V) = — 74
( ) Im(057" . Qra—1(V) — Qpa(V) (74)
By Hodge theory we have
HP = KerAp, = HM(X,V), (75)
A bundle-valued (p, ¢)-form « is called harmonic (or a zero mode) if
Ag,a =0, (76)

On a compact manifold, harmonic is equivalent to being both dy- and J-closed, with the
harmonic forms giving the harmonic representatives of the Dolbeault cohomologies H»4(X, V).

We define h?7(V') = dim H??(X, V') as the dimension of the V-valued (p, ¢)-form cohomology.
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3.5 Calabi-Yau Manifolds

Recall, from Berger’s classification 3.1, a complex n-dimensional Calabi-Yau manifold is one
whose Riemannian metric has holonomy group SU(n). Since SU(n) C U(n), a Calabi-Yau
manifold is also a Kéhler manifold. If ¢ is K&hler, then Hol(g) € SU(n) if and only if ¢ is
Ricci-flat.

Definition 3.3 A Calabi- Yau n-fold of complex dimension n is a compact, Ricci-flat Kdhler
manifold (X, J,g) with holonomy group SU(n).

Calabi’s conjecture from 1954 [83] states:

Conjecture 3.5 Let X be a compact, complex manifold admitting Kdahler metrics. Suppose p
is a real, closed (1,1)-form on X with [p] = 27c1(X) in H35(X;R). Then in each Kdihler class

on X there exists a unique Kdahler metric g with Ricci form p.

Calabi’s conjecture was proved in 1978 by Yau [84]. A consequence of Yau’s proof is the
following: Suppose (X, J) is a compact complex Kéhler manifold with vanishing first Chern
class. Then every Kahler class on X contains a unique Ricci-flat Kahler metric g, and thus

(X, J, g) is Calabi-Yau manifold.

The utility of this theorem is that it is generally quite hard to directly determine whether
or not X admits a Ricci-flat metric g. On the other hand, it is a simple matter to compute the
first Chern class of X, and in particular, to find example with vanishing first Chern class. The
downside is that Yau'’s proof is not constructive, meaning that it does not provide the explicit
Ricci flat metric. In fact, no explicit Ricci-flat metrics are known on any non-trivial Calabi-Yau

manifolds.

Topological Properties

Since the holonomy of Calabi-Yau n-folds is SU(n), it can be shown that h%* = h*0 = 0 for
1 < s <mnandh®" = h™" = 1. Using the fact that the space X is connected we also have that

h%% = 1. The Hodge numbers for the cases n = 1,2, 3 are given in Table 4.

Another topological invariant of interest is the triple intersection form which takes three

elements of H é’l(X ) and produces a real number:

I HZY(X) x Hy' (X) x Hy'(X) = R, (77)
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00 1
n=1 hl,O hO,l — 1 1
htt 1
RO 1
h10 Ko 0 0
n=2 R0 hh! ho2 = 120 1
R h1? 0 0
h?? 1
R0 1
hl,O hO,l 0 0
hQ,O hl,l h0’2 0 hl,l 0
n=3 hS,O h2,1 h1,2 hD,S = 0 h2,1 h2’1 0
h3’1 h2,2 h1’3 0 hl’l 0
h? h%3 0 0
B3 1

Table 4: Hodge diamonds for Calabi-Yau n-folds, where n = 1,2, 3.

via
I'"'(A,B,C) = / ANBAC. (78)
b'e
It is called the triple intersection form because it can be equally well phrased in terms of

homology in which case the integral just counts the common points of intersection of the

three four-cycles, dual to these three two-forms. The integral is a topological invariant of X.

To determine if two Calabi-Yau manifolds are the equivalent we need the topology, and

deformation invariant numbers that characterise a manifold independent of a choice of metric.
e n=1 (elliptic curve): The genus of complex curves is the only topological invariant.
g=1&c¢ =0. (79)
e n=2 (K3 surfaces):
c1 =0, cg =24, h''=20. (80)

e n=3 (CY threefolds): Wall’s theorem [13] states that if two Calabi-Yau threefolds have

the same following invariants then they are diffeomorphic and therefore equivalent:
(RHH(X), h*(X), e2(X), I (A, B, C)). (81)
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Moduli Spaces

Calabi-Yau manifolds are typically part of continuous families, each differing from others in
the same family by the precise form of the defining equation and also the precise form of the

Kahler class.

If X is Calabi-Yau, then X admits a metric g such that R;; = 0. Now, given such a g, can
we continuously perturb to a new metric g+ d¢g such that the Ricci tensor still vanishes? There
are two basic types of perturbations dg that we can consider: those with pure and those with
mixed type indices:

8g = 6g;;dz'dz" + §gi3dzid23 + c.c. (82)

As ¢ is a Hermitian metric, the perturbations with mixed type indices preserve the
original index structure of g while those of pure type do not. Plugging these perturbations of
the metric into the curvature tensor and demanding preservation of Ricci-flatness imposes
severe restrictions on dg. In particular, it turns out that dg;dz" A dz must be harmonic and
hence is uniquely associated to an element of H é’l(X ). Those deformations of the metric of

mixed type therefore correspond to deformations of the Kahler class J of X.

Deformations to the metric with pure type indices yield a metric g + dg which is no longer
Hermitian. However, by a suitable change of variables, this new metric can be put back into
Hermitian form - with only mixed type indices. This change of variables, however, is
necessarily not holomorphic as holomorphic coordinate changes cannot affect the index
structure of a tensor. What this means is that the new metric is Hermitian with respect to a
different complex structure on X - a new set of complex coordinates which are not
holomorphic functions of the original coordinates. Those deformations of the metric of pure
type which are associated to elements of Hg’l(X ) therefore correspond to deformations of the

complex structure of X.

Any two representatives in the same cohomology class yield metric perturbations that can be
undone by coordinate redefinitions. Hence, the cohomology classes capture the non-trivial Ricci-
flat metric deformations. The parameter space of those Calabi-Yau manifolds continuously
connected to some initial one X thereby consists of the possible choices of complex and Kahler
structures on the underlying differentiable manifold. We refer to this parameter space as the

moduli space of a Calabi-Yau manifold.
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Constructions

Calabi-Yau manifolds X can be constructed as algebraic varieties: We embed X in a simple

(complex) geometry A as the zero locus of a set of polynomials

P1(@:), pa(wi), oo pu(i) = 0, (83)

where p;(x;)’s are polynomials in complex coordinates, x; of A.

We first need to find a suitable complex ambient space A, in which to define our set of
polynomial equations. Since we are after compact Calabi-Yau manifolds it is easier if the
ambient space we start with is compact. We therefore choose A to be complex projective space

CP" (often abbreviated to P"), where CP" is defined as the quotient (C"*! — {0})/ ~, where

~ is the equivalence relation
(205 21y ooy Zn) ~ A(20, 215 -y Zn), A F# 0. (84)

The z; are referred to as homogeneous coordinates.

We begin by considering a single hypersurface in P”, defined by one holomorphic equation:

p(z") =0 (85)

of degree m. It is a common convention to denote this manifold by the shorthand P"[m].

A particularly popular example is the quintic P4[5], defined by any homogeneous degree 5
polynomial in the coordinates of P*. For example the so-called Fermat quintic is defined by the
polynomial equation:

p=2zy+-+2=0. (86)

In total there are = 126 degree 5 monomials in the homogeneous coordinates of
4

P*. The PGL(5,C) action on P* generates (25 — 1) coordinate redefinitions. Moreover, the
overall scale doesn’t effect the polynomial equation. This leaves 126 —(25—1) —1 = 101 distinct
coefficients of the defining equation. By varying these coefficients we obtain different manifolds.
This is the complex structure moduli of the Calabi-Yau threefold. One family choice of degree
and ambient space leads to a parametric family of manifolds, all of which can be smoothly

deformed into one another by varying the complex structure.
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There is precisely one further metric modulus, namely the overall volume of the quintic

hypersurface in P*. This is the Kdhler modulus.

The results for a single hypersurface in a projective space can be easily generalised to
complete intersections of polynomial equations p;(z;) = 0. The zero locus of a set of polynomial

equations p; of degree m; in P" will be Calabi-Yau when
n+1= Z m. (87)

We can start with a bigger ambient space - say P® - and use two defining equations to
define a Calabi-Yau threefold. In this case we have P°[3,3] or P°[4,2]. In fact there are only 5
manifolds (referred to as “cyclic” Calabi-Yau manifolds). In addition to the those above, we

also have P9[2,2, 3] and P7[2,2,2,2].

This construction can be generalised in several ways. The first we can consider is to take an
ambient space which consists of products of simple projective spaces. To build a Calabi-Yau

threefold in a product of p projective spaces, P™ x --- x P™  we need

p
an — K =3, (88)
r=1

where K is the number of defining equations, p;(z) = 0 in the complete intersection. Each

of the defining homogeneous polynomials p; can be characterised by its multi-degree m; =

1

(mj, ..

,mg-’ ), where m’ specifies the degree of the p; in the homogeneous coordinates f- (") of the

factor P" in A. A convenient way to encode this information is by a configuration matrix

Pl mi mi - mik
P m2 m2 ... m2
In order that the resulting manifold be Calabi-Yau, the condition
K
Z m; =mn, + 1 (90)
j=1

has to be satisfied for all » = 1,...,p. Those Calabi-Yau manifolds that are constructed in
products of projective spaces are called complete intersection Calabi-Yau manifolds, or CICYs

for short.
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Another generalisation to is to consider weighted projective spaces WP™ for the ambient

space, where instead the equivalence relation becomes
(20, 215 oy 22) ~ (A0 20, A2 29, ..., A 2,). (91)

Again the Calabi-Yau condition links the weights of the projective coordinates with the

degree of the polynomials: ) w; = m, where m is the maximum degree of the polynomials.

We have seen weighting and taking products as ambient spaces, but these ideas can be
generalised still further with interesting C*-scaling relations on coordinates in an ambient
space known as a toric variety. Whilst a (weighted) projective space of complex dimension n
is C"~! (minus the origin), modulo the equivalence relation of the form (91), a toric variety of
complex dimension n is C"** (minus a point set furnished by the so-called Stanley-Reisner
ideal), modulo a set of k equivalence relations (encoded by a charge matrix). All of this data

can be conveniently repackaged into lattice cones and polytopes in R™.

The number of Calabi-Yau n-folds starts small but grows rapidly as you increase n:

e n=1: Only one manifold, the elliptic curve (complex curve of genus, g = 1, same topology

as T7?).

e n=2: Only one manifold, the so-called K3 surface. This is the unique non-trivial CY

twofold (excluding the trivial case of T2 x T?).

e n=3: There are 7890 CICY threefolds [85] and 473,800,776 families of Calabi-Yau
hypersurfaces in toric varieties [86]. It is not known whether the number of Calabi-Yau

threefolds is finite.

e n=4: There are 921,497 CICY fourfolds [87] and no complete classification of Calabi-Yau
fourfolds as toric hypersurfaces has been constructed (although some partial datasets have

been generated [88]).

3.6 (G5 Manifolds

Moving on from Calabi-Yau manifolds we now turn our attention to (G manifolds, which are

those manifolds with dimension 7 that appear in Berger’s classification [12].

From [89] we take the definition the group Ga:
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Definition 3.4 Let {e'};—1 7 denote the canonical basis of (R7)* and e” := e’ Nel. We define

77777

the group Go to be the subgroup of GL(7) preserving the 3-form
Yo = (612 o 634) A 65 T (613 . e42) A 66 + (614 o e23)7 + e567 (92>
under the standard pull-back action on A3(R")*, i.e.,

G2 :={g € GL(7)|g" 0 = o} (93)
Moreover, we define a GGy structure as:

Definition 3.5 A Gy-structure on a 7-manifold M is a 3-form ¢ € Q3(M) such that, at every
point p € M, o, = f(¢o) for some frame f, : T,M — R".

Given a Gy-structure ¢, the set of all global frames f satisfying ¢ = f*pg is a principal
subbundle of the frame bundle F' — M, with fibre Gs.

The G»-structure ¢ induces a Riemannian metric g, and a volume form vol,, via the following
identity:
(Xop) A (Yop) Ap =—6g,(X,Y)vol,, (94)

for any vector fields X and Y on M, where 1 denotes the interior product.

Let %, denote the Hodge star operator associated to the metric g, and volume form vol,.

We denote by v the dual 4-form 1) = x,p.

The torsion of ¢ is defined as the covariant derivative V¢, where V is the Levi-Civita

connection coming from the induced metric g. We say that ¢ is torsion-free if Vo = 0.

Definition 3.6 A Gy manifold is defined by the pair (M, g), where M is a 7-manifold and ¢

1S a torsion free Go-structure on M.

The following is a theorem by Fernandez and Gray [90]:

Theorem 3.6 Let M be a 7-manifold with Ga-structure ¢ and induced metric g; then the

following are equivalent:

1. Vo =0, i.e., M is a Gy-manifold;
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2. HOlg(M) C Go;

dp = dx,p=0, (95)

From this theorem we see that a (Gy-manifold has holonomy contained in G5 and not

necessarily full G5. The holonomy of a (G, manifold must be one of the following:
o Hol (M) ={1} & b(M)="7
e Hol,(M)=SU(2) & b(M)=3
e Hol,(M)=5SU33) & bh(M)=1
e Hol (M) =Gy < bi(M)=0

In M-theory we are interested in constructing manifolds with full holonomy G,, and not a

strictly smaller subgroup, in which case the fundamental group (M) is finite.

In this section we provided an overview of Calabi-Yau and G5 manifolds which are the
compactificaiton spaces that achieve minimal supersymmetry in four-dimensions for ten
dimensional (super)string theory and eleven-dimensional M-theory respectively. In the results
presented later we apply machine learning techniques to generate these geometries, study
their properties and compute aspects of the low energy effective field theories that arise.
Therefore, in the next section we complete our background information by introducing the

subject of machine learning and describe the algorithms that will be used later.
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4 Machine Learning Background

In this section we provide a brief introduction to some fundamental terms and concepts used
in machine learning. For more information we refer the reader to the following resources. The
standard textbooks [91,92] focus on the theory and foundations of deep learning. For a
gentler introduction to the subject a great online resource is Andrew Ng’s course “Machine
Learning Specialization” [93]. Finally, [94] is an excellent introduction to machine learning for
physicists, which includes notebooks with practical demonstrations. We give specific details
on neural networks, genetic algorithms, reinforcement learning and symbolic regression as

these are the algorithms that we will encounter in the later sections.

Machine learning is a subset of artificial intelligence, whereby a system learns and improves

from experience without being explicitly programmed. There are three main categories:

e Supervised learning is used when one is provided with input data labelled with the
desired output. The aim of supervised learning is to approximate the mapping function
from input to output so that given a new set of input data one can accurately predict
the output. Supervised learning can be broken down into regression problems, where the
output is a continuous numerical value, and classification problems, where the output
is a discrete class. Examples of supervised learning algorithms include linear regression,

neural networks, random forests, and support vector machines.

e Unsupervised learning, on the other hand, is applied to datasets consisting of input
data without labelled responses. In this case, unsupervised learning algorithms look
for underlying structures and patterns within the data. These methods can roughly
be divided into clustering algorithms, such as k-means, and dimensionality reduction

algorithms, such as principal component analysis.

¢ Reinforcement Learning is about learning the optimal behavior in an environment in
order to obtain a maximum reward. This optimal behavior is learned through an agent

interacting with the environment and receiving rewards or penalties based on its actions.

4.1 Neural Networks

In supervised learning, we are presented with a set of input samples X, € R each with an
associated output label y, € R%. The goal is to find a function f so that when we are given a

new sample X, ., without a label, we are able to approximate well the label using the function
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f(Xnew)-

In order to test the performance of f one splits the dataset {X,,y,} into two sets: a
training set and a test set. The usual train:test split is 80:20. The training dataset is used to
learn f and after training f is used to make predictions on the unseen test set.
Cross-validation is a method commonly used to get an unbiased evaluation, whereby the data
is shuffled and split into k groups, then each group acts as the test group once and the
remaining groups are combined to create the training set. Each time the model is trained on
the training set, evaluated on the test set and the evaluation scores are recorded. The mean
and standard deviation of the evaluation scores are then calculated and used to measure the

model performance.

To explain neural networks, we begin by introducing the building block of any neural
network; a neuron. A neuron takes in a set of input data {z;} € R™ and produces a single

numerical output y € R. We can divide the function of the neuron into three parts:
1. Firstly, each input x; is multiplied by a weight w; € R: w;x;.
2. Next, all the weighted inputs are summed and a bias b € R is added: >, w;z; + b.?

3. Finally, the sum is passed through an activation function a : R — R which produces an

output: y = a(d_, wx; + b).

N
O
o
-

Figure 5: A neuron.

A neural network is simply a collection of neurons connected together in a series of layers:

fu(X,) = a(L)(W(L) e 6L(2)(W(2)a(1)(W(l)XM + b(l)) + b(2)) + b(L)), (96)

4The bias b is a constant added to shift the activation function to the left or right, which can help with

successful learning. See [95] for a detailed explanation.

95



where L is the depth (i.e. number of layers) of the network, W@ € R"*"-1 are the weight
matrices, where r; for 1 <4 < L — 1 is the width (i.e. number of neurons) of the i-th layer, b
are the biases, a(? are the activation functions and w = {W® pM W) pE)} denotes the
set of all weights and biases. Neural networks with L > 2 are called deep neural networks and

machine learning on these networks is called deep learning.

Figure 6: A neural network consisting of an input layer layer (green) with two neurons, two
hidden layers (yellow) each with four neurons, and an output layer (blue) with one neuron.
The edges between neurons represent the flow of information between layers, where the output

of one neuron is fed as input to the next neuron.

The activation functions a® play a crucial role in neural networks. There are many
variants of activation functions, including binary, linear, and non-linear functions. Using
linear activation functions means that the output of the model would simply be a linear
function of the input. Using non-linear activation functions, on the other hand, allows the
network to learn complex patterns and relationships in the data. A few commonly used
non-linear activation functions are Sigmoid, Tanh, Rectified Linear Unit (ReLU), and
Softmax shown in Figure 7. It isn’t always obvious which activation function one should use
and finding the right one is often a case of trial and error. The activation function in the final
output layer, however, is usually chosen based on the type of problem, as the diagram in

Figure 8 shows.

Training

The process of training a neural network involves repeatedly calculating the “error” of the model

outputs f,(X,) so that the weights can be updated in order to reduce the error. Computing
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Figure 7: Common activation functions for neural networks.

the error requires a choice of loss function L£[f,(X,),y,]. Typical loss functions for regression

problems are mean absolute error (MAE):
1 n
MAE = =% [ Fu(Xu) = yul,
pn=1

and mean square error (MSE):

n

MSE = 3 () = )

p=1

For classification problems the default loss function is cross entropy (CE):
CE=— Zyu log (fuw(X,.))
pn=1

for multiclass classification, and binary cross entropy (BCE):

n

BCE = = (yu10g (fu(X,) + (1 = yu).log (1 = fu(X,)))

pu=1

for binary classification.

o7
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Figure 8: Output layer activation choices for supervised learning problems.

During training the weights w are adjusted in order to minimise the total loss. The method
by which we change the weights is called the optimisation algorithm. The simplest optimisation
algorithm is called gradient descent, which determines in which direction the model parameters
should be altered so that the loss function can reach the minima. In the gradient descent

optimisation algorithm, the model weights are adjusted as follows:

Wip1 = Wy — aa—ﬁ (101)

ow

where « is a parameter called the learning rate that controls the speed and accuracy of
training. A larger a allows the model to learn faster, but at the cost of possibly converging to
a sub-optimal set of parameters. A smaller o may allow the model to learn a more optimal
set of parameters but may take significantly longer to train. The default starting value for the
learning rate is 0.01, from which one can search for the optimal value. In mini-batch gradient
descent, the training dataset is divided into smaller batches, and the model parameters are
updated after every batch. If the batch size is equal to the size of the entire training dataset,
then this is called batch gradient descent. On the other hand, if the size of the batches is 1
this is called stochastic gradient descent (SGD).

These gradient descent methods of optimisation present some challenges. Firstly, choosing
a value for the learning rate can be difficult. A value that is too small can lead to painfully
slow convergence. On the other hand, a value too large can cause the loss function to
overshoot the minimum and in some cases diverge. Another problem that arises in gradient
descent methods is getting trapped at local minima. There exist more advanced optimisation

methods that tackle these challenges, some of which we describe here.

First of all, we introduce momentum [96]. Instead of updating the parameters depending
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only on the current gradient, we use an exponential moving average over past gradients where
recent gradients are weighted higher. In doing so, it reduces the chance of getting stuck at local

minima. The model parameters are updated as
Wiyl = Wy — Qmy, (102)

where
o

my = fmy—1 + (1 = 5) O,

(103)

and my is initialised to 0. The parameter S takes values between 0 and 1 represents the degree
of weighting increase. A smaller § discounts older observations faster, whereas a higher (

accommodates more past gradients. Therefore, § is usually set to 0.9 in most cases.

So far we have considered the learning rate o kept constant. However, keeping the learning
rate fixed might not be the best option for all parameters, and could cause problems with
convergence. Some parameters might need more frequent updates to hasten convergence, while
others might need smaller changes to prevent overshooting the ideal value. We now consider
an optimisation algorithm called Adagrad (adaptive gradient) [97], which changes the learning

rate of the parameters 6 at each time step, t. In this case, the parameters are updated as

« oL

Wiyl = Wy — \/ﬁa—wt, (104)
where v is cumulative sum of the current and past gradients squared
oL\’
/Ut = /Ut+l —|— (%) 5 (105)
t

and v, is initialised to 0. The e parameter is a small number, usually set around 107, added
to ensure that we do not encounter a zero in the denominator. Adagrad adjusts the learning
rate for each parameter based on the parameter’s significance to the optimisation process.

This lessens the requirement for manual adjustment of learning rates.

A similar optimisation algorithm to Adagrad is RMSprop (root mean squared propagation)

[98] where we introduce the exponential moving average to update v

v = Bor_1 + (1 — B) (ﬁ)Q (106)

8wt

Again v is initialised to 0.
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The last optimisation method we shall consider is Adam [99] (adaptive moment estimation),
which is a combination of RMSprop and momentum. The model parameters in this optimisation

algorithm are updated as

(07 A
W41 = Wy — ’[)t i Emt (107)
where
A My
my =5 (108)
A Vg
Uy = — 5 (109)
and
oL
my = Brmy— + (1 — /31)6—% (110)
oL
v = Povi—1 + (1 — Pa) <8_wt> (111)

m and v are both initially set to 0.

The advanced optimisation algorithms we have discussed here are more computationally
expensive than simple gradient descent methods, but for complex systems perform much better.
Adam is the most commonly used optimisation algorithm and is the optimisation method we

use in later in Section 6.

Evaluation

For regression tasks, typical performance metrics include MAE (97), MSE (98) and the R?
score, which is defined as the proportion of the variance in the dependent variable that is
predictable from the independent variable(s). Therefore, an R? score close to 1 means the
regression model is a good fit, whereas a score close to 0 means the model is a poor fit. The

equation for computing R? is

Tl_ » X 2
R2—1_— Zz_l(yu Jul u))Q’ (112)
ZM:1(yu = Juw(Xy))
where
N
Pl = =3 fulX,) (113
pn=1
For classification tasks, the default performance metric is accuracy
TP+TN
ace = : (114)

TP+ FP+TN+ FN’
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where TP, FP, TN, N denote the true positive, false positive, true negative, and false negative
counts respectively. Accuracy, however, can sometimes be misleading. For example consider
the binary classification situation where the first class occurs 99% of the time and the second
class occurs only 1% of the time. An algorithm that just predicts the first class every time
would give an accuracy score of 99% which looks great but this isn’t actually a good model. A

better metric in this case is Mathew’s correlation coefficient (MCC)

TP xTN —FPx FN
MCC = : (115)
V(TP +FP)x(TP+FN)x (I'N+ FP) x (TN + FN)

which is similar to the Pearson correlation coefficient®, where a score of 1 indicates complete
agreement between predictions and truth, 0 indicates that the predictions are no better than
random guessing, and -1 indicates complete disagreement between the predicted and truth.

MCC is a better choice of metric when dealing with classes of different sizes.

4.2 Genetic Algorithms

Genetic algorithms (GAs) are optimization algorithms, first put forward in the
1950s [100,101] and later formalized by Holland [102] in the 1970s. The algorithms mimic the
process of natural selection in Darwin’s theory of evolution [103], whereby the fittest
individuals reproduce to create the next generation. This process iterates and in the end there

will be a generation of the fittest individuals.

The first step of a GA evolution is to randomly generate, from an environment E, an
initial population F, that contains a certain number n,,, of individuals. Individuals are made
up of a set of genes joined together. Usually, binary values are used to represent the genes in

which case individuals are represented by bitstrings (a list of Os and 1s).

The next step is to define some fitness function f : £ — R and assign a fitness score to
each of the individuals in the population. The fitness score of an individual will determine

how likely it is to be selected for breeding.

The genetic evolution then consists of a sequence:

P0—>P1—> """ — P

gen—1 —> Pn (116)

gen

5The Pearson correlation coefficient is a coefficient that measures the linear correlation between two sets
of data. It is defined as the ratio between the covariance of two variables and the product of their standard

deviations.
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Figure 9: Genetic algorithm population made up of bitstrings representing individuals.

of further ngen, populations. The basic evolutionary process, P, — Py41, to obtain population
k + 1 from population k is carried out in three steps, namely, (i) selection, (ii) crossover, and

(iii) mutation. We describe these three steps in turn.

(i) Selection: In the selection phase pairs of fit individuals are chosen for reproduction.
Parents are selected using a probability distribution py : P, — [0, 1], based on the fitness
scores. Individuals with a high fitness score are more likely to be selected. To keep the

size of the population constant, ny.p/2 pairs are selected for breeding. °

(ii) Crossover: For each pair selected in step (i), the genes of the parents are combined in
some way to create two offspring. Carrying this out for all pairs generates a set of new

individuals, which make up the new population ]5k+1.

(iii) Mutation: In the final step, a certain fraction, rp,., of genes in the individuals of the
population ]5k+1 from step (ii) are subjected to mutation. Mutation occurs in order to

maintain diversity within the population and prevent premature convergence.

A common addition to the above algorithm is elitism which means that the fittest individual
from population Py is copied to the population Pi,; unchanged. The algorithm terminates
either after a set number of generations, or once a satisfactory fitness level of the population

has been reached.

In summary, a GA evolution is subject to the following hyperparameter choices: the

population size np.p, the number of generations nge, and the mutation rate 7. Typically

SNote that pairs of individuals are selected independently and so individuals can be selected more than once,

in which case they contribute to more than one child.

62



Population
n

un
mENEE
Mutakion ﬁ wanmm w
— nen Ronking
NEREEN ™ amENEE
muuEm L e T )
XMIX unnm M
LT nERuNN Selection & Crossover 420‘“.: =
N
K LTzﬁﬂ- - /
&I
nERNEN
ST

Figure 10: Diagram representing the evolution of a genetic algorithm.

many GA evolutions, each with a new randomly sampled initial population Fy, are carried

out.

4.3 Symbolic Regression

Symbolic regression (SR) is the subfield of machine learning which infers symbolic
mathematical expressions from data. These methods allow one to obtain accurate predictive
models and more importantly the learned models are interpretable. Of course in physics we
would like our models to be interpretable as this allows us to understand the underlying
phenomenon. Although SR is fit to dataset it aims to find a symbolic model that can

generalise to unseen data.

In this section, we will introduce the premise of SR and give a short description of a few of
the methods, focusing more attention on the genetic algorithm tree-based method since this is
the method that will be used later in Section 6.3. For more detail on the various other methods,
we refer the reader to the review [104].

Problem Definition
The problem of symbolic regression can be defined in terms of the following:
e Data: A dataset D = {(x;,y;)}", of input x; € R? output y; € R pairs.

e Function Class: A function class F = {f : R — R}.
e Loss Function: A loss function
I(f) = Zl(f(xz%yz‘), (117)
for f € F.

63



A common choice of loss function is the squared difference: I(f) = >_;(y; — f(x;))®. The

optimisation task is to find f* € F that minimises the loss function:

f*=argminl(f). (118)
feFr

To define the function class F we must specify a library of elementary arithmetic
operations, mathematical functions and variables. An element f € F is a function obtained

by the composition of objects in the library. For example, let L be the library defined as
L= {Id()v add('a ')7 SUb('v ')7 mUI('a ')7 +1, _1} (119)

With such a library the function class F consists of all polynomials, in one variable x, with
integer coefficients. In practice, L may include many other mathematical functions, such as
logarithm and exponential, sine and cosine, square root, etc. It is advantageous to have prior

domain knowledge in defining a minimal library since it reduces the search space.

Methods

There are many variants of SR but methods can be categorised into the following classes:
linear and non-linear regression-based methods, expression tree-based methods,

physics-inspired and mathematics-inspired methods. These are summarised in Table 5.

Method Tool Expression Form Unkown Search Space
Lincar Uni-D Linear System y=>.0:fi(x) {6}, R
Multi-D Linear System yi =, fi(x) ({6}:)5) R
Non-linear Neural Network y=f(W-x+0) {W} R

Genetic Algorithm Expression Tree Trees

Expression-Tree Transformers Set2Seq Mapping  {W,, Wy, W, } R
Reinforcement Learning Set2Seq Mapping 7(0) R
Physics-Inspired Al-Feynman y = f(x,0) - -
Mathematics-Inspired ~ Symbolic Metamodels G(x,0) 0 R

Table 5: Summary of symbolic regression methods.

The linear SR method defines the functional form as a linear combination of (possibly)

non-linear functions of x from the library L:

Fle,0) = D 0hy(), (120)
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where h; € L. In this case, the optimisation problem amounts to finding the set of parameters

6, that minimise the loss function (117).

Non-linear SR, on the other hand, defines the function form as:

flx, W) =0 <Z Wio (; W,o (;Wg.%))) (121)

where ¢ is a non-linear activation function and the W’s are the learnable parameters of a
neural network. Here the problem amounts to finding a set of parameters W; which minimises

the loss function (117).

Expression tree-based methods treat mathematical expressions as unary-binary trees
whose internal nodes are operators and terminals are operands (variables or constants), as
illustrated in Figure 11. This category comprises GA-based, transformer-based and RL-based
methods. In GA-based methods, a set of transition rules (e.g. mutation, crossover, etc.) is
defined over the tree space and applied to an initial population of tress throughout many
iterations until the loss function is minimised. The crossover operation involves exchanging
the content of two individuals, for instance, by swapping one random subtree of one
individual with a random subtree of the other individual, as shown in Figure 12a. The
mutation operation involves random variations to an individual, for instance, by replacing one

random subtree with another randomly generated subtree, as shown in Figure 12b.

Figure 11: Expression tree representing the function f(x) = 2? — cos .

In this section we have introduced the fundamentals of machine learning and provided brief
summaries of the algorithms we will encounter in the next sections, namely: neural networks

(NNs), symbolic regression (SR) and genetic algorithms (GAs). In the following section we will
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Figure 12: Crossover (a) and mutation (b) operations on expression trees in genetic algorithm

based symbolic regression.

show how GAs can be used to generate Calabi-Yau manifolds with certain properties and in
Section 6 we will see how NNs can be applied to learn topological properties of G2 manifolds
from algebraic input data describing the manifold. Furthermore we see that SR can be used to

approximate functions for the topological properties given the same input data.
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5 Generating Calabi-Yau Manifolds

The term “string landscape” refers to the set of all effective field theories (EFTs) obtained
from dimensional reduction of string theory. As we learnt in Section 2.3, Calabi-Yau (CY)
threefolds provide the appropriate compactification space for ten-dimensional superstring
theory to preserve N = 1 supersymmetry in four-dimensions. Similarly, CY fourfolds are the
appropriate compactification space for twelve-dimensional F-theory. Estimates on the size of
the landscape include the 10°% type IIB flux compactifications [105,106], as well as 10272000
F-theory flux compactifications on a single elliptically fibered CY fourfold [107]. Random
sampling is most likely to fail at identifying models in the landscape whose low-energy
symmetry and particle content match those of the Standard Model (SM), and systematic
searching is beyond computational capabilities. Without a method of identifying SM like
models within the landscape, the usual procedure so far has been to choose a CY manifold
mostly at random, generate vast amounts of EFTs only to throw away large numbers of these
which don’t satisfy the often stringent constraints. Clearly this procedure is inefficient and
motivates a more targeted algorithmic approach to choosing a CY. In this work, we use

machine learning methods to address this problem over the space of CYs generated from

reflexive polytopes and their triangulations.

In [108,109], Batyrev and Borisov showed how mirror pairs of (n — 1) complex dimensional
CY manifolds can be realized from hypersurfaces in toric varieties constructed from
n-dimensional reflexive polytopes. These toric varieties are generally singular, but one can
resolve the singularities by taking fine regular star triangulations (FRSTSs) of the polytope.
Motivated by Batyrev and Borisov’s discovery, Kreuzer and Skarke (KS) devised an algorithm
to generate all reflexive polytopes in n dimensions [110]. The algorithm consists of two steps.
First, a set S of “maximal” polytopes is constructed such that any reflexive polytope is a
subpolytope of a polytope in S. These maximal polytopes are defined by a so-called “weight
system” or a combination of weight systems. Second, all subpolytopes of polytopes in S are
constructed and checked for reflexivity. The complete classification of 4319 three-dimensional
reflexive polytopes with this algorithm was accomplished in [111]. From these we obtain K3
surfaces, which is to say, CY twofolds. Proceeding to dimension three, the 184,026 weight
systems giving rise to four-dimensional reflexive polytopes were presented in [112], and the
resulting 473,800,776 four-dimensional reflexive polytopes, leading to CY threefolds, were

listed in [86]. In five-dimensions the total number of reflexive polytopes is prohibitively large,
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and Scholler and Skarke were only able to run the first stage of the algorithm to calculate all
322,383,760, 930 weight systems corresponding to maximal polytopes [88]. They found that
185,269,499, 015 of these weight systems give rise to reflexive polytopes directly.”®

A polytope is said to be reflexive when it satisfies a set of conditions: it must be a lattice
polytope (that is, its vertices must lie on integer lattice points), it must satisfy the IP
property (that is, it must have only a single interior point) and its dual must also be a lattice
polytope that satisfies the IP property. Alternatively and equivalently, a polytope is reflexive
if and only if it satisfies the IP property and all bounding hyperplanes of the polytope lie at
unit hyperplane distance from the origin. With multiple criteria, finding reflexive polytopes is
an example of a multiobjective optimisation problem (MOOP). Regression is unsuitable for
this types of problem since any loss function will have local minima, where some but not all of
the criteria are satisfied. Popular methods for solving MOOPs are genetic algorithms (GAs)
and reinforcement learning (RL), which explore an “environment” in order to maximize a
fitness or reward function. In [49], GAs were applied to search for reflexive polytopes. In this

section we present the results of this paper.

Significant work has already been done on applying machine learning techniques to study
polytopes [115-117]. GAs have also been shown to be successful at scanning for
phenomenologically attractive string models [118,119], but [49] is the first recorded use of
these algorithms to search for reflexive polytopes. There was also some recent work done on
generating smooth Fano polytopes [120] using sequential modeling. However, we found
applying this methodology to reflexive polytopes without the smoothness condition did not
yield good results. Inspired by [49], others have since used GAs to generate FRSTs of
reflexive polytopes [121] and applied this to search for smooth CYs which optimise axion
decay constants and axion-photon couplings in type IIB. In parallel to [121], the authors
of [49] subsequently also designed an algorithm to generate FRSTs of reflexive polytopes
using RL instead of GAs [31], and applied this to search for smooth CYs together with

holomorphic vector bundles that satisfy anomaly cancellation and poly-stability conditions in

"It can be that distinct weight systems correspond to the same polytope. This means that the total number
of unique five-dimensional reflexive polytopes found by Scholler and Skarke is less than 185,269, 499,015 (it is

not known by how much).
8All data produced by the KS algorithm for reflexive polytopes in three and four dimensions can be found

at [113]. The complete Scholler-Skarke dataset of five-dimensional reflexive polytopes can be found at [114].
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heterotic compactification.

The rest of the chapter is organised as follows: in Section 5.1 we introduce some of the
basics of toric geometry so that we can understand the construction of Calabi-Yau manifolds
from reflexive polytopes. We then, in Section 5.2, give the details our GA model; we describe
the data encoding of polytopes as bitstrings and the define the fitness function that determines
how close a polytope is to being reflexive. After this (Section 5.3) we present the results of our
GA searches for two-, three-, four- and five-dimensional reflexive polytopes. Finally, in Section

5.4 we finish with a discussion and prospectus.

5.1 Toric Geometry

Definition 5.1 Let M = Z" and N = Hom(M,Z) be a dual pair of lattices with the pairing
(-,-) : Nx M — Z, and let Mg, Ng be their rational extensions. A (convez) polytope A in My

has two equivalent definitions:

1. Vertex Representation: Convex hull of a finite number of points (vertices) vy, ..., vy, €

M.

2. Hyperplane Representation: Intersection of a set of linear inequalities (u;, ) < d;

where w; € Ng are primitive lattice points and d; € R.
The vertices can be combined into an n X m vertex matrix V' = (vq,...,0p).
Definition 5.2 A face 6 of A is defined as
0 ={me Al(n,m)=d} , (122)
for somen € Ng and d € Q.

In other words, a face of the polytope is the intersection of the polytope with one of the
bounding hyperplanes. The value of d is the lattice distance of the hyperplane from the origin.
A face of codimension 1 is referred to as a facet. We denote the set of all facets by F(A).

Definition 5.3 The dual (or polar) polytope of A is defined as

A" ={n € Ng|(n,m) > -1 Vm e A} . (123)
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(a) A (b) Xa

Figure 13: Polytope A and normal fan YA associated to the polytope defined by the vertex
matrix (125).

A polytope A € Mg is called a lattice polytope if all its vertices are integral, i.e. v; € M.
Given an n-dimensional lattice polytope A C M, one can construct a compact toric variety Xa
of complex dimension n. In short, one constructs the normal fan ¥ 5 as follows: for a face 6 of

A, let 09 C N be the dual of the cone:
oy = {MNu—u)|ue A €0,A>0} C M. (124)
The normal fan is then given as YA := {0y} for all faces 6 of A.

Example 1 Consider the two-dimensional lattice polytope A C Z2, as shown in Figure 13a,

defined by the vertex matriz:

110 0
V= : (125)
1 11 -1

The normal fan for this polytope is shown in Figure 13b.

From the normal fan, the construction of the compact projective toric variety Xa follows
the usual procedure (see [122] for details), where each cone oy gives rise to an affine toric

variety U,, = Spec(C[oy N M]) and one glues these patches together.

A polytope is said to satisfy the IP property if the origin is its only interior lattice point.

Definition 5.4 A lattice polytope A is called reflexive if it satisfies the IP property and if its
dual A* is also a lattice polytope that satisfies the IP property. Equivalently, A is reflexive if
and only if it satisfies the IP property and if all its hyperplanes lie at a distance one from the
origin, that is, if all d; = 1.
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Figure 14: A dual pair (A, A*) of two-dimensional reflexive polytopes.

The connection between Calabi-Yau (CY) manifolds and reflexive polytopes is given by the

following theorem [108,109]:

Theorem 5.1 Let A C M be an n-dimensional lattice polytope and X the corresponding n
complex dimensional toric variety. If A is reflexive then it follows that Xa is Gorenstein Fano
with at most canonical singularities, and moreover the zero locus of a generic section of the

anticanonical bundle —Kx is a CY variety M of complex dimension n — 1.

The mirror CY W is similarly obtained from the dual polytope.

For CY n — 1-folds, built from n-dimensional reflexive polytopes, there exist formulas to
compute the Hodge numbers in terms of the polytope data such as [108,109]:
WHX) =AY —n—1— D )+ > 0)(0), (126)
codimf=1 codimf*=2
where 6 and 6* are the faces of A and A* respectively, ¢ denotes the number of integer points

and /* denotes the number of integer interior points.

5.2 Genetic Algorithm Model

To generate reflexive polytopes, we apply a genetic algorithm (GA) due to its simplicity and
effectiveness. Here we just give the specific details of our GA; namely the environment, fitness

function and selection criteria. For a general introduction to GAs, see Section 4.2.

In our case, the environment consists of lattice polytopes A in n dimensions, generated as

the convex hull of m vectors x, € Z", where a = 1,...,m. The vectors are arranged into an
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n x m matrix X = (r1,...,2,). In practice, we restrict the entries x’ of the matrix X to a
finite range [Tmin, Tmax|- Our environment E therefore consists of all n x m integer matrices
X with entries in this range. We convert the X matrices into bitstrings. Each integer x’ is
converted into a bitstring of length v and concatenating these leads to a bitstring of length

npits = nm . The environment E therefore contains a total of
QMbits — QNMY (127)

states.

The basic fitness function is defined to give a score to a polytope based on how close it is

to being reflexive:

F8) = wn (IP(A) = 1) — A 37 Jdale) =1, (128)
PEF(A)

where IP(A) equals 1 if A has the IP property and is 0 otherwise and da(y) denotes the
distance of the ¢ facet hyperplane from the origin. The numbers w;, ws € RZ? are weights
which are typically chosen as w; = wy = 1. Note that f(A) < 0 always and f(A) = 0 if and
only if A is reflexive. Accordingly, we set fierm = 0 so that the terminal states correspond to

reflexive polytopes.

For some of our applications we are interested in generating reflexive polytopes A whose
number N,(A) of points equaled a certain target N,o. To facilitate such targeted searches, we

modify the fitness function (128) to
F(A) = f(A) = ws [Ny (A) = Nyl 4 (129)

where ws € R=Y is a further weight which can be used to switch the additional requirement on
and off. If ws > 0, then f (A) = 0 and, hence, A is terminal, if and only if A is reflexive and

has the target number IV, o of points.

For the selection criteria we employ the so-called roulette wheel selection where the
probability p of an individual s € P, beign selected for breeding is defined as

L (a=1) (F(5) = ) + fus =

npOp fmax - f

pi(s) = : (130)

where f and fmax are the average and maximal fitness values on Py, respectively. The

parameter «, typically chosen in the range o € [2,5], indicates by which factor the fittest
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individual in the population is more likely to be selected than the average one. We fix o = 3

for all our investigations.

For each pair of individuals selected for breeding, a random location [ € {1,... npis}
along the bitstrings is chosen and the tails of the two strings are swapped, creating two
offspring. In the final mutation step, a certain fraction, ryu, of bits in the population Py
are flipped. Finally, we employ elitism in our GA, carrying the fittest individual from the

previous population to the next.

Once the GA has found a list of reflexive polytopes, possibly with additional properties,
we are not yet finished, since we have to eliminate the redundancies which arise from
transformation equivalences. This is done by computing the normal form of the vertex

matrix, using the algorithm described in Appendix A.1.

For our applications, we use PALP [123] tools for polytope computation and additional ¢

code combined into a lightweight and fast ¢ code [124].

5.3 Generating Reflexive Polytopes

In this section we present the results of our GA at generating reflexive polytopes in various
dimensions. We start with n = 2, 3,4 dimensions where complete classification already exists.
We then progress onto n = 5 dimensions where a complete classification is lacking. There are
some common hyperparameter choices which we use for all following runs. In each case, we
evolve populations for ny., = 500 generations, we use a mutation rate of 7y, = 0.005, and the
parameter « in (130) is set to a = 3. Other hyperparameters, such as the population size 1y,
and environmental variables will be chosen to optimize results and their values for each case

will be stated below.

Two- and Three-Dimensions

In two-dimensions, where there are 16 unique reflexive polytopes, we use an integer range
z' € [—4,4] and m = 6 generators. Using a population size of n,,, = 200, the genetic
algorithm finds all 16 reflexive polytopes after only one evolution, taking only a few seconds

on a single CPU.
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In three-dimensions, we use the coordinate range z°, € [—8, 8] and m = 14 generators. With
population size set to npep, = 450, the genetic algorithm finds all 4319 reflexive polytopes after
117251 evolutions. Considering the small fraction of reflexive polytopes in the environment this

is a remarkable achievement.

Four-Dimensions

In four-dimensions, the total number of reflexive polytopes is large (473,800, 776) and, for our
purpose it is not necessary to generate the complete set. Instead, we focus our attention on
finding those polytopes A with the lowest numbers, N, o = 6, ..., 10, of points. To facilitate such
a search we use the modified fitness function (129) with certain targets N, for the number of
points. The integer range is taken to be % € [—4, 4] in all cases and the number of generators is
set as m = N, —1, since the maximum number of vertices of a reflexive polytope with N, points
is N, — 1 where all points except the origin are vertices. With these settings we performed
multiple GA runs and the results are summarised in Table 6. It is remarkable that all states

are found in all cases after a sufficient number of GA runs.

# points  # refl. poly. n,o, # GA runs
6 3 400 5
7 25 300 30
8 168 400 60
9 892 300 9378
10 3838 350 9593

Table 6: Results for four-dimensional reflexive polytopes with a small number of lattice points,
as in the first column. The total number of unique reflexive polytopes for the given number of
points (as taken from the Kreuzer—Skarke list) is given in the second column, the third column
gives the population size and the last column gives the number of GA runs required to find all

unique reflexive polytopes.

Five-Dimensions

In the previous sections, we saw that GAs can generate complete lists of reflexive polytopes in
two, three, and four-dimensions. This is a valuable proof of principle demonstrating that GAs

can successfully generate reflexive polytopes. However, the results are of limited practical use,
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given the complete classifications in those dimensions. We now turn to reflexive polytopes in
five-dimensions, where a complete classification is not available. The total number of
(inequivalent) reflexive polytopes in dimensions n = 1,2,3,4 is given by 1, 16, 4319,
473,800, 776, respectively. This sequence suggests the number of reflexive polytopes in five
dimensions is extremely large and producing a complete catalog is intractable.? The partial
list of Schéller and Skarke of 185,269,499,015 weight systems that give rise to (not
necessarily inequivalent) maximal five-dimensional reflexive polytopes [88] is currently the

largest database.

Unlike the Scholler-Skarke list, the polytopes produced by the GA are not biased towards
maximal polytopes, and can be used to search for polytopes with other properties. In fact, it
is likely that the vertices of the largest polytopes are far from the origin, and the GA would
struggle to find such cases. For this reason, we focus on generating small polytopes with a
small number of points. We note that the “small” polytopes we generate are not necessarily
dual to Skarke and Scholler’s “maximal” polytopes. The maximal polytopes in Skarke and
Scholler’s list are those that contain every reflexive polytope as a subpolytope and so the dual
of these will indeed have a small number of points. However, some of our small polytopes
which have a small number of points might have a dual that is large (meaning it has large
number of points) but it is still a subpolytope of an even larger maximal polytope, in which

case the dual would not be in Skarke and Scholler’s database.

In analogy with the four-dimensional case, we search for those five-dimensional reflexive
polytopes with the lowest number of points, that is, Ny € {7,8,9,10,11}. In each case, using
the vertex coordinate range [—4, 4], we perform as many GA runs as necessary until no new
polytopes are found for 1000 evolutions. The results are summarised in Table 7. Of course we
do not know with certainty which fraction of low-point polytopes we have found. It is possible
that some five-dimensional reflexive polytopes with such numbers of points still exist inside or
outside the defined GA environment. On the other hand, in view of the highly successful
low-point searches in four dimensions, it seems likely we have found a large fraction of these

polytopes.

The Scholler-Skarke list contains 8 weight systems corresponding to CY hypersurfaces with
h'! = 1 and 33 weight systems corresponding to CY hypersurfaces with A"' = 2. In their

9Extrapolating this trend gives an estimate of 1.15 x 10'® five-dimensional reflexive polytopes [88].
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# points  npep  # un. refl. poly.  # GA runs
7 350 9 36
8 350 115 1278
9 450 1385 7520
10 750 12661 31857
11 650 94556 376757

Table 7: Results for five-dimensional reflexive polytopes with a small number of lattice points,
as in the first column. The population size is given in the second column, the third column lists
the total number of unique reflexive polytopes found by the GA for the given number of points
and the last column gives the number of GA runs at which the total list of reflexive polytopes

saturates and after which no new reflexive polytopes are found for 1000 runs.

list there are also 8,409,140 and 186,659, 154 weight systems with A'? = 1,2 respectively,
whose duals will have h''t = 1,2. Taking a sample of 100,000 weight systems in each case and
computing the corresponding reflexive polytopes in their normal forms we find that there are
only 7 and 47 unique polytopes. This is a huge reduction and highlights the large amount of
redundancy in the Scholler-Skarke list of weight systems. Scanning the lists of five-dimensional
reflexive polytopes obtained from the GA runs described above we find 15 polytopes with
h'? = 1 whose dual polytopes have h'"! = 1. Similarly, we find 195 polytopes with h'?® = 2
whose dual polytopes have h''' = 2. By comparing normal forms, we see that these dual
polytopes contain all A'! = 1,2 polytopes from the Scholler-Skarke list. In addition, there are
many new examples, with Hodge numbers which are not contained in the Schéller-Skarke list
or in the list of four-dimensional CY manifolds realized as complete intersections in products
of projective space (CICYs) [87,125]. Two such examples with a new set of Hodge numbers

are:

Example 2 A new five-dimensional reflexive polytope giving rise to a four-dimensional CY

hypersurface with h'' = 1 is given by the vertex matriz:

4 -1 2 -1 =2
-1 -4 9 0 -3
-2 21| . (131)
-3 0 3 0 -1
-5 1 -1 1 -1
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This polytope has Hodge numbers h** =0, h'?® = 111, h®>% = 492, and Euler number x = 720.

Example 3 A new five-dimensional reflexive polytope giving rise to a four-dimensional CY

hypersurface with h'' = 2 is given by the vertex matriz:

0 -2 -4 -1 10 8 =2
4 0 2 -1 -6 —4
-1 1 -3 0 1 3
2 -2 0 0 -2 0
2 0 -2 1 -6 -2

(132)

w = = O

This polytope has Hodge numbers h'? = 0, h'3 = 111, h*? = 496, and Euler number y = 726.

Targeted Search

To showcase the capability of our GA at generating CY manifolds with specific criteria, we
present an example of a targeted search inspired by [126]. In that paper, the authors consider
eleven-dimensional supergravity compactified on CY fourfolds with four-form flux and provide
the conditions necessary to break supersymmetry from N =2 to A/ = 1. In Appendix A they
search for CY fourfolds with Euler number y divisible by § € {24, 224,504} which satisfy the
N =1 condition. By searching the Scholler-Skarke list they find eight examples which they

present in Table 1. To facilitate a GA search for such cases, we modify our fitness function to
F(A) = f(A) = ws Y x(A) mod 5, (133)
5

where wy is a weight and x(A) is the Euler number of A. In our search for such polytopes we
set the number of generators to be m = 10 and use the integer coordinate range [—4,4]. With
population size np,, = 550 and after 10000 evolutions the GA finds 1871 polytopes that satisty
the index condition and, comparing the Hodge numbers with those in Scholler and Skarke’s

list, we find that two of these are new. One such example is:

Example 4 A new five-dimensional reflexive polytope giving rise to a four-dimensional CY

hypersurface whose Euler number x is divisible by 24, 224, and 504 is given by the vertex

matriz:
-1 02 02 -1 01
0O -12 02 0 0O
o 00 -13 0 2 2 (134)
o 01 00 0 -10
-1 10 00 O 00
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This polytope has Hodge numbers h*' = 331, h'? =9, h'3 = 6, h?? = 1374, and Euler number
X = 2016.

5.4 Outlook

In this section, we have shown how genetic algorithms (GAs) can be efficiently used to
generate reflexive polytopes. In two, three and four-dimensions, by comparing with the
existing classifications, we showed that the GA was able to generate complete datasets of
reflexive polytopes. Due to the large number of reflexive polytopes in four-dimensions we
focused only on those with a small number of points NV,. For the five-dimensional case, where
only a partial classification of reflexive polytopes exists, we performed a GA search for
7 < N, < 11. Our generated datasets included all known polytopes and indeed many more,
previously unknown cases. This includes cases which lead to CY fourfolds with new sets of
Hodge numbers. While the numbers of reflexive polytopes obtained in this way (see Table 7)

might not be the true total they at least provide strong lower bounds.

It is perhaps not desirable, or even feasible, to generate the complete list of reflexive
polytopes beyond four dimensions. Instead, in this work we propose an alternative approach,
well-suited to the needs of string compactifications, of targeted searches for reflexive
polytopes (and their associated CY manifolds) with certain prescribed properties. We
demonstrated that GAs can be used for such targeted searches, by looking for cases with
certain prescribed values of the Euler number. We expect the same approach will work for

other targets, such as a certain desirable pattern of Hodge numbers.

The targeted search example illustrates how one can design a dedicated search for CY
manifolds with prescribed properties, for example with certain topological properties
satisfying certain constraints. This points to a different approach for dealing with large
classes of geometries in string theory. Rather than producing complete lists of such geometries
(which is often not even feasible), generative machine learning methods, such as GAs, can be
used to search for geometries with prescribed properties, as required for the intended string

compactification.

There are many possible directions for future research. In particular, by fine, star, regular

triangulation of a (dual) reflexive polytope into simplices, we can resolve non-terminal
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singularities and construct the CY hypersurface explicitly. This process is also amenable to
attack with GAs and reinforcement learning (RL) as was shown in [121] and [31]. It would be
worthwhile to create a combined GA or RL model that can generate reflexive polytopes and
triangulations simultaneously. Targeted searches are another promising avenue. For example,
it might be possible to design targeted searches which produce string theory compactifications
with certain desirable phenomenological properties. It might also be interesting to apply RL
to the problem of searching for reflexive polytopes and compare its performance to that of

GAs. We leave this to future work.

In this chapter we have considered CY manifolds, including CY threefolds and CY fourfolds
which are the appropriate compactification spaces of string theory and F-theory, respectively,
that preserve AN/ = 1 supersymmetry in four-dimensions. In the next chapter, we will instead
look at (G5 manifolds, which are the analogous compactification space for eleven-dimensional
M-theory. We will show how simple neural networks can be used to predict, to a high degree
of accuracy, certain topological invariants given input data that describes these manifolds (for

a certain construction).
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6 Learning G2 Geometry

As we discussed in Section 3.1, the number of spacetime supersymmetries is given by the
number of covariantly constant spinors on the compactifying manifold X, and this is in turn
related to the holonomy group of X. This was first discovered by Witten in 1981 [77]. The
first non-trivial example came a year later in 1982 [127] by compactifying eleven-dimensional
supergravity on the squashed S7 whose G5 holonomy yields N/ = 1 supersymmetry in
four-dimensions. Today Gy manifolds continue to play an important role in
eleven-dimensional M-theory for the same reason of preserving N' = 1 supersymmetry.
Compactification on smooth G5 manifolds does not give chiral fermions, however
compactifications on singular (G5 manifolds can yield chiral models in four-dimensional

Minkowski space and with realistic gauge groups [128,129].

A metric with holonomy G5 can be defined in terms of a torsion-free Gy structure o,
which is a non-degenerate 3-form. A Ga-structure ¢ is said to be closed if dp = 0 and
coclosed if dip = 0, where 9 := *,¢, and the torsion-free condition 7" = 0 is equivalent to ¢
being both closed and coclosed. A torsion-free Gy structure ¢ on a real seven-dimensional
manifold M has Hol(g,) = G if and only if 7 M is finite. Finding torsion-free G5 structures
amounts to solving a difficult non-linear PDE. Instead we can consider just the Gs structure

as a topological residue of the holonomy G5 metric.

In this section we work with Gy-structures on certain contact Calabi-Yau (cCY)
7-manifolds. These manifolds were introduced by Tomassini and Vezzoni in [130], and consist
of Sasakian manifolds endowed with a closed basic complex volume form. It was shown
in [131] that such a manifold carries naturally a coclosed (but not necessarily closed)
Go-structure.  Despite their unsuitability to M-theory, torsionful G5 structures retain
relevance in the context of (347)-dimensional heterotic supergravity with flux, as
demonstrated by [132-134]. Indeed, as shown by [135], one can explicitly solve the
corresponding Strominger system on cCY 7-manifolds, by way of coclosed Ga-structures
together yielding non-trivial scalar and Gs-instanton gauge fields, with constant dilaton, as
well as an H-flux with prescribed Chern-Simons defect, in accordance to the anomaly-free

condition referred to as the heterotic Bianchi identity.

A special class of ¢cCY manifolds arises from Calabi-Yau (CY) links, which were first
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discussed from the perspective of G5 topology in [136]. In this case a 7-dimensional weighted
link K is obtained as the intersection of S C C° with a weighted homogeneous affine variety
(defined by the zero locus of the polynomial f) having an isolated singularity at the origin.
Milnor showed that such links are 2-connected compact smooth manifolds [137], indeed K7 is
the total space of a Hopf S'-bundle over a weighted projective 3-orbifold in P*(w). For
appropriate choices of polynomial degree and weighted C*-action the projective 3-orbifold is a
CY threefold and Ky is then called CY link. The dataset of possible weights that admit these
CY threefolds consists of the 7555 cases classified in [138]. Therefore, we pursue the
construction of a CY link for each of these weight systems, computing the following two types

of topological invariants.

Firstly, considering the Sasakian topology of the CY links, we compute the
Sasakian-Hodge numbers {h3° h%'}. These numbers can be obtained as the dimensions of
certain linear subspaces of the Milnor algebra My = C[[21,...,25]]/Jf, defined by the
corresponding Jacobian ideal of f [139]. Secondly, considering their G5-topology and building
upon the calculations first carried out in [136], we compute the Crowley-Nordstrom (CN)
homotopy invariant v(y) € Z/48Z associated to the natural Gy structure induced from the
transverse CY structure for all CY links. This invariant was introduced in [140] in an effort to
determine when two G5 structures on a closed 7-manifold are deformation-equivalent, in other

words they are related by homotopies and diffeomorphisms.

For CY threefolds defined as hypersurfaces in weighted projective space P*(w), the
weights w defining the ambient projective space are sufficient to uniquely determine the CY
threefold’s Hodge numbers [141]. Therefore, it is no surprise that machine learning (ML)
methods perform well at the supervised learning task of predicting the Hodge numbers from
the list of weights. However, in the 7-dimensional CY link case no such explicit formula for
computing the Sasakian-Hodge numbers from the weights is known, and one would initially
expect the specific CY polynomial coefficients chosen to change the topology. However, when
we apply supervised ML techniques to learn the Sasakian-Hodge numbers from the weights we
achieve surprisingly high accuracy which suggests the existence of a formula. Motivated by
this success, we apply ML interpretability techniques to determine an approximate form for
this formula. This formula provides new insights into Sasakian structures, as well as being

vastly quicker to compute.
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The results presented in this section are those published in [50]. The datasets of the weighted
CY polynomials used in the link construction, with the computed Sasakian-Hodge numbers and
CN invariants, as well as the ML scripts, are available on GitHub [142]. The rest of the chapter
is organised as follows: in Section 6.1 we introduce contact and Sasakian geometry in order
to understand the definition and construction of CY links. In Section 6.2 we explain how
we constructed our dataset of CY links and discuss the distribution of their Sasakian hodge
numbers and CN invariants. Then in Section 6.3 we present the ML results of predicting
topological invariants using neural networks. Finally, in Section 6.4 we finish with a discussion

and prospectus.

6.1 Calabi-Yau Links

Contact Geometry

In some sense, contact geometry is the odd-dimensional counterpart of symplectic geometry.
Given an n-dimensional smooth manifold M, and a point p € M, a contact element of M with
contact point p is an (n — 1)-dimensional linear subspace of the tangent space to M at p. A
contact element can be given by the kernel of a linear function on 7,M. A contact structure
on an odd (2n + 1)-dimensional manifold K is a smooth distribution of contact elements,
denoted by F', which is non-integrable. Let F, be a contact structure, given by a differential
1-form 7 (called the contact form), i.e. a smooth section of the cotangent bundle. Then the

non-integrability condition is given explicitly as:

n A (dn)" # 0, (135)

where (dn)* =dn A --- Adn.
\—.,_/
n-times
Definition 6.1 A contact manifold (K, F,) is a (2n + 1)-dimensional manifold K equipped
with a smooth non-integrable hyperplane field F,, C TK, i.e., locally F,, = Ker(n), where n is a

1-form which satisfies n A (dn)™ # 0.

The restriction of the 2-form w = dn to a hyperplane in F,, is a non-degenerate 2-form. This
construction provides any contact manifold K with a natural symplectic bundle of rank one

smaller than the dimension of K.

Definition 6.2 Associated with a contact form n one has the Reeb vector field R, *°, defined

by the equalities:

10From this point onwards we will omit 1 when denoting the Reeb vector field and simply denote it as R.
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1. dn(R,,-) =0,

2. n(R,) = 1.
In other words, if 7 is a contact form for a given contact structure, the Reeb vector field R can
be defined as the unique element of the (one-dimensional) kernel of dn such that n(R) = 1.
(Regular) Sasakian Geometry

Just as Kahler geometry is the natural intersection of symplectic and Riemannian geometry,
Sasakian geometry is the the natural intersection of contact and Riemannian geometry. One
may interpret the odd-dimensional structures of a contact manifold (K" ) as
even-dimensional structures transverse with respect to a Sl-action along the fibres of a
submersion S' — K — V. In particular, Sasakian geometry may be seen as transverse Kéhler

geometry, corresponding to the reduction of the transverse holonomy group to U(n).

A Sasakian manifold [143] is a contact manifold equipped with a special kind of Riemannian
metric, called a Sasakian metric. A Sasakian metric is defined using the construction of the

Riemannian cone. Given a Riemannian manifold (M, g), its Riemannian cone is the product
(M x R7?), (136)
of M with a half-line R>°, equipped with the cone metric
t2g + dt?, (137)

where t is the parameter in R>Y.

A contact Reimannian manifold (K?"™! n) is Sasakian, if its Riemannian cone with the

cone metric is a Kahler manifold with the Kahler form
t2dn + 2t dtn. (138)

As the cone is by definition Kéhler, there exists a complex structure J € End(TK). The

complex structure J is such that
JOJ:—ITK+77®R, (139)
and furthermore the Reeb vector field on the Sasakian manifold is given as

R=—J <t%> . (140)
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Contact Calabi-Yau Manifolds

In the previous subsection we saw that Sasakian geometry may be seen as transverse Kahler
geometry, corresponding to the reduction of the transverse holonomy group to U(n). One can
also consider Sasakian manifolds with special transverse holonomy SU(n) in which case the

manifold is an S* bundle over a Calabi-Yau (CY) manifold.

Definition 6.3 A Sasakian manifold (K*"*' 0, R, J,Y) is said to be a contact Calabi-Yau

manifold (cCY) if T is a nowhere-vanishing transverse form of horizontal type (n,0), such that

— n(n+2)

TAYT=(-1)"2 " and dY =0, with w=dn. (141)

In the special case where n = 3, a cCY structure naturally induces a coclosed Ga-structure

[131]:

Proposition 6.1 Every cCY manifold (K7,n, R, J, ) is an S*-bundle 7 : K — V over a CY

threefold (V,w, Y), with connection 1-form n and curvature
dn = w, (142)
and it carries a cocalibrated Gy-structure
p:=nAw+ ReY, (143)
with torsion dy = w Aw and Hodge dual 4-form

1
w:*gpzéw/\w+77/\[m’f.

Calabi-Yau Links

We turn our attention to a special kind of cCY manifold, called CY links which admit a G,
structure.  We begin first by defining the notion of a hypersurface link of an isolated
singularity. We denote by B. the closed ball of radius € centered at the origin of C"*!, by
S+l = 9B.(0) the boundary of this ball, and B. the corresponding open ball. Let
f : C"™' — C be a complex analytic map with f(0) = 0 and denote V := f~(0) and
K;:=Vn S+t (Figure 15).

Now we focus on the particular case in which f is a weighted homogeneous polynomial with
an isolated singularity at 0 € C™"!. In this case V intersects transversally every sphere S+

around the origin.
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Figure 15: Link K of a hypersurface V in C*!,

Definition 6.4 A polynomial f(zo,....,2,) is called a weighted homogeneous polynomial of

degree d and with weights w = (wy, ..., w,) € Z"* if for any A € C*
FO 20, A 2) = A f (20, .., 20), (144)
Such an f defines a non-singular affine hypersurface
Vi={zeC"f(z) =0} (145)

which, in general, admits a singularity at the origin. Therefore, weighted homogeneous

polynomials give rise to links, fibering by circles over weighted projective hypersurfaces:

Definition 6.5 Let f : C"*!' — C be a w-weighted homogeneous polynomial with an isolated

critical point at 0. Then Ky := VNS> is called a weighted link of degree degf and weight w.

We have the commutative diagram, where the horizontal arrows are Sasakian and Kéahlerian
embeddings and the vertical arrows are principal S'-orbibundles'* and orbifold Riemannian
submersions. As a complex orbifold, the hypersurface V C P*(w) can be represented as the

quotient (V — 0)/C*(w) where V = f71(0)

K —» S
! ! (146)
Vo — PYw)

"1 Roughly speaking an orbibundle over an orbifold is generalisation of a fiber bundle over a manifold, where

the structure group of the total space is required to be the same as the base orbifold.
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Definition 6.6 A weighted link Ky of degree d and weights w = (wy, ..., w,,) is said to be a CY
link if
d=> w. (147)
i=0

The condition d — ), w; = 0 means that the weighted projective V' is a CY orbifold, thus

CY links are nontrivial circle fibrations over CY 3-orbifolds.
Proposition 6.2 Every CY link admits an S'-invariant contact Calabi-Yau structure [151].

From 6.2 and 6.1 we see that every CY link has a Ga-structure.

6.2 Data Generation and Analysis

The data for a CY link as defined in the previous section is given by a set of weights
w = (wp,...,ws) defining the ambient complex weighted projective space P*(w) and a
polynomial f defining the CY threefold hypersurface. The list of all 7555 weight vectors w
which lead to unique weighted projective spaces P*(w) whose anticanonical divisors are

compact and Ricci-flat was classified in [138].

For each P4(w) in this list, any Calabi-Yau hypersurface in the anticanonical divisor class
can be represented as a weighted homogeneous polynomial f of degree ) . w;. Within this
class there is freedom in the choice of complex coefficients for each of the monomial terms in
the defining equation. There are however sources of redundancy in the choice of coefficients,
such coordinate transformations, coefficient normalisation, etc., allowing multiple sets of
coefficients to define the same threefold. All CY hypersurfaces in P*(w) will share the same

Hodge numbers, but may otherwise be topologically distinct.

The dataset of CY links considered in this work were constructed using one CY from each
of the respective 7555 P*(w)’s. In each case, the CY polynomial was first selected to have all
monomial coefficients as 1. However 1484 out of the 7555 polynomial hypersurfaces
intersected with singularities in the ambient space, leading to a higher-dimensional singularity
structure on the links. To avoid this, for these 1484 cases other polynomials were sampled,
with coefficients from {1,2,3,4,5}, until the singularity structure was exclusively the isolated

singularity at the origin - as required for the link construction.
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To understand this process, let’s consider the example P4(w) where w is the weight vector
w = (22,29,49,50,75), whose degree is d = 225 (= ), w;) and whose monomial basis has the
following 7 terms:

8 4.3 7 4 3 3
Z1R3, R1R9R3, R1R9, R1R2R3%4R5, Z223, R4R5, Rx5-

The CY polynomial equation is:
0 — 8 4.3 7 4 3 3
= 12123 + Q2212523 + A32129 + Q42122232425 + A52025 + Ag2y 25 + Q725

for the complex coefficient vector (ayq,...,a7). We initialise the coefficients a; = -+ = a; = 1,
and check the singularity structure of the resulting hypersurface. In this case, the singular
locus defined by this polynomial has dimension 0, which is the isolated singularity at the
origin, there is hence no further singularity structure introduced. We therefore accept this CY

threefold, adding it to our database (no further sampling of the a; values is required).

For each of the 7555 CYs selected in this way, the topological properties of the corresponding
links were calculated. Namely, the Sasakian Hodge numbers {h3?, h?!}, and the CN invariant.
The polynomial generation and topological invariant computations were performed in sagemath
[144], with the help of macaulay2 [145] and singular [146]. Computation of each of the
topological invariants required the respective Grobner bases of the CY polynomials; these
bases are notoriously expensive to compute, hence, as a side product of these computational
efforts, the Grébner basis for a selection of the Calabi-Yau polynomials considered (one for
each possible weight vector) is provided, along with the corresponding topological quantities,

on this work’s respective GitHub.

Sasakian Hodge Numbers

The following theorem from [147,148] allows us to compute certain mixed Hodge numbers

h?4(Ky) of a CY link K from the Milnor algebra.

Theorem 6.3 Let f be a w-weighted homogeneous polynomial in C™ of degree d. Given p+q =
n, let £ = (p+1)d — Y, w;, and denote by (My), the linear subspace of the Milnor algebra

consisting of degree { elements.
hp’q(Kf) = dim(c(Mf)g. (148)

When Ky is a Calabi-Yau link, the condition reduces to ¢ = pd.
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Figure 16: Histogram of Sasakian h?! values for the 7555 CY link constructions computed.

The computation of the Hodge numbers h*° and h?! associated with each weighted
homogeneous polynomial was carried out by following the algorithmic implementation of the

explicit formula in Theorem 6.3, from [139]:

Algorithm 1 Computation of Sasakian Hodge Numbers.

f(z0, ..., 24) + a homogeneous polynomial in C°.

w = (wp, ..., ws) < the weight vector associated with the polynomial f.
A+ (C[Zo,...,24]
d + deg(f)

Ty (B, 2

K <+ GROBNERBASIS (%

R3O = #{x € K : deg(x) =4d — >, w;}
¥t = #{x € K : deg(z) =3d — >, w;}

[y
N—

The Sasakian h*° values for the 7555 CY links computed all take value 1, matching the
value known for all Calabi-Yau threefolds, which corresponds to the unique holomorphic

volume form. The Sasakian h*! values range from 1 to 416, their frequency distribution is

shown in Figure 16.

To compare directly the CY Hodge numbers with the Sasakian Hodge numbers of the links
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Figure 17: Scatter plot of the CY threefold h*! values against the Sasakian transverse h*!
values for the 7555 CY links.

built from the same polynomials, a cross-plot of the respective h*! values is given in Figure
17. This plot shows that these topological invariants are strongly correlated (PMCC ~ 0.99),
and the Sasakian Hodge number is bounded above by the CY Hodge number — suggesting the

following mathematical conjecture:

Conjecture 6.4 The Sasakian Hodge number hé’l for a Calabi- Yau link is bounded above by the

Hodge number hQC; of the Calabi-Yau threefold built from the same w-homogeneous polynomial:

he' < hZy . (149)

Crowley-Nordstrom Invariant

For an arbitrary closed 7-manifold with Gy-structure (Y7 ), Crowley and Nordstrom
(CN) [140] have defined a Z/48Z-valued homotopy invariant v(¢), which is a combination of
topological data from a compact coboundary 8-manifold with Spin(7)-structure (W% o)
extending (Y7, ), in the sense that Y = W and VU |y= ¢:

v(p) == x(W) — 3c(W) mod 48, (150)

where x the real Euler characteristic and o is the signature.
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A ¢cCY structure naturally induces a Ga-structure. We therefore study the CN invariants
associated to the CY links K;. To compute v for the CY links in our dataset, we modify a

procedure developed and described in [136] which utilises Steenbrink’s Signature theorem. Let
{2 a = (ag,...,an) € I C 22! (151)

be a set of monomials in C[z, ..., z,| representing a basis over C for its Milnor algebra My =

. For each a € I, define

(o) == (e + 1)%. (152)

1=0

The CN invariant of a link can then be computed in terms of its degree and weights, along with

the signature (u_, o, pi1) of the intersection form on H*(V;, R):

V() = (i _ 1) (i _ 1> 3 — )+ 1, (153)

wq Ws
Where the signature is computed as follows [147]:
pe =NHB el U(B) ¢ 2 [U(B)] € 2L}
p-=NHpB el ()¢ z[UB)] ¢ 2L}
po =B € 1:UB) T}

We computed the CN invariant for all 7555 CY links. Their frequency distribution is shown
in Figure 18, which exhibits an unexpected periodicity of 12 in the most populous invariant
values (~ 500). The CN invariants computed fully span the range of possible values, which are
odd integers from 1 to 47, cf. [136, Proposition 3.2]. In particular, we note the occurrence of
CN invariants 27 and 35, where previous work had not identified examples in these topological

classes. Below we provide an explicit example of a Calabi-Yau polynomial that leads to a link

in each of these classes:
v:27
w : (22,29,49,50,75) (154)

8 4_3 7 4 3 3
[ i2{zs + 212523 + 2125 + 2120232425 + 2025 + 2425 + 25 =0

v:35
w : (31, 35,36,42,108) (155)
2 7

7 2 2 4 6
[ 220+ 27252325 + 21202324 + 2120232425 + 2924 + 25

4 2, 6
+ 2325 + 2325 + 2, =0
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Figure 18: Histogram of CN invariants for the 7549 Calabi-Yau link constructions computed.

6.3 Predicting Topological Invariants of Calabi-Yau Links

Using the dataset of weights and topological invariants generated from the previous section
we apply neural networks (NNs) to predict, from an input of weight vectors, the topological
invariants (Sasakian Hodge number h*! and the CN invariant) of CY links. Since the output
invariants take a large range of values in each case, this is a regression style problem. The NNs
used had the same architecture in each case. They had neuron layer sizes of (16,32, 16), ReLLU
activation, and were trained on a MSE loss using an Adam optimiser. These layer sizes and
the other hyperparameters were set after some heuristic tuning. Each NN hence amounts to a

map of the form:

RS I R16 2, R32 S5, Ri6 J1 1 (156)

such that each f; acts via linear then non-linear action as f(x) = ReLU(W -x+b). In each case,
the NNs were trained using cross-validation on 5 different partitions of the dataset into 80:20

train:test splits, to provide statistical error on the metrics used to assess learning performance.

Crowley-Nordstrom Invariant

After training the network to predict the CN invariant from the weight vectors, the network
performance on the test set was not good, giving an R? value of ~ 0.004. Even reducing the
problem to a binary classification between the two most populous classes (v = 1 and v = 25)

did not lead to accuracies much above 0.5, indicating no significant learning and highlighting
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the highly non-trivial dependency of this invariant on the input polynomial and weight data.

Sasakian Hodge Numbers

Using the same NN architecture, the network was trained to predict the h?! values for the CY

links. The performance scores of the network on the test set after training were:

R? =0.969 + 0.003,
MAE = 5.53+0.22, (157)
Accuracy = 0.967 £ 0.004 .

These results are very impressive and suggest that there exists a relation between the
Sasakian Hodge numbers and the weights used to define the CY links, similar to the Poincaré
polynomial for CY threefolds [149]. We now see whether we can approximate such a formula
using symbolic regression (SR) which would allow one to bypass the Milnor algebra Grébner

basis computation.

The particular SR method we applied was the genetic algorithm tree-based SR method
PySR developed by Cranmer [150]. We use the library of binary functions {4, —, %, /} and the
absolute distance loss function. = We train the model over 100000 iterations with 18

populations of size 33, where each population is mutated 500 times per iteration.

Again we use cross-validation on 5 different partitions of the dataset into 80:20 train:test
splits. The (highest performing) equation on the independent test data to model Sasakian h*!
is presented in (158), achieving R? =~ 0.99 and MAE =~ 2.6, exceeding the scores of the NN in
(157).

hi’lsa(wo, )= 14.91w; (wowy + w3 (wo + ws)) N 10.02wows (wo 4+ wy + 0.77) (158)
y WoW1 Wol3 WoW1WaWs3

The h%’l predicted values from (158) for each of the CY links are plotted against the true values
in Figure 19. Additionally the plot shows the equivalent predictions from the trained NN.

6.4 Outlook

In this work, real 7-dimensional Calabi-Yau (CY) links were constructed from CY threefolds
coming from the 7555 complex four-dimensional weighted projective spaces that admit them.
The datasets of these invariants were statistically analysed, and neural networks were used

successfully to predict the respective Sasakian h?! values from the ambient P*(w) weights
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Figure 19: ML predictions of the h?g’l values, against the true values, for the 7555 CY links

from: (a) a trained NN; and (b) the symbolic regression best model of equation (158).

alone. By applying symbolic regression techniques we were able to achieve an approximate
formula ((158)) for the h*! in terms of the weights w, which provides a good starting point
for finding an exact formula (if one exists) in future work. As CY links posses a G structure
we also used neural networks to predict the Crowley-Nordstrom v invariant [140] but
unfortunately we did not achieve the same success. The exhaustive list of CY link data, as
well as the python scripts used for their analysis and machine learning (ML) are made

available at this work’s corresponding GitHub.

Until [50] there had not been applications of ML to study G5-geometry. This is no doubt
due to the scarcity of databases for Gy-manifolds, which in turn reflects the difficulty in
describing Go-manifolds systematically in terms of algebraic discrete data. In this work we
have only looked at a small number of topological properties of a very special kind of Go
manifold. There are many more avenues for future research within the realm of “ML for G5”.
An obvious next step is to construct more general CY links made through general toric
varieties rather than weighted projective spaces and repeat the same experiments. With more
data we hope, using symbolic regression, to obtain a more accurate formula for h*' which

may lead us to finding an exact formula.

Torsionful G5 structures, such as the CY links studied here, have applications in heterotic

systems, however in the context of M-theory we are interested in torsion-free Ga-structures
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since these structures induce metrics with holonomy G,. There has been a great deal of work
in the past few years using ML methods to approximate Ricci-flat CY metrics [40-48]
including modelling Ricci-flow [151]. As yet, no similar work has been done using ML to find
Ricci-flat Gy metrics. Like Ricci-flow for CY manifolds, whose critical point gives a Ricci-flat
CY metric, there exist flows of Ga-structures, such as the Laplacian flow and coflow, whose
critical points give torsion-free Gy structures. Such flows on contact CY manifolds were
recently studied in [152]. In future work we hope to apply ML methods to model flows of

Go-structures and find approximate Ricci-flat holonomy G9 metrics.

In this chapter and the previous one we considered CY and G5 manifolds from a purely
mathematical point of view, ignoring the physics. As we learnt in Section 2, the geometry of
these manifolds influence the physics of the low energy effective field theory that arise when
they are chosen as the compactification space. In the next chapter, we will attempt to compute
aspects of the effective field theory, namely the Yukawa couplings, that arise when compactifying

the Eg x Ejg heterotic string on a CY threefold, together with a holomorphic vector bundle.
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7 Computing Yukawa Couplings in Heterotic String
Theory

Several attempts at connecting string theory and particle physics have been made since the
first string revolution in the mid 80s. All of these approaches come with their own set of
difficulties. The earliest and arguably one of the most promising proposals is the Fg x Eg
heterotic string compactified on a smooth Calabi-Yau threefold X, equipped with a Ricci-flat
metric, together with a vector bundle V' whose connection solves the hermitian Yang—Mills
equation [8]. Upon compactifying on X, one finds a four-dimensional effective theory with
N = 1 supersymmetry governed by a Kéahler potential and a superpotential. By judicious
choices of the threefold and the vector bundle, one can find minimal supersymmetric Standard
Model (MSSM) like models incorporating a variety of desirable features. In principle, the
masses and couplings in these models can be computed directly from the geometry of X and
V. However, even after decades of work, we are still unable to compute these numbers for all
but the simplest examples. A substantial part of the difficulty can be attributed to the lack of

explicit expressions for non-trivial Calabi-Yau metrics and hermitian Yang-Mills connections.

Some general features can be inferred from topological or algebraic data of the threefold X
and bundle V. For example, we saw in Section 5 that the Euler number of X is related to the
number of generations of elementary particles. However, the full details of the resulting
four-dimensional physics are determined by a Kéhler potential and a superpotential, both of
which depend on the metric on X and connection on V. Without this data, it is generally not
possible to compute masses or couplings, thereby preventing us from making precise particle

physics predictions using string theory.

With new approximations of Ricci-flat metrics and hermitian Yang-Mills connection
coming from both numerical [34-39, 153-156] and machine learning methods [40-48, 157], we
are are a stage now where we can begin to compute the resulting particle physics. Among
many possible applications, the computation carried out in [51], which we discuss in this

section, is that of physical Yukawa couplings.

In order to derive the Yukawa couplings of the four-dimensional effective theory that
descends from the Eg x FEg heterotic string on a Calabi-Yau threefold X admitting a bundle

V', one has to carry out the following steps:
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1. Calculate the Calabi-Yau metric on X for a particular point in both complex and Kahler

moduli space.
2. Calculate the hermitian Yang—Mills connection on V.

3. Calculate the zero modes of a certain twisted Dirac operator. Since X is Kahler, this is
equivalent to finding bundle-valued differential forms which are harmonic with respect to
the Dolbeault Laplacian Ay associated to the twisted Dolbeault differential Oy [8,158,
159].

4. Find an orthonormal basis for the harmonic modes.

5. Calculate the physical Yukawa couplings from integrals of wedge products of the

normalised harmonic modes.

We will focus our attention on step three. Following on from [160, 161] we give the first
numerical calculation of the spectrum and eigenmodes of the Laplacian acting on
bundle-valued forms on a Calabi-Yau threefold. Specifically, we compute the approximate
spectrum and eigenmodes of the Dolbeault Laplacian acting on bundle-valued scalars
((0,0)-forms) and (0, 1)-forms. We restrict our attention to line bundles over Calabi-Yau
n-folds constructed as hypersurfaces in a single ambient projective space.  With the
eigenmodes in hand, we are able to compute an orthonormal basis of harmonic modes and
thus the correctly normalised physical Yukawa couplings. Unfortunately, the examples we
consider are too simple to admit non-vanishing matter-field Yukawa couplings. However, this
calculation serves as a proof of concept and represents a significant step towards calculating a

Yukawa coupling in a physically relevant compactification.

The rest of the chapter is organised as follows: in Section 7.1 we begin by outlining the
eigenvalue problem we wish to solve and describing how one can convert the eigenvalue problem
into one of finite-dimensional linear algebra. Then in Section 7.2 we apply our numerical
method to the toy example of line bundles over complex projective space. We present the
known analytic results for the spectrum and then compare the exact and numerical results. In
Section 7.3 we consider the simplest Calabi-Yau hypersurface, namely the flat torus described
by a cubic equation in P?2. Again, we present the known exact results for the spectrum and
then compare these to results for the bundle-valued scalar and (0, 1)-form spectra computed
numerically. Finally in Section 7.4 we apply our numerical method to compute the spectrum

for a line bundle over the Fermat quintic threefold. Though there are no analytic results to
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compare with, we carry out a number of consistency checks that the spectrum should satisfy.

In Section 7.5 we finish with a discussion and prospectus.

7.1 Eigenmodes of the Dolbeault Laplacian

Minimal A = 1 supersymmetric compactifications of Es x FEjg heterotic string theory without
three-form flux are specified by a choice of Calabi-Yau threefold (X, g), where g is a Ricci-flat
Kéhler metric, and a principal G-bundle with G C Eg x Eg, whose curvature F' satisfies the
hermitian Yang-Mills equations (16). A solution to (16) is equivalent to the bundle V being

holomorphic and admitting a Hermitian metric on its fibres which is Hermite-Einstein.

Certain (0, 1)-form sheaf cohomologies count the number of four-dimensional matter fields

HY(X,V) = HY' (X, V). (159)

1
v
These cohomologies are spanned by harmonic modes of the Dolbeault Laplacian Ag . We
therefore wish to find the spectrum and eigenmodes of the Dolbeault Laplacian Aj, acting on
(p, q)-forms valued in a vector bundle V. The particular examples we consider are those where
the bundle V' is a line bundle over a compact Kéahler manifold X. Furthermore, we will focus
on computing the (0,0)- and (0, 1)-form spectra. The spectrum of bundle-valued scalars will
be useful for comparing with known results when X is a projective space or a torus, while the
(0, 1)-form spectrum is what one needs to compute Yukawa couplings. For more details on the

Dolbeault Laplacian acting on holomorphic bundle-valued (p, ¢)-forms, refer to Section 3.4.

The eigenmodes ¢ € QP9(V') and eigenvalues A are defined by
Az, ¢ = A, (160)

where the eigenvalues A are real and non-negative. The eigenmodes with zero eigenvalue,
A = 0, are the “harmonic” or “zero modes” which span Hgf(X , V). Since X is assumed to be
compact, the eigenvalues are discrete and have finite degeneracies. As we will see in examples,
if the Kahler metric ¢ on X admits either continuous or discrete symmetries, there may be
multiple eigenmodes with the same eigenvalue. We will denote the n-th eigenvalue by A, with
multiplicity ¢, starting from n = 0. Note that A\ always labels the smallest eigenvalue of Ag
even when Ay is not zero. As usual, the eigenvalues scale with the volume of X as

A ~ Vol(X)~%4. We always normalise the volume of X to one in the examples that follow.
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Let us make a few comments on the expected structure of the spectrum of Ag . First, Serre
duality implies
RPA(V) = R"PRTA(VE), (161)

so that the counting of zero modes of A acting on Q74(V') and Q" P"~9(V*) should agree. In
fact, since the Hodge star with conjugation xy commutes with the Laplacian, xy Ag, = Ag . *xv,
there is a relation between the entire tower of eigenmodes and eigenvalues. Denoting the set
of V-valued (p, ¢)-form eigenmodes by {¢}1;* and the corresponding eigenvalues as {A}}?, one

has
AAOK = Lo}

J = g

Moreover, for (0, q)-forms, one can write this in terms of the canonical bundle Kx of X as

(162)

(AN = {)\}(I)gbggqv*. We will use these relations as a non-trivial check on the numerical spectra

later.

For fixed (p, q), let {4} be a basis for the vector space of complex-valued (p, ¢)-forms valued
in V' on the manifold. This basis is infinite-dimensional, A =1, ..., 00, as we want to be able to
express any element of Q7(V) as a linear combination of the basis with constant coefficients.'?

The basis is not assumed to be orthonormal; the inner product (69) defines a matrix O4p as

OAB = <aA,aB> = / ;VOéA A ap, (163)
X

which captures the non-orthonormality. Similarly, the matrix elements of Ag  with respect to
this basis are

Aup = (a4, Ay, aB). (164)

The eigenvalue equation (160) can then be written in terms of the matrix elements as

Aap¢p = AOapdsp, (165)

where ¢ = ¢cae. This is then a generalised eigenvalue problem for (A, ¢4), albeit an infinite-
dimensional one. Upon truncating {a4} to finite-dimensional basis, one is left with a standard
linear algebra problem to determine the eigenvalues A and the eigenvectors ¢4, which in turn
give the spectrum of Ay, and the expansion of the eigenmodes in terms of the truncated
basis. Of course truncating to a finite basis gives only an approximation of the spectrum and

eigenmodes, with the dimension of the basis controlling the accuracy of the approximation.

12Recall that QP9(V) restricted to a point z € X is a finite-dimensional C-vector space. If one does not
restrict to a point but instead wants to describe the space of forms over the entire manifold, QP4(V) is an

infinite-dimensional C-vector space.
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7.2 The spectrum of A; on P?

We begin with a study of three-dimensional complex projective space P? equipped with the
Fubini-Study (FS) metric. Since much is known explicitly about projective space, this will

provide an arena where we can check our numerical methods against exact results.

Recall that the Fubini-Study metric is the unique (up to scale) Kéhler metric on P? with

SU(4) isometry, corresponding to the presentation of P? as a symmetric space:

7
P 51 = S % (169
The Fubini-Study metric is defined by g,; = 81-55[( , where K is the Kéahler potential
1/3 B
K = < —log VANAS (167)
Here [Z° : --- : Z3] are homogeneous coordinates on P? where, for example, on the patch

Uy = {Z° = 1}, we have Z! = (1, 2%) with i = 1,2,3. The choice of prefactor in (167) ensures
Vol(P3) = 1.

The bundles we consider are line bundles V' = O(m) on P? for integer values of m. A
hermitian metric on the fibres of O(m) is given by
G=(2"Z)™. (168)

Indeed, this is actually automatically Hermite-Einstein with respect to the Kéhler metric

defined by (167).

Analytic Results

The particular eigenvalue problem we want to solve is
Ag, ¢ = Ao, (169)

where ¢ is an O(m)-valued (0,0)- or (0, 1)-form. At this point, we consider the general problem
of PV and specialise to N = 3 when presenting our numerical results. First, we note that global
holomorphic sections of O(m) are counted by Hgf(IP’N ,O(m)) =~ H°(PN, O(m)), which should

match the number of harmonic modes of the above Laplacian. On PV, these cohomologies can
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be computed using the Bott formula:

dim H°(PN, O(m)) =

dim HNPY, O(m)) = "~ ! ) m<—N—1, (170)

dim H?(PY, O(m)) = 0, otherwise.
On P3, we see that Q%°(O(m)) will have zero modes, i.e. A = 0, for m > 0, while there are no

zero modes at all for Q%1(O(m)).

Though finding the spectrum of Az, on PV where V' = O(m) does not seem to have been
considered in the literature before, there is a related problem from which we can extract the
spectrum (at least for the scalar eigenmodes). Kuwabara [162] and Bykov and Smilga [163]
analysed the spectrum of a Schrédinger operator on a line bundle O(m) over N-dimensional
complex projective space equipped with a Fubini-Study metric with volume (47)" /N!. Given
a connection D on O(m) with curvature F, they showed that the spectrum of the Bochner
Laplacian Ap = DD + DD acting on (0,0)-forms (scalars) is spanned by the following

eigenvalues \,, with multiplicities ¢,, for n =0,1,...:

_ [m| [m| m?
/\n—<n—|— 5 n+ 5 +N T (171)

n+N—-1) [n+|m/+N—-1\2n+|m|+ N

N -1 N -1 N (172)

From (73) we see that the Bochner Laplacian Ap = Ay, + Ap,, acting on scalars is related
to the dy-Laplacian as Ap = 205, + AF', where A is contraction with the Kahler form on X.
The fibre metric on O(m) is taken to be the unique Hermite-Einstein metric (168), so that

F = %mw, which then implies AF' = Nm/2. Thus, we expect the spectrum of the Dolbeault

Laplacian to be given in terms of the Bochner Laplacian as

1

g, =5 (AD - T) . (173)

Finally, our convention that Vol(PV) = 1 implies a rescaling of the eigenvalues by 47 /(NN

Putting this all together, we expect the Q%9(O(m)) spectrum of the Dolbeault Laplacian to be

given by
27 N(|m| —m)
A = O {n(n + N+ [m]) + — 5 | (174)
n+N-—1 n+ml+N—-1)\ 2 N
L m n -+ |m| + 1)

" N -1 N—1 N ’
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0 311 20 207 10 104 4 0 1 0 4 0 10 0 20

1 553 120 415 70 277 36 138 15 173 36 207 70 242 120
2 864 420 69.2 270 519 160 34.6 84 41.5 160 484 270 553 420
3 124 1120 104 770 83.0 500 622 300 72.6 500 83.0 770 934 1120
4 169 2520 145 1820 121 1260 96.8 825 111 1260 124 1820 138 2520

Table 8: Exact eigenvalues of Az and their multiplicities for O(m)-valued scalars on P,

for n > 0. As a check, we recall that the zero modes should appear with multiplicity predicted
by (170). Indeed, for n = 0 the above reduces to

N e

so that one has zero modes, A = 0, only for m > 0 with multiplicities agreeing with the Bott

formula (170).

Using this exact expression, we give the first few eigenvalues in the spectrum for N = 3 and

m € {-3,...,3} in Table 8.

We have not found exact expressions for the spectrum of O(m)-valued (0, 1)-forms on PV in
the literature. Instead, as a check of this spectrum, we will appeal to Serre duality (162) which
implies that the O(m)-valued (0, 1)-form spectrum should agree with the Kx ® O(—m)-valued
(0, N — 1)-form spectrum. In particular, for N = 3 we have Kx ~ O(—4), so that the O(—m)-
valued (0, 1)-form spectrum should agree with the honest (0,2)-form spectrum computed in

previous work [161].

Numerical Results

We now want to find a basis of bundle-valued forms which can be used to approximate the
space of eigenmodes of A and calculate the spectrum via matrix (165). We first consider

bundle-valued scalars for m > 0 and note that the set

(degree k4 + m monomials in Z') @ (degree k;, monomials in Z7)

Fo0m) T ,

([

(177)

gives a finite set of O(m)-valued scalar functions a4 on P, with the size of the set controlled by

the non-negative integer parameter kys. Under the scaling Z! — vZ!, the scalars transform as
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as — V™ay, and so they are naturally thought of as smooth sections of O(m). Upon increasing

the degree k,, one has a series of inclusions
Fo'(m) € F"(m) C -+ € Q°°(O(m)), (178)

where Fy%(m) =~ H°(X,0(m)), so that larger values of k, better approximate the
(infinite-dimensional) space of O(m)-valued scalar functions on PV, and so also the space of
eigenfunctions of Ag,.  The eigenfunctions of A, on PV are given by finite linear

combinations of these functions at each degree.

There is a generalisation of (177) to give a finite set of (p, q)-forms at degree ks on PV,
These are constructed by considering forms which are well defined on PV under both the R
and U(1) action on the homogeneous coordinates. A simple extension of this produces a set

]:ff(m) of O(m)-valued (p, q)-forms on PV for m > 0:

(degree k4 + m (p,0)-forms in Z') @ (degree ky (0, q)-forms in Z7)
(Z1Z;)ke ’

Fieyl (m)

(179)

where, for example, the degree-two (1, 0)-forms are {Z°dZ' — Z1dZ°, Z°dZ?* — Z?dZ°, ...} and
so on. Unlike the scalars, there is some redundancy in this set, so one has to discard any
ag € fff(m) which can be written as linear combinations of the remaining forms. Again,
there is an inclusion of sets, F)"?(m) C F{"%(m) C --- C QP1(O(m)), so that larger values of

kg will better approximate the space of eigenmodes of Ag, .

Note that the fibre metric (168) on O(1) pairs

G: O(1) x O(1) — C. (180)

Here, our notation is that sections of O(1), O(—1) and O(1) transform with factors of v, v*

and ¥ respectively under the scaling Z! — vZ!. There is also a natural pairing between O(1)

and its dual bundle O(1)* ~ O(—1) such that O(1) x O(—1) — C. Combining these two, we

see there is a map between smooth sections of O(—1) and O(1) of the form

O(1) - O(-1)

s L2,

(181)

where G = (Z1Z;)7! is the Hermite-Einstein metric on O(1). Given f(Z) — vf(Z) under the

scaling of homogeneous coordinates on PV, we have f(Z)(Z'Z;)~' — v=1f(Z)(Z1Z;)71, and
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so it transforms as a (smooth) section of O(—1). Extending this logic to all m < 0, this means

the basis can be taken to be

(degree kg4 (p,0)-forms in Z1) @ (degree kg + |m| (0, ¢)-forms in Z7)
(Z1Z;)kotiml ’

Ty (=Iml) = (182)

Denoting this basis by F(m) = Fi2!(—|m]) for m < 0, there is again an inclusion of sets,

Foi(m) € FP'(m) C --- C QP1(O(m)), so that the eigenmodes of Az, on PV for m < 0 are

again given by finite linear combinations of these forms.

For (p,q) = (0,0) and kg = 0, the set Fy°(—|m]|) reduces to

(degree |m| monomials in Z7)
(Z1Z)Iml ’

Fo(=|ml) = (183)

which are never holomorphic, consistent with the absence of zero modes for m < 0 from (170).

Similarly, for (p,q) = (0, N) and ks = 0, Fo' (—|m]) is spanned by

0N _ (degree |m| (0, N)-forms in Z')
Fo o (=|m]) = 217 : (184)

where one includes only those that are linearly independent on PY. These are automatically
Oy-closed since there are no (0, N + 1)-forms on a complex N-fold, and they actually give a

basis for HN (PN, O(—|m)|)) since they are also 0} -closed:
53/0414 X *Va ((Z]Z[)lmloéA) =0. (185)

The number of these forms on PV is dim Fy'™ (—|m|) = (Irrm;/l—l)’ again in agreement with

the Bott formula.

Before presenting our numerical results, we recall the essential ingredients for computing
the matrix elements Aup and Oap in (163) and (164) that determine the generalised

eigenvalue problem for the spectrum.

One begins by choosing a truncated basis fg;o(m) = {a4} of bundle-valued forms for some
degree ky. Larger values of k4 will give larger matrices which better approximate the action
of the Laplacian on the space of bundle-valued forms. The matrix elements A p and O 5 are
then computed relative to this basis by Monte Carlo integration on P, where integrals over
projective space are approximated by summing over N, random points p; € P? according to

1 &
f vol ~ m Zz:;f(pz) (186)

IFDS
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m -3 -2 -1 0 1 2 3

n )\n fn )\n ‘gn )\n [n )\n 14 n )\n 14 n )\n €n /\n 14 n

0 31.1+02 20 20.7+£0.1 10 1037+0.02 4 0 1 0 4 0 10 0 20

1 552+£0.7 120 41.4+04 70 276 +0.2 36 13.8+01 15 173£.1 36 20.7£02 70 242403 120
2 86 £ 2 420 69 £1 270 51.8+08 160 34.6+04 84 41.5+06 160 483£0.9 270 55+1 420
3 125+5 1120 104£3 770 83£2 500 62.3+1.3 300 72.7£1.9 500 83+£3 770 94+4 1120

Table 9: Numerical eigenvalues A, of Aj on P? acting on O(m)-valued scalars for m €
{=3,...,3}. We have also included their multiplicities ¢,. The quoted eigenvalues are the
mean of the eigenvalues in a cluster, with the error given by the standard deviation of the

cluster. We used kg = 3 to allow us to compute the first four eigenspaces.

Here, vol is the volume form associated to the Fubini-Study metric on P and the distribution
of the random points is chosen to reproduce this measure. With A, and O4p in hand, one
computes the eigenvalues and eigenvectors. The eigenvalues are the A which appear in (169),

with the eigenvectors determining the eigenmodes ¢ in (169) in the chosen basis {a}.

The Bundle-Valued Scalar Spectrum

We begin with a numerical calculation of the scalar spectrum of bundle-valued
eigenfunctions of Ay, . The inputs are the exact Fubini-Study metric on P3 determined by the
Kéhler potential in (167), a bundle O(m) together with a hermitian structure determined by
the Hermite-Einstein metric (168), a choice of degree k, which determines the size of the
approximate basis (177) in which we expand the eigenfunctions, and the number of points N
that are used to discretise the integrals that appear in the matrix elements of the Laplacian.
For the rest of this section, we fix k, = 3 and Ny = 10° and compute the spectrum for

m € {—3,...,3}. The results are shown in Table 9 and Figure 20.

We see that the numerical results in Table 9 reproduce the exact results in Table 8 with
excellent precision and the correct multiplicities. In particular, the mean of the numerical
eigenvalues in each cluster match the exact results to better than 1% in all cases. One can
also see this from Figure 20 which shows the numerical results and indicates the values of the
exact eigenvalues; in all cases, the exact result is in the middle of the cluster of numerical

eigenvalues.
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Figure 20: Numerical eigenvalues A, of Aj, on P? acting on O(m)-valued scalars for m €
{-3,...,3}. These were computed using the Fubini-Study metric on P? and the associated
Hermite-Einstein metric on O(m). Integrals were computed via Monte Carlo over N, = 10°
points. We used k, = 3 for the basis functions, giving us access to the first four eigenspaces.

The horizontal black lines indicate the exact analytic values from Table 8.

The Bundled-Valued (0, 1)-Form Spectrum

Next, we make a numerical calculation of the Q%(O(m)) spectrum. This follows the
scalar calculation almost exactly apart from using an appropriate basis of bundle-valued
(0, 1)-forms from (179). The results for m € {—3,...,3} are shown in Table 10 and Figure 21.

Unlike the scalar spectrum, we do not have complete exact results to compare with.

As additional evidence that the spectra are correct, we recall that the 0y Hodge
decomposition implies that a non-zero mode of Az must be either Oy- or 5€—exact.
Specifically, an O(m)-valued (0, 1) eigenmode ¢ of the Laplacian with non-zero eigenvalue can

be written as
¢ = v+ b, (187)

where 8 and 7 are O(m)-valued scalar and (0,2)-forms respectively. Crucially, since Ag
commutes with both dy and 53/, £ and ~ will also be eigenmodes of the Laplacian with the
same eigenvalue as ¢. From this we see that the Q%!(O(m)) spectrum must be some

combination of the Q%%(O(m)) and Q%?(O(m)) spectra. In fact, using a further Hodge
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m -3 -2 -1 0 1 2 3

n )\n 14 n )\n 14 n )\n 14 n A n 14 n )\n 14 n )\n 14 n )\n 14 n

0 20.74+0.09 20 13.83+£0.03 6 1037+0.03 4 138+01 15 173£01 36 20.7+02 70 242+03 120
31.1£0.2 20 20.744£0.09 10 20.74+£0.09 20 27.74£02 45 356+£03 84 414+£04 140 483+0.6 216
415+04 140 31.1+£02 64 27.7+02 36 346+04 84 415+06 160 484+0.9 270 55+1 420
55.3+£0.7 120 4154+04 70 415£04 140 51.94+0.7 256 62+1 420 73+2 640 83+£2 924

w N =

Table 10: Numerical eigenvalues A, of Aj, on P? acting on O(m)-valued (0, 1)-forms for m €
{=3,...,3}. We have also included their multiplicities ¢,. The quoted eigenvalues are the mean
of the eigenvalues in a cluster, with the error given by the standard deviation of the cluster.

We used kg = 2 for m < 0 and ky = 3 for m > 0.

decomposition for 8 and 7, it is simple to see that the Q%1(O(m)) spectrum should consist of
the entire Q%°(O(m)) non-zero mode spectrum plus the Q%2(O(m)) eigenvalues whose
eigenmodes are Oy-exact. We then have one final simplification: since %, commutes with the

Laplacian, (162) implies that the Q%?(O(m)) and Q%' (O(—4 — m)) spectra should match.

We can check these claims for the numerical spectrum we have calculated. For the Oy -
exact modes in (187), comparing Tables 9 and 10, we see that, for example, for m = —2
the eigenvalues (20.7,41.4) (to within numerical accuracy) appear in both the (0, 1) and (0, 0)
spectra with the same multiplicities. A cursory glance at the rest of the results should assure
the reader that this holds for the other values of m, with all the (0,0) eigenvalues appearing
in the (0,1) spectra. For the 5€—exact modes in (187), for m = —1, for example, we expect
that the remaining O(—1)-valued (0, 1) eigenvalues should come from roughly half of O(—3)-
valued (0, 1) spectrum. Indeed, looking at Table 10, we see that both contain the eigenvalues
(20.7,41.5) with the same multiplicities. Together, these constitute a non-trivial check that our

numerical algorithm is correct for both the scalar and (0, 1) modes.

7.3 The spectrum of A5 on T

We now apply our numerical method to calculate the spectrum of bundle-valued scalars and
(0, 1)-forms on Calabi-Yau manifolds. As a warm-up, and as another example where we can
check things analytically, we consider a Calabi-Yau one-fold (a torus) defined by a single
cubic equation in P2, Moving to Calabi—Yau three-folds is then just a matter of changing the
dimension of the ambient projective space and the defining equation of the hypersurface (the

algorithm does not change in any other way). With confidence that our algorithm is correct,
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Figure 21: Numerical eigenvalues X, of As on P? acting on O(m)-valued (0,1)-forms for
m € {=3,...,3}. These were computed using the Fubini-Study metric on P? and the associated
Hermite-Einstein metric on O(m). Integrals were computed via Monte Carlo over Ny = 10°
points. We used ky = 2 for m < 0 and ks, = 3 for m > 0 to allow us to compute the first
four eigenspaces. The horizontal black lines indicate the exact analytic values for the Q%!(X)

spectrum.
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in the next section we move to the more involved and physically relevant case of a Calabi—Yau

threefold.

The particular one-fold that we will study is the Fermat cubic hypersurface X in P? defined

by the vanishing locus of the equation

Q=Z3+7Z)+ 73 =0. (188)

Analytic Results

First, we note that since the canonical bundle of a Calabi-Yau is trivial, Kx = O, the
relations in (162) imply {\}" = {A\}}i. Thanks to this, once we compute the O(m)-valued

scalar spectrum for all m, we automatically have the bundle-valued (0, 1)-form spectrum.

For m = 0, since Ag,, = %A, the scalar spectrum is exactly one-half of that for the de Rham

Laplacian on the torus. This is given by [164]
2 2 2
Ao = 47b {(1 + 2_2) w? — L + “—1 . uwvel (189)

where the complex structure 7 = a + b is fixed to e2™/? for the Fermat cubic. The eigenvalue
multiplicities match the dimensions of irreducible representations of the symmetry group of X
(automorphisms  of )  together  with  complex  conjugation), which  is

(S3 X Zy) X (Zs3 X Zs3) [165].

For m # 0, the exact scalar spectrum can be inferred from the results of Tejero Prieto [166].

There, they compute the eigenvalues and multiplicities for a Schrédinger-like operator

H=—Ap, (190)

2m
where D is a connection compatible with the hermitian metric on V = O(m), and Ap = D'D
is the Bochner Laplacian for V. This can be related to the holomorphic structure on V as

follows.

Given the Dolbeault operators 9y and Oy, where D = 9y + Oy, [166] gives the identity
eB

N0y — ooy = «F = - (191)
where F' = eB/h is the curvature of D and B = Bvol. This implies
~ -~ eB
D'D = 25,8y, + % (192)
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where B is related to the degree of the line bundle V' by

~

eB
= —Vol(X). 1
degV/ 27Th\/'o( ) (193)

Remembering that our eigenvalue problem is for the Dolbeault Laplacian Ay, = 53/5‘/, we can
use (192) to relate the spectrum of H calculated in [166] with the spectrum of Ap, . From
Section 4.2 of that work, the spectrum (with multiplicity ¢) of H is given by

~ 21h?
specH:{ nzm|deg‘/| (n—l—%),nZO}, (194)
U(E,) = |degV]. (195)
Equation (192) then implies
~ = 27| deg V/
specd|, 0y = {)\n = %i,)‘ (n+ (1 —signdegV)), n> 0} . (196)

We then recall that for a line bundle V' = O(m) on a torus, Riemann—Roch implies that the
degree is given by degV = h%(V) — h%(V*).13 Thus, for m > 0, we have degV = h°(O(m)),
while for m < 0 we have deg V = —h%(O(|m])), with R°(O(|m|)) = 3|m|. Finally, remembering
that we always normalise the volume of the Calabi—Yau to one, the eigenvalues and multiplicities

of Ag,, for m # 0 should be

6mmn m > 0,

6m|m|(n+1) m <O,

l, = 3|m]. (198)
The spectra for m € {—3,...,3} are given in Table 11. In particular, we notice that there
are no zero modes for m < 0, in agreement with h°(O(m)) = 0 for a negative-degree line

bundle. The O(m)-valued (0,1)-form spectra are then given by the O(—m)-valued scalar

spectra, corresponding to mirroring Table 11 about the m = 0 column.

Numerical results

Before presenting our numerical results, we quickly outline how the calculation on a Calabi-Yau

hypersurface differs from that on projective space. Practically, the salient differences are:

13For a bundle V over a complex genus-g Riemann surface, the Riemann-Roch theorem implies
RO(V) — hH (V) = deg V — (1 — g)rankV.

For a line bundle over a torus, g = 1 = rankV and the canonical bundle is trivial, so that h'(V) = hO(V*).
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m -3 —2 -1 0 1 2 3

n )\n 14 n )\n ‘gn )\n En An fn )\n fn An én )\n 14 n

0 565 9 3770 6 188 3 00 1 00 3 00 6 00 9
1 1131 9 7540 6 3770 3 2279 6 1885 3 37.70 6 56.55 9
2 1696 9 1131 6 56.55 3 6838 6 3770 3 7540 6 113.1 9
3 2262 9 1508 6 7540 3 91.17 6 56.55 3 1131 6 169.6 9
4 2827 9 188.5 6 9425 3 159.6 12 7540 3 1508 6 2262 9
5 3393 9 2262 6 1131 3 2051 6 9425 3 1885 6 2827 9
6 3960 9 2639 6 1696 3 2735 6 1131 3 2262 6 3393 9

Table 11: Exact eigenvalues of Az and their multiplicities for O(m)-valued scalars on the
Fermat cubic. The spectrum of O(m)-valued (0, 1)-forms is given by reflecting the table about

m = 0.

e The metric on the Calabi-Yau is not known analytically, but must be computed
numerically.  We compute the Calabi-Yau using the “energy functional” approach
introduced by Headrick and Nassar [38]. In the case of the torus, the Calabi-Yau metric
is simply the flat metric associated to the presentation of the torus as a quotient of C.
However, this metric looks non-trivial in the coordinates inherited from the ambient
projective space. Thanks to this, and also to mimic the higher-dimensional case where

there are no analytic results, we will compute the metric numerically.

e The set F ,f(;q(m) defined in (179) is pulled back to the hypersurface to give an approximate
basis on the Calabi-Yau. The set may be overcomplete in the sense that some elements are
linearly dependent when restricted to the hypersurface. In practice, this means removing
elements of F; ,ff(m) that are related by () = 0. Choosing larger values of k, corresponds to

using a larger basis of forms with which to approximate the eigenmodes of the Laplacian.

e The random points used to discretise integrals as in (186) should be distributed according
to the Calabi-Yau measure rather than the Fubini-Study measure. This problem was

solved for Calabi-Yau hypersurfaces by Douglas et al. [36] and Braun et al. [37].

The metric on X is given by a choice of complex structure, via the defining equation (188), and
a choice of Kéhler potential. This is approximated by an “algebraic metric” [35] with Kéhler
potential

1 Wi
K= W—khlog sah*P33, (199)

where h°® is a hermitian matrix of parameters and {so} are a basis for the degree-k,

polynomials (sections of O(ky)) on P? restricted to the hypersurface. Here, kj, is a positive
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integer parameter which controls the complexity of the ansatz (199) — larger values of &y,
should be thought of as including higher Fourier modes to better approximate the honest
Calabi-Yau metric on X. The corresponding Kahler metric is g;; = 8253.[( , where a pullback

to the hypersurface on the i, j indices is implicit.

The bundles we consider are line bundles V' = O(m) on the torus X for integer values of
m. Since the approximate Calabi-Yau metric is defined by (199), similar to (168), a Hermite—

Einstein metric on the fibres of O(m) is given by

—m/kp,

G = (s5,h*"55) (200)

Again, one can check that this choice satisfies the hermitian Yang—Mills equation on X with
the Kéhler metric determined by (199). With these ingredients, we can now compute the
numerical spectrum of the Dolbeault Laplacian on our first example of a Calabi—Yau
hypersurface. In what follows, we computed the approximate Calabi-Yau metric at k, = 10
corresponding to a “o-measure” of o ~ 2 x 107'° [36]. Integrals were computed via Monte

Carlo using Ny = 10° points.
The Bundle-Valued Scalar Spectrum

We begin with a numerical calculation of the spectrum of bundle-valued eigenfunctions of
Ag,. The inputs are the approximate Calabi-Yau metric on X determined by the Kahler
potential in (199) with the parameters fixed by the “energy functional” approach [38], a
bundle O(m) together with a Hermite-Einstein metric (200), a choice of degree k; which
determines the size of the approximate basis (177) in which we expand the eigenfunctions,
and the number of points Ny = 10° that are used to discretise the integrals that appear in
matrix elements of the Laplacian. For the rest of this section, we fix ky = 3 and compute the

spectrum for m € {—3,...,3}. Our numerical results are shown in Table 12 and Figure 22.

The numerical results in Table 12 reproduce the exact results in Table 11 with excellent
precision and the correct multiplicities. This is also visible in Figure 22 which shows the
numerical results and indicates the values of the exact eigenvalues; in all cases, the exact
result lies in the middle of the cluster of numerical eigenvalues. For larger values of Ny, the
eigenvalues in Figure 22 become more tightly clustered. In the N4, — oo limit, one recovers

the (S5 X Zy) X (Z3 x Z3) symmetry of X, and the eigenvalues become exactly degenerate.
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m -3 —2 —1 0 1 2 3

n An 4, An Ly An 0, An L, An Ly, An 0, An L,
0 565+£02 9 377+01 6 1885+0.05 3 0.0 1 0.0 3 0.0 6 0.0 9
1 1131+£05 9 754+£03 6 37701 3 2280£008 6 1885+0.05 3 37701 6 56.5£02 9
2 1696+07 9 1131£05 6 564+02 3 684+£02 6 37701 3 754£03 6 113.1£05 9
3 226 1 9 1508+£07 6 75.6+02 3 91204 6 56.6+01 3 113105 6 169.6+0.7 9
4 283+ 2 9 1885+06 6 943£03 3 159709 12 753+£01 3 150.8£06 6 226+ 1 9
5 340+ 2 9 2264+08 6 113.0+£03 3 2053£09 6 943+£03 3 188.6=+07 6 283 £1 9
6 396 £ 2 9 2640£09 6 131904 3 274+ 1 6 1131+£02 3 2261£09 6 339 £1 9

Table 12: Numerical eigenvalues A, of Ag . on the Fermat cubic acting on O(m)-valued scalars
for m € {-3,...,3} with k, = 3. We have also included their multiplicities £,. These were
computed using a numerical Calabi-Yau metric computed at k, = 10 and the associated
Hermite-Einstein metric on O(m). Integrals were computed via Monte Carlo over Ny = 10°
points. The quoted eigenvalues are the mean of the eigenvalues in a cluster, with the error

given by the standard deviation of the cluster.

The Bundled-Valued (0, 1)-Form Spectrum

Next, we have the numerical calculation of the Q%!(O(m)) spectrum. Again, this follows
the scalar calculation in the previous subsection almost exactly, apart from using an
appropriate basis of bundle-valued (0, 1)-forms from (179). The results for m € {-3,...,3}
are shown in Table 13 and Figure 23.

As we mentioned at the start of this section, since X is Calabi—Yau, its canonical bundle is
trivial, Kx = O. The identity (162) then implies that the O(m)-valued (0, 1)-form spectrum
should match the O(—m)-valued scalar spectrum. Comparing Tables 12 and 13, we see this is
indeed the case up to numerical accuracy. This is also apparent in Figure 23, where we have
plotted the numerical (0,1) eigenvalues and indicated the values that one infers from the

exact O(m) scalar spectrum with black lines. In all cases, we see the two agree.

7.4 The spectrum of A5 on the Quintic

In the previous section, we extended the numerical calculation of the bundle-valued scalar

and (0, 1)-form spectra to a torus defined as a hypersurface in projective space. From this
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Figure 22: Numerical eigenvalues A, of A = on the Fermat cubic acting on O(m)-valued scalars
for m € {—3,...,3}. These were computed using a numerical Calabi—Yau metric computed at
kp = 10 and the associated Hermite-Einstein metric on O(m). Integrals were computed via
Monte Carlo over Ny = 10° points. We used kg = 3 for the basis functions. The horizontal

black lines indicate the exact analytic values from Table 11.

m -3 -2 -1 0 1 2 3

n Aﬂ g’l’l )\’Il é"ﬂ )\n gn ATL én A7’L é‘?’b A?’L g’VL )\TL é’?’b
0 0.0 9 0.0 6 0.0 3 0.04 1 1885+£0.05 3 377+0.1 6 565+02 9
1 565+02 9 377+£0.1 6 1885+£0.06 3 22.79+0.08 6 37.7+0.1 3 754403 6 113.1+£05 9
2 113.1+£05 9 754+02 6 37.7£0.1 3 68.4 + 0.2 6 56.4 + 0.2 3 1131+£05 6 169.6+0.7 9
3 169.6+07 9 113.14+04 6 56.5 +0.1 3 91.2+0.2 6 75.6 £ 0.2 3 150.8+0.7 6 226 + 1 9
4 226 &1 9 150.84+0.7 6 75.44+0.1 3 159.5+0.7 12 94.3+0.3 3 188.5+06 6 283 + 2 9
5 283+ 1 9 1886=£06 6 94.34+0.2 3 205.2+07 6 113.0+£03 3 2264+08 6 340 + 2 9
6 340+ 1 9 2263+08 6 113.1+03 3 274+ 1 6 131.9+04 3 2640+£09 6 396 + 2 9

Table 13: Numerical eigenvalues A, of Az, on the Fermat cubic acting on O(m)-valued (0, 1)-
forms for m € {-3,...,3} with ky = 3 (k, = 4 for m = 0). We have also included their
multiplicities £,,. These were computed using a numerical Calabi—Yau metric computed at
kp = 10 and the associated Hermite—Einstein metric on O(m). Integrals were computed via
Monte Carlo over Ny = 10° points. The quoted eigenvalues are the mean of the eigenvalues
in a cluster, with the error given by the standard deviation of the cluster. Thanks to (162),
these eigenvalues should be related to those of Table 12 by {)\}Eg&% = {)\}gil) which simply

—m)’

reflects the table about m = 0.
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Figure 23: Numerical eigenvalues A, of Aj on the Fermat cubic acting on O(m)-valued
(0, 1)-forms for m € {—3,...,3}. These were computed using a numerical Calabi—Yau metric
computed at k, = 10 and the associated Hermite Einstein metric on O(m). Integrals were
computed via Monte Carlo over Ny = 10° points. We used k, = 3 for the basis functions. The
horizontal black lines indicate the exact analytic values inferred from Table 11 and the identity

(162).
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toy example, it is simple to generalise to higher-dimensional Calabi—Yau manifolds defined as
hypersurfaces. The particular example that we focus on is that of the Fermat quintic three-fold

X defined as the vanishing locus in P* of the equation
Q=2Z0+77 + 25+ Z3+ Z7] = 0. (201)

Unlike the previous examples, there are no analytic results to match to other than the
dimensions of certain bundle-valued cohomologies which count zero modes. The results we
present below are thus the first calculation of the spectrum of a bundle-valued Laplacian on a

non-trivial Calabi—Yau manifold.

Before moving to the numerical results, we describe various constraints on bundle
cohomologies on general Calabi-Yau manifolds. These will provide a consistency check for the

count of zero modes. First, Serre duality relates the sheaf cohomologies as
HP(X,V)=H"P(X,V"). (202)
Second, the Kodaira vanishing theorem states that on a Calabi-Yau X
HP(X,V)={0} for p>0ifV is positive, (203)

where for manifolds with Picard rank one (such as the hypersurfaces in a single projective
space that we consider), positive just means line bundles V' = O(m) with m > 0. These
constraints imply that on a threefold, such as the Fermat quintic, the only non-vanishing
cohomologies are h°(O(m)) and h*(O(—m)) for m > 0. The scalar zero modes of A, counted
by h°(O(m)), are the degree-m holomorphic monomials of the Z! coordinates on P* pulled back
to the hypersurface. Since h'(O(m)) = 0 for all m, there are no bundle-valued (0, 1)-form zero

modes.

Numerical Results

Since there are no known explicit expressions for either the Calabi-Yau metric on the quintic
nor Hermite-Einstein metrics on bundles over it, we must compute these numerically. The
ansatz for the Kéahler potential is again of the form (199), but now with degree-ky,
polynomials on P* restricted to the hypersurface. Similarly, the Hermite-Einstein metric on
the fibres of O(m) over the quintic is given by (200). For what follows, we will use an
approximate Calabi-Yau metric on the quintic computed at k;, = 6 using the “energy

functional” approach of Headrick and Nassar [38], with a o-measure of o ~ 2 x 107* [36]. The
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m -3 -2 —1 0 1 2 3

n )\n ‘gn An gn An 14 n An 14 n )\n 14 n )\n 14 n )\n gn

0 532402 35 354+£01 15 17.73+0.05 5 0.0 1 0.0 5 0.0 15 0.0 35
71.9+01 10 57.0+£0.1 20 395£0.1 20 20.56+0.07 20 21.79+£0.07 20 21.50+0.06 20 17.94+0.04 10
82004 60 626+09 8 420+02 30 394+£01 20 243+£01 30 266=£01 60 27.7+£01 60
85.8+0.8 90 744401 15 51.9+01 10 4228+0.06 4 33.75+0.06 10 28.6+0.1 20 30.7+0.1 30
87.8+0.1 5 80.2+05 50 60.1x01 15 473£0.2 60 4243+0.08 15 388+0.07 15 320+0.2 60

—_

=W N

Table 14: Numerical eigenvalues A, of A on the Fermat quintic acting on O(m)-valued scalars
for m € {—3,...,3}. These were computed using a numerical Calabi-Yau metric computed
at k, = 6 and the associated Hermite-Einstein metric on O(m). Integrals were computed via
Monte Carlo over N, = 5 x 10° points. The approximate basis used kg = 3, except for m = +3
which were computed at ks = 2. We have also included their multiplicities ¢,. The quoted
eigenvalues are the mean of the eigenvalues in a cluster, with the error given by the standard

deviation of the cluster.

numerical integrations were carried out using N, = 5 x 10° points. Unless otherwise stated,

the spectra were computed using an approximate basis f,ff(m) at ky = 3.
The Bundle-Valued Scalar Spectrum

We have computed numerically the O(m)-valued scalar spectrum of A~ for
m € {—3,...,3} on the Fermat quintic threefold. The results are shown in Table 14 and
Figure 24. For m = 0, the eigenvalues are one-half of those computed in [161], as expected
from the identity Ag, = %A when V' = O. For m > 0, the zero modes of Ag should be

monomials of degree m in the homogeneous Z! coordinates modulo the defining equation,

44-m
m

@ = 0. The counting of these monomials, given by h°(O(m)) = (*7™) for 0 < m < 5, agrees
with the number of zero modes in Table 14. For m < 0, the numerical results indicate there
are no zero modes, in agreement with the vanishing of the relevant cohomologies that we

mentioned above.
The Bundle-Valued (0, 1)-Form Spectrum

Finally, we have the numerical calculation of the Q%!'(O(m)) spectrum on the Fermat
quintic. Our results for m € {—3,...,3} are shown in Table 15 and Figure 25. We first note

that there are no zero modes for any values of m, in agreement with the constraints from
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Figure 24: Numerical eigenvalues A, of As on the Fermat quintic acting on O(m)-valued
scalars for m € {-3,...,3}. These were computed using a numerical Calabi-Yau metric
computed at k, = 6 and the associated Hermite-Einstein metric on O(m). Integrals were
computed via Monte Carlo over Ny = 5 x 10° points. We used k, = 3 for the basis functions,

except for m = £3 which were computed at ks = 2.

Serre duality and the Kodaira vanishing theorem. As additional evidence that the spectra are
consistent, we can again appeal to the 9 Hodge decomposition. This discussion mirrors that
for projective space given around Equation (187). Since there are no zero modes, all
(0,1)-form eigenmodes of A, must be either Oy- or 5€—exact. The Jy-exact eigenmodes must
be of the form dy 3, where 3 is an O(m)-valued scalar eigenmode, while the 53,—exact modes
are of the form 8}, where 7 is dy-exact O(m)-valued (0,2) eigenmode. Since Ap, commutes
with %y and the canonical bundle of a Calabi-Yau is trivial, the spectrum of O(m)-valued
(0,2) eigenmodes agrees with the O(—m)-valued (0, 1) spectrum. Putting this together, the
spectrum of the Laplacian acting on Q%!(O(m)) should be the union of the entire Q%°(O(m))

spectrum and roughly half of the Q%'(O(—m)) spectrum.

Comparing Tables 14 and 15, we see this appears to be the case, though with worse
accuracy than we achieved for P3. For example, for m = 1, the Q%'(O(1)) modes with
eigenvalue 25.2 and multiplicity 50 originate from the Q%°(O(1)) modes with eigenvalues
(21.8,24.3) whose multiplicities sum to 50. Moving up the spectrum, the Q%'(O(1)) modes

with eigenvalue 31.7 and multiplicity 30 likely come from the Q%!(O(—1)) modes with
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eigenvalue 28.8 and the same multiplicity. Similarly, the Q%!(O(1)) modes with eigenvalue
37.8 and multiplicity 10 likely come from the Q%°(O(1)) modes with eigenvalue 33.8 and the

same multiplicity.

A glance at the other results should convince the reader that this decomposition holds
more generally, though the match is not perfect. This is likely due to inaccuracies introduced
by the truncation at k, = 3 to a finite-dimensional basis of forms. Recall that on projective
space, the basis f,ff(m) exactly spans the first ky eigenspaces of Ag . However, since the
Calabi-Yau metric is not simply the pullback of Fubini-Study, the eigenspaces of the
Laplacian are not exactly spanned by F,ff(m) for finite k4, nor there is not a direct map
between (0,0) and (0,1) modes at each degree k4. Instead, the approximate eigenmodes
computed at some finite degree will receive corrections as kg4 is increased and the basis of
forms is enlarged. We believe that upon moving to larger values of k, and increasing the
number of integration points, the match between the Q%'(O(m)) and the Q%°(O(m)) and

QO(O(—m)) spectra will improve.

Regardless of this, one should remember that the lower-dimensional physics of a string
compactification is determined by properties of harmonic/zero modes on the compactification
manifold. These zero modes are, by definition, long wavelength and slowly varying, and likely
to be very well approximated already at the modest values of k,; that we have used. The same
is certainly not true for massive modes higher up the spectrum; thankfully, these modes seem

to be less relevant for low-energy physics questions.
Computing a Superpotential

The low-energy N = 1 physics of a Calabi-Yau compactification is controlled by a
superpotential and a Kahler potential. In particular, the matter sector is determined, to
lowest order, by integrals of harmonic modes on the Calabi—Yau. In principle, the numerical
method that we have presented gives us direct access to the data needed to compute all of
this information. In practice, however, the line bundle and threefold we have considered are

too simple to admit non-vanishing superpotential couplings. Let us see why this is the case.

The Fermat quintic threefold was constructed as a hypersurface in a single ambient

projective space. This implies that the rank of the Picard lattice is one and so line bundles on
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m -3 —2 -1 0 1 2 3

n An en A’n En An én An En An gn )‘n gn )\n ‘en

0 355+01 40 23.7+£0.1 10 17.76+£0.04 5 21.60£0.06 20 252=£0.1 50 29.7+04 110 23.83+£0.05 20
1 533+£04 957 36.5+0.1 15 28.77+0.08 30 33.50+0.08 30 31.7+0.1 30 45.7£0.1 15 33.9+£04 155
606+03 30 431+£01 60 433+05 110 36.7+0.1 30 378+£0.1 10 4714+0.1 20 42.7+0.1 40
62.6+0.1 120 45.6+£0.1 40 49.7£0.1 10 423+01 34 428=£05 75 50.0+0.2 60 44.73£0.09 10
66.1£0.1 15 51.94+0.1 30 53.6+£02 115 4804+0.1 20 453+£0.1 10 51.8£0.1 30 478+0.1 15

= W N

Table 15: Numerical eigenvalues A, of Aj, on the Fermat quintic acting on O(m)-valued
(0, 1)-forms for m € {—3,...,3}. These were computed using a numerical Calabi—Yau metric
computed at k, = 6 and the associated Hermite-Einstein metric on O(m). Integrals were
computed via Monte Carlo over N, = 5 x 10° points. We used kg = 3 for the basis functions
for m = 0,£1 and k4 = 2 for m = £2,+£3. We have also included their multiplicities ¢,. The
quoted eigenvalues are the mean of the eigenvalues in a cluster, with the error given by the

standard deviation of the cluster.
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Figure 25: Numerical eigenvalues A, of As, on the Fermat quintic acting on O(m)-valued
(0, 1)-forms for m € {—3,...,3}. These were computed using a numerical Calabi-Yau metric
computed at k, = 6 and the associated Hermite-Einstein metric on O(m). Integrals were
computed via Monte Carlo over N, = 5 x 10° points. We used kg = 3 for the basis functions

for m =0, %1 and k, = 2 for m = £2, £3.
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this quintic are of the form O(m) for some integer m. Now imagine trying to write down a

non-vanishing superpotential coupling as

A1y (mi,mg, m3) = /XQ AL AT A ¢7I§3> (204)

where ¢, € H'(X,0(my)) is an O(m;)-valued harmonic (0, 1)-form, and we have dropped a
trace compared with (23) since the relevant group is abelian. Since €2 is an honest three-form,

this integral vanishes whenever the degrees of the relevant line bundles do not sum to zero:
)\UK(ml,mg,mg) =0 if m1+m2+m37é0. (205)

In other words, the charges of the harmonic modes must sum to zero so that the integrand
of (204) is an honest top-form. Thus, for a non-vanishing superpotential contribution, all the
charges must be zero or at least one of them is negative. However, it is simple to argue that
the requisite harmonic (0, 1) modes are not present in either case. When the charges are zero,
we need harmonic (0, 1)-forms. These are counted by the Hodge number h%! which vanishes
on the quintic, so the (0,1) modes are not present. When there are both positive and negative
charges, we can appeal to Serre duality and the Kodaira vanishing theorem. The first of these
gives h%1(O(—m)) = h®*(O(m)), while the second implies h*'(O(m)) = h%*(O(m)) = 0 if
m > 0. Together, these imply that there are no harmonic O(m)-valued (0, 1)-forms for either
sign of m, in complete agreement with our numerical results in Table 15. We conclude that
there are no non-vanishing superpotential couplings for matter coming from line bundles on

the Fermat quintic.

7.5 Outlook
To summarise, the results of this section are:

e The construction of a finite basis of bundle-valued differential forms on complex
projective space, which can be used to approximate the space of eigenmodes of the

Dolbeault Laplacian on both P and hypersurfaces therein.

e Numerical calculations of the eigenmodes and eigenvalues of the Dolbeault Laplacian on
O(m)-valued scalars and (0, 1)-forms on P3. We find perfect agreement with known exact
results for the scalar spectrum and perform a number of consistency checks for the (0, 1)
spectrum. We have not found exact results for the bundle-valued (0, 1)-form spectrum in
the literature, so, to the best of the authors’ knowledge, our numerical calculation is the

first of its kind.

120



e Numerical calculations of the eigenmodes and eigenvalues of the Dolbeault Laplacian on
O(m)-valued scalars and (0, 1)-forms on a torus. The torus is a Calabi-Yau one-fold,
allowing us to compare our numerical results with exact predictions. Again, we find

perfect agreement with the known exact results.

e The first numerical calculations of the eigenmodes and eigenvalues of the Dolbeault
Laplacian on O(m)-valued scalars and (0, 1)-forms on a Calabi-Yau three-fold. We
focus on the Fermat quintic threefold. Here, there are no analytic results to compare
with; instead, we perform a number of non-trivial checks on the spectrum which come

from Serre duality and the Hodge decomposition.

Here we focused on the examples of line bundles over Calabi-Yau manifolds in a single
ambient projective space. There are a number of ways to generalise our set-up to allow for
interesting superpotential couplings. First is simply moving from line bundles to non-abelian
bundles, such as the examples given in [153-155], where instead of the charges summing to zero,
one requires a singlet in the antisymmetric product of the three representations appearing in the
cubic coupling. Second, we can stay with line bundles but move to Calabi—Yau manifolds with
higher-rank Picard lattices. Line bundles on these spaces are labelled by a vector of charges m
and the corresponding vanishing theorems are less restrictive. In practice, this means moving
to, for example, complete intersection Calabi-Yau (CICY) manifolds given as hypersurfaces in
products of projective spaces. These advances should allow concrete computations of masses

and couplings in top-down string models in the near future.
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8 Conclusion

In this thesis we have addressed a number of issues related to string compactification, using
techniques from data science and machine learning (ML), and in doing so proved that these
tools are useful for performing research in string theory. This represents a paradigm shift in
theoretical physics. From exploring the string landscape to probing fundamental interactions,
ML techniques are reshaping our approach to understanding the nature of the universe and

ushering in a new era of scientific discovery.

In Section 5 we considered with the problem of dealing with a large string landscape. We
showed how, rather than randomly sampling Calabi-Yau (CY) manifolds as compactification
spaces, one can use ML methods to generate CY manifolds that produce a desired set of
properties in the effective field theory (EFT). Specifically, we looked at CY n-fold
hypersurfaces in toric varieties built from n + 1-dimensional reflexive polytopes. We
demonstrated how genetic algorithms (GAs) are able to generate reflexive polytopes by
exploring an environment with the goal of maximising some reward [49]. Within the results
presented is an example of a targeted search, where CY fourfolds with desired properties and
satisfying certain EFT constraints were generated by modifying the fitness function. This
introduces a new more efficient approach in string phenomenology of sampling the string
landscape. There are several obvious extensions of this work, for instance, one could
investigate whether these methods are capable of generating fine regular star triangulations of
reflexive polytopes or CY manifolds via other constructions, such as complete intersection
Calabi-Yau (CICY) manifolds. Furthermore, by simple modifications to the fitness functions
of our GA algorithm, one can use these algorithms to search for CY manifolds that satisfy a
number of phenomenology constraints. For example, combining the reflexive polytope GA
with the GA in [121] it would be interesting to see whether our a GA is capable of finding CY

threefolds that optimise axion decay constants and axion-photon.

Whilst the study of CY manifolds with ML has been an active area of research since its
inception in 2017 [16-19], until [50], there had not been applications of ML to study
Go-geometry. Unlike for CYs, where there are multiple large datasets, there are no such
datasets for G manifolds. This reflects the difficulty in describing these manifolds with
algebraic discrete data. For the particular case of G5 manifolds constructed as CY links,

however, we can represent the manifold by a list of weights. In Section 6 we construct a

122



dataset of CY links and study their topological properties, namely their Sasakian Hodge
numbers and Crowley-Nordtrom homotopy invariant. We successfully apply a neural network
to learning h?' of the CY links from the input weights. This serves as proof that G
manifolds are also amenable to ML and opens the door to a whole new field of G5-ML
research. Inspired by the many applications of machine learning to finding Ricci-flat metrics
on CY manifolds [40-48], we hope in future work to apply similar methods to look for
Ricci-flat metrics on G manifolds. Such metrics will allow one to study the EFT arising from

compactification of M-theory on such a manifold.

In the past string theory has been criticised due to the fact that it has not yet been
connected to the Standard Model. In principle, the masses and couplings in string models
compactified on CY manifolds can be computed directly from the geometry of the CY.
However, even after decades of work, we are still unable to compute these numbers for all but
the simplest examples. A substantial part of the difficulty can be attributed to the lack of
explicit expressions for non-trivial CY metrics. However, with new approximations of
Ricci-flat CY metrics coming from ML methods [40-48,157], we are are a stage now where we
can begin to compute the resulting particle physics. In Section 7, detailing work that was
carried out in [51], we considered the Eg x Eg heterotic string compactified on a CY threefold
X with holomorphic vector bundle V' and used ML approximations of the Ricci-flat metric on
X to compute the resulting Yukawa couplings in the four-dimensional EFT. Specifically, we
looked at line bundles over CY threefolds defined as hypersurfaces in a single ambient
projective space. Unfortunately these examples are too simple to produce physically realistic
Yukawa couplings. There are a number of ways to generalise our set-up to allow for physically

relevant couplings. For example moving to CICY manifolds and non-abelian bundles.

Combining this with the results of Section 5, we are in a position to, for the first time,
efficiently pick out suitable candidate theories from the vast landscape of string models and
then check if their properties truly match those of observed particle physics. From this one may

shed light on the question of whether string theory is indeed the correct description of nature.
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A Appendix

A.1 Normal Form

There are two sources of redundancy when defining a reflexive polytope A in n dimensions by
its n x N, vertex matrix V', whose columns are the NN, vertices. First of all, one can permute
the vertices, leading to an Sy, symmetry which permutes the columns of V. Secondly, one
can perform a coordinate transformation on the n-dimensional lattice by acting on V' with a
GL(n,Z) matrix from the left. Altogether, this amounts to a transformation of the vertex

matrix

V=GVP. (206)

We consider two polytopes A and A related by (206) to be equivalence. The most efficient
way to eliminate the redundancy due to this identification is to define a normal form for the
vertex matrix, thereby selecting precisely one representative per equivalence class. It is known
that the number of reflexive polytopes, after modding out by this identification, is finite in

any given dimension n [167].

This is the approach that was used by Kreuzer and Skarke in constructing the complete
classification of three- and four-dimensional reflexive polytopes [86,111] and is included in the
PALP software package [123]. If two polytopes A and A have the same normal form, then
they are equivalent, in the sense that they are isomorphic with respect to a lattice
automorphism. A detailed description of the how one computes the normal form is given

in [168]. We shall give a short description here.

Let M be a n-dimensional lattice and A C Mg a n-dimensional lattice polytope with N,
vertices, Ny = |F(A)] facets and vertex matrix V. We also define the supporting hyperplanes
of A, associated to the facets ¢; € F(A), as the set of all vectors v satisfying (w;,v) = —¢;,

where (w;, ¢;) € M* x Z. The algorithm to compute the normal form is then as follows.

1. Compute the Ny x N, vertex-facet pairing matrix PM:

PMZ‘J‘ = <wi, Uj) +c . (207)

2. Order the pairing matrix PM lexicographically to get the maximal matrix PM™*.

124



3. Further rearrange the columns of PM™** to get M by the following:

M « PM™
for i=1to N, do
k<1
for j =741 to N, do
if car(j) < em(k) V (em(3) = ep(k) A sar(j) < sp(k)) then
k<7
end if
end for
M < SwapColumn(M, i, k)
end for

where ¢y () == max(M;;|1 < i < Ny) and sp(j) == SO0, My;, where 1 < j < N,

4. Let oy,ax denote the associated element of Sy, x Sy, that transforms PM into M. Order
the columns of V' according to the restriction of o, to Sn, to get the maximal vertex

matrix V™. This removes the permutation degeneracy.

5. Compute the row style Hermite normal form of V™ to obtain the normal form NF.

This step removes the GL(n,Z) degeneracy.

Example 5 7o illustrate the above algorithm, we present an example in three dimensions. Let
A be a lattice polytope defined by the vertex matriz:
0O -2 -1 -1 1 -3 2 -2
V=|1-3 -1 00 -3 1 -1 . (208)
1 -3 =2 -1 0 —4 3 =2

Computing the vertex-facet pairing matrixz we get

20002110
01002221
06 6 0013 2
P — 21220001 (209)
30111000
256 00021
32301010
0003010 2
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Ordering PM lexicographically we get the following maximal matrix:

6 6 321000
65210200
32100310
P — 2101020 2 | (210)
10000311
012122020
00101220
00021003

corresponding to the row and column permutations (3,6,7,4,5,2,1,8) and (3,2,7,8,6,1,5,4)

respectively. Further ordering the columns by the procedure described in Step 3 above we get

1 020

o O

: (211)

NN O O O O
S = O = N ot O

S NSO W NN W NN O
S NN = O = O

SO O O = N W o O
S = N O O = N W

w o o =
o

corresponding to the column permutation (6,5,8,4,7,1,2,3). Ordering the columns in V
correspondingly we get
-3 1 -2 -1 2 0 -2 -1
Vmr=1 -3 0 -1 011 -3 —1 | (212)
-4 0 -2 -1 3 1 -3 -2

Finally, computing the row style Hermite normal form of V™% we arrive at the following normal

form:
10 10 1 -2 1 0
NF=|o01-10 -1 1 -3 =3 |. (213)
00 01 -1 0 —2 —2
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