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Abstract 

 

 Recent research assessing spatial judgments about multisensory stimuli suggests 

that humans integrate multisensory inputs in a statistically optimal manner, weighting 

each input by its normalised reciprocal variance. Is integration similarly optimal when 

humans judge the temporal properties of bimodal stimuli? Twenty four participants 

performed temporal order judgments (TOJs) about two spatially separated stimuli. 

Stimuli were auditory, vibrotactile, or both. The temporal profiles of vibrotactile stimuli 

were manipulated, producing three levels of TOJ precision. In bimodal conditions, the 

asynchrony between the two unimodal stimuli comprising a bimodal stimulus was also 

manipulated to determine the weight given to touch. Unimodal data were used to predict 

bimodal performance on two measures: judgment uncertainty and tactile weight. A model 

relying exclusively on audition was rejected based on both measures. A second model 

selecting the best input on each trial did not predict the reduced judgment uncertainty 

observed in bimodal trials. Only the optimal maximum-likelihood-estimation model 

predicted both judgment uncertainties and weights, extending its validity to TOJs. We 

discuss alternatives for modelling the process of event sequencing based on integrated 

multisensory inputs. 

 

Keywords 

 

 Multisensory integration, temporal order judgment, audition, touch, statistical 

optimality 
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Introduction 

 

Integrating cues for sensory judgments 

 

 In daily life we are often confronted with multiple redundant forms of sensory 

information which can inform a single perceptual decision. Perhaps the best known 

example comes from the common situation in which different sensory modalities, such as 

vision and audition, both provide information about some property of an object, for 

example the location of a loudspeaker. The observer may use one or more sensory 

channels to determine where the loudspeaker is, and the question arises as to how 

information from different modalities is combined or disregarded in order to form a 

single fused percept (Ernst & Bülthoff, 2004). 

 In the natural environment, all sensory modalities that provide relevant 

information for a particular decision tend to be consistent, i.e. each modality specifies the 

same (true) value for the property that is being judged (although resulting estimates may 

differ as a result of sensory noise; see later). Under these circumstances, it may be 

difficult to isolate the contribution of each modality to the final judgment. A common 

experimental approach has therefore been to introduce a disparity between two sensory 

inputs (usually without alerting participants to this fact) and require a judgment about the 

combined percept. In this way it is possible to dissect the influence of each input, by 

determining how closely the percept follows one input relative to another. For example, 

Rock and Victor (1964) used a distorting lens to introduce a discrepancy between the 

seen and felt shape of objects. Their participants reported shapes more consistent with the 
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visual than with the haptic stimulus. This finding was interpreted as showing total visual 

dominance, although some influence of the haptic stimulus could still in fact be discerned 

(Ernst & Bülthoff, 2004). With this finding in mind, it makes sense to talk in terms of the 

relative weight given to each sensory input, rather than complete reliance on just one 

source. Another well-studied example where a sensory discrepancy may go unnoticed is 

the ventriloquist illusion, in which the ventriloquist’s speech appears to come from the 

mouth of their puppet (Müller, 1838, cited in Bertelson & de Gelder, 2004). In laboratory 

situations, auditory stimuli are generally mislocalised towards synchronised visual 

stimuli, with a much smaller influence of auditory stimuli on visual spatial localisation 

(Bertelson & Radeau, 1981; Pick, Warren & Hay, 1969; but see Alais & Burr, 2004). 

 While data from experiments investigating spatial judgments have tended to 

indicate that vision is weighted more heavily than either audition or haptics in bimodal 

judgments, this finding does not necessarily generalise to other kinds of judgments. For 

example, when participants are required to judge the temporal properties of a bimodal 

stimulus, audition is often found to dominate over vision and touch. Two examples will 

serve to illustrate this point. 

 Firstly, Shams, Kamitani and Shimojo (2000, 2002) presented subjects with a 

single brief visual stimulus accompanied by one or more brief auditory stimuli, and found 

that multiple sounds induced subjects to report seeing multiple illusory flashes. A similar 

phenomenon is evident in the tendencies to both perceive the rate of a rapidly fluttering 

bimodal rhythmic stimulus to be that of the auditory, rather than the visual, component 

(Recanzone, 2003; Welch, DuttonHurt & Warren, 1986) and to misperceive the number 
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of taps to the skin in line with the number of accompanying auditory beeps (Bresciani et 

al., 2005). 

 Secondly, Morein-Zamir, Soto-Faraco and Kingstone (2003) building on work by 

Scheier, Nijhawan and Shimojo (1999) had participants perform a temporal order 

judgment task, determining which of two near-synchronous lights occurred first. When 

two task-irrelevant sounds were presented, the first one coming just before the first light 

and the second one coming just after the second light, performance in the temporal order 

judgment task improved. This “temporal ventriloquism” has been interpreted as a 

tendency for each sound to attract the temporally closest light, thus increasing the 

perceived separation between the two lights (although the second sound appears to be a 

far more powerful attracter; Morein-Zamir et al., 2003). 

 The classical literature on multisensory integration has given rise to a well-

developed theoretical framework for predicting integration effects. One key concept is 

that the more appropriate a sensory modality is for the particular judgment that is to be 

made, the more weight that modality receives when reaching the judgment (Welch & 

Warren, 1980). To avoid circular reasoning, appropriateness must be measured 

independently from the bimodal situation. Most explanations refer to the unimodal acuity 

or precision for the perceptual property that is being assessed (e.g. Welch et al., 1979; see 

Welch & Warren, 1980, for a review of the early literature). This is entirely in accord 

with the previously reviewed studies showing a visual advantage for spatial judgments 

and an auditory advantage for temporal judgments. Although comparisons are 

complicated by the differences between stimuli used in different sensory modalities, the 

visual system generally displays excellent spatial acuity, but exhibits low-pass temporal 
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filtering characteristics that may eliminate fine temporal detail (e.g. Hawken, Shapley & 

Grosof, 1996). Audition shows the opposite pattern, with tactile acuity falling between 

these two extremes. Compare for example the threshold for detecting a high-amplitude 

sinusoidal modulation of light intensity (around 50 Hz , e.g. de Lange, 1958) with the 

thresholds for detecting such modulation for broadband vibrotactile or auditory noise, 

lying at around 300 and 1000 Hz respectively (Viemeister, 1979; Weisenberger, 1986). 

   

Statistical optimality and cue integration 

 

 Psychological concepts such as modality appropriateness and precision may be 

difficult to assess in a mathematically rigorous manner.  Recently, a number of 

researchers have attempted to formally describe the manner in which different inputs are 

weighted and combined for sensory judgments (Ernst & Bülthoff, 2004). A statistical 

framework has been used in order to define the optimal method for combining inputs 

(with optimality defined in terms maximising precision) and psychophysical performance 

has been compared to this prediction. It is assumed that sensory inputs will contain 

varying degrees of environmental noise, and will be further contaminated by noise during 

sensory transduction and transmission. Hence the brain is faced with noisy information, 

and will produce sensory estimates about the state of the environment that vary from trial 

to trial. In general, any sensory estimate that is not subject to systematic bias will be 

correct on average, but display variance. Under these conditions, with the assumption of 

independent Gaussian noise, formal analysis shows that the combined sensory estimate 

(Ŝ) is best (i.e. has the lowest variance) when all sensory estimates (Ŝi, with the subscript 
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referring to the sensory modality) are combined in a weighted average (Equation 1). The 

weight given to a specific estimate (wi) should be inversely proportional to the variance 

of that sensory estimate (σ2
j, Equation 2). 

 

Ŝ = ∑i wi Ŝi    with ∑i wi = 1    (1) 

wj = 

∑i

i

j
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2

2

1
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 Individual sensory variability can be estimated directly by recording estimates 

across a number of trials in unimodal conditions. If we concentrate on the bimodal case, 

for example combining an auditory stimulus with variance σ2
A and a tactile stimulus with 

variance σ2
T, we can re-write Equation 2 as follows: 
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 Where the optimal weighting rule is followed, variability in the multimodal case 

will always be lower than the variability in the best of the contributing unimodal sensory 

estimates. The bimodal variance σ2
AB can be determined from Equation 4:   
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 Experiments can be devised which test how closely human judgments conform to 

the predictions of such an optimal maximum likelihood estimation (MLE) model. 

Conformity would suggest that the dominance of one sensory modality for any particular 

judgment does not imply an inflexible reliance on that modality for all judgments of a 

particular type (e.g. spatial, temporal) but rather a tendency to favour more precise inputs 

over less precise inputs, regardless of their sensory origin. Examples of this approach 

include the work of Hillis, Watt, Landy and Banks (2004) for the combination of depth 

cues, Van Beers, Sittig and Gon (1999) for combining visual and proprioceptive 

information in two dimensions to estimate the position of an unseen arm, Heron, 

Whitaker and McGraw (2004) for estimating the effect of a transitory auditory stimulus 

on the perceived position of reversal of a moving visual stimulus, and Shams, Ma and 

Beierholm (2005) for assessing the impact of transient beeps on the perceived number of 

transient flashes and vice versa. The current research was influenced heavily by the 

experimental design used by Ernst and Banks (2002) so that study will be described in 

more detail as a concrete example. 

 Ernst and Banks (2002) used two force-feedback devices attached to the 

forefinger and thumb to create virtual haptic objects (raised horizontal bars). Spatially 

compatible visual stimuli were created using random dot stereograms. In unimodal 

conditions, participants had to compare a stimulus of standard (55 mm) height with a 

comparison stimulus that varied in height about this standard value. Noise could be added 

to the visual stimulus in order to vary the difficulty of the discrimination. Variance was 

estimated as the squared width of the psychometric function fitted to a participant’s 

responses. Stimuli were designed so that the haptic stimulus variance fell within the range 
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of variances for the visual stimuli. In bimodal conditions, the different visual stimuli were 

combined with the haptic stimulus in the same judgment. A further manipulation varied 

each component of the bimodal standard, so that it averaged 55 mm but might for 

example be composed of a shorter visual stimulus and a longer haptic stimulus. This 

allowed the authors to determine the weight given to each modality by determining the 

change in the point of subjective equality produced by a particular visual-haptic 

discrepancy. Ernst and Banks (2002) found that the variances and weights determined 

from the bimodal condition were in close agreement with the optimal MLE model 

described above. Visual weights decreased as the visual stimulus became noisier, and 

bimodal variance was always lower than the better of the two contributing unimodal 

variances. A very similar approach was used by Alais and Burr (2004), who varied the 

spatial precision of a visual stimulus to show that the ventriloquist effect also represented 

an example of statistically optimal integration. 

   

Rationale for the current investigation assessing temporal order judgments 

 

 To date, those multisensory studies that have tested the optimal integration model 

have assessed mainly spatial judgments, where vision would traditionally be assumed to 

dominate. More recently, studies have begun to assess judgments which may depend 

partially upon temporal acuity, such as counting the number of rapid transient events in a 

short train (Bresciani, Dammeier & Ernst, 2006; Bresciani & Ernst, 2007; Shams et al., 

2005; Wozny, Beierholm & Shams, 2008) or comparing the rate of a flickering or 

fluttering stimulus (Roach, Heron & McGraw, 2006; Wada, Kitagawa & Noguchi, 2003). 
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These studies have generally supported the MLE model, albeit with the addition of model 

parameters intended to downplay integration in the context of obvious sensory 

discrepancies. However, tasks like these do not really investigate timing mechanisms, but 

rather mechanisms of numerosity coding and rate perception. In the current study, we 

wished to assess whether judgments about the sequencing of events in time would also 

exhibit statistically optimal multisensory integration. For example, when we witness a car 

crash and must place it in temporal context, do we perceive the time of collision based on 

either visual or auditory information, or combine both in an optimal manner? To this end, 

we developed a temporal order judgment (TOJ) task in which variability could be 

manipulated in a manner analogous to the changes in visual noise introduced by Ernst 

and Banks (2002). 

 In TOJ tasks, subjects are presented with two brief stimuli in rapid temporal 

succession and asked to discriminate which came first. The method has been widely used 

throughout the history of experimental psychology (Spence, Shore & Klein, 2001). It 

provides the most direct way to assess how events are ordered to construct a subjective 

timeline. Studies investigating temporal ventriloquism indicate that multisensory 

integration can be assessed using TOJs (Morein-Zamir et al., 2003; Scheier et al., 1999). 

Furthermore, irrelevant stimuli in a second modality that are presented in either identical 

or opposite order to the attended stimuli in a TOJ task have been shown to affect 

judgements of temporal order (Kitazawa et al., 2007; Sherrick, 1976).  However, we are 

not aware of any previous attempt to compare precisely the TOJs made in a bisensory 

task with predictions based on Bayesian models. Given the precision of these models, this 

represents an important gap in our knowledge. To investigate the issue, we presented 
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vibrotactile and auditory stimuli, presented on the left and right sides, in unisensory and 

bisensory conditions, whilst manipulating the difficulty of the vibrotactile judgment. On 

some bisensory trials, we introduced a very small asynchrony between the auditory and 

vibrotactile components of the right hand stimulus. Our subjects judged the side from 

which the first stimulus came. In this way we were able to generate an experimental 

situation that promoted optimal integration, and to accurately test the optimal MLE 

model against judgments of temporal order. 

 In order to evaluate the MLE model, our approach was to generate predictions 

from three models, and attempt to demonstrate statistically significant mean deviations 

from two of the three in order to demonstrate the plausibility of the remaining model. We 

also compared the models directly on their squared errors of prediction. The first model 

assumed that because audition has generally been found to dominate over vision and 

touch for temporal judgments, subjects would simply rely on the auditory information 

and ignore the vibrotactile information. We refer to this as the rely on audition model. 

The second model assumed that subjects would use only one sensory modality on each 

trial, but that they would flexibly select the sensory modality depending on which 

modality contained the stimulus which provided the most precise information about 

temporal order. We refer to this as the best sensory estimate model. Finally, the third 

model assumed statistically optimal bisensory integration, and is referred to as the 

maximum likelihood estimation (MLE) model.  

 

Method 
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Subjects 

 

 Initially, 24 participants were tested. Based on this data set it was impossible to 

discriminate the MLE model from the best sensory estimate model, with neither being 

statistically distinguishable from the data. In order to better discriminate between models, 

we decided to reject and replace a subset of outlying subjects to make our sample more 

homogeneous. Subjects who returned any point of subjective simultaneity or judgment 

uncertainty estimate (see analysis, below) that deviated by more than four standard 

deviations from the group mean in one or more of the 13 unimodal and bimodal 

conditions were excluded. This led to the rejection of four subjects, who were then 

replaced to yield a final sample of 24 participants (13 male, mean age = 25.6, SD = 3.9). 

 

Apparatus and stimuli 

 

 The experiment was controlled by a PC producing auditory and vibrotactile 

stimuli at 44100 Hz using a 12 bit A/D card (National Instruments DAQCard 6715). We 

confirmed the correct timing of output signals using a 20 MHz storage oscilloscope 

(Gould DSO 1604). Both auditory and vibrotactile stimuli were Gaussian-windowed 120 

Hz sinusoids. The Gaussian windowing procedure was used to produce stimuli that could 

be temporally smeared to varying extents; a small standard deviation produced a brief, 

sharply defined stimulus whereas a large standard deviation produced a longer stimulus 

with an indistinct peak. In addition to varying the standard deviation of the window, we 

also varied its peak intensity. The area under the Gaussian window was held constant, 
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such that a stimulus with a small standard deviation had a high peak intensity and vice 

versa. The resulting windowed sinusoids were then embedded in low-frequency 

background noise. A one second segment of white noise was produced by generating 

random voltages from a uniform distribution. This signal was digitally filtered with a 

second order bidirectional Butterworth filter with a high cut frequency of 240 Hz. 

Windowed sinusoids were added to low-pass noise to produce our final stimuli. We used 

three vibrotactile stimuli and one auditory stimulus, with parameters selected based on 

pilot work, and modified slightly after the first eight subjects had been analysed. For the 

first eight subjects, the auditory stimulus has a maximum peak-to-peak voltage of 4.0 V 

and a standard deviation of 59 ms, and was embedded in filtered noise with an RMS 

voltage of 0.785 V. The three vibrotactile stimuli had maximum peak-to-peak voltages of 

4.0, 8.0 and 17.1 V, with standard deviations of 59, 29 and 13 ms respectively. They were 

embedded in filtered noise with an RMS voltage of 0.392 V. For the remaining subjects, 

the auditory stimulus was adjusted to have a maximum peak-to-peak voltage of 6.5 V and 

a standard deviation of 36 ms, while the intermediate vibrotactile stimulus was also 

adjusted to have a peak-to-peak voltage of 6.5 V and a standard deviation of 36 ms. 

Background filtered noise was unchanged, being higher in the auditory case. These 

changes were made in order to provide a better match between the intermediate 

vibrotactile stimulus and the auditory stimulus (and also a greater difference between 

these stimuli and the two extreme vibrotactile stimuli), which maximises the difference in 

model predictions (see below). The stimuli used for the first eight subjects are shown in 

Figure 1 part A. Note that these are the voltages sent to the vibrotactile and auditory 

actuators, not necessarily the physical stimuli that where produced by these components. 
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 Subjects sat with their head on a chin rest, having adjusted its height to suit their 

preferred posture. Auditory stimuli were presented from two small speakers, located 

below and in front of the subject’s head on a desk top, one to the left and one to the right. 

The distance between the speakers was 30 cm. They were 20 cm in front of the head rest. 

Their distance below ear level varied from subject to subject, but was typically around 40 

cm. Vibrotactile stimuli were delivered via two small (1 cm diameter) ceramic 

piezoelectric disks coated in plastic. The disks were driven from a custom-built amplifier, 

and did not produce audible noises with any of the stimuli we used. They were attached 

to the underside of the desk in front of the subject, with one disk mounted directly below 

each auditory speaker. The disks were gripped comfortably between index finger and 

thumb. 

 

INSERT FIGURE 1 AROUND HERE 

 

Design 

 

 The experiment consisted of two phases: a unimodal phase, in which baseline 

auditory and vibrotactile performance was assessed separately, and a bimodal phase in 

which combined auditory/vibrotactile stimuli were presented. The order of the two phases 

was counterbalanced across subjects. In the unimodal phase, subjects received one block 

of 75 trials with auditory stimuli and one block of 225 trials with vibrotactile stimuli. The 

auditory block contained a single kind of stimulus. The vibrotactile block contained 75 

trials with each of the three types of vibrotactile stimulus, in a pseudorandom order. The 
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order in which the two unimodal blocks that made up the unimodal phase were received 

was counterbalanced across subjects. 

 In the bimodal phase, subjects received a single block of 675 trials. A two factor 

(3x3) design was used. The first factor, tactile difficulty, varied the parameters of the 

tactile stimulus as discussed above. The second factor, auditory-tactile disparity, varied 

the temporal position of the peak of the right-sided vibrotactile stimulus relative to the 

peak of the right-sided auditory stimulus. The peaks of the two left-sided stimuli always 

coincided exactly. Hence on each trial the auditory stimulus was combined with one of 

three tactile stimuli, with the right-sided tactile stimulus presented at one of three 

temporal offsets relative to the right-sided auditory stimulus (-25 ms, 0 ms and 25 ms). 

An example of one trial from the bimodal phase of the experiment is shown in Figure 1 

part B. Subjects received 75 trials from each condition in a pseudorandom order. 

 

Procedure 

 

 In the unimodal phase, one stimulus was delivered to the right side and one to the 

left side on each trial. Both stimuli came from the same modality and were generated 

using the same Gaussian window (i.e. had the same temporal smear and peak intensity). 

The noise components of each of the two one-second long stimuli were completely 

identical, and began and finished at the same time. In contrast, the windowed sinusoidal 

components of the two stimuli could be temporally offset from one another. The 

Gaussian window for the right-sided stimulus peaked at 500 ms, exactly half way into the 

stimulus. The Gaussian window for the left-sided stimulus could peak anywhere from 
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300 ms before the right-sided stimulus to 300 ms after the right-sided stimulus. 

Participants judged whether the left or the right stimulus had occurred first, having been 

directed to attend to the distinct sinusoidal peaks, not the onset of the background noise. 

Their responses were entered into the computer by the experimenter. 

 The delay between the right and left-sided stimuli varied from trial to trial. It was 

selected randomly on each trial from a condition-specific distribution. There was a single 

distribution for the auditory block and separate ones for each of the three stimuli used in 

the vibrotactile block. Each distribution was initially uniform, containing delay values 

from -140 to +140 ms in 20 ms increments, but was updated after each accepted trial 

according to the generalized P’olya urn model (Rosenberger & Grill, 1997; k = 8). 

Distributions could therefore expand to include delay values from -300 to +300 ms. This 

procedure produces many values close to the point of subjective simultaneity. 

 In the bimodal phase, the procedure was similar, but four stimuli, two vibrotactile 

and two auditory, were delivered on each trial. Subjects were told that the two stimuli on 

the left would peak at the same time, as would the two stimuli on the right, and were 

required to judge which of the two combined (bimodal) stimuli came first. In fact, while 

the peaks of the two stimuli on the left were indeed synchronous, the peaks of the two 

stimuli on the right could either also be synchronous, or the vibrotactile component could 

be offset slightly from the auditory component by 25 ms in either direction. The auditory 

component of the right-sided stimulus peaked at 500 ms. The vibrotactile component of 

the right sided stimulus peaked at 475, 500, or 525 ms. The two left-sided stimuli peaked 

with a delay of -300 to +300 ms, determined relative to the auditory component of the 

right-sided stimulus. Separate adaptive distributions were maintained to randomly select 



 17 

delays in each of the nine conditions (three levels of tactile difficulty crossed with three 

levels of right-sided auditory-tactile disparity).  

  

Analysis 

 

 The proportion of times that a subject judged the right-sided stimulus to have 

occurred first for each delay value that had been presented was determined separately in 

each condition. Cumulative Gaussian psychometric functions were fitted to these data 

using the psignifit toolbox version 2.5.6 for Matlab (see http://bootstrap-

software.org/psignifit/) which implements the maximum-likelihood method described by 

Wichmann & Hill (2001). Points of subjective simultaneity (PSSs) and judgment 

uncertainty were estimated from these functions. The PSS was estimated from the delay 

value where the “right first” judgment occurred with a probability of 0.5. Judgment 

uncertainty is a threshold value similar to the commonly assessed just-noticeable 

difference (JND), and was estimated as the difference between the delay values that 

yielded “right first” judgments with probabilities of 0.5 and 0.84. 

 The bimodal conditions were used to determine the manner in which participants 

combined information from the tactile and auditory modalities to reach a temporal 

judgment. We wished to assess both the bimodal judgment uncertainty, and the weight 

given to the tactile modality, for the combination of the auditory stimulus with each of 

the three different vibrotactile stimuli. To determine the bimodal judgment uncertainty, 

we averaged the judgment uncertainty values estimated for the three bimodal conditions 

sharing a particular tactile stimulus (e.g. the -25, 0 and +25 ms disparity conditions with 
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the tactile stimulus of gradual temporal profile) as the manipulation of auditory-tactile 

asynchrony for the right hand stimulus would not be expected to change the slope of the 

psychometric function given the range of stimuli we used. To determine the weight given 

to the tactile modality, we determined the difference between the PSSs estimated for the 

+25 and -25 ms disparity conditions. To normalise this value, we divided it by 50, 

because 50 is the expected change in PSS if subjects had based their judgments entirely 

on the tactile modality. 

 Data from the three unimodal conditions were used to predict performance in the 

bimodal condition under each of the three models considered in the introduction. For the 

rely on audition model, predicted judgment uncertainty in each of the three bimodal cases 

was equal to judgment uncertainty in the unimodal auditory condition, while the 

predicted tactile weights were all zero. For the best sensory estimate model, the predicted 

judgment uncertainty was taken as the lower of the unimodal auditory or the unimodal 

tactile judgment uncertainties for the relevant tactile stimulus profile. Predicted tactile 

weights were set to zero if the auditory judgment uncertainty was lower than the relevant 

tactile judgment uncertainty, and to 1.0 if the opposite was the case. Finally, for the MLE 

model, predicted judgment uncertainties and tactile weights were determined according 

to equations 4 and 3 in the introduction respectively. 

 Traditional measures of goodness of fit were not appropriate to test our models, 

because we were not fitting models with free parameters to a data set, but rather testing 

the predictions of each model on a new data set. The predictions from each of the three 

models were therefore compared to the values estimated directly from the bimodal 

conditions. Predictions were also used to produce an additional measure of predictive 
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success: mean squared deviation. All comparisons were made using standard parametric 

statistics (ANOVAs with Greenhouse-Geisser corrections for violations of sphericity and 

repeated measures t-tests). 

 

Results 

 

INSERT FIGURE 2 AROUND HERE 

 

Unimodal Data 

 

 Figure 2 shows the results of the four unimodal conditions in which subjects 

performed temporal order judgments between two lateralised stimuli, both coming from 

the same sensory modality. A single auditory stimulus was assessed, along with three 

vibrotactile stimuli constructed so as to vary the difficulty of this temporal 

discrimination. Figure 2 part A illustrates how judgment uncertainty was determined. To 

produce this figure, the data from all 24 participants were combined in each unimodal 

condition, and fitted with a cumulative Gaussian sigmoid function. The slopes of the 

fitted sigmoids reflect the difficulty of each judgment, with steep slopes indicating less 

noisy judgments. Figure 2 part B shows the mean judgment uncertainty in each condition 

determined from our actual analysis.  To generate these data we fitted a different sigmoid 

to each individual participant’s data in each condition, calculated judgment uncertainty, 

and then averaged across the group. Hence judgment uncertainties differ somewhat from 

those that would be estimated from the fits shown in part A. Figure 2 part B indicates that 
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our manipulation of difficulty in the vibrotactile conditions was successful. The tactile 

stimulus with the gradual temporal profile yielded the highest judgment uncertainty, 

considerably higher than that of the auditory condition, while the steeply profiled tactile 

condition yielded the lowest judgment uncertainty, lower than that of the auditory 

condition. The intermediate tactile condition was intermediate in difficulty between these 

extremes and showed similar, but slightly lower judgment uncertainty compared to the 

auditory condition. Although our measure of judgment uncertainty is somewhat unusual, 

being the difference between the mid point of the psychometric function and the 0.84 

point (one standard deviation along the cumulative Gaussian), the judgment uncertainties 

can be easily converted to just noticeable differences (JNDs; the difference between the 

0.75 and 0.5 points) to facilitate comparison with other studies. The JND is 0.67 times the 

judgment uncertainty value we report; for the unimodal data, JNDs therefore ranged from 

214 ms (for the gradual tactile stimulus) to 68 ms (for the steep tactile stimulus). 

 The range of uncertainties in our data is not quite as great as would have been 

ideal, but differences across tactile conditions were statistically reliable as assessed with a 

one-way repeated measures ANOVA (f = 8.31, corrected df = 1.24, 28.43, p = 0.005) and 

indicate that our experimental manipulations were suitable to provide a test of our three 

models using data collected in bimodal conditions. 

 

INSERT FIGURE 3 AROUND HERE 

 

Bimodal Data: Judgment Uncertainty 
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 In addition to the unimodal conditions, each participant discriminated the 

temporal order of combined bimodal stimuli presented to the left and right. To produce 

these bimodal stimuli, the auditory stimulus could be combined with each of the three 

vibrotactile stimuli. Figure 3 part A illustrates how judgment uncertainty was determined. 

The combined data across all 24 participants is displayed for the three conditions which 

combined the auditory stimulus with each of the vibrotactile stimuli without introducing 

any between-modality asynchrony. The best fitting sigmoids are also shown. 

 For our actual analysis, we fitted each participant’s data in each condition with a 

separate sigmoid to determine judgment uncertainty. We then produced a single estimate 

of judgment uncertainty for each participant and each combination of the auditory 

stimulus with one of the three vibrotactile stimuli. To do this, we averaged across the 

three conditions that introduced a slight between-modality asynchrony, as any differences 

between these would only be relevant for assessing weights (see below). In addition, we 

used each participant’s judgment uncertainties in the unimodal conditions to predict their 

bimodal scores based on three possible models: The rely on audition model, which 

assumes that the vibrotactile input is disregarded; the best sensory estimate model, which 

assumes that on each trial the more precise modality is used; and the MLE model, which 

combines the two inputs weighted according to their precision. Figure 3 part B shows the 

mean judgment uncertainty averaged across all participants, along with the mean 

predicted judgment uncertainty for each of the three models. These judgment 

uncertainties equate to JNDs of 79, 58 and 53 ms for the gradual, intermediate and steep 

conditions respectively. 
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 The pattern of mean judgment uncertainties supports the MLE model. When the 

vibrotactile component of the bimodal stimulus had a gradual or intermediate temporal 

profile, performance was almost identical to the MLE prediction and better than either the 

rely on audition or best sensory estimate predictions. For the steep vibrotactile stimulus, 

MLE and best sensory estimate predictions were very close to one another, and actual 

performance was about mid-way between these two predictions. 

 

INSERT TABLE 1 AROUND HERE 

 

 A comparison of the bimodal judgment uncertainties with the predictions of each 

model, like that shown in Figure 3b, allows us to visualise the difference between the 

model’s predictions and the mean of the data. It is possible, however, for a model to 

achieve a good prediction in terms of the mean deviation, but be relatively poor at 

predicting the data of each individual participant (so long as the different errors of 

prediction for each subject sum to around zero). For this reason, we also calculated the 

mean squared deviation of each model from the bimodal data, to measure variation in the 

model’s predictive success. These data are shown in Table 1. Table 1 conforms broadly 

with Figure 3b, and shows that the MLE model had the lowest mean squared error for all 

three tactile profiles. 

 To investigate the predictive power of each model statistically, we first carried out 

a series of two-way (2x3) repeated-measures ANOVAs to assess mean deviations of 

model predictions from the bimodal data. Each ANOVA compared one model’s 

predictions with the empirical data (the factor model) at each level of vibrotactile 
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stimulus temporal profile (the factor tactile profile). Comparing empirical data with the 

rely on audition model, the ANOVA revealed a main effect of model (f = 12.76, df = 1, 

23, p = 0.002), a main effect of tactile profile (f = 10.42, corrected df = 1.19, 27.43, p = 

0.002) and an interaction (f = 10.42, corrected df = 1.19, 27.43, p = 0.002). The main 

effect of model allows us to reject this model as a viable explanation of bisensory 

performance in our task. The interaction shows that this rejection is most compelling 

when the vibrotactile stimulus had a steeper profile. 

 Comparing the data with the best sensory estimate model revealed a main effect 

of model (f = 4.30, df = 1, 23, p = 0.049) and a main effect of tactile profile (f = 10.56, 

corrected df = 1.28, 29.34, p = 0.002) with no interaction (f = 1.30, corrected df = 1.73, 

39.85, p = 0.280). Once again, the main effect of model allows us to reject this 

explanation. 

 In contrast to the findings for the first two models, comparing empirical data with 

the MLE model revealed a main effect of tactile profile (f = 11.36, corrected df = 1.19, 

27.45, p = 0.001) but no main effect of model (f = 0.003, df = 1, 23, p = 0.956) and no 

interaction (f = 0.62, corrected df = 1.73, 39.76, p = 0.521). Of the models we 

investigated, only this one cannot be rejected based on observed judgment uncertainties 

in bimodal conditions. 

 A supplementary analysis was carried out on the mean squared deviations for 

each model. A two-way (3x3) repeated measures ANOVA compared mean-squared 

deviations of bimodal judgment uncertainty data from model predictions, with the factor 

model comparing the three models, and the factor tactile profile comparing the three 

different vibrotactile stimulus profiles. There was a main effect of model (f = 4.85, 
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correct df = 1.01, 23.12, p = 0.038) but no main effect of tactile profile (f = 2.56, 

corrected df = 1.09, 24.97, p = 0.12) and no interaction (f = 3.08, corrected df = 1.08, 

24.86. p = 0.089). Pairwise follow ups (Tukey’s LSD) investigating the main effect of 

model collapsed across the three levels of tactile profile showed significant differences 

between all three models, with the MLE model having a significantly lower mean 

squared deviation than either the best sensory estimate model (p = 0.025) or the rely on 

audition model (p = 0.035), and the best sensory estimate model having a significantly 

lower mean squared deviation than the rely on audition model (p = 0.042). 

 During testing, we rejected and replaced four subjects in order to homogenise our 

sample and increase the likelihood of being able to discriminate statistically between 

them. This change was intended to be neutral with regard to the proportion of subjects 

appearing to provide support for each model. If a model is accurate, we would expect 

approximately half of the subjects to yield bimodal estimates above model predictions, 

and half of the subjects to yield estimates below model predictions. In the initial sample, 

the proportion of subjects scoring below the predictions of the MLE model was 11/24 in 

the gradual tactile condition, 10/24 in the intermediate condition, and 13/24 in the steep 

condition. For the final sample, these proportions changed only slightly, to 11/24, 12/24 

and 12/24 respectively. Proportions scoring below the predictions of the best sensory 

estimate model in the initial sample were 15/24, 16/24 and 17/24, changing to 16/24, 

17/24 and 17/24 for the final sample. Finally, for the rely on audition model, initial 

proportions scoring below predictions were 17/24, 19/24 and 21/24, with proportions in 

the final sample being 18/24, 20/24 and 22/24 respectively. Model predictions and data 
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are shown for each participant separately in the appendix, along with 95% confidence 

intervals. 

 

INSERT FIGURES 4 & 5 AROUND HERE 

 

Bimodal Data: Vibrotactile Weights 

 

 In bimodal conditions, the relationship between the two unimodal stimuli that 

made up the bimodal stimulus on the right hand side was manipulated in a subtle manner. 

The vibrotactile component could be synchronous with the auditory component, or either 

precede or follow it by 25 ms. Participants were not alerted to this manipulation (they 

were told that the two components would always be synchronised) and only one 

participant spontaneously asked about such a manipulation. On further discussion it 

transpired that this question had been motivated by his expert understanding of 

multisensory research methodologies rather than any perceived asynchrony. 

 Figure 4 illustrates how changes in points of subjective simultaneity (PSSs) were 

used to determine the weight given to the vibrotactile modality for each bimodal 

combination of the auditory and one of the three vibrotactile stimuli. Data is shown for all 

24 participants in the three bimodal conditions in which the auditory stimulus was 

combined with the steeply profiled vibrotactile stimulus. Best fitting sigmoids are 

displayed for conditions in which the right hand bimodal stimulus included a small (25 

ms) asynchrony between auditory and vibrotactile components, or no such asynchrony. 



 26 

The curves are clearly shifted along the horizontal axis, indicating that the change in the 

relative timing of the vibrotactile stimulus influenced participant’s PSSs. 

 For our actual analysis, we fitted each participant’s data with a separate sigmoid 

in each bimodal condition and determined the PSS. The change in PSS between the -25 

ms and +25 ms asynchrony conditions for a particular vibrotactile profile was used to 

determine the weight given to that vibrotactile stimulus. We also used the judgment 

uncertainties estimated for each subject in unimodal conditions to form predictions about 

vibrotactile weights based on our three models (rely on audition, best sensory estimate 

and MLE). Figure 5 shows mean vibrotactile weights across participants based on 

bimodal data, along with mean predictions for the three models. 

 The pattern of vibrotactile weights is not entirely consistent with any of the three 

models. It is closer to the predictions of the best sensory estimate and MLE models, 

which both predict that weights should rise as vibrotactile strength increases, than the rely 

on audition model, which does not, but the slight drop from the medium to high strength 

conditions is not predicted by any model. However, the large error bars suggest a 

cautious interpretation. Overall, means are closest to the predictions of the MLE model. 

 

INSERT TABLE 2 AROUND HERE 

 

 As with the judgment uncertainty data, we also determined mean squared 

deviations as an additional measure of each model’s predictive success. Mean squared 

deviations are shown in Table 2. In general, the MLE model produced considerably lower 

mean squared deviations than the rely on audition model, and slightly lower values than 
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the best sensory estimate model, although the best sensory estimate model was most 

successful for the gradual tactile condition. 

 To investigate the predictive power of each model statistically, we first carried out 

three two-way (2x3) repeated-measures ANOVAs to assess mean deviations of each 

model’s tactile weight predictions from the weights estimated using the bimodal data. 

Each ANOVA compared one model’s predictions with the empirical data (the factor 

model) at each level of vibrotactile stimulus temporal profile (the factor tactile profile). 

 Comparing empirical data with the rely on audition data, there was a main effect 

of model (f = 32.68, df = 1, 23, p < 0.001) but no main effect of tactile profile (f = 0.98, 

corrected df = 1.57, 36.18, p = 0.367) and no interaction (f = 0.98, corrected df = 1.57, 

36.18, p = 0.367). The main effect of model allows us to reject this model as an 

explanation of bisensory performance in our TOJ task. However, comparing empirical 

data with the best sensory estimate and MLE models we were unable to reject either 

model. In both cases there was a main effect of tactile profile (best sensory estimate: f = 

4.61, corrected df = 1.52, 35.04, p = 0.025; MLE: f = 3.63, corrected df = 1.48, 34.01, p = 

0.05) but no main effect of model (best sensory estimate: f = 0.45, df = 1, 23, p = 0.507; 

MLE: f =  0.11, df = 1, 23, p = 0.740) and no interaction (best sensory estimate: f = 1.38, 

corrected df = 1.89, 43.37, p = 0.262; MLE: f = 0.69, corrected df = 1.72, 39.47, p = 

0.485). 

 A supplementary analysis was carried out on the mean squared deviations for 

each model. A two-way (3x3) repeated measures ANOVA compared mean-squared 

deviations of bimodal tactile weight estimates from model predictions, comparing across 

the three models, and also the three different vibrotactile stimulus profiles. There was a 
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main effect of model (f = 5.79, correct df = 1.07, 24.69, p = 0.022) but no main effect of 

tactile profile (f = 2.01, corrected df = 1.35, 31.03, p = 0.163) and no interaction (f = 

0.77, corrected df = 2.32, 53.35. p = 0.486). Pairwise follow ups (Tukey’s LSD) 

investigating the main effect of model collapsed across the three levels of tactile profile 

showed a significant difference between the MLE model and the rely on audition model 

(p = 0.004) and a marginally significant difference between the best sensory estimate 

model and the rely on audition model (p = 0.051) but no significant difference between 

the MLE model and the best sensory estimate model (p = 0.538). The two analyses of 

tactile weights therefore yielded similar findings: Participants were clearly making use of 

the tactile stimulus on some or all trials, but the precise manner in which the auditory and 

tactile stimuli were used cannot be determined using the weight data alone. 

 

Discussion 

 

 Our participants judged the temporal order of auditory and vibrotactile stimuli 

under both unimodal and bimodal conditions. In bimodal conditions, the influence of the 

vibrotactile stimulus on the combined judgment was assessed by introducing a small 

discrepancy between the auditory and vibrotactile components of the right-hand 

combined stimulus. Participants clearly took account of the vibrotactile stimulus when 

judging temporal order. Performance under unimodal conditions was used to make 

predictions about bimodal performance based on three models. For weight data, we were 

able to reject statistically a model in which subjects relied entirely on audition to perform 

the bimodal task, but were unable to reject either a strategy that selects the more precise 
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input on each trial or the MLE model which implies weighted summation of inputs 

according to their precision. However, when judgment uncertainty was determined in 

bimodal conditions, we found that subjects consistently performed at a higher level than 

that achieved in either unimodal condition. Only the MLE model predicts this improved 

level of judgment uncertainty. Furthermore, we were able to reject statistically both 

alternative models as explanations of our data. 

 The findings related to observed bimodal judgment uncertainties are particularly 

important for the following reason. It is possible to mimic the result predicted by the 

MLE model for sensory weights by the alternative strategy of using only one modality on 

each trial, but using each modality on a proportion of trials determined by the precision of 

that modality in unimodal conditions (Ernst & Bülthoff, 2004). However, this strategy 

does not predict the increase in precision that is the true hallmark of the MLE model. 

Thus far, no alternative model has been presented which can predict the low levels of 

judgment uncertainty observed here, so the MLE model is strongly favoured by our data. 

 Our study represents a formal test of the MLE model of multisensory integration 

for judgments of temporal order. To our knowledge, there have been no studies published 

previously on this specific issue. The MLE model has been shown to account well for the 

integration of visual and haptic spatial information (Ernst & Banks, 2002) and for the 

integration of visual and auditory spatial information (Alais & Burr, 2004). Our data 

conform with findings from previous studies suggesting that audition dominates over 

vision (Recanzone, 2003; Welch et al., 1986; Morein-Zamir et al., 2003; Scheier et al., 

1999; Shams et al., 2000) and touch (Bresciani et al., 2005) for tasks with a temporal 

component: Because audition would be expected to have high precision in these tasks, the 
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MLE model can account for its apparent domination, just as it accounts for our 

audiotactile data. Unlike most previous studies, we provide a very detailed quantitative 

analysis of bisensory integration when the relative precision of each modality is varied, 

and show that touch can also be important under the appropriate circumstances (i.e. when 

it forms the more reliable input). Interestingly, this finding is consistent with an early 

study showing a reciprocal influence of distracting auditory and tactile stimuli on 

temporal order judgements made in the other modality (Sherrick, 1976). 

 It may be objected that the rely on audition model is something of a straw man, as 

very few previous studies have suggested complete auditory dominance over touch for 

temporal judgments. However, our second alternative model, the best sensory estimate 

model, is certainly a realistic contender. Like the MLE model, it implies sophisticated 

knowledge about the precision of each sensory input. Nonetheless, we were able to reject 

this model and thus favour the MLE model which suggests that appropriate weighting 

and combination of information also occurs on every trial. 

 While ours is the first study to demonstrate statistically optimal integration of 

bisensory inputs for judgments of temporal order, it is not the first to suggest that 

temporal order judgments may take into account multiple sources of information in a 

mathematically sophisticated way. For example, prior probability distributions based on 

previous experience appear to be weighted and integrated with current sensory estimates 

to perform TOJs (and also anticipate stimulus arrival times) in a Bayesian manner 

(Miyazaki, Nozaki & Nakajima, 2005; Miyazaki, Yamamoto, Uchida & Kitazawa, 2006). 

In simple terms, participants expect asynchronies that they have repeatedly experienced 

(although they may also show additional and alternative recalibration effects; see for 



 31 

example Fujisaki, Shimojo, Kashino and Nishida, 2004, for audiovisual stimuli, Navarra, 

Soto-Faraco and Spence, 2007, for audiotactile ones, and Hanson, Heron and Whitaker, 

2008, for all bimodal combinations of vision, audition and touch). Expectations based on 

priors are easily incorporated into an MLE model of multisensory integration under a 

single Bayesian framework, so it would be interesting to test for such effects in unison 

(Ernst & Bülthoff, 2004). 

 Because our interpretation relies heavily on changes in the precision with which 

subjects performed the TOJ task, it is important to emphasise that practice effects could 

not have generated our findings. The order in which subjects performed unimodal and 

bimodal conditions were counterbalanced, so that any improvement (or decrement) over 

time did not apply to just one phase of the experiment. It might also be objected that we 

rejected four subjects prior to obtaining our final sample. These subjects were not 

uniform in terms of the model they best supported, and the motivation for excluding them 

was the variability they introduced, rather than their conformity to any particular 

prediction. However, it should be noted that one of these four participants was an extreme 

outlier, in that his performance was competent in the unimodal conditions, but collapsed 

almost entirely in the bimodal conditions (which were performed subsequently, i.e. with 

additional practice). None of our models predicted this pattern, and we wonder whether 

there was something unusual about this participant that meant an additional redundant 

stimulus interfered strongly with the first stimulus, rather than being adequately ignored 

or usefully integrated. 

 How might our participants have determined the reliability of each input in order 

to integrate them appropriately? Subjects could not tell in advance of a trial which kind of 
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tactile stimulus they were to receive. However, they received only four kinds of stimulus 

during the experiment (one auditory and three vibrotactile) so it is possible that they were 

able to build up an accurate estimate of the precision of each kind of stimulus over 

multiple trials, then classify the tactile component of the bimodal stimulus in order to 

achieve optimal integration. Given, however, that they received no feedback during the 

experiment, it is unclear how precision could be accurately determined in this manner. 

We therefore favour the alternative idea that participants were able to flexibly and near 

instantaneously estimate the precision of each input on each and every trial, i.e. that the 

noise of a sensory estimate is represented alongside that estimate in a trial by trial 

manner. This conclusion has been favoured by other researchers following 

demonstrations of MLE integration where stimuli varied much more widely than was the 

case here (Hillis et al., 2004). 

 Turning to possible neurocognitive models for our bimodal TOJ task, it is 

tempting to infer from these data that tactile and auditory estimates about time of arrival 

were integrated for each combined stimulus, with these optimally combined stimuli 

undergoing subsequent comparison to determine their temporal order. This interpretation 

is intriguing, because it is not immediately obvious how such a process could be 

accomplished in real time. Sensory inputs will be represented in the brain following a 

delay reflecting their processing and transmission times. Simple bottom-up models of the 

TOJ task suggest that separate inputs arrive at some decision centre, where they are 

compared using a more or less sophisticated decision rule to determine temporal order 

(Sternberg & Knoll, 1973; Ulrich, 1987). We can also consider how MLE integration 

might be accomplished in the brain. One scheme for achieving MLE integration suggests 
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a point by point multiplication of two population representations in which each node 

corresponds to a particular value, and the degree of activation indicates the strength of 

evidence for that value (Knill & Pouget, 2004). Noisier inputs yield more distributed 

population responses. For a TOJ task, the values that are represented by different nodes 

would need to be estimates of time of arrival, which implies that time is no longer 

represented as time (i.e. in the timing of neural activity) but rather has been converted 

into a spatial code. Combined sensory estimates would then be compared to evaluate 

temporal order. This analysis might lead us to reject a real-time account of TOJ task 

performance and favour the involvement of higher level, potentially post-hoc 

interpretative processes (Dennett & Kinsbourne, 1992). 

 This, however, is not the only plausible account of our data. It is equally possible 

that MLE integration occurred at a later stage of processing. In this account, a temporal 

order judgment is made within each sensory modality first. The left-hand auditory 

stimulus is compared to the right-hand auditory stimulus, and a parallel comparison 

occurs for the two tactile stimuli. These comparisons might occur in real time. All that is 

required is that the output of these comparisons carries quantitative information about the 

relative timing of left and right hand stimuli (i.e. left precedes right by 30 ms, rather than 

just left precedes right) and that information about precision is also produced. It would 

then be possible to perform MLE integration in a subsequent computation before 

reaching a decision. 

 Previous research assessing MLE models of audiovisual integration for a counting 

task (Andersen, Tiippana & Sams, 2004; 2005) has indicated that a model based on 

continuous representations of sensory inputs (like that assessed here) is superior to a 
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model based on discrete representations (often considered to be a kind of late 

integration). However, the late integration account outlined above still operates on 

continuous representations, because the magnitude of the left-right temporal asynchrony 

is represented following each unimodal comparison. Hence we cannot rule it out with a 

similar approach to that of Andersen et al. (2005). While the late integration account does 

not fit the phenomenology of the task (we were careful to produce stimuli that we felt 

combined plausibly into bimodal wholes) it remains viable. The interesting issue of 

whether TOJs are accomplished in real time (i.e. by comparing time of arrival at a 

decision centre) is therefore not resolved by the current data, but might inform future 

research comparing multisensory stimuli. 

 In summary, we have shown that performance on a bimodal temporal order 

judgment task with combined auditory-tactile stimuli is statistically indistinguishable 

from the predictions of an optimal MLE model of bimodal integration. Other simple 

models, suggesting that participants relied exclusively on audition or selected the best 

unimodal input on each trial, were rejected based on reliable differences between model 

predictions and observed behaviour. We therefore conclude that while the locus of 

integration remains uncertain, humans are nonetheless able to integrate auditory and 

vibrotactile information in a statistically optimal manner when determining the temporal 

order of bisensory events. 
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Appendix 

 

Participant by participant predictions for the three models, alongside data obtained in 

bimodal conditions.  

Confidence intervals are based on a percentile parametric bootstrap method using 4999 

simulations. * Only participants 1-24 were included in the main analysis. ** For 

experimental order 1a = unimodal auditory, 1t = unimodal tactile, 2 = bimodal. 

 

Predicted and observed tactile weights. This section shows predictions derived from the 

Rely on Audition and Best Sensory Estimate models. 

Rely on Audition Model Best sensory estimate model 

All Tactile profiles Gradual tactile profile Intermediate tactile 
profile 

Steep tactile profile 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% 
confidence 

interval 

S
u

b
je

c
t*

 

A
g
e
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rd

e
r*

 

E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High 

1 20 1a1t2 0 0 0 0 0 1 0 0 1 0 0 1 

2 21 21a1t 0 0 0 0 0 1 0 0 1 0 0 1 

3 27 1t1a2 0 0 0 0 0 0 0 0 1 1 0 1 

4 24 21a1t 0 0 0 0 0 1 1 0 1 0 0 1 

5 29 1a1t2 0 0 0 0 0 1 1 0 1 1 0 1 

6 24 1t1a2 0 0 0 0 0 0 0 0 0 0 0 1 

7 23 21t1a 0 0 0 0 0 0 0 0 0 0 0 0 

8 25 1a1t2 0 0 0 0 0 1 1 0 1 1 1 1 

9 29 1t1a2 0 0 0 0 0 1 0 0 1 1 0 1 

10 22 21t1a 0 0 0 0 0 0 0 0 1 0 0 1 

11 28 21t1a 0 0 0 0 0 0 0 0 1 0 0 1 

12 23 1t1a2 0 0 0 0 0 1 1 0 1 1 0 1 

13 22 21a1t 0 0 0 1 1 1 1 0 1 1 1 1 

14 20 21t1a 0 0 0 0 0 1 0 0 1 0 0 1 

15 25 1a1t2 0 0 0 0 0 1 1 0 1 1 0 1 

16 33 21a1t 0 0 0 0 0 1 1 1 1 1 0 1 

17 30 1t1a2 0 0 0 0 0 1 1 0 1 1 0 1 

18 24 21t1a 0 0 0 1 0 1 1 0 1 1 1 1 

19 32 21a1t 0 0 0 1 0 1 1 0 1 1 0 1 

20 26 21t1a 0 0 0 1 1 1 1 0 1 1 1 1 

21 20 1t1a2 0 0 0 0 0 1 1 0 1 1 1 1 

22 28 21a1t 0 0 0 1 0 1 1 1 1 1 1 1 

23 30 1a1t2 0 0 0 0 0 0 0 0 1 1 0 1 

24 29 1a1t2 0 0 0 0 0 0 0 0 1 1 1 1 

                              

25 22 21a1t 0 0 0 1 0 1 1 1 1 1 0 1 

26 29 1a1t2 0 0 0 0 0 0 0 0 1 1 0 1 

27 23 1t1a2 0 0 0 0 0 1 1 1 1 1 1 1 

28 19 1a1t2 0 0 0 0 0 0 0 0 0 0 0 0 
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Predicted and observed tactile weights. This section shows predictions derived from the 

MLE model, and the bimodal data. 

 

MLE model Bimodal Data 

Gradual tactile profile Intermediate tactile 
profile 

Steep tactile profile Gradual tactile profile Intermediate tactile profile Steep tactile profile 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% confidence 
interval 

95% 
confidence 

interval 

S
u

b
je

c
t*

 

E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High 

1 0.47 0.12 0.85 0.25 0.05 0.66 0.28 0.07 0.67 0.46 -0.45 1.33 0.98 0.44 1.54 0.44 -0.38 1.07 

2 0.10 0.00 0.53 0.25 0.02 0.69 0.20 0.02 0.62 0.64 -1.10 3.92 -0.28 -5.24 2.39 -0.04 -3.60 12.25 

3 0.08 0.01 0.29 0.23 0.04 0.55 0.60 0.21 0.90 0.32 -0.60 0.98 -0.18 -1.21 0.62 0.22 -0.61 0.84 

4 0.25 0.04 0.58 0.62 0.22 0.89 0.33 0.08 0.68 0.58 -0.13 1.28 0.40 -0.25 1.22 1.06 0.13 1.89 

5 0.22 0.03 0.70 0.73 0.39 0.96 0.80 0.43 0.97 0.88 -0.01 2.40 0.88 -0.19 1.92 -0.64 -1.38 0.35 

6 0.08 0.00 0.30 0.16 0.04 0.28 0.48 0.12 0.79 0.70 -0.01 1.38 0.84 0.26 1.36 1.00 0.49 1.41 

7 0.01 0.00 0.07 0.02 0.00 0.12 0.11 0.01 0.38 -0.64 -1.59 0.35 0.58 -0.18 1.34 -0.60 -1.00 -0.21 

8 0.49 0.18 0.86 0.62 0.26 0.92 0.90 0.71 0.99 -0.06 -0.71 0.75 0.36 0.16 0.89 0.70 0.14 1.27 

9 0.03 0.00 0.56 0.41 0.02 0.90 0.81 0.44 0.98 -0.42 -2.45 1.11 0.88 -0.88 3.18 -0.14 -1.17 1.05 

10 0.19 0.02 0.47 0.27 0.05 0.62 0.34 0.06 0.67 0.90 0.00 1.66 0.04 -0.78 0.93 0.82 0.15 1.39 

11 0.07 0.00 0.25 0.44 0.04 0.90 0.27 0.02 0.69 -0.24 -0.66 0.25 0.26 -0.13 0.68 0.58 0.25 0.93 

12 0.49 0.15 0.90 0.82 0.45 0.98 0.77 0.43 0.97 0.50 -0.27 1.26 0.80 -0.34 1.51 0.98 0.19 1.87 

13 0.86 0.53 0.98 0.81 0.47 0.98 0.93 0.70 0.99 1.40 0.31 2.23 0.92 0.22 1.63 0.88 0.11 1.82 

14 0.20 0.03 0.51 0.39 0.08 0.76 0.41 0.11 0.78 -0.20 -0.88 0.40 0.52 -0.05 0.89 -0.34 -0.98 0.36 

15 0.30 0.00 0.96 0.52 0.11 0.98 0.77 0.30 0.99 -0.54 -2.48 1.24 1.62 0.22 3.19 0.54 -0.10 0.97 

16 0.22 0.00 1.00 0.91 0.61 1.00 0.88 0.42 1.00 -1.22 -12.8 3.95 1.40 0.15 4.02 1.78 0.86 2.89 

17 0.28 0.03 0.73 0.74 0.36 0.97 0.77 0.40 0.97 -0.38 -1.35 0.86 1.02 0.69 1.41 0.50 -0.01 1.10 

18 0.50 0.18 0.89 0.73 0.38 0.96 0.85 0.57 0.98 2.30 0.32 5.10 0.98 0.11 1.63 1.54 0.71 2.40 

19 0.62 0.14 0.92 0.83 0.49 0.98 0.73 0.27 0.95 2.56 1.11 3.78 0.90 -0.34 1.68 1.30 0.37 2.08 

20 0.93 0.72 1.00 0.69 0.25 0.96 0.82 0.50 0.98 0.72 -0.20 1.44 0.84 0.09 1.56 0.56 -0.23 1.37 

21 0.43 0.05 0.96 0.79 0.36 0.99 0.93 0.68 1.00 0.76 -0.80 2.54 0.06 -0.93 1.19 -0.12 -2.68 1.80 

22 0.83 0.35 1.00 0.88 0.53 1.00 0.96 0.83 1.00 0.38 -0.37 1.10 0.58 0.07 1.23 0.56 0.03 1.36 

23 0.08 0.01 0.30 0.29 0.04 0.64 0.56 0.20 0.86 0.86 -0.10 1.71 0.54 -0.47 1.50 0.70 -0.11 1.44 

24 0.03 0.00 0.38 0.39 0.05 0.80 0.83 0.52 0.97 -0.98 -6.19 2.63 0.50 -0.92 1.84 0.82 -0.20 2.46 

                                      

25 0.90 0.28 1.00 0.96 0.57 1.00 0.95 0.48 1.00 -0.76 -17.1 3.33 1.32 -0.58 2.48 0.36 -0.55 1.76 

26 0.02 0.00 0.46 0.08 0.00 0.65 0.78 0.39 0.98 -0.80 -2.38 3.52 0.04 -1.67 1.82 -0.02 -1.14 1.23 

27 0.31 0.00 0.97 0.92 0.63 1.00 0.92 0.58 1.00 -8.04 -2623 53.40 1.38 -301 121.11 1.62 -6.16 22.21 

28 0.00 0.00 0.01 0.02 0.01 0.09 0.03 0.01 0.11 0.92 -0.16 1.62 0.38 -1.26 1.62 -0.08 -1.80 1.48 
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Predicted and observed judgment uncertainty. This section shows predictions derived 

from the Rely on Audition and Best Sensory Estimate models. 

 

Rely on Audition Model Best sensory estimate model 

All tactile profiles Gradual tactile profile Intermediate tactile 
profile 

Steep tactile profile 

95% confidence 
interval 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% 
confidence 

interval 

S
u
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c
t*
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e
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E
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te

 

Low High E
s
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m

a
te

 

Low High E
s
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m

a
te

 

Low High E
s
ti
m

a
te

 

Low High 

1 20 1a1t2 118 58 196 118 50 158 118 58 181 118 58 178 

2 21 21a1t 154 78 296 154 78 287 154 78 266 154 78 272 

3 27 1t1a2 79 35 108 79 35 108 79 35 105 65 24 82 

4 24 21a1t 87 40 124 87 40 120 68 28 91 87 39 115 

5 29 1a1t2 143 72 290 143 72 251 88 38 121 72 35 110 

6 24 1t1a2 94 43 134 94 43 134 94 43 134 94 39 111 

7 23 21t1a 37 14 57 37 14 57 37 14 57 37 14 56 

8 25 1a1t2 113 56 194 113 49 136 88 37 117 37 9 51 

9 29 1t1a2 254 125 695 254 125 647 254 117 418 122 62 198 

10 22 21t1a 64 24 86 64 24 86 64 24 84 64 24 81 

11 28 21t1a 33 7 45 33 7 45 33 4 40 33 6 44 

12 23 1t1a2 163 82 389 163 72 218 77 36 123 89 42 129 

13 22 21a1t 110 56 200 45 16 73 53 17 79 30 10 51 

14 20 21t1a 72 32 108 72 31 105 72 30 97 72 29 91 

15 25 1a1t2 147 68 868 147 68 317 140 65 215 81 43 132 

16 33 21a1t 493 198 21056 493 198 2178 153 153 167 183 103 332 

17 30 1t1a2 130 63 253 130 63 212 78 31 108 71 29 100 

18 24 21t1a 168 89 346 167 77 216 102 49 155 71 33 107 

19 32 21a1t 228 116 469 178 88 271 104 46 158 138 74 228 

20 26 21t1a 202 99 523 54 22 85 136 66 211 94 41 135 

21 20 1t1a2 269 130 1154 269 124 457 139 70 228 76 33 121 

22 28 21a1t 330 152 1818 149 73 287 119 59 213 64 28 96 

23 30 1a1t2 84 37 118 84 37 118 84 37 113 75 30 88 

24 29 1a1t2 187 95 349 187 94 348 187 91 272 84 40 127 

                              

25 22 21a1t 882 240 495620 286 138 618 176 83 343 202 102 428 

26 29 1a1t2 233 121 684 233 121 650 233 121 565 125 62 202 

27 23 1t1a2 417 182 2268 417 166 1058 120 61 200 127 67 225 

28 19 1a1t2 19 19 20 19 19 20 19 19 20 19 19 20 
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Predicted and observed judgement uncertainty. This section shows predictions derived 

from the MLE model, and the bimodal data. 

 

MLE model Bimodal Data 

Gradual tactile profile Intermediate tactile 
profile 

Steep tactile profile Gradual tactile profile Intermediate tactile profile Steep tactile profile 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% 
confidence 

interval 

95% confidence 
interval 

95% confidence 
interval 

95% 
confidence 

interval 

S
u

b
je

c
t*

 

E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
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m

a
te

 

Low High E
s
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m

a
te

 

Low High E
s
ti
m

a
te

 

Low High E
s
ti
m

a
te

 

Low High 

1 86 44 122 102 54 143 100 53 139 80 50 96 58 36 76 77 49 95 

2 146 76 256 133 73 220 138 75 219 211 143 358 258 170 562 283 167 4620 

3 76 35 99 69 33 87 50 22 63 70 46 90 81 51 99 51 33 68 

4 75 38 99 54 26 69 71 36 90 86 60 116 65 42 80 82 51 102 

5 126 68 203 75 36 99 64 33 91 120 92 164 97 61 114 74 49 94 

6 90 42 124 86 42 114 68 35 86 62 38 71 48 29 56 39 21 46 

7 37 14 56 37 14 55 35 14 50 98 67 132 66 39 77 43 29 56 

8 81 43 105 69 34 92 35 9 46 56 35 74 31 14 37 35 19 46 

9 250 123 590 194 103 353 110 59 163 205 129 648 177 115 275 108 73 158 

10 58 23 74 55 23 66 52 23 64 76 47 93 58 38 76 53 33 65 

11 32 7 41 25 4 31 28 6 35 36 21 43 28 15 35 28 16 35 

12 116 64 171 70 34 102 78 40 107 72 45 84 75 49 96 75 48 91 

13 42 15 61 48 17 66 29 10 45 92 62 122 79 51 103 70 45 90 

14 64 30 87 56 28 75 55 27 69 60 37 71 59 40 73 53 33 68 

15 123 63 273 101 56 179 71 40 112 169 110 710 93 59 199 66 44 94 

16 435 187 1946 146 123 166 172 98 294 354 214 8397 154 102 241 114 74 171 

17 110 59 172 67 29 88 62 29 82 118 85 180 44 37 52 42 24 49 

18 118 67 168 87 46 126 65 32 94 135 90 231 60 37 74 81 50 94 

19 140 79 219 95 44 131 118 68 180 152 102 223 89 59 117 76 46 94 

20 52 22 78 113 60 173 85 40 116 81 54 109 54 33 68 62 42 77 

21 204 111 377 123 66 192 73 32 111 140 93 213 114 77 153 141 95 272 

22 136 70 240 112 57 183 63 28 91 63 38 74 44 26 55 49 30 65 

23 81 37 109 71 35 92 56 27 67 82 54 109 89 54 109 67 42 79 

24 184 93 326 146 82 220 77 39 107 215 145 1109 141 94 208 113 83 153 

                                      

25 272 132 553 173 81 317 197 99 390 236 142 3146 175 122 283 114 77 149 

26 231 119 592 223 119 517 110 59 168 154 97 253 159 107 232 103 67 135 

27 346 149 944 115 61 180 121 65 201 668 340 603440 522 290 289290 323 196 13317 

28 19 19 20 19 18 20 19 18 20 135 104 186 153 115 256 136 91 193 
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Tables 

 

Table 1 

Mean squared deviation of bimodal judgment uncertainties from the predictions of the 

MLE, best sensory estimate, and rely on audition models. Data are shown separately for 

the combination of the auditory stimulus with each of the three vibrotactile stimuli. 

 

Gradual tactile 

profile 

Intermediate 

tactile profile 

Steep tactile 

profile 
Model 

MSD SE MSD SE MSD SE 

Rely on audition 6458 3045 13654 5600 15554 6492 

Best sensory estimate 3078 1043 2001 566 1672 711 

MLE 1539 393 1389 663 1534 875 
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Table 2 

Mean squared deviation of bimodal tactile weights from the predictions of the MLE, best 

sensory estimate, and rely on audition models. Data are shown separately for the 

combination of the auditory stimulus with each of the three vibrotactile stimuli. 

 

Gradual tactile 

profile 

Intermediate 

tactile profile 

Steep tactile 

profile 
Model 

MSD SE MSD SE MSD SE 

Rely on audition 0.95 0.33 0.62 0.13 0.67 0.16 

Best sensory estimate 0.54 0.12 0.26 0.06 0.49 0.13 

MLE 0.64 0.20 0.19 0.06 0.36 0.10 



 47 

Figure Legends 

 

Figure  1. Schematic of experimental stimuli and methods. A) Stimuli sent to auditory 

and vibrotactile actuators for the first eight participants. Gaussian windowed sine waves 

were embedded in low-frequency noise. The width of the Gaussian window and the peak 

intensity of the signal were manipulated to adjust discriminability. B) The approximate 

position of the actuators is shown alongside stimuli presented on an example trial from 

the bimodal phase of the experiment. Dashed lines indicate objects beneath the desktop. 

On this trial, the combined left hand stimulus is presented 100 ms after the right hand 

stimulus, which itself contains a small (25 ms) discrepancy between the unimodal 

auditory (bottom) and vibrotactile (top) components. This discrepancy was used to assess 

the weight given to vibrotaction in the overall judgment. 

 

Figure 2. Judgment uncertainty in unimodal conditions. A) Illustration of sigmoid fitting, 

based on combined data from all 24 participants. The size of each data point provides a 

rough guide to the number of observations collected. Note that because an adaptive 

procedure was used to determine the range of asynchronies each subject received, the 

more extreme asynchronies were only delivered to more uncertain participants, and then 

only rarely, whereas the central asynchronies reflect judgments from all participants. This 

explains the apparent rise in uncertainty at the extremes of the graph. B) Mean judgment 

uncertainties across participants, determined by individual fits to each participant’s data. 

Error bars denote standard errors. 
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Figure 3. Comparison of bimodal judgment uncertainty and model predictions for three 

models of bisensory integration. A) Illustration of sigmoid fitting, based on combined 

data from 24 participants in bimodal conditions without any between-modality 

asynchrony. The size of each data point provides a rough guide to the number of 

observations collected. See legend to Figure 2 for an explanation of noise at high absolute 

asynchronies. B) Mean bimodal judgment uncertainties across participants, determined 

by individual fits to each participant’s data, and mean model predictions across 

participants, based on unimodal judgment uncertainties. Error bars denote standard 

errors. 

 

Figure 4. Illustration of method for determining tactile weights, based on combined data 

from 24 participants in bimodal conditions with a steep vibrotactile component stimulus 

and a -25, 0 0r 25 ms asynchrony between the right hand auditory and vibrotactile 

component stimuli. The shift in the PSS is used to estimate the weight given to 

vibrotaction. The size of each data point provides a rough guide to the number of 

observations collected. See legend to Figure 2 for an explanation of noise at high absolute 

asynchronies.  

 

Figure 5. Comparison of weights given to vibrotactile stimuli in bimodal conditions and 

model predictions for three models of bisensory integration. Mean vibrotactile weights 

across participants were determined by individual fits to each participant’s data, while 

mean model predictions across participants are based on unimodal judgment 

uncertainties. Error bars denote standard errors.
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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