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Abstract: The 6G communication technologies are expected to provide fast data rates and incessant
connectivity to heterogeneous networks, such as the Internet of Vehicles (IoV). However, the resulting
unprecedented surge in data traffic, massive increase in the number of nodes with high mobility, and
low-latency requirements give rise to serious security, privacy, and trust challenges. The blockchain
could potentially ensure trust and security in IoV due to its features, including consensus for credibil-
ity and immutability for tamper proofing. In parallel, federated learning (FL) is a privacy-preserving
artificial-intelligence paradigm that does not require to share data for model training in machine
learning. It can reduce data traffic and resolve privacy challenges of intelligent IoV networks. The
blockchain can also complement FL by ensuring the decentralization and securing distribution of
incentives. This article reviews the trends and challenges of the blockchain and FL in 6G IoV networks.
Then, the impact of their combination, challenges in implementation, and future research directions
are highlighted. We also evaluate our proposal of blockchain-based FL to protect IoV security and
privacy that utilizes smart contract and secure transactions of incentives via the blockchain to protect
FL. Compared with other solutions, the failure rate of the proposed solution was at least 5% lower
with 30% malicious nodes in the network.

Keywords: blockchain; federated learning; Internet of Vehicles; security; privacy; Al

1. Introduction

The vision of ubiquitous intelligence and connectivity in the 6G era requires vehicles
to fully leverage their computing resources for producing distributed artificial intelligence
(AI) solutions and exploit various communication models and approaches, for example,
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X)
in the heterogeneous environment of the Internet of Vehicles (IoV). The 6G-enabled IoV
can effectively offer multiple services, including resource sharing, task offloading, and
infotainment. However, one of the primary objectives of IoV is the real-time sharing of
information and emergency messages to achieve safe driving conditions and healthy traffic
flow [1]. For example, the timely exchange of messages about an incident or traffic jam can
result in incoming vehicles planning a better journey. Nevertheless, due to the massive
growth in the number of connected nodes, the IoV comes across several security challenges
that are yet to be addressed.

Maintaining trust among nodes in the IoV is one of the challenges for secure and
credible message dissemination. An unknown message is inherently considered to be
untrusted because a malicious node may generate a false message about an incident that
did not actually occur. The blockchain can be used to evaluate message credibility. It is
originally a distributed ledger for securely recording a history of transactions after verifying
them through a consensus [1]. The consensus is a mutual agreement between nodes to
ensure a transaction’s credibility. The credibility of a message is typically assessed with
three approaches. The first is pre-event, where each node has its trust rating based on
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whether its originated message is true or false. If its trust rating falls below a certain
threshold, then the message generated by the node is marked as false. This approach is
either centralized, where a central authority (CA) stores trust ratings [2], or decentralized,
where a blockchain is used to record trust or reputation ratings [3]. The second is postevent,
in which a message is validated on the basis of endorsements or votes from the neighboring
nodes. In a postevent approach, a blockchain-based solution runs voting-based consensus
to receive endorsements for a message [4]. The third is the hybrid approach that combines
the advantages of the first two, i.e., only trusted nodes take part in postevent validation,
which is offered by a blockchain consensus, namely, delegated proof of stake (DPoS) [5].
Furthermore, as the 6G-assisted IoV encompasses several communication protocols, a
multitude of applications, and a large number of diverse and untrusted nodes, it is not
feasible for a CA to be in charge of the entire network. Alternatively, decentralization offers
better flexibility in such cases. The decentralized architecture, the process of verifying
blocks in the presence of malicious nodes, and the cryptographic nature of the blockchain
render it a suitable candidate for implementing security and privacy in the IoV.

Another pressing concern is the increasing number of sensors in autonomous vehicles
(AVs) generating a large volume of data, commonly termed as big data. Big data are
an essential component to the artificial-intelligence (AI) mechanisms of both AVs and
intelligent transportation systems (ITSs) for perceiving the surrounding environment,
and predicting traffic conditions and hazards. It may contain private information about
an AV and its passengers. Sharing big data over the network poses serious security
threats [6]. This is why on-device machine learning is a secure and private solution, where
an inference machine-learning model is trained on a node with its own data. However, it is
usually a noncooperative approach and results in the inefficient utilization of computational
resources because no knowledge of an on-device trained model is shared with other nodes;
therefore, one node cannot utilize the benefits of a machine-learning model produced by
another. On the other hand, in a centralized solution or off-device learning, data from
all connected nodes are gathered on a cloud or a central node that produces an inference
model for all nodes [7]. In off-device learning, it is essential that the central node employs
secure and privacy-preserving techniques for managing and storing big data. In addition,
transmitting big data to a central node consumes a large amount of time and also requires a
stable channel, which is impractical in high-mobility vehicle networks. Thus, to manage the
diverse nature of big data and their privacy preserving requirements, federated learning
(FL) is considered to be a suitable Al technique for various cooperative applications in the
IoV. In FL, nodes train local models individually on their own private data. Instead of
whole data, they share only local models with a central node or aggregator that combines
all local models to form a global model [7].

A combination of the blockchain and FL ensures an intelligent, trusted, secure and
private IoV network in 6G. The motivation behind using blockchain-enabled FL is threefold.
First, the blockchain is used to manage the incentive distribution mechanism among
nodes participating in FL. Blockchain-based smart contracts can securely automate the
transactions of incentives in the form of cryptocurrency. Second, the blockchain introduces
decentralization in FL. Instead of submitting local models to a central aggregator, nodes can
add their local models as blocks into a blockchain. Third, the blockchain provides security
against malicious nodes. A smart blockchain contract can detect malicious or inaccurate
local models before they are added into the blockchain. Figure 1 illustrates the proposed
integration of the blockchain and FL in IoV, where mobile nodes (vehicles) act as local
model trainers of FL, and a road-side unit (RSU) performs aggregation.
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Figure 1. Blockchain-enabled FL and message dissemination in the IoV.

In this paper, we discuss the challenges and potential solutions of the blockchain
and FL implementation in IoV. Then, we highlight a proposal of an integrated blockchain
and FL approach for message dissemination in IoV networks and discuss its performance.
Future research directions and the conclusion are provided at the end. The contributions of
this paper are as follows.

¢ We discuss the challenges of the blockchain and FL in IoV, and highlight future
research directions.

*  We present an integrated solution of blockchain-empowered FL for security and
privacy in the IoV. The proposed solution utilizes smart contracts and incentive
transactional features of blockchain to provide security to FL.

*  We computed the failure rate of the proposed solution and compared it with that of
other blockchain solutions. The proposed solution resulted in a 5% reduction in failure
rate as compared to other FL-integrated blockchain solutions with a high percentage
of malicious nodes.

The rest of the paper is organized as follows. Section 2 individually discusses the
blockchain and FL in the IoV and related works of blockchain-enabled FL. Section 3
describes the proposed solution. Results and a discussion are presented in Section 4.
Section 5 concludes the paper.

2. Blockchain and Federated Learning in the IoV
2.1. Blockchain

A blockchain is typically defined as a peer-to-peer electronic cash system for recording
transactions in the form of blocks linked with each other through cryptographic hash [8]. It
has recently attracted attention as a potential solution to security issues in IoT. Its decen-
tralized framework is well-suited to large-scale networks. Many blockchains incorporate
cryptocurrency or virtual credits that can be utilized to manage incentives among coopera-
tive nodes. Figure 1 shows an incentivized message dissemination solution managed by
the blockchain in which the source node of a message compensates cooperative nodes that
are affected by incidents with virtual credits.

Another application of the blockchain in trusted IoV networks is the evaluation of
message credibility and dissemination in a decentralized manner. The blockchain consensus
for validating transactions can be employed to authenticate messages from untrusted
nodes. Proof-of-stake (PoS) consensus where trust ratings are stakes [9] or voting-based
blockchain consensus [1] is used to measure message credibility. In addition, similar to
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the computation of a mathematical puzzle in proof-of-work (PoW) consensus, the nodes
perform computations to find the most appropriate relay node among themselves. An
example of such computation is the quality factor (QF;) of node i, which calculates the
suitability of becoming a relay node, i.e.,

QF, = DF; - F(SINR;), 1)

where DF; denotes the distance from node i to its previous sender, and F(SINR;) de-
notes the estimated signal-to-interference-and-noise ratio (SINR) at the time when node i
transmits [4].

Challenges and Potential Solutions

The metrics used to evaluate the performance of the blockchain include adversary
control, which is defined as the maximal percentage of malicious nodes that it can tolerate in
the network; throughput, which is defined as the number of blocks generated per unit time;
and latency, which is defined as the time required to validate a transaction. If a blockchain
is employed for emergency message dissemination in IoV, it must support high throughput
and low latency. Famous blockchain bitcoin uses a PoW consensus, which has a latency of
around 10 min [4]. Due to the short-lived connectivity among high-speed mobile nodes,
PoW is not appropriate for IoV. In addition, the high computational complexity and power
requirements of PoW are not suitable for on-board units (OBUs) on vehicles. Alternatives to
PoW were proposed for achieving high throughput in which the PoS [9] and voting-based
practical byzantine fault-tolerant (PBFT) consensus [1,8] are the most recommended for
IoV. Some consensus algorithms were designed specifically for message validation and
dissemination in vehicular networks, for example, joint PoS and PoW [3], and proof-of-
quality factor (PoQF) [4]. Edge computing nodes that are specifically dedicated to offload
complex computations can also be utilized to complete a POW consensus.

Another challenge in the blockchain is the possible creation of forks. A fork is a block
added in parallel to another block. According to the longest chain rule [4], all parallel
blocks except the one connected with the longest chain are discarded. This is why forks
are sometimes intentionally created by malicious nodes as an attempt to take control of
the blockchain by adding further blocks connected with an invalid fork. However, in
V2V communications, forks may be generated unintentionally by mobile nodes, leading
to the probable deletion of valid blocks by the longest chain rule. This is because, in
V2V communications, a new block announcement from a node i can only be received by
other nodes that are in its transmission range. At the same time, an honest node j that
is out of the transmission range of node i can create a fork by announcing another block.
This problem of fork occurrence can be resolved if parallel microblocks are allowed to be
generated by moving nodes with limited connectivity, and keyblocks are only added by an
authoritative node, for example, RSU, as shown in Figure 1. Mobile nodes must be rendered
responsible to update their copy of a blockchain. In addition, 5G- or beyond-5G-assisted
IoV could potentially resolve the fork issue by utilizing a base station for the generation
and announcement of blocks [2].

2.2. Federated Learning (FL)

FL has emerged as a new machine-learning approach to reach an optimized level of
security and privacy with acceptable latency, communication, and computational costs.
Similar to on-device learning, local models (usually deep neural network (DNN) models)
are trained separately on each node with their own local data. Instead of transferring
a large amount of raw data, only a trained local model is sent to a central node, called
aggregator. All local models are consolidated by the aggregator, and a global model is sent
back to all nodes for retraining and updating local models. This process is repeated up to
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several iterations until a minimal possible loss function is attained by the global model [7].
The loss function of a global model at kth iteration is defined as follows.

L) = L 3 L(wh) @
G Ni;l il

where w’é are weights of the global model, and w’é are weights of the local model produced

by node i at the kth iteration. One of the commonly used loss functions is mean squared
error (MSE), which is defined as

=

M 2 Li—vi)% ®)

1

MSE =

I
—

where M is the size of the test data, and y; and y/ are the expected and predicted outputs of
a model, respectively.

FL was suggested to be a suitable technique to the fulfil privacy requirements of the
IoV [10]. It is not only suitable for protecting data privacy, but also efficient in utilizing
most varied computational resources and data across different nodes in 6G networks by
integrating all local models. Since nodes in the IoV travel in different paths and environ-
ments, they are able to train models using diverse data, for example, varied speed limits,
different propagation paths, and multiple network densities. This is why local models
designed on a variety of data could potentially lead to an accurate all-encompassing global
model. In [11], FL was indicated to be a solution of constrained energy operations in
vehicular offloading. Apart from vehicular nodes, unmanned aerial vehicles (UAVs) were
recommended to perform FL in air-ground intelligent vehicular networks in [12].

Challenges and Potential Solutions

FL can be carried out in two modes: synchronous and asynchronous [5]. In syn-
chronous FL, nodes are given a time limit in which they submit their local models. A global
model is formed after a time epoch. In asynchronous FL, nodes can send their models at
their own convenience. A global model is updated each time a new model is received,
thereby resulting in high communication efficiency [13]. However, a node may not be able
to upload its local model in a fixed time epoch due to high mobility in a vehicular network,
as shown in Figure 2a. On the other hand, in asynchronous FL in the IoV, it is possible
that a node loses the connection with the aggregator and is unable to receive every update
in the global model. It may continue training its local model on the basis of an outdated
global model, thereby leading to wasting its resources, as shown in Figure 2b. To increase
accuracy and reduce packet loss, a modified synchronous FL can be used in the IoV in
which the aggregator waits for a certain number of local models to be received instead of a
time epoch. A semisynchronous solution leveraging the advantages of both approaches
was presented in [13].

Furthermore, since FL relies on a central aggregator, and vehicular networks tend
to be decentralized, it is challenging to implement conventional FL in the IoV. Instead of
one central node, multiple RSUs or base stations can perform the aggregator task. An
incentive mechanism is also required to motivate nodes to contribute towards FL [7]. In an
incentive distribution mechanism, nodes are more motivated to participate if their expected
or predicted utility is high. Probabilistic modeling can be used to determine the expected
utility of nodes prior to task initiation. It is also possible that nodes may behave maliciously
to gain unfair incentives. A malicious node can use false data or deliberately produce an
inaccurate local model. FL needs some means to detect malicious behavior.



Electronics 2022, 11, 3339

6 of 12

((4[|iﬂ))) ((([T]:))
Packet loss
X B

O .;,Q;m NA:,Q
e we ae
1. Each node sends local model in a time epoch 2. Global model is shared by aggregator after time epoch

(a) Synchronous.

(@) (o)
% Node which did not

receive updated global
model, trains new local
model on outdated

Packet loss global model
00, oo

A8 x Dy 2% felen
kg o Y ~

1. Aggregator updates and shares global model each timea 2. Nodes train updated global model to form new local model
new local model is received

(b) Asynchronous.
Figure 2. Modes of FL in IoV.

2.3. Related Works of Blockchain-Enabled FL

Blockchain-enabled FL is a potential solution to ensure decentralization, privacy,
and security. As discussed, FL requires decentralization in IoV, an incentive distribution
mechanism, and security against malicious behavior, all of which can be enabled by a
blockchain. The existing literature proposed various solutions of blockchain-enabled FL
in the IoV for different applications [14-16]. The communication latency challenge in IoV,
consensus delays, and the unsuitability of PoW in vehicular networks were discussed
in [10]. Therefore, several delay-sensitive consensuses were presented for FL in the IoV.
For example, in [14], a PBFT-based blockchain-supported FL was used to ensure trust in
the network. In [15], delegated PBFT (DPBFT) was proposed as the consensus, whereas
FL was used for traffic flow prediction. A hierarchical blockchain for knowledge sharing
was incorporated in [16], where the bottom chain was managed by mobile nodes and an
RSU control top chain. All nodes, including vehicles and RSUs, participate in local model
training. An Al-based proof-of-knowledge (PoK) consensus was proposed in [16].

Several related works utilized the blockchain to protect against security threats in FL.
In [14], the blockchain was used to ensure decentralization and avoid single points of failure.
The local models trained by individual nodes were transferred through a cloud server via
edge nodes. Only local models of specific nodes (e.g., police vehicles and ambulances) were
passed through PBFT consensus to guarantee their submission to cloud server, even if any
edge node was faulty. In [15], a blockchain consensus provided security against poisoning
attacks. In [17], a blockchain eliminated any kind of spoofing, forging, and/or reverse
engineering attacks during FL in the IoV. The threat of untrusted leaders and byzantine
faults during FL were resolved by the blockchain in [18].

A blockchain for securing FL is recommended not only for the IoV, but generally for
all distributed frameworks incorporating mobile edge computing (MEC) as a potential
machine-learning technique in 6G [19,20]. The blockchain was also recommended to
improve the scalability of FL in MEC [19]. In UAVs, it was highlighted as a potential
solution to secure computing in beyond-5G networks [21].
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3. Proposed Methodology of Blockchain-Enabled FL

In this paper, we analyzed a smart blockchain contract to ensure automation, de-
centralization, and security, and evaluated the performance of the proposed solution for
the application of message dissemination and relay node selection via proof-of-federated-
earning (PoFL) consensus.

3.1. Smart-Contract-Based Blockchain for Incentivized FL

For smart-contract-based blockchain-enabled FL, we highlight three main steps in
Figure 3. Detailed analysis is presented in [7], and we describe the steps below.

1. Data collection and
local model training

2. Submissioninto blockchain 3. Aggregation of local models

into global model
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Figure 3. The proposed solution of blockchain-enabled FL in IoV.

3.1.1. Data Collection and Local Model Training

To train a local model, the nodes collect their private data while traveling on roads.
The type of collected data depends on the task requirements. For example, if an FL task is
aimed to estimate traffic density on roads, collected data may include the number of nodes
at different routes and varied times. On the other hand, if a task requires vehicle detection
and classification, images of vehicles are collected as data. When the collected data reach a
required size, the nodes start to train the local model.

3.1.2. Submission into the Blockchain

During model training, a malicious node can deliberately change the training data or
weights of the local model to produce inaccurate results. To protect local models from mali-
cious attacks, they are required to be submitted into the blockchain after passing through a
consensus algorithm. The consensus algorithms discussed earlier can be applied to validate
a local model. For example, a local model may be considered to be credible if the trust
rating of the trainer exceeds a certain threshold or the trusted neighbor nodes may check
the local model with their own private data and compare them with the expected results.
Alternatively, a smart contract can automate checking the local model with prerecorded
data and the expected results. We propose an Al-based technique embedded in a smart
contract to detect inaccuracies or anomalies in a local model. As shown in Figure 3, a
customized blockchain structure consisting of parallel blocks for the submission of local
models is proposed.

3.1.3. Aggregation of Local Models into a Global Model

Instead of a central node, some authorized nodes such as RSU or nodes with high trust
ratings can act as aggregator. They are responsible for regularly updating their copy of
blockchain until a desired number of local models are received. Among many aggregators,
the one that first receives a required number of local models combines them to form a
global model and add it into the blockchain as a keyblock for retraining. The creation of a
global model marks the completion of a single iteration of the FL process. The proposed
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steps are repeated until a specified number of iterations or the desired loss function defined
in (2) are satisfied by the global model.

4. Results and Discussion
4.1. Performance Evaluation

We evaluated the performance of the proposed blockchain-enabled FL using the
Tensorflow library of machine learning in Python. Data collection and blockchain updates
were simulated in OMNeT++ and integrated with Simulation of Urban Mobility (SUMO).
The nodes moved on a bidirectional road following the Krauss model [7] at a maximal
speed of 110 km/h for 200 s in a simulated area of 10 km x 10 km. One RSU was used to
aggregate the local models, and the number of mobile nodes was in the range of [10, 300].
Results were evaluated as the average of 100 simulation runs. The local models were
trained on the parameters of node speed, its distance from the previous sender, moving
direction, and traffic density to select a relay node in a distributed manner through the
PoFL consensus.

Figure 4 shows the MSE of the global model after 100 iterations of FL calculated
according to (3). Malicious nodes use false data to produce inaccurate local models. We
used a machine-learning algorithm (isolation forest) in a blockchain-based smart contract
to detect and reject malicious local models prior to their addition into the blockchain [7].
This led to an average reduction of 8.3% in MSE as compared to the same approach used
without smart-contract-based security.
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Figure 4. Loss (MSE) of global model.

Table 1 lists a comparison of various solutions for blockchain-enabled FL that shows
that the smart-contract-based PoFL solution covered incentive distribution, the impact of
the increase in the number of nodes, and a comparison of the solution without blockchain [7].
In [15,16] and the proposed solution, the blockchain is utilized to provide security against
malicious nodes. Therefore, all local models are verified through consensus to ensure that
they are not deliberately trained to produce inaccurate results. The failure rate of [15,16] and
the proposed solution in the presence of malicious nodes is shown in Figure 5. Failure rate
refers to the degradation in performance of a solution, i.e., inaccurate traffic flow estimation
in [15], inaccurate block addition in [16], and the percentage of nodes not receiving the
message in our solution. Figure 5 shows that the failure rate increased significantly with the
malicious-node percentage in [16]. PoFL resulted in the least failure rate as the percentage
of malicious nodes increased in the network. At 30% malicious nodes in the network, the
failure rate was at least 5% lower than that of other solutions.
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Table 1. Blockchain-enabled FL for vehicular networks.

. Incorpor.ated Blockchain Adversarial Corr}parlson o e
Solution Incentive Structure Threat without Application
Distribution Blockchain
PBFT [14] No Linear None No Trustworthy Al
DPBFT [15] No Linear Poisoning Yes Trafﬁ.c ﬂow
prediction
Integrity, double
. . : Image
PoK [16] Yes Hierarchical spending and No e O
. . classification
dishonest behavior
Poisoning, selfish
PoFL (Proposed) Yes Parallel blocks for and dishonest Yes . Mes§age.
local models dissemination
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Failure Rate (%)
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Figure 5. Failure rate in the presence of malicious nodes.

4.2. Challenges and Potential Solutions
4.2.1. Effective and Efficient Consensus

The selection of an appropriate consensus is one of the challenges of blockchain-
enabled FL in the IoV. In [10], the drawback of additional delays due to blockchain man-
agement in the FL process of the IoV was discussed. A possible reason of the delay was
PoW being used by nodes to record and validate local models. To reduce the delay, DPoS
was used as the consensus of blockchain-supported FL in [5]. The proposed approach was
faster, but decentralization was compromised because only RSUs could generate blocks.
In addition, a consensus algorithm in blockchain-enabled FL requires both time efficiency
and security against malicious nodes. As a solution, a machine-learning-based smart con-
tract [7] and PoK consensus [16] were introduced to detect malicious local models. While
employing Al techniques, it is important to consider that the consensus is lightweight and
could meet the on-device resource and latency requirements in an IoV application.

4.2.2. Synchronized and Customized Ledger

Due to the distributed nature of the IoV, synchronization issues and forks may arise if
blockchain updates are not adequately scheduled by nodes. The nodes must responsibly
and regularly update their blockchain and ensure that they are training their local models
on the latest global model. In addition, the regular exchange of updates related to the
blockchain increases the communication cost. To reach an optimal solution, hierarchical or
customized structures allowing for parallel block addition could potentially replace linear
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ledgers. Examples of pioneering works include parallel off-chain blocks [7], the directed
acyclic graph (DAG)-based ledger [5], and the multiple blockchain layer approach [16].

4.2.3. Data Quality and Size

The quality and quantity of collected data are crucial in determining the accuracy
of a global model. Data must contain all dependent variables that affect the outcome,
such as the position and speed of a node, channel quality parameters, collision probability,
transmitting power, and SINR. If data collection requires cooperation from other nodes
via beacon messages or acknowledgments, malicious or selfish nodes may inject false
samples in the collected data, thereby leading to an inaccurate local model. In this case, it is
necessary to design a fair mechanism to punish malicious nodes and incentivize honest
nodes contributing to FL. Example solutions such as Al-based smart contract can provide
extra robustness to ensure security without third-party dependence.

The size of the data also affects the efficiency of a global model [7]. Large data lead to
increased accuracy, but take more time and energy to collect. Additionally, the accuracy of
a global model is proportional to the number of nodes participating in FL [7]. However, in
an incentivized FL, large data and a greater number of participating nodes may decrease
their incentives. Therefore, an optimal number of nodes and data sizes for a particular FL
task are required in order to attain reasonable efficiency, accuracy, and incentives. Incentive
mechanisms should be analyzed with respect to all dependent parameters. A potential
solution is machine-learning methods that could develop dynamic incentive mechanisms
adapting to varying data sizes and numbers of nodes.

4.3. Future Directions
4.3.1. Quantum-Enhanced Blockchain

Although security is one of the prominent features of the blockchain due to its cryp-
tographic nature, existing blockchain frameworks rely on digital signatures that are vul-
nerable to attack by quantum computers [22]. Therefore, robust cryptographic schemes
are required to maintain blockchain security. However, the suitability of a cryptographic
scheme with respect to the processing power of mobile nodes and latency requirements
of the IoV must also be considered. Therefore, a future direction is to explore efficient but
computationally simple quantum-resistant cryptographic schemes, such as lattice-based
schemes [23] and chameleon hashes [24]. Quantum networks provide secure communi-
cations, as quantum states cannot be copied or measured without being altered, thereby
preventing impersonation attacks. Hence, quantum-enhanced blockchains address the
issue of security and also offer faster processing [22].

4.3.2. Modified FL Approach

Due to skewed and heterogeneous data in vehicular networks, the performance of a
global model in FL. may vary significantly across different nodes, environments, and traffic
situations [25]. One global model may not be accurate for all traffic conditions or road maps.
A selective model aggregation approach to incorporate data asymmetry was proposed
to improve accuracy in vehicular networks [26]. On the other hand, the communication
efficiency of FL can be improved with over-the-air (OTA) learning, where nodes send only
local gradients to the aggregator instead of the large number of weights of a deep neural
network. The aggregator computes both the average gradient and the new corresponding
global weights for the next iteration [27].

4.3.3. Integrating Blockchain and FL with the Latest 6G Trends

The blockchain and FL frameworks are easily applicable with advanced 6G technolo-
gies. Latest trends include the integration of digital twin networks with the blockchain and
FL for ITS [28], physical-layer security with blockchain for full duplex nonorthogonal mul-
tiple access (FD-NOMA)-based V2X systems [29], and reconfigurable intelligent surfaces
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(RISs) with FL for a NOMA-based UAV network [30]. Therefore, both the blockchain and
FL, and their combination could potentially find applications in future 6G IoV networks.

5. Conclusions

This article provided a brief overview of the blockchain, FL, and their integration
to achieve security and privacy in the IoV. Taking each approach in turn, we presented
the technical challenges and potential solutions, reviewing the advantages, limitations,
and possible research directions in the blockchain and FL. The proposed integration of
the blockchain and FL could possibly overcome limitations of current real-time vehicular
systems, given that the OBUs of vehicles are capable of training and executing FL models.
The suggested approaches could likely offer a way out of various security and privacy
problems, but many open issues remain. On the basis of the current research progress,
better solutions can be planned ahead to practically and feasibly implement the discussed
approaches, and meet the growing security and privacy requirements of the IoV.
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