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Abstract

We propose an approach to exploring interrelationships between two or more sequences of events when events occurring in
one sequence both affect and are affected by events occurring in another sequences. We present the approach by example of
exploring the dynamic relationships between COVID pandemic events and changes in population mobility behaviours across
various countries. The key idea is to generate data capturing the temporal context of each event, i.e., what types of events
occurred in different sequences within a specified time buffer around this event. An application of 2D space embedding to the
context data reveals groups of events occurring in similar contexts. We can investigate the types of events each group consists of
and see when and where these events and these contexts took place. By interactive or algorithmic clustering of the context data,
we categorise event contexts based on their similarities, which allows us to compute, visualise, explore, and compare summary
statistics of the context clusters, as well as exploring their distribution over time and other data dimensions.

CCS Concepts
¢ Human-centered computing — Visual Analytics;

1. Introduction

Understanding the dynamic interplay between events unfolding
over time is essential for comprehending behaviours and evolution
of complex systems, such as socio-economic trends and epidemio-
logical outbreaks [AMST11,DAA™19]. Traditional approaches ei-
ther aim to reveal recurrent patterns of event succession or strive
to extract and model causal relationships between occurrences of
different event types. However, these approaches often make the
assumption of stationarity of event sequences, potentially over-
looking the context-dependent and time-variant nature of sequen-
tial patterns and interrelationships between events. We argue that
exploratory analysis must precede any attempts at computational
extraction of patterns or causal links [AAF*20].

This paper presents a novel approach for exploring relationships
between multiple event sequences. By leveraging event contexts,
which encapsulate the temporal and situational surroundings of
events, our methodology facilitates the elucidation of dynamic in-
terrelationships and the observation of how they evolve over time
and vary across different data dimensions. Through a detailed anal-
ysis of concurrent streams of COVID pandemic events and changes
in population mobility behaviours, we demonstrate the utility of
our approach in uncovering nuanced patterns of event succession
and interplay. Furthermore, we outline potential future research di-
rections, particularly in predictive modelling using event contexts
to anticipate future events. Overall, our work provides a practi-
cal framework for understanding and leveraging event sequences
in complex systems.
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2. Problem statement

An event can be defined as a discrete entity or happening that exists
or takes place within a certain time interval [¢],7,] and is associated
with a particular type or category. An event sequence can be de-
fined as a series of observed occurrences of various types of events
linked to the same dynamic phenomenon unfolding over time. The
events occurring in a particular temporal order reflect the evolution
or progression of the phenomenon through identifiable stages or
manifestations.

The analysis goal we are concerned with is to understand the
interplay of two or more phenomena as manifested through respec-
tive event sequences, such that each phenomenon may influence
and be influenced by others. Our research objective is to develop
a methodological framework that facilitates the discovery of inter-
relationships between events across different sequences and tracks
the evolution of these interrelationships over time.

Here are examples of potential applications of the framework we
aim to develop:

e Mutual impacts of pandemic events and population mobility be-
haviours.

e Interplay between raises and drops of stock prices and buying or
selling behaviours of stock traders.

e Bidirectional influences of achievements of sports teams and de-
cisions concerning changes in team composition or coaching
strategies.
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e Interactions between advertising campaigns and changes in con-
sumers’ purchasing trends.

e Reciprocal effects of research funding strategies and advances in
different research areas.

In developing our framework, we used the example of the
changes in population mobility behaviours in different countries
during the unfolding of the COVID pandemic. We utilised the pub-
licly available data sets of mobility trends and disease severity in-
dicators available in the Google’s COVID-19 Open Data Reposi-
tory [Goo22]. The original data are multivariate time series, as de-
scribed in [AAS23]. For each country, we transformed the time se-
ries into two event sequences: pandemic development events and
occurrences of different mobility behaviour patterns.

3. Related work

The exploration and analysis of event sequences have received sig-
nificant attention of visualisation researchers, particularly spurred
by the pioneering research conducted at the B.Shneiderman’s
Lab [WGGP*11, WG12, MLL*13]. These works introduced ap-
proaches aimed at handling vast quantities of sequences and large
variety of event categories. A survey on visual analysis of event
sequence data [GGJ*21] outlines the key analysis tasks, includ-
ing summarisation, prediction, recommendation, anomaly detec-
tion, comparison, and causality analysis. For comparison tasks, a
dedicated survey has been conducted [vdvV23].

The survey [GGJ*21] identifies major analytical techniques, in-
cluding pattern discovery, sequence inference, and sequence mod-
eling. These techniques aim to describe or predict the progression
within individual event sequences. Similarly, the existing visualisa-
tion and interaction techniques mostly focus on relationships (in-
cluding causal) and patterns within sequences. The only kind of
between-sequence relationship that has been sought is similarity
of subsequences, which is crucial for summarisation and pattern
discovery. In all works on visually supported analysis of multiple
event sequences, there has been a common set of event categories
that appear in these sequences. To the best of our knowledge, the
task of relating sequences with event categories from distinct “vo-
cabularies” has not been addressed so far in the visual analytics
research.

The causality analysis task, which has been relatively underex-
plored in visual analytics research until recently [GGJ*21], now
tends to gain prominence [JGC*20, XHW20, ZSZ*22]. Computa-
tional methods are employed to discover causal relationships be-
tween events and subsequently visualise the results, which have
the form of directed graphs. The researchers are concerned with
the problems of incorporating users’ feedback [JGC*20], capturing
changes of causal relationships over time [XHW20], and detecting
combined effects of several events [ZSZ*22].

We contend that computational extraction of causal relationships
should be preceded by exploratory analysis of the data to assess the
stability of associations between events across different contexts
and check whether intuitive expectations regarding event interrela-
tionships hold true.

In our problem setting, we refrain from a making prior assump-
tion about the existence of causal relationships between events of

different sequences. We recognise that interplay between sequences
may be complex and dynamic, evolving over time and varying
across other data dimensions. For instance, the relationships be-
tween pandemic events and mobility behaviours may exhibit vari-
ability across different time periods and geographical regions. We
develop an approach that allows an analyst to explore the variation
of the relationships between sequences.

4. Example dataset

To illustrate our approach, we use an example of events derived
from a subset of the Google mobility and health data encompassing
60 countries across Europe, Asia, and North America. The subset
spans 77 weeks from February 17, 2020 (Monday) to June 27, 2021
(Sunday). The mobility data consist of daily time series represent-
ing deviations in visit frequencies to six categories of places, such
as groceries, transit stations, work, and residential areas, relative to
baseline values established before the onset of the COVID-19 pan-
demic. The health data comprise daily counts of new COVID-19
cases and COVID-related fatalities. Prior to analysis, we standard-
ised the absolute counts to reflect values per 100,000 individuals
for each country.

Given that the process of deriving events from multivariate time
series falls outside the primary focus of this paper, we provide a
concise overview of what we did. Initially, we applied smoothing
techniques to the time series to mitigate the influence of weekly
variations, which are irrelevant to our analysis. Subsequently, we
partitioned the time series into episodes [AAS23] of 14 days length
using a sliding window incrementally shifted by 7 days. This pro-
cess yielded a total of 4062 episodes, excluding those with few or
no data. We then computed descriptive statistics to capture the vari-
ation in attributes within each episode.

We employed clustering and dimensionality reduction tech-
niques to group episodes based on similarities of their descrip-
tors, separately for mobility and health data. These groups were
subsequently labelled to delineate various types of mobility and
COVID-19 events. The mobility event types are ‘normal mobility’,
‘decreasing mobility’, ‘stay home’, and ‘increasing mobility’, and
COVID event types are ‘almost no disease’, ‘low to medium mor-
bidity’, ‘high morbidity’, and ‘high morbidity and mortality’. By
merging consecutive episodes of the same type for each country,
we identified a total of 481 COVID events and 530 mobility events
of varying duration. The resulting events are shown in Figs. 1, 2.

In Fig. 1, the events are depicted in space-time cubes, where the
horizontal plane represents the geographical space, and the vertical
dimension reflects the passage of time. The time axis is oriented
from bottom to top. The events manifest as vertical sticks painted
in colours corresponding to their assigned event types (see the leg-
ends on top of Fig. 1). However, due to occlusions inherent in cube
representations, we have devised an alternative method to visualise
the distribution of events over time and across countries, as illus-
trated in Fig. 2. The display takes the form of a matrix, with rows
corresponding to countries and columns to weekly time steps. The
events are depicted as coloured horizontal bars. The absence of oc-
clusions ensures a clearer representation of the event distributions.

The matrix display of COVID-19 events (Fig. 2, left) reveals dis-

© 2024 The Authors.
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Figure 1: The events of COVID (left) and mobility (right) are visu-
alised in space-time cube displays. The colours correspond to the
event types, as specified in the legends above the cubes.

Figure 2: The events of COVID (left) and mobility (right) are rep-
resented in an artificial matrix space with rows corresponding to
the countries and columns to week-long time steps along the study
period. The colours are the same as in Fig. 1.

tinct patterns corresponding to two notable waves of the pandemic.
A relatively brief wave occurred in spring 2020, followed by a con-
siderably longer wave extending from autumn 2020 to early sum-
mer 2021. During the initial wave, only a few countries experienced
severe COVID situations, as indicated by red and dark red colour-
ing. In contrast, the second wave was not only prolonged but also
more intense, with instances of high morbidity’ (red) and "high
morbidity and mortality’ (dark red) events occurring in numerous
countries.

Upon comparing the matrix of COVID events with that of mobil-
ity events (Fig. 2, right), significant disparities in event distributions
during the pandemic’s first and second waves become apparent.
Despite the milder nature of the initial wave, occurrences of ‘de-
creasing mobility’ and ‘stay home’ events were widespread across
nearly all countries and exhibited synchronicity, irrespective of in-
dividual countries’ COVID situations. Conversely, during the more
severe second wave, these mobility event types were less prevalent
across countries, and their occurrences were largely asynchronous,
with exceptions noted during the Christmas period.

These observations underscore the dynamic and context-
dependent nature of the relationships between COVID and mobility

© 2024 The Authors.
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events, highlighting the importance of incorporating contextual in-
formation in the analysis of event relationships.

5. Approach

We introduce the concept of the local temporal context of an event.
Let 7y be the time of the event appearance and [fo — A, 7y + Az] be
a time interval called temporal neighbourhood of the event, where
A and A, are chosen numbers of time units. The context of a given
event (henceforth denoted as target event) encompasses the time
intervals during which all event types included in the analysis are
present within its temporal neighbourhood. In our analysis, we rep-
resent the individual event context by dividing the temporal neigh-
bourhood into a specified number of equal time steps, or bins. Sub-
sequently, we construct a matrix with columns for the time steps,
rows for all event types, and cells containing either 1 or O to in-
dicate the presence or absence of events of the respective types in
each time step. The target event is also included in the context; the
interval of its existence is represented in the matrix row correspond-
ing to the event type.

We construct the local temporal context for each COVID event
and each mobility event. Here, we define the temporal neighbour-
hood of an event by setting A; = 4 weeks and A, = 6 weeks. This
neighbourhood is divided into 10 time steps, each spanning one
week. The context encompasses both COVID event types and mo-
bility event types, 8 types in total. Consequently, an event context
is represented by a matrix with 8 rows and 10 columns. Despite the
uniform representation, the contexts of COVID and mobility events
are analysed separately. The reason is the conceptual differences
between the two event families, necessitating distinct approaches
to interpreting event contexts and any artefacts obtained during the
analysis.

For the application of computational analysis methods, we trans-
form the matrices into vectors by concatenating the rows; hence, the
dimensionality of the vectors equals the product of the number of
event types and the number of the time steps. To analyse the diver-
sity of the local contexts and identify groups of similar contexts, we
employ dimensionality reduction on the vectors. In the presented
example, we use the UMAP method [MHSG18, MHM20], which
prioritises placing close neighbours in proximity in the embedding
space at the cost of potentially distorting distances between non-
neighbouring objects. Consequently, groups of similar data items
appear as compact clusters of points in the projection plot, facili-
tating visual detection and interactive selection through brushing.

UMAP has two main parameters, number of neighbours to con-
sider n_neighbors and the minimal distance between points in the
embedding min_dist, which controls how tightly UMAP may pack
points together. To explore the variability of the projections, we it-
eratively run UMAP with different parameter combinations, result-
ing in multiple projection variants. Subsequently, we compare the
resulting projection plots to assess their consistency and select the
one best suited for further analysis. In our example, UMAP consis-
tently produced robust results across various parameter combina-
tions. We chose projections with well-separated point clusters for
the convenience of subsequent analysis, allowing for easy selection
and interpretation.
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Figure 3: Exploration of the temporal contexts of the COVID events (upper panel) and mobility events (lower panel). On the left are UMAP
projections with interactively defined classes of contexts. On their right, profiles of the context classes are represented by matrices with rows
corresponding to the types of COVID and mobility events and columns to the relative times within the context time windows.

The UMAP projections of the contexts of the COVID events
and mobility events are displayed on the left of Fig. 3. The
shown projection variant for the COVID events was obtained with
n_neighbors = 25 and min_dist = 0.3; for the mobility events,
n_neighbors = 25 and min_dist = 0.05. In the projection plots, we
interactively selected clusters of closely positioned points and as-
signed distinct labels and colours to the corresponding groups of
local contexts, thus defining classes of contexts. Please note that
one context class may include local contexts of target events of dif-
ferent types.

To enable viewing, interpretation, and comparison of the context
classes, we devised a visual display comprising multiple matrices,
each representing the contexts of one class in an aggregated form.
These multi-matrix displays are depicted on the right of the pro-
jection plots in Fig.3. In the matrices, the rows correspond to the
event types, and the columns represent the time steps within the
temporal neighbourhoods of the target events. The top four rows
of the matrices correspond to the types of COVID events, while
the bottom four rows represent mobility event types. The first four
columns represent the four-week period preceding the onset of the
target events, with the fifth column depicting the week when the
target events commenced. The remaining five columns correspond
to the subsequent weeks. The contents of the cells are determined
by summing the individual context matrices included in the respec-
tive groups. The resulting numbers are depicted by the proportional
heights of vertical bars, which are painted in the colours assigned
to the context classes.

Each matrix reveals the prevailing trends in a group of 10-week
intervals. For instance, let us take class 1 of the COVID event con-
texts depicted in the upper panel of Fig.3, indicated by the yellow
colour. The top two rows of the matrix show a shift from the event
‘almost no disease’ to ‘low to medium morbidity’. In the fifth row,
’normal mobility’ remains the prevailing mobility event through-
out the 10-week period. Hence, this context class signifies periods
where worsening of the pandemic situation does not significantly
impact the mobility behaviour. Conversely, in class 5 (dark red),
we observe a decrease in the frequency of ‘normal mobility’ as the
COVID event transitions from ‘high morbidity’ to ‘high morbidity
and mortality’. Among the context classes of the mobility events
in the lower panel of Fig.3, we encounter an intriguing pattern in
class 3 (yellow). Here, we observe consecutive transitions ‘normal
mobility” — ‘decreasing mobility’ — ‘stay home’ — ‘increasing mo-
bility’, despite the predominant COVID event type being ‘almost
no disease’ throughout the entire period. The matrix of class 4 (pur-
ple) exhibits a similar sequence of transitions between the mobility
events as the pandemic situation changed from ‘almost no disease’
to ‘low to medium morbidity’.

To gain a clearer understanding of the contexts in which each
event type occurred, we devised co-occurrence plots shown in
Fig. 4. Here, the rows starting from the second one correspond to
the types of the target events, namely COVID events in the upper
panel and mobility events in the lower panel. The top rows repre-
sent the complete sets of the target events. The frequencies of event
occurrence within the defined context classes are depicted by the

© 2024 The Authors.
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Figure 4: Occurrence frequencies of the types of target events in
the context classes. Top: COVID events; bottom: mobility events.

Figure 5: The contexts of the COVID events (left) and of the mo-
bility events (right) are represented in an artificial matrix space by
bars coloured according to the context classes.

proportional lengths of horizontal bars coloured according to the
respective classes.

To examine the distributions of the context classes over time
and across countries, we put the contexts in the artificial matrix
space analogously to representing the events in Fig. 2. In Fig.5,
the coloured bars depict the contexts rather than the events, with
horizontal positions corresponding to the times when the contexts
occurred, and vertical positions indicating the countries where they
took place. As previously, the colours represent the context classes.
The grey spaces between the bars indicate instances where the time
intervals between the beginnings of consecutive target events ex-
ceeded 10 weeks. Consequently, there is considerable grey space
in the display of the contexts of the mobility events, with 20% of
them (108 out of 530) lasting for more than 10 weeks.

As there is no space for a detailed discussion of the information
conveyed by the visualisations, we give only a brief summary.

General observations. The co-occurrence plots in Fig. 4 reveal
that the same types of events may occur in at least two distinct
classes of contexts. Each context class captures a specific combi-
nation of relationships between events, as illustrated by the multi-
matrix displays in Fig. 3. Consequently, the relationships of each
event type with other event types are context-dependent. The tem-
poral trends observed in the succession of the context classes in
Fig. 5 indicate that event relationships evolve over time.

More specific observations. The imposition of stringent mobil-
ity restrictions leading to the ‘stay home’ event often did not solely
stem from the severity of COVID situations within the countries
where they were implemented, particularly during the initial wave

© 2024 The Authors.
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of the pandemic. However, these measures may have helped pre-
vent the emergence of severe COVID conditions. Conversely, main-
taining mobility at normal levels amidst ‘high morbidity’ contexts
tended to exacerbate COVID situations further. On the other hand,
transitioning to the ‘stay home’ regime did not immediately amelio-
rate the COVID situation within the subsequent 6-week period. To
observe delayed effects, extending the temporal spans of the event
contexts is necessary. It is also reasonable to extend the contexts
thematically by including additional information, in particular, re-
flecting the overall pandemic situation in the world and/or in the
neighbouring countries.

6. Discussion and conclusions

The example considered in this paper underscores a critical les-
son: intuitive assumptions regarding potential causal relationships
between events can often be oversimplified or incorrect. Similarly,
assuming that relationships remain static across all contexts and
time frames may lead to flawed analyses. Therefore, before apply-
ing approaches that rely on computational discovery of causal re-
lations or quantification of predefined causal links, it is imperative
to examine whether interrelationships between event types remain
consistent across various dimensions. This exploration may unveil
disparities between different periods or subsets of data, suggesting
the need for separate consideration of these data portions in subse-
quent analysis and modelling efforts [AA23].

We have proposed an approach to enable such an exploration.
The key idea is to represent local temporal contexts of events by
a data structure that allows numeric estimation of context similar-
ity and application of computational techniques, such as projec-
tion and clustering. This representation, namely, a binary matrix, is
also convenient for aggregation of multiple contexts and for visual-
isation of resulting aggregates. The approach involves delineating
distinct classes of event contexts through interactive grouping or
algorithmic clustering based on similarity, followed by an exam-
ination of the distribution of these context classes across various
data dimensions, including time and geographical space.

Our approach poses no principal limitation on the number of
event sequences. Moreover, contexts may include not only infor-
mation about event occurrences but also any information that can
be represented by categories or discrete attribute values.

Our future research direction will focus on leveraging event con-
texts for predictive modelling. The overarching objective is to de-
velop models capable of forecasting subsequent events or estimat-
ing the probabilities of occurrence for different event types given a
partial context. By incorporating contextual dynamics and depen-
dencies in the process of model building, we hope to represent in
the models the evolution of complex dynamic phenomena and in-
terrelationships between them.
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