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Abstract

Objectives: Craniofacial phenotype-genotype correlations prenatally remain
subjective, and detailed evaluation with 3D ultrasound is challenging and time-
consuming. Recent methods for automating MRI fetal brain biometry have shown
technical feasibility. Using 3D motion-corrected, slice-to-volume reconstructed
(SVR) fetal MRI, we developed an automated landmark propagation pipeline
specifically for a large set of cranial and facial measurements.

Methods: A literature review and expert consensus identified 31 craniofacial
biometrics for fetal MRI. A 3D spatiotemporal SVR fetal MRI atlas was used
to define anatomical landmark points and as a template for subject registration,
auto-labelling and finally landmark-based biometric calculation. Visual inspec-
tions of subject-level landmark labels, as well as multivariate and univariate



analyses, were performed in 108 healthy control fetuses and 24 fetuses with Down
syndrome, T21, (gestational age, GA, 29-36 weeks), to assess differences between
groups and identify meaningful landmarks in T21. Reliability and reproducibility
were assessed in 10 random datasets by four observers.

Results: Automated labels were produced for all 132 subjects, with a 0.03%
major error rate. Significant differences in biometrics were found between T21
and control groups (MANOVA, p<0.001). There were significant differences with
large effect sizes for seven measurements (ANOVA, p<0.001), including the ante-
rior base of skull length and maxillary length. Manual measurements took 25-35
minutes per case, while automated extraction took approximately 5 minutes.
Bland-Altman plots showed a relative mean bias and limits of agreement within
the ranges seen for manual observers except for the mandibular width, which had
an agreement threshold for manual observers of good (ICC = 0.904, 95% CI =
0.677-0.975) versus moderate for automated plus manual observers (ICC = 0.635,
95%, CI = 0.176-0.888). Extended GA growth charts (19-39 weeks) based on 280
control fetuses were produced for all craniofacial biometrics and made publicly
available for future research.

Conclusion: We present the first automated atlas-based protocol using 3D
motion-corrected MRI for fetal craniofacial biometrics and, using this method,
accurately characterise differences in craniofacial morphology in Downs syndrome
fetuses, with findings consistent with the known phenotype. Future work should
include studies to improve measurement reliability, larger clinical cohort stud-
ies, technical development of craniofacial optimised MRI sequences and 3D deep
learning for anatomical landmarking. Future development may reduce clinical
reporting time, improve accuracy, increase understanding of prenatal develop-
ment and enhance personalised prenatal care with accurate genotype-phenotype
correlations.

Keywords: Fetal MRI, Slice-to-volume reconstruction, craniofacial development,
automated biometry

1 Introduction

Comprehensive prenatal characterisation of craniofacial development remains a chal-
lenge for obstetric ultrasound due to limitations caused by fetal position, artefacts, and
technical difficulties in the 2D and 3D domain. Currently, clinical imaging techniques
broadly rely on subjective assessment of facial features, and in high-risk cases, quanti-
tative linear measurements, facial angles, and indexes, have been proposed for use with
prenatal ultrasound [1-4]. Prenatal detection of face, ear and neck anomalies are low
during universal second-trimester ultrasound screening in pregnancy. Indeed, a recent
systematic review found them to have the lowest detection rate of 46 organ groups
assessed, with a sensitivity of 32.3% [5]. Prenatal detection of facial anomalies, even
in high-risk groups referred for a targeted specialist ultrasound, are even more likely
to remain undetected if isolated, or, if presenting with an additional non-genetic body
structural anomaly [6]. The fetal MRI craniofacial clinical literature usually describes
subjective imaging assessments, and are often clinical reviews or case studies, however,



its complementary role to ultrasound is often highlighted. For example, a recent his-
torical cohort study of 45 patients referred to fetal MRI for a wide range of suspected
craniofacial malformations at an anomaly level, e.g. cleft lip and palate, craniosyn-
ostosis, hyper/hypotelorism, ear structure anomalies, facial cysts and masses, found
MRI was more likely to make a confident diagnosis and less likely to over-diagnose
when compared to ultrasound [7].

1.1 Imaging craniofacial development in-utero

Imaging the craniofacial complex prenatally requires expert image acquisition, pre-
cise 2D image planes, or, 3D data that can be aligned to the region of interest
(ROI). A quantitative assessment, for a prenatal phenotypic characterisation, is thus
time-consuming and subject to observer variation. International guidelines for routine
mid-trimester ultrasound, performed at approximately 20 weeks gestational age, GA,
suggests the facial examination should be limited to a qualitative assessment of the
upper lip, orbits, and an optional examination of the mid-sagittal facial profile and
nasal bone [8].

The increased use of 3D data in fetal ultrasound and the expanding applications of
structural fetal MRI have resulted in the feasibility of using extended biometrics meth-
ods to better characterise and/or diagnosis subtle craniofacial dysmorphology [9, 10].
In an expert consensus paper, Merz et al (2012) suggested a targeted craniofacial exam-
ination to include 3D ultrasound, with multiplanar and aligned 2D views to allow the
biometric assessment of the nasal bone, NB, frontomaxillar facial angle, FMA, inferior
facial angle, IFA, orbital diameters, OD, interorbital distance, IOD, and outer orbital
distance, (or bi-orbital distance, BOD), maxilla width, MxW, and mandibular width,
MdW (all in addition to standard head biometry i.e. head circumference, HC, occip-
itofrontal diameter, OFD, and biparietal diameter, BPD) [1]. However, few antenatal
imaging studies have sought to comprehensively assess multiple craniofacial biometric
profiles, often focussing on fetal estimated weight parameters (i.e. HC, OFD, BPD,
in addition to abdominal circumference, and femur length), orbital and mandibular
regions [3, 11-15].

1.2 Fetal MRI for craniofacial assessment

Toren et al in (2020), confirmed the feasibility of multiple manually extracted fetal
MRI craniofacial biometrics [16]. The authors reviewed the use of eight fetal MRI 2D
measurements related to the mandible and nasal cavity, these included the, previously
cited measurements, IFA, BPD, and IOD, and four new measurements, the mandibu-
lar anterior-posterior diameter, mandibular vertebral length, maximum nasal length,
septal height, and septal length. The authors highlighted the additional need for struc-
tural radiological biomarkers to characterise fetal facial development and, importantly,
noted that 70% (843 MRI scans) had to be excluded from their final sample due to
motion artefact that degraded the image quality or the absence of a true orthogonal
plane to produce the required measurement.

Except for the established cranial vault measurements (HC, OFD, BPD), there are
limited examples of fetal MRI craniofacial reference ranges. Noteable anatomical areas



examined are the orbits [17-19], and includes our previous work on the automated
extraction of fetal 2D orbial biometry from 3D volumes [20]; the mandible [21] and
more recently maxillary sinuses [22]. A reason for slower development of the MRI cran-
iofacial literature may be because 3D fetal MRI has focused on brain development and
assessment. Indeed, the first step would be to accurately define MRI landmarks for
any new measurements and to ensure that image quality enables the accurate locali-
sation of rarely assessed structures in-vivo. Furthermore, there is also a known lack of
clear consensus on formalisation of fetal MRI biometry protocols, nomogram model
formulas and measurement techniques for MRI between different clinical centres [23].
T2-weighted MRI is considered the optimal choice of image contrast for fetal structural
assessment due to the faster acquisition times and good fluid tissue differentiation. The
effect of field strength (1.5 Tesla compared to 3 Tesla, T') on brain biometry has been
shown to produce small absolute differences for some measurements. This is likely due
to the increased spatial resolution at 3T and resulting in larger discrepancies particu-
larly for smaller structures [24]. In addition, whilst brain and facial anatomical detail
are diagnostically acceptable at both 1.5T and 3T, however image quality may be be
better at 3T or vary according to acquisition parameters [25]. There are, of course
additional sources of error due to clinician training and experience, reporting software
and environment, maternal breathing and fetal motion leading to imprecise acquisi-
tion planes and calliper placement that result in increased intra- and inter-observed
variability.

1.3 Automation of biometry for fetal MRI

Motion correction methods, based on 3D slice-to-volume registration (SVR) [26], par-
tially resolves these challenges since the 3D reconstructed images can be reoriented
to any plane. 3D-derived biometric measurements are reportedly comparable with 2D
slice-wise biometry [27, 28]. Yet, there may be considerable operator variability when
placing landmarks in a 3D volume due to the requirement to choose the correct plane
for the measurement and then define the anatomical landmarks in 3D space.

Theoretically, in addition to being faster, automation of biometry should also allow
reproducible biometric measurements. Recently, there have been several proposed
methods for automated fetal MRI biometry with deep learning brain measurements
such as biparietal and transverse cerebellar diameters and atrial diameters [29, 30] in
2D slices and ocular measurements using registration and deep learning [20, 31] in 3D
motion-corrected images. However, outside of the cranial vault, there have been no
reported automated solutions for craniofacial measurements for fetal MRI.

1.4 Contributions

In this study, we formalise the first landmark-based protocol for craniofacial biometry
for 3D T2w fetal head MRI in the atlas space and develop the first automated pipeline
for extraction of 31 craniofacial biometry measurements based on label propagation.
The performance of the pipeline is extensively evaluated with respect to traditional
direct measurements by expert observers as well as the analysis of common errors and
the effects of MRI image quality and field strength. Next, the utility of the proposed



biometry protocol is assessed by quantitative comparison of 108 normal control and 24
T21 subjects, characterised by well-known craniofacial dysmorphology prenatally. In
addition, we generated normal craniofacial biometry growth charts from 280 control
subjects from 19 to 38 weeks GA range.

2 Methods

2.1 Fetal MRI datasets and preprocessing

Participants were scanned between 2014 and 2024 at a single site (St. Thomas’ Hospi-
tal, London, UK) and all maternal participants gave written informed consent for the
use of data acquired under one of eight ethically approved MRI research studies. The
datasets were acquired under different research studies: The Placental Imaging Project
(PIP, REC 14/L0/1169)*; the Intelligent Fetal Imaging and Diagnosis (iFIND, REC
14/1.0/1806); the quantification of fetal growth and development with MRI study
(fetal MRI, REC 07/H0707/105)?; the fetal CMR service at Evelina London Children’s
Hospital (REC 07/H0707/105); the developing human connectome project (dHCP,
REC 14/1L.0/1169); the early brain imaging in Down syndrome study (eBiDS, REC
19/L0O/0667); the Individualised risk prediction of adverse neonatal outcome in preg-
nancies that deliver preterm using advanced MRI techniques and machine learning
study (PRESTO: REC 21/SS/0082); and the Cardiac and Placental Imaging in Preg-
nancy project (CARP; REC 08/L0O/1958). The inclusion criteria for case selection
included: singleton pregnancy, fetal MRI stacks with full ROI coverage, acceptable
quality whole head SVR output. The normal control cohort included 314 cases with-
out reported fetal or maternal anomalies with moderate to excellent image quality
from four different acquisition protocols, from 19 to 39 weeks GA. The T21 cohort
was curated primarily based on the availability of datasets with research consent and
acceptable 3D head SVR reconstruction quality. In total, we selected 24 T21 cases
from 3 different acquisition protocols and 29 - 36 weeks GA range.

2.1.1 MRI acquisition protocols

The included datasets were acquired with different MRI acquisition protocols depend-
ing on the recruiting study:

® 4 DS and 34 healthy control subjects scanned on a 1.5T Philips Ingenia MRI system
using 28-channel torso coil with TE=80ms, 1.25x1.25mm resolution, 2.5mm slice
thickness, -1.25mm gap and 9-11 stacks (iFIND, FCMR studies);

® 17 DS and 106 healthy control subjects were scanned on 3T Philips Achieva MRI
system using a 32-channel cardiac coil with TE=180ms, 1.25 x 1.25mm resolution,
2.5mm slice thickness, -1.5mm gap and 5-6 stacks (PIP, PRESTO, eBIDs studies);

® 3 DS and 130 healthy control subjects were scanned on 3T Philips Achieva MRI
system with a 32-channel cardiac coil using a dedicated dHCP fetal acquisition
protocol with TE=250ms, 1.1 x 1.1mm resolution, 2.2mm slice thickness, -1.1mm
gap and 6 stacks (dHCP, fetal MRI studies).

LPiP project: https://placentaimagingproject.org/project/
2{FIND project: https://www.ifindproject.com/
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Fig. 1: a. GA distribution of control subject datasets in the study per MRI protocol; b.
proportional distribution of MRI protocols in the whole control group (MRI protocol
(field strength/TE) = 1.5T/ 180ms; 1.5T/ 80ms; 3T/ 180ms; or, 3T/ 250ms); and
examples of a 3D SVR fetal head reconstructions at different acquisition parameters.



® 44 healthy control subjects scanned on a 1.5T Philips Ingenia MRI system using 28-
channel torso coil with TE=180ms, 1.25x1.25mm resolution, 2.5mm slice thickness,
-1.25mm gap and 9-11 stacks (PIP, CARP studies).

Quality scoring of whole head SVR output
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Fig. 2: Image examples of SVR head image quality scoring for inclusion in the dataset,
scores of 3 or 4 were considered adequate quality for inclusion in the study.

2.1.2 3D SVR head reconstruction

All datasets were reconstructed for the whole head using two different automated SVR
methods: the dedicated SVR pipeline developed for dHCP project [32] and the opti-
mised automated version [33] of the classical 3D SVR reconstruction method [34] in
SVRTK package® 4 [35]. The reconstructed 3D head images have 0.8 mm isotropic res-
olution and are reoriented to the standard radiological space (see examples in Fig. 1).
In order to account for the small dimensions of some of the biometrics, we applied
additional resampling of 0.5mm isotropic resolution to all 3D reconstructions prior to
landmark label propagation.

The 3D whole head MRI image quality scoring protocol is shown in Fig. 2 similar to
that proposed in our previous qualitative 3D MRI assessments [10]. An image score of

3SVRTK toolbox: https://github.com/SVRTK/SVRTK
4 Automated SVRTK-based analysis tools: https://github.com/SVRTK /auto-proc-svrtk
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"good’ or ’excellent’ was given when the brain could be visualised with no, or minimal,
image or reconstruction artefacts, in addition, the mid and lower facial region and the
facial profile should be included within the image volume.

2.2 Formalisation of 3D MRI craniofacial biometry protocol

Following an extensive literature search (JM), two 3-hour consensus workshops (JM,
MR, AEC, AL, SA) were held which included an image review of proposed 3D land-
marking points. A set of 31 biometric measurements (35 points) were agreed as relevant
to clinical craniofacial assessment and feasible/reliable in terms of landmark visibility
in 3D fetal MRI and included distance, angular and area measurements of the deep
viscerocanial and cranial vault regions, see Fig. 3 for a visual representation of the 3D
point cloud.

Fig. 3: Visual representation of 3D landmarks placed within a 3D population-averaged
MRI atlas (31 weeks GA)

The formalised biometry protocol, with abbreviations used in this work, is sum-
marised in Tab. 1 along with citations of publications that directly relate to the



proposed measurement technique and/or the related reference charts [16-18, 21, 27,
36-48]. Additionally, the wider literature supported the rationale for landmark def-
inition and included: prenatal craniofacial biometry and anatomical MRI literature
[49, 50]; 2nd and 3rd trimester prenatal US measurement literature [51-53]; ex-vivo/
post-mortem anatomical studies [54, 55]; and, neonatal, paediatric or adult clinical
imaging literature, where relevant [22, 56-59]. The label definition and location of
anatomical points of interest were agreed upon in the consensus workshop, resulting
in 35 points related to the measurements and a further 15 anatomical points of inter-
est that may be of future interest (the latter not investigated in this work). These
points are summarised in supplementary Tab. Bl and B2. The points were manually
placed in 3D space on to a population-average atlas of the volumetric whole fetal head
[60] using a 5mm 3D isotropic spherical "paintbrush’ with the ITK-SNAP software®;
a visual overview of the points can be seen in Fig. 3. The atlas template, extended 3D
segmentation file (50 anatomical points) and the landmarking protocol are publicly
available online at the KCL CDB data repository®.

Table 1: Formalised measurement definitions for the proposed landmark-based cran-
iofacial biometry protocol with 3D T2w fetal MRI, with measurement and landmark
abbreviations.

Measurement name | Fetal MRI description (related reference[s]) Mlustration
(abbreviation)

1. Anterior base | Distance of line projected from the foramen

of skull length | caecum to the posterior clinoid process (Fec-
(ABSL) PCP) [36, 61].

2. Posterior base | Distance of line projected from the posterior
of skull length | clinoid process to the anterior border of the
(PBSL) foramen magnum, (PCP-Ba) [36, 61].

SITK-SNAP tool: http://www.itksnap.org/pmwiki/pmwiki.php
SKCL CDB fetal MRI head atlas repository: https://gin.g-node.org/kcl_cdb/craniofacial_fetal_mri_atlas


http://www.itksnap.org/pmwiki/pmwiki.php
https://gin.g-node.org/kcl_cdb/craniofacial_fetal_mri_atlas

Table 1: Continued: Formalised measurement definitions for the proposed landmark-
based craniofacial biometry protocol with 3D T2w fetal MRI, with measurement and

landmark abbreviations.

Measurement
(abbreviation)

Fetal MRI description (related reference[s])

Tustration

3. Internal base of
skull angle (CBA1)

Angle formed between the projected lines from
the Foramen caecum to the posterior clinoid
process to the anterior border of the foramen
magnum (Fc-PCP-Ba)[36, 38-40].

4. External base of
skull angle (CBA2)

Angle formed between the projected lines from
the posterior nasal spine to the hormion to
the anterior border of the foramen magnum
(PNS-H-Ba) [36, 38, 39].

5. Fronto Maxillary
Angle (FMA)

Fronto Measured on the sagittal plane and
defined as the angle between the forehead and
the ABSL (Si-Fc-PCP) [41]

6. Inferior Facial

Angle (IFA)

Measured on the sagittal plane and defined
as the angle between the ABSL (PCP-Fc)
and the line between the midline soft tissue
of the mandible (chin) and upper lip (lip)
[21](modified)
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Table 1: Continued: Formalised measurement definitions for the proposed landmark-
based craniofacial biometry protocol with 3D T2w fetal MRI, with measurement and

landmark abbreviations.

Measurement
(abbreviation)

Fetal MRI description (related reference[s])

Tlustration

7. Maxillary nasion

Measured on the sagittal plane and defined as

mandibular Angle | the angle between the alveolar ridge, foramen

(MNMA) caecum and symphysis mentum (ANS-Fc-Me)
2

8. Hard palate | Distance between the alveolar ridge and the

length (HPL)

posterior nasal spine (ANS-PNS) [38, 39, 44].

9. Velopharangeal
length (VPL)

Linear distance of a projected line from the
alveolar ridge, through the posterior nasal
spine to the posterior pharangeal wall (ANS-
PNS-PPW) [43].

10. Nasopharyngeal
area (NASO) and
11. Oropharangeal
area (ORO)

In the mid-sagittal plane, NASO = area of an
enclosed triangle formed by the landmarks of
the Posterior nasal spine, Hormion point and
the basion (PNS-H-Ba). ORO = area of an
enclosed triangle formed by the landmarks of
the posterior nasal spine, basion and posterior
border of the tongue (PNS-Ba-TP) [38, 39].

11




Table 1: Continued: Formalised measurement definitions for the proposed landmark-
based craniofacial biometry protocol with 3D T2w fetal MRI, with measurement and

landmark abbreviations.

Measurement Fetal MRI description (related referencels]) Mlustration
(abbreviation)

12. Palate width | In the mid-coronal plane aligned orthogonally

(PaW) and 13. | to the face, PaW = the distance between the

Palate height | inferior margin of the most posterior maxillary

(PaH) toothbud visualised at its widest point (RtPa-

LtPa). PaH = the distance from the palate
vault, i.e. inferior border of the hard palate,
to the mid-PaW line (PV-PaW), [43]

14. and 15.
Right and left
choanal width
(RtCho/LtCho)

In axial plane, the linear distance from the
medial pteygoid process on the lateral border
of the choanae to the midline of the vomer
posteriorly (Rt/LtMPP - Vo), [45].

16. Nasopharyngeal
width (NPW)

In axial plane, the linear distance of the lateral
walls of the anterior nasopharynx level with
the hormion point superiorly and at the widest
point (LtCho-RtCho) [45].

17. Choanal height
(ChoH)

In Sagittal plane, Distance of line projected
from the hormion point to a perpendicular
intersect with anterior to posterior hard palate
(H-HPL) [16, 45].

18. Nasal Bone
(NB) and 19. Pre-
nasal Thickness

(PnTh)

In Sagittal plane, NB = distance from the
nasion (outer bony border, Naln) to the tip of
the nasal bone (NBt). PnTh = distance from
the Naln to the outer soft tissue border of the
nasion (NaO) [41, 42, 62].

12




Table 1: Continued: Formalised measurement definitions for the proposed landmark-
based craniofacial biometry protocol with 3D T2w fetal MRI, with measurement and

landmark abbreviations.

Measurement
(abbreviation)

Fetal MRI description (related reference[s])

Tlustration

20. Occipitofrontal
Diameter (OFD)

In mid-sagittal plane, distance between the
most anterior point of frontal bone to the
posterior-most point of the occiput (Si-Oc)
[27]

21. Biparietal
diameter (BPD)

In axial plane, distance between the widest
lateral point of the parietal bone at the level
of the OFD (RtPt-LtPt) [27]

22. Head circumfer-
ence (HC)

Outer circumference of the skull, calculated
from OFD and BPD using an ellipse formula,
an established approach in ultrasound clinical
practice [27, 46]

23. Maximum cra-
nial height, (MCh),

In sagittal plane, distance between the vertex
of the skull and the basion (Ve-Ba) [47]

24.-25. Right and
Left occular diame-
ter (OD)

In axial plane, distance between the widest
lateral borders of each orbit to include the
sclera of the eye. Note, in MRI the term ’occu-
lar’ is used to refer to the globe, rather than
the bony orbital margin, that is measured
[17, 31]

13




Table 1: Continued: Formalised measurement definitions for the proposed landmark-
based craniofacial biometry protocol with 3D T2w fetal MRI, with measurement and

landmark abbreviations.

Measurement Fetal MRI description (related referencels]) Mlustration
(abbreviation)
26. Interoccular | In axial plane, IOD = distance between the

diameter (IOD) 27.
Bioccular diameter
(BOD)

widest medial points of both orbits. BOD
= distance between widest lateral points
between both orbits [17, 31]

28. Maxillary | Aligned orthgonally to the face, MxW = the
width, (MxW) 29. | distance between the posterior-most margins
Maxillary  length | of the posterior maxillary toothbuds visualised
(MxL) at their widest point axially. MxL = distance

alveolar ridge (ANS) to the midpoint of the
MxW line [48]

30. Mandibular
width, (MdW) 31.
Mandibular length
(MdL)

Aligned orthgonally to the mandible, MAW =
the distance between the posterior-most mar-
gins of the posterior mandibular toothbuds as
they emerge from the masseter muscle, in axial

plane. MdL = distance the outer border of
the symphysis menti at its mid-point to the
midpoint of the MAW line [21]

2.3 Automated 3D craniofacial biometry pipeline

The proposed pipeline for automated biometry is outlined in Fig. 4. Firstly, the defined
3D labels from the atlas were propagated to the subject space via registration. We
employed classical affine + non-rigid free form deformation registration [63] with local
normalised cross-correlation similarity metric with a 6 mm control point spacing imple-
mented in MIRTK”. This registration-based approach was feasible since the 3D head
images were reoriented in the standard atlas radiological space apriori after SVR recon-
struction. The registration parameter were optimised for this particular task. Next,
the landmark labels from the atlas were transformed to the subject space using out-
put transformations. Label propagation was followed by computation of the defined
biometry parameters based on the landmark coordinates including distances, angles
and areas. Next, the landmark coordinates were computed as centre-points of propa-
gated landmark labels in 3D world space. Lastly, this was followed by the calculation
of the defined biometry measurements (Tab. 1) using the formulas given below:

"MIRTK package: https://github.com/BioMedIA/MIRTK
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Fig. 4: Proposed pipeline for atlas-based 3D craniofacial biometry for fetal MRI
(orange boxes)

¢ the distance d between two landmarks Py (x1,y1,21) and Pa(x2,y2, 22) in 3D space:

d=/(z2—21)2+ (g2 — y1)% + (22 — 21)? (1)

e the angle 0 between two lines defined by landmarks Py (1,41, 21), Pa(x2, Y2, 22), and
Q1(x3,y3,23), Q2(x4,ys, 24) in 3D space:

— arccos < (z2 — 1) (w4 — x3) + (Y2 — y1) (Y4 — y3) + (22 — 21) (24 — 23) )
\/(x2 — 1)+ (y2 = y1)? + (22 — 21)2\/(964 —23)% + (ya — y3)? + (22 — 23)?
(2)

e the distance d between a landmark P(x3,ys, z3) and the center point of a line defined
by landmarks Q1(x1,¥1,21) and Q2(x2,ys2, 22) in 3D space:

d— \/(:cl + o — 2$3)2 + (y1 + Yo — 2y3)2 + (21 + 2o — 223)2 (3)
4

e the area A of a triangle from three landmarks P;(z1,y1,21), Pa(z2,ye, 22), and
Ps(x3,ys3,23) in 3D space:

1
A= §||X1(352 —x1,Y2 — Y1, %2 — 21) X X1 (T3 — x1,¥3 — Y1, 23 — 21)|| (4)

® the length of an ellipse L is calculated by a formula using two perpendicular lines
(the OFD and BPD), each defined by landmarks Pi(x1,y1, 21), Pe(22,y2, 22), and

15



Q1(z3,y3, 23), Q2(x4, ya,24) in 3D space:

L =1.62x (\/(392 —21)2+ (Y2 — )2+ (22 — 21)2 + V(21 — 23)2 + (Ya — y3)2 + (20 — 23)2)
(5)

The implemented function for landmark-based biometry calculations craniofacial-
biometry is publicly available as a part of SVRTK package.

2.4 Evaluation of the proposed biometry protocol

With the pipeline outputs of the automated label segementation files and 31 biometrics
per subject, we performed an extensive evaluation of the feasibility of the proposed
protocol and pipeline on normal and T21 cohorts from different acquisition protocols.
This included qualitative assessment of landmark localisation in 132 datasets followed
by extensive quantitative evaluation based on comparison with manual measurements
in 10 cases.

2.4.1 Qualitative visual evaluation of landmarks

A single operator visually inspected all automated 3D points for 132 subjects (later
used in normal and T21 comparison). The whole head SVR volume and landmarks
for each subject were loaded into Slicer 3D in turn to detect any major errors in the
landmark placement. 35 landmarks per subject related to biometry were inspected
and scored as 'minimal or no’ error, or as having a 'major’ error (i.e. requiring a man-
ual change of more than a few millimeters, degrees or mm?). Any measurement that
was documented as an outlier (based on the distribution of cohort), had a detailed
inspection and qualitative comments on the suitability of the related landmark place-
ment. During this assessment each case was rescored for image quality, blinded to the
intial image score during data curation and including an additional criteria to those
presented in Fig. 2 so that ’reasonable image contrast to differentiate deep naso-oral
soft tissue structures’ was also considered in the qualitative assessment.

2.4.2 Measurement Validation, intraobserver, interoberver,
intramethod and intermethod

We performed assessment of intra-, inter-observer and intermethod variability in a
subset of 10 random cases (from the control and T21 cohorts) given in Tab. 2. Intraob-
server repeatability was assessed by repeating measurements on the subset using a
similar method to the label propagation pipeline [64]. That is, the point related to the
biometric was placed using I'TKsnap software, with a 5mm 3D sphere, and then the
biometry was indirectly calculated automatically from the centroid centre points. The
assessment was repeated after a washout period of 2 weeks, to reduce reviewer bias.

To understand the expected variability within clinical raters, the interobserver
reproducibility was assessed with three fetal radiology experts. After importing the
SVR volume into MITK workbench, the use of coupled cross-hairs in the x-y-z planes
allowed for fine and precise adjustment of image planes within the 3D volume, required
for the direct calliper measurements.
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Table 2: Demographics of the 10 cases selected for quantitative evalu-
ation of the proposed biometry protocol and pipeline.

ID GA Group Sex TE Field Strength  HeadSVR quality
1 29.86 T21 Male 180ms  3.0T Good

2 35.43 T21 Male 180ms  3.0T Moderate
3 32.71 T21 Male 250ms  3.0T Moderate
4 33.71 T21 Female 80ms 1.5T Good

5 32.71 T21 Female  80ms 1.5T Excellent
6 31.86 Control Male 80ms 1.5T Moderate
7 32.86 Control Female 80ms 1.5T Good

8 29.43 Control Female 80ms 1.5T Moderate
9 30.00 Control Male 180ms  3.0T Moderate
10 35.14 Control Female 250ms 3.0T Moderate

The absolute and relative differences were calculated for intra-observer, inter-
observer and the automated measurements compared with the most experienced fetal
radiologist, considered to be the ground truth. Bland Altman plots were constructed
to visualise the variability of the automated and manual observers and compared to
the most expert observer. An intraclass correlation coefficient (ICC) (two-way ran-
dom effects model with absolute agreement) was performed to statistically assess
the reliability of both systematic and random error to include; intraobserver (single
observer, repeated indirect measurements), interobserver (3 expert raters, single direct
measurements), and intermethod agreement (4 human observers and automated mea-
sures, single measurements). The ICC interpretation threshold values were reported
as: <0.50 = poor; 0.50 -0.75 = moderate; 0.75 - 0.90 = good; and, >0.90 = excellent
as defined by Koo and Li (2016) [65]. A Cronbach’s Alpha test was applied to assess
internal validity for each measurement, as a high internal error within the subset will
reduce the power and therefore validity of the ICC [66]. A threshold of 0.7 was set as
a minimum value to interpret the ICC value safely.

All human observers were asked to rate their diagnostic confidence of measuring
on a binary scale (confident/not confident) for all the measurements or landmarks,
where relevant. Due to the small sample size the results were presented descriptively.

2.5 Comparison of normal and abnormal cohorts

Next, in order to assess the clinical utility of the proposed biometry pipeline for auto-
mated analysis of a large number of craniofacial biometrics, we ran a multivariate
analysis of covariance (MANOVA) to assess the impact of scanner field strength with
GA as a covariate (control group only). A comparison with 24 T21 cases and 108
GA-matched normal control cases, including three different acquisition protocols, was
tested with a univariate analysis (ANOVA) using robust standard errors to account
for multiple comparisons [67]. Posthoc power calculations were included to assess the
risk of type 2 error and magnitude of effect size (using, partial estimated squares, 77%)
[68]. In addition, the centile normal range charts were used to assess the proportion of
T21 cases falling above the 95% or below the 5% for gestation for the most relevant
biometrics identified by the ANOVA.
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To ensure the test assumptions were met for the analysis of variance, normality
was evaluated using Q-Q plots and Shapiro-Wilk tests, multicollinearity was assessed
with a Pearson’s correlation coefficient, tabulated correlation matrix, and a variance
inflation factor (VIF) test was performed to detect severe multicollinearity (i.e. VIF
>10). Lastly, linearity was visually assessed with scatterplots of the variable against
GA and lastly, homogeneity of variance was assessed with a Levene’s Test, [69]. Param-
eter estimates using robust standard errors [67] and using the HC3 method [70] are
reported for the analysis of variance to account for any violations in test assumptions.

2.6 Normal craniofacial biometry growth charts

Next, the automated label propagation for all suitable control cases from 19 to 38
weeks GA was performed to create extended GA nomograms for the proposed biometry
protocol. The 3D points were visually inspected and corrected if necessary, where
required. After extraction of all biometric measurements, the 5th, 50th, and 95th
centiles for the automated biometry results were calculated based on the widely used
statistical approach for growth chart construction [71] similar to fetal MRI brain
charts described by Kyriakopoulou et al. (2017) [27]. Normal range plots with centile
trendlines and quadratic formula (or linear formula where relevant) formula were then
produced.

2.7 Image Processing and Statistical Analysis Software

All image processing steps, including image reconstruction, reorientation and land-
mark propagation, were implemented using SVRTK and MIRTK packages.

All image review software used was open source and compatible with nifti and/or
dicom format 3D image volumes. Image landmark labelling for the atlas template
and for the intraobserver measurements was performed in ITKsnap. Interobserver
measurements were performed in MITK workbench. The review of labels for data
quality was performed in 3D slicer [72].

Data was analysed in Excel (Microsoft Excel for Mac, Version 16.85, 2024; descrip-
tive statistics, plots), SPSS Statistics (IBM corp, version 29.0.2.0 (20), 2023; growth
curves, ICC, ANOVA, MANOVA), and, RStudio (R version 4.3.3 (2024-02-29, data
visualisation and outlier assessment).

3 Results

3.1 Evaluation of reliability of the proposed biometry protocol
3.1.1 Visual assessment of the proposed automated method

The automated pipeline produced an output of labels, centre-points and biometrics for
all cases. The quality of the label placement is fundamental to the centre-point extrac-
tion and therefore the subsequent biometric calculation, thus a detailed assessment of
image quality and appropriateness of landmark placement is described below:
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Visual inspection and outlier assessment of all subjects The 132 subjects
used in evaluation the had paired SVR and landmark data available for visual assess-
ment, which took approximately 5 minutes per case. Of the 4620 total landmarks
assessed, n = 15, 0.3%, were deemed as requiring major editing/unsuccessful by a sin-
gle operator. The 15 unsuccessful labels were all in SVR images of moderate quality
and no single subject had more than one major label error. Qualitative comments were
collected about the landmark placement, with the most comments made for the lip
(n = 3), posterior tongue (n = 3) and chin (n = 2). The limitations in image quality
described were related to low contrast resolution and noise in the lower facial region
as well as compression of superficial soft tissue by external structures e.g. placenta
or maternal uterine wall. Poor visibility was also described in the naso-oropharyngeal
area, which received multiple mentions (n = 17) largely due to fluid motion artefact,
especially in the choanal region. Fig. 5 gives an overview of the SVR QA results strat-
ified by field strength over gestational age and image examples of major landmark
errors.

Outlier measurements in the control and T21 groups were defined by assessing the
measurement distributions, see boxplots in Fig. 6. 57 measurements were outliers from
32/132 unique subjects, 4 (12.5%) of the 32 outlier subjects were scanned at 1.5T
and the remaining at 3T MRI field strength. The image quality of the outlier subjects
ranged from poor to excellent, with a moderate score having the highest frequency.
Only one measurement, the internal cranial base angle, in a 33 week old fetus scanned
at 3T, was an ’extreme’ outlier, i.e., it had values above the 3rd quartile and also was
more than 3 times the interquartile range. The labels related to the angle measurement
appeared correctly placed on visual inspection.

3.1.2 Automated and human observer agreement and reliability

The observer variability was assessed to understand if the measurement error found
for the automated biometrics were within the limits expected for expert observers. 10
cases were randomly selected for review and are presented in Tab. 2, and were balanced
interms of fetal sex, MRI field strength and were not selected for quality apriori. The
repeated measures (for intraobserver agreement and reliability) were performed by
a single observer, a clinical researcher with 15 years fetal imaging experience. The
reproducibility measures (for interobserver agreement and reliability) were performed
by 3 consultant fetal MRI neuroradiologists, with experience ranging from ****XX to
xx years**** RADIOLOGISTS TO ADD.

For the assessment of variation of the automated measurements, the most experi-
enced consultant radiologist was considered the ground truth, to which the absolute
and relative difference were compared and presented with its mean bias and limits
of agreement in a selection of Bland Altman (BA) plots, see Fig. 7 (absolute and
relative difference tables for all variables can be found in supplementary Fig. Al).
Intermethod agreement and reliability included all observations except the first set of
intraobserver measures. An acceptable relative mean bias of less than 4+/—10% was
seen for 22/31 automated measurements. Despite this, all automated measurements
had mean error within the range seen for human observers except for the mandibu-
lar width (mean absolute difference; automated = 5.30mm (14.62%) versus manual
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Fig. 5: Upper row: Face SVR quality assessment results stratified by MRI field
strength (1.5T/3T) and gestational age. Lower Row: i. automated landmarks
with labels, ii. Example: Excellent quality SVR with good landmark placement,
iii. Example: Moderate quality SVR (poor contrast resolution lower face), with
poor lip label placement due to limited boundary definition adjacent to mater-
nal tissue. (Label key: Ve=vertex; Oc=occiput; Si=sinciput; Naln=inner nasion;
NaO=outer nasion; Fc=foramen caecum; NBt=nasal bone tip; v=vomer; H=hormion;
PcP=posterior clinoid process; Ppw=posterior pharyngeal wall; Pav=palate vault;
Ba=basion; ANS=anterior nasal spine; PNS; posterior nasal spine; Tp=posterior
tongue; Me=bony mentum; Lip=lip; Chin=chin)

Field Strength: 1.5T Field Strength: 3T

Face SVR QA score 8
mPoor 16
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Excellent quality . Moderate quality

(range for 3 observers) = -0.99 - 1.28mm (-2.63 - 4.55%)). The automated random
error in all 31 measurements was within the limits of agreement for that seen in the
manual observers, however, nine measures had an unacceptably high random error
of more than +/—20% (ChoL, PnTh, CBA2, MNMA, IFA, PAH, ChoH, NASO and
ORO) [73].

Intermethod reliability (i.e. for all measurements/methods including the auto-
mated) was excellent for the cranial measurements of; the anterior and posterior base
of skull; the occipitofrontal diameter; biparietal diameter; maximum cranial height;
internal cranial base angle; head circumference and, bi-occular diameter, (ICC range
= 0.915-0.986, 95% CI range, 0.770-0.995). The intermethod reliability threshold was
not below that of the interobserver reliability (expert radiologists) in any assessed vari-
ables except for the mandibular width where the ICC score changed from good (ICC
= 0.904, 95% CI = 0.677-0.975) to moderate (ICC = 0.635, 95%, CI = 0.176-0.888).
The ICC values were interpreted only when good internal validity of the measurement
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was present, i.e. Cronbach’s Alpha >0.70, violation of the ICC test assumptions was
seen in 12/31 measurements. Full ICC results can be found in supplementary Fig. A2.

3.1.3 Human observer confidence

Subjective scoring of diagnostic confidence found that observers were least confi-
dent with measurements in the choanal and nasopharyngeal area. The intraobserver
repeated measures included failed landmark placement for the nasopharyngeal space,
i.e. choanal and pharyngeal width measurements and the nasal bone tip, see Fig. 8a
and the average confidence scores and the variation across the three radiologist mea-
surements are presented as boxplots in Fig. 8b. Of note, a total of 4/10 cases could not
have an accurate measurement of the nasal bone performed. For the measurements
obtained, the confidence scoring demonstrated that there was minimal/no variability
in confidence scores, with biometrics generally scored as ’confident’. The exception
was for the choanae width measurements (left, right and total width, i.e. NPW) and
for cases 7 and 10 where multiple measures were more difficult. Both cases were at dif-
ferent scanner field strengths (1.5T/3T) and GAs (32.38 and 35.14 weeks), and image
quality was subjectively scored as moderate.

3.2 Comparison of normal control and T21 cohorts

In order to understand the clinical utility of the proposed automated pipeline, and its
ability to assess differences in craniofacial development, an analysis of variance was
performed on the dataset.

3.2.1 Demographics and baseline characteristics

The final retrospective sample contained 108 control and 24 T21 subjects. The mean
GA for the control group was 31 weeks and 6 days (range 29 weeks and 0 days to 36 and
0 days) and for the T21 group the mean GA was 32 weeks and 3 days (range 29 and 6
days to 35 and 5 days). The distribution of MRI protocols used in the healthy control
group differed from the T21 group (1.5 Tesla and echotime of 80ms in 34 (31.5%)
and 4 (16.7%) respectively; 3 Tesla and echotime of 180ms in 25 (23.1%) and 17
(70.1%) respectively; and, 3 Tesla and echotime of 250ms in 49 (45.4%) and 3 (12.5%)
respectively). Most datasets in the T21 cohort were performed at 3 Tesla at 180ms
echotime whereas the datasets were more evenly spread in the control group, with
most scans performed at 3 Tesla and 250ms. The ratio of female and male fetuses were
evenly split between the cohort groups (healthy controls = 53 (49.1%)/ 54 (50.0%),
and, T21 = 10 (41.7%)/10 (41.7%), the remaining fetuses had unknown sex at the time
of the scan). Fig. 9 shows the spread of fetal sex and protocols across the gestational
age, with the control group having a peak at 30 weeks GA and the smaller sample of
T21 fetuses being more evenly spread. The maternal ethnicity across the control group
was largely of White European origin (79.6%), with 9.3% of participants reporting as
having an Asian background, 3.7% as having a Black background, and the remaining
participants of other or unknown ethnicity, see Tab. B4.
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Fig. 7: Bland Altman plots of absolute and relative difference for observer 0, grey dia-
mond (using manual landmark-based indirect measurement method), observers 2 and
3, grey square and triangle respectively (using direct manual measurement method),
and automated biometry, red circle, all compared to expert observer 1 (direct manual
method) for a selection of biometrics (ABSL, IFA, HPL, and NASO). Grey dash=mean
difference for automated biometry and red dash=upper and lower limits of agreement
for automated method.
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(a) Confidence in 3D landmark placement (n=35) between first and second repeated obser-
vation
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(b) Boxplots of average confidence for 3 raters for obtaining measurements (scale: 0 = failed,
1 = unconfident, 2 = Confident). * Represents case number outliers, see 2. Note, small boxes

at point 2 on the y-axis represents no variation.
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Fig. 8 Human Observer Diagnostic Confidence of Landmark placement and mea-
surement accuracy. a. Observer 0 ( repeated measures). b. Average of observers 1 to
3 (each performing single independent measurements
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a. Gestational Age Distribution by Control and T21 Cohorts
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b. MRI Protocols and fetal sex distribution by Control and T21 Cohorts
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Fig. 9: GA-matched fetal MRI datasets used in the control (104) and T21 (24)
comparison a. GA distribution b. MRI protocols and fetal sex

3.2.2 Summary statistics of the dataset

The mean measurements and standard deviations were similar between the gestational
age-matched T21 and healthy control groups, see supplementary Tab. B3, however,
there were relatively larger mean differences between the T21 and control groups for;
the occipitofrontal diameter (97.87mm and 101.05mm, respectively); inferior facial
angle (55.16 and 48.97°, respectively); and, the nasopharyngeal and oropharyngeal
areas (58.42 and 63.88mm? and 181.41 and 173.97mm?, respectively). Box plots for
the measurements indicate these differences graphically and it was noted that outlier
cases were noted predominantly in the control group (see Fig. 6).

3.2.3 Growth Chart Utility and Biometric Variability Assessment

Biometric growth charts based on the age-matched control cohort were constructed for
each automated biometric measurement with a calculated best-fit line and standard
deviation regression equations (presented in the supplementary Tab. B5). Using the
centile ranges to assess the T21 subjects falling outside the normal ranges, the 5th
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to the 95th percentile were considered the threshold thus, by definition, only 10% of
the healthy control cohort would be expected to fall outside of this range. 17/24 of
the T21 fetal subjects had measurements that were out of range for at least one of
the most meaningful 7 biometrics, i.e. the ASBL, VPL, HPL, OFD, IFA, MXL, and
NASO (i.e. 71% true positive rate, TP), see Fig. 10. When considering all biometrics
23/24 cases had at least one biometrics falling outside of normal range (96% TP),
with 21/24 cases having at least two measurements falling outside of the normal range
(88% TP), see Fig. 11.

Biometric variation in the control population for subgroups of MRI field
strength and GA

A MANOVA was conducted to examine the effects of MRI field strength (1.5T/3T)
on the combination of 31 dependent continuous variables, i.e. the craniofacial
measurements, with gestational age in completed weeks included as a covariate.

Variation with Gestational age: Evaluating the control group, the overall biometrics
varied with GA, p <0.001, 77;% = 0.866, observed power = 1.00 and on univariate
analysis there was no statistically significant measurement variation seen with GA for
the FMA, IFA, CBA1 or ChoH (p = 0.943, 0.432, 0.639, and 0.827 respectively).

Variation with field strength: Within the control group there was a statistically
significant difference in overall biometric variation between 1.5T and 3T MRI scans
(with GA as a covariate), p = 0.006, 77;2; = 0.537, observed power = 0.99. ****check
correction for multiple variables****

Overall biometric variation between control and T21 groups

A two-way MANOVA was performed to examine whether the dependent variables
(the craniofacial measurements) differed by disease status i.e. control group or con-
firmed T21. The combined dependent variables of the main effect variable (disease
status) showed statistically significant differences between groups p < 0.001, 77% =
0.710, observed power = 1.000.

Individual biometric variation between control and T21 groups

The ANOVA indicated that 7/31 variables; ASBL, HPL, VPL, OFD; IFA, MXL,
and, NASO, were statistically significantly different (p <0.05) and had large effect sizes
(773 = 13.6 and 30.4%), with the ASBL having the largest effect, see supplementary
Tab. B6. 13 additional variables were statistically significant (PSBL, ChoL, ChoR,
NPW, PnTh, ODL, ODR, I0D, BOD, MXW, MDL, MDL, and, HC) however had
relatively small effect sizes of between 3.4 and 11.7%.
Sensitivity analysis: All non-significant variables (11/31) had a power of less than
< 80% (PAH, PAW, CHOH, BPD, MCh, CBA1, CBA2, FMA, MNMA, ORO and
interestingly NB). There were four variables reaching statistical significance despite
a power below 80%; ODR; IOD; MXW; and, MDL; all had small effect sizes of less
than 5.5%. These are therefore variables that would benefit from a larger sample to
meaningfully assess statistical differences in control and T21 populations with MRI.
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Proportion 'out of centile range' per T21 subject for most
significant biometrics,=n=7
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3.3 2nd and 3rd trimester normal growth charts for
craniofacial biometry

Following the analysis of utility of the proposed craniofacial biometry protocol for
the assessment of abnormal cases we generated extended nomograms with a mixture
of 3 different acquisition protocols. Datasets were included to cover the 2nd and 3rd
trimester of pregnancy (>20 weeks GA), and with an even distribution of protocols
across the GA range. Automated biometric data from 280 subjects were included, with
a GA range of 19.67 to 38.62, mean 27.79 weeks. 84.3% of the sample (n = 236) was
at 3T field strength and 15.7% (n = 44) was performed at 1.5T.

Linear growth patterns were seen in 5/31 measurements, IFA, FMA, CBA1, CBA2
and the NB, with the remaining variables having a quadratic growth pattern. These
findings contrast with the third trimester only growth charts in section 3.2 where
21/31 measurements had a linear growth pattern. In the extended GA range growth
charts most variables varied with GA, however, the IFA and FMA appeared relatively
stable across GA which contrasts with the four measures that were stable in the third
trimester, i.e. IFA, FMA, CBA1, and ChoH. A selection of plots with the mean bestfit
regression equations are shown in Fig. 12 and the full range of plots, along with dataset
demographics and sample charateristics, are publicly available for research purposes
online at the 3D fetal craniofacial atlas KCL repository &.

4 Discussion

This work proposed the first comprehensive craniofacial biometry protocol and auto-
mated measurement pipeline for 3D T2w fetal MRI. We began with an extensive
literature review which supported the selection of 31 biometric measurements, 29 being
unique (i.e. non-bilateral), to characterise craniofacial development. The anatomical
landmarks, related to the biometrics, were defined within a 3D population-averaged
fetal head MRI atlas space and included 35 landmark points and corresponding math-
ematical 3D vector formulae for the measures. Next, we developed a pipeline for
automated biometry, based on the registration of the atlas to the individual subject
space and label propagation. The biometry protocol and automated pipeline were
evaluated on a T21 cohort and a GA-matched healthy control cohort with a mix-
ture of MRI acquisition protocols. This included a qualitative assessment of 132 cases
by visual inspection of landmark placement, which saw a low error rate of 0.03%.
The quantitative comparison included an analysis of differences between groups and
an assessment of intermethod variability comparing four expert observers (manual
method) and automated outputs.

This is the largest study of multiple prenatal craniofacial measurements in fetuses
with confirmed T21, and whilst the MANOVA comparison of biometrics revealed
statistically significant differences in many measurements (19/31), only 7 had strong
effect sizes (ASBL, HPL, VPL, OFD, MXL and NASO (p<0.001)). These variables
are all consistent with a shorter anteroposterior length of the skull and/or a smaller
maxillary area, related to mid-face hypoplasia, and the findings are consistent with

83D fetal head MRI atlas repository: https://gin.g-node.org/kcl_cdb/craniofacial fetal_mri_atlas
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Fig. 12: Selected growth charts for craniofacial biometry from 280 normal con-
trols (blue circles) during 2nd and 3rd trimesters. The quadratic or linear regression
equation for the 50th centile bestfit line is included on the chart (y = the mean mea-
surement of the variable under investigation, and GA is the selected gestational age).

ultrasound and postmortem findings in T21 fetal and neonatal cohorts [59, 74, 75].
Interestingly the NB measurement was not found to be significantly associated with
T21 in our study, which is in stark contrast to ultrasound nasal bone measurement
literature [12, 42]. This result is most likely due to the differing contrasts between the
two imaging modalities, with MRI T2 weighted sequences having a far poorer contrast
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resolution of bone compared to adjacent soft tissue, affecting visibility and precision
of measurements. There has been some promise of ’black bone’ imaging and, more
recently, zero TE MRI sequences development to examine fetal bone, however, there
are limited investigations related to craniofacial applications in fetal life [76-79]. The
centiles charts related to the 7 biometrics of interest in the ANOVA model gave a true
positive rate (sensitivity) of 71% that increased to 91% when all 31 variables were
included. In clinical practice, the assessment of the true negative rate (specificity) is
also important and not assessed here. It is highly likely that including more variables
with lower effect sizes, would increase sensitivity but also increase false positives and
thus reduce the specificity.

Our results indicated that the automated 3D landmark-based measurements were
within the variance range of expert manual calliper placement for measurements. Sys-
tematic differences were only notable for the mandibular width and this is likely related
to the manual measuring of an angular structure which requires precise slice alignment
in a 3D volume of non-standard image plane, which adds complexity compared to tra-
ditional 2D measurements. It is important to consider that without a reliable ground
truth measurement, the automated method produces the same results for the same
datasets, if repeated, however, there are always small differences for an individuals’
repeated measures and therefore automated biometry will reduce human random and
systematic error caused by differences in training, experience, environment, or fatigue.
Furthermore, one of the advantages of the proposed automated pipeline is that even
with manual verification (and minor refinement of landmarks) it allows significantly
faster and more consistent biometry, approximately 5 minutes, in comparison to the
classical manual approach that can take 25-35 minutes per case for all measurements.

Lastly, the publicly available 2nd and 3rd trimester normal biometry growth charts,
based on 280 normal control subjects from 19 to 39 weeks GA, could be used as a
reference for future research studies. This is a first step towards standardisation of
automated 3D MRI fetal craniofacial biometry for quantitative analysis that could
potentially allow efficient assessment of large cohorts.

Limitations and future work

In this paper, we focus on the variability and reliability of fetal MRI measurements
of our new baseline protocol with a first evaluation of the feasibility in a T21 cohort.
Despite, yielding novel and comprehensive results in this group, a deeper analysis will
be required for its application in clinical practice.

We conducted a detailed evaluation of autobiometry performance in the 3rd
trimester, however further optimisation 3D landmark localisation based on deep learn-
ing, rather than atlas registration, should improve the reliability of the results. This is
important to consider as the proposed method cannot exclude a landmark based on low
confidence as a human observer would. Incorporation of surface-derived information
could also ensure that the ”"upper/lower limit” measurements (e.g., skull OFD) will
correspond to true anatomical values [30]. Automated quality control, QC, of 3D T2w
image volumes and confidence in landmarks placement could be achieved based on
deep learning classification which would require a rigorous definition of a QC protocol.
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Martins et.al (2014), suggests cut off values for the limits of agreement (i.e. random
errors) in measurement variability studies and their suitability for research or clinical
use as +/- <5% to 10% is considered good or very good for clinical precision. However,
any variability of 20-50% may still be useful for research but should be used with
caution in clinical practice [73]. In our case there were large random errors observed
in the manual measurements of more than 20% for nine variables and therefore any
future work should exhibit caution and investigate error reduction.

Additional sources of error include the MRI scanner field strength which may
impact spatial resolution, contrast resolution and the presence of artefacts. In our
data, we found statistically significant differences in variability between 1.5T and 3T
autobiometry. Image quality is very likely a factor that resulted in this difference with
the image contrast of the lower face noted qualitatively to be a factor of variability,
especially in the choanal and nasopharyngeal regions. Our analysis controlled for GA,
however there are other factors that may have also contributed to differences in the
automated biometry including the impact of fetal sex or ethnicity which may all
influence natural biological variation. Furthermore, taking into account the wide range
of values that naturally occur at a single GA stage, a thorough assessment of the impact
of biological parameter (sex, ethnicity), parental characteristics and normalisation of
results to individual fetal anatomical size via measurement indexes require further
investigation.

Our constructed growth charts spanning the 2nd and 3rd trimester of pregnancy
also offers opportunities for detailed characterisation of fetal craniofacial features in
future clinical studies. This, together with investigation of the growth trends in longi-
tudinal datasets could potentially help with development of patient-specific approach
for evaluation of high risk cases. Evaluating the clinical utility of faciliting diagnoses
particularly in syndromic cases is a route of future investigation. A wider range of
confirmed craniofacial structural anomalies or genetic and syndromic cases with a
known craniofacial phenotypes could help to understand which selection biometrics
are reliable for characterisation. Assessing the facial phenotype in the newborn can
be made by expert geneticists and supportive imaging results that support selection
of additional diagnostic tests could be an outcome. This might also require an exten-
sion of the proposed biometry protocol with additional measurements related to the
extended landmarking protocol we have provided publicly. Indeed, our MRI 3D volume
landmarking protocol offers opportunities to expand on the choice of traditional biom-
etry, to further characterise the complex craniofacial region with 3D landmark based
geometric morphometry studies or statistical shape modelling to assist diagnostic
prediction, as an emerging method in clinical practice (ref). ¥***

A clinical dilemma when counselling parents includes assessing the severity of
expression of the T21 phenotype, thus with advances in early volumetric imaging
assessment of the fetal and neonatal brain and further understanding of the mor-
phological covariation with craniofacial characteristics, future research could begin to
explore these questions [80].
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5 Conclusions

This study presents the first comprehensive craniofacial biometry protocol and auto-
mated measurement pipeline for 3D T2w fetal MRI, identifying 31 key biometric
measurements, and defining corresponding landmarks in a 3D fetal head MRI atlas.
An automated biometry pipeline was developed and validated with a T21 cohort
and GA-matched controls, showing comparable accuracy to manual methods. Signifi-
cant differences in craniofacial measurements were found in T21 fetuses, particularly
highly sensitive biometrics indicating mid-face hypoplasia, a feature consistent with
the T21 phenotype. The automated method reduces human error and speeds up mea-
surements significantly, although further optimisation, especially using deep learning,
is needed for clinical practice. Future work may include evaluation across earlier GA
ranges and addressing potential sources of error like MRI image quality and cranio-
facial specific sequences at different field strengths. In addition, a focus on reducing
measurement variability and exploring additional diagnostic biometrics, with growth
charts and longitudinal datasets will offer a potential for personalised evaluation in
high-risk cases.
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Table B3: Table of number of subjects (n), mean measurement, and standard devi-
ation (SD) - stratified by healthy control and T21 groups

T21 (mean GA: 32.48) | Control (mean GA: 31.88)

Biometry ID | Biometry name, (unit) | n Mean SD n Mean SD

1 ASBL, (mm) 24 | 34.45 2.20 108 | 36.76 2.13
2 PSBL, (mm) 24 | 24.10 1.40 108 | 24.77 1.45

3 HPL, (mm) 24 | 24.69 2.10 108 | 26.02 1.85

4 VPL, (mm) 24 | 38.21 2.82 108 | 40.22 2.53
5 PAW, (mm) 24 | 24.76 1.71 108 | 24.88 1.72

6 Cho_r, (mm) 24 | 5.04 0.46 108 | 5.40 0.50
7 Cho_l, (mm) 24 | 5.68 0.45 108 | 5.94 0.53
8 NPW, (mm) 24 | 9.29 0.95 108 | 9.87 1.08
9 NB, (mm) 24 | 7.92 0.74 108 | 7.41 0.69
10 PNTh, (mm) 24 | 7.81 121 108 | 7.14 | 0.88
11 OFD, (mm) 24 | 97.82 5.41 108 | 101.05 | 6.34
12 BPD, (mm) 24 | 84.43 4.17 108 | 83.38 5.43
13 MCh, (mm) 24 | 79.80 4.13 108 | 80.36 4.26
14 OD_R, (mm) 24 | 17.18 0.88 108 | 17.35 0.98
15 OD_L, (mm) 24 | 17.53 0.99 108 | 17.80 1.07
16 10D, (mm) 24 | 1548 1.14 108 | 15.91 1.18
17 BOD, (mm) 24 | 49.95 2.64 108 | 50.64 2.77
18 MxW, (mm) 24 | 23.90 1.62 108 | 24.25 1.67
19 MdW, (mm) 24 | 30.42 1.86 108 | 30.89 2.26
20 CBAL, ( 0 ) 24 | 131.20 | 3.76 108 | 129.27 | 4.31

21 CBA2, ( 0 ) 24 | 116.89 | 5.72 108 | 115.39 | 7.50
22 FMA, ( 0 ) 24 | 116.28 | 4.56 108 | 114.04 | 4.99
23 MNMA, ( 0 ) 24 | 17.66 2.19 108 | 17.91 2.27
24 TFA, (7)) 24 | 55.16 5.22 108 | 48.97 4.95

25 PAH, (mm) 24 | 3.28 0.63 108 | 3.00 0.58
26 ChoH, (mm) 24 | 3.30 0.54 108 | 3.22 0.59
27 MXL, (mm) 24 | 24.99 1.95 108 | 26.23 1.80
28 MDL, (mm) 24 | 19.02 1.68 108 | 19.27 1.53
29 NASO, (mm?) 24 | 58.42 7.18 108 | 63.88 9.37
30 ORO, (mm?) 24 | 181.41 | 32.81 108 | 173.97 | 33.06
31 HC, (mm) 24 | 289.62 | 14.46 108 | 296.01 18.20
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Table B4: Summary of included datasets for the 3rd trimester T21 and age-matched
control cohorts, by GA, MRI protocol, fetal sex and ethnicity

T21 Control Total
count
all, n
Gestational age Range 29.86 - 35.71 29.00 - 36.00 -
Mean (SD) 32.48 (1.85) 31.88 (2.01) -
15T / 80ms 1(16.6) 34 (31.5) 38
3T / 180ms 17 (70.8 25 (23.1 42
MRI Protocol, n (%) | 47 ; 250ms 3 ((g.l) : 49 §45.4§ 52
MRI protocol | 24(100) 108 (100) 132
total, n (%)
Female 10 (41.7) 53 (49.1) 63
Male 10 (41.7 54 (50.0 64
Fetal Sex, n (%) Unknown 4 (EE.4) ) 1 (é.g) : 5
Fetal sex total,n | 24 (100) 108 (100) 132
(%)
Asian 1(42) 10 (9.3) 11
Black 1(4.2) 4 (3.7) 5
.. Other 0 (0 3 (2.8 3
Ethnicity, n (%) Unknown 21((337.5) 5 54.6; 26
White 1(4.2) 86 (79.6) 87
Ethnicity total, n | 24 (100) 108 (100) 132
(%)
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