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Abstract

Background: Offspring of parent(s) with age-related macular degeneration (AMD) have a 45% lifetime risk of
developing the disease. High foveal macular pigment optical density (MPOD) is protective, whereas individuals with
a “foveal macular pigment dip” (FMPD) are at increased risk. Shortage of the dietary carotenoids lutein, zeaxanthin
as well as fish consumption are reported AMD risk factors. This Early Biomarkers of AMD (EBAMD) study evaluates
serum factors that protect foveal MPOD architecture in Caucasian offspring of parent(s) with AMD.

Methods: N =130 subjects [mean (SD) age 62.8 (8.6) years; 36/94 male/female] were recruited from Scripps Health/
Scripps Memorial Hospital/ Scripps Mericos Eye Institute between 2012 and 2017. Macula pigment 3D topography
was evaluated using specular reflectance. Buccal genetic cheek swab, circulating serum dietary carotenoids and
long-term RBC omega-3 fatty acid status, as well as common secondary clinical structural and vision function
parameters were obtained.

Results: 41 % of offspring of AMD parent(s) presented with FMPD. These offspring were about 4 years younger
than those without FMPD (controls; P=0.012) and had thinner foveas (P=0.010). There were no differences in
gender, BMI, % body fat, visual acuity or contrast sensitivity between those with and without FMPD. % RBC
membrane docosahexaenoic acid (DHA) was reduced in FMPD offspring vs. control offspring (P =0.04). The Omega-
3 Index was significantly decreased in the FMPD group (P=0.03).

Conclusions: The percentage of FMPD in AMD offspring is nearly twice that reported for the general population in
the scientific literature. Offspring presenting FMPD had similar AMD genetic risk, but significantly reduced % RBC
membrane omega-3 fatty acids and thinner foveas compared with those without FMPD. Our data supports the
importance of ‘essential fatty’ acids as an independent AMD risk factor.

Keywords: Macular pigment (MP), Macular pigment optical density (MPOD), Foveal macular pigment dip (FMPD),
Lutein, Zeaxanthin, Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), Omega-3 index
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Background

Age related macular degeneration (AMD) causes pro-
gressive loss of vision in older adults [1] and is respon-
sible for significant visual impairment in the United
States [2]. Genetic studies show hereditary susceptibility
to developing AMD [3-5], whereby monozygotic twin
studies have identified an increased risk for developing
AMD in individuals whose identical twin has AMD even
when environmental factors are not shared [6]. Other
studies support this shared genetic predisposition for
AMD among siblings and twins [7, 8].

Human macular pigment consists of the two dietary
xanthophyll carotenoids, lutein and zeaxanthin, as well
as lutein’s metabolite meso-zeaxanthin [9, 10]. Reduced
central macular pigment optical density (MPOD) is
often associated with major AMD risks including in-
creased age, family history, smoking [11], female gender
[12], light iris color [13], and inflammatory conditions
such as diabetes [14]. Healthy appearing retinas without
AMD but predisposed to the disease due to advance
AMD in the fellow eye, presented significantly less
MPOD than aged-matched controls [10]. Although
MPOD was not measured in the Age-related Eye Disease
Study II (AREDS II), repletion of lutein and zeaxanthin
in high risk AMD patients was associated with a 26%
AMD risk reduction in the low dietary carotenoid intake
group, suggesting a causal role within a recent review of
macular pigment [15]. In addition, macular pigment
architecture most commonly declines exponentially from
the foveolar [16-18]. Atypical MPOD spatial profiles
have been observed in approximately 20% of subjects
containing a secondary pigment peak/ring [19-22] or
central dip [23-25] here collectively termed the “foveal
macular pigment dip” (FMPD). Increased prevalence of
atypical central dip profiles is a further risk factor for
AMD, and has been associated with age [24], smoking
[24], certain ethnicities [25], and intake of dietary carot-
enoids [26].

AMD risk variants in the complement system point to
the important role of the immune response and inflam-
mation in the pathogenesis of AMD [27]. An established
dietary risk factor for the development of AMD is
omega-3 fatty acid intake, with emerging emphasis upon
the docosahexaenoic (DHA) fraction [28-30]. A system-
atic literature review determined that dietary omega-3
fatty acids are associated with lower risk for developing
AMD [31]. It is thought that higher fish intake is associ-
ated with lower risk for developing AMD, in part be-
cause of its high concentrations of DHA [32].
Furthermore, DHA accounts for approximately 50% of
the polyunsaturated fatty acids (PUFAs) of cell mem-
branes in the central nervous system with the highest
concentrations within photoreceptor outer segments and
synapses [33].
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The primary aim of the early biomarkers of AMD
study (EBAMD) is to investigate the prevalence of
EMPD amongst healthy but high-risk AMD offspring.
Secondly, EBAMD evaluates its association with genetic
risk, carotenoid and omega-3 fatty acid status, and other
subclinical biomarkers.

Methods

Recruitment

Informed consent following the tenets of the Declaration
of Helsinki were obtained from a staggered recruitment
registry of n =140 non-smoking offspring of AMD par-
ent(s) in the well-educated, well nourished, active and
affluent Caucasian population of La Jolla, CA. The 5-
year study commenced on 01/01/2012 following Scripps
Health IRB approval (11-5677). Subjects were recruited
from Scripps Health/ Scripps Memorial Hospital/
Scripps Mericos Eye Institute. Individuals interested in
participating in the study were asked to participate in a
free screening visit/eye exam conducted by the study
physician (SGP). Subjects meeting all inclusion criteria
after the screening visit were asked to participate in the
study and scheduled for their study visit.

Inclusion criteria

1) Age >40years; 2) no history of cigarette smoking; 3)
No visible AMD pathology defined by AREDS [34] or
confounding ocular/ systemic disease; 4) Mother and/or
father with AMD diagnosed by an ophthalmologist. 5)
Patients were free of other ocular and systemic diseases
that could affect MPOD, ocular structure and visual
function as determined by an ophthalmologist (SGP).

MPOD and dermal carotenoids

Objective 3D Specular reflectance MPOD topography of
peak and integrated volume were determined by the
method of specular reflectance using an ARIS (Auto-
mated Retinal Imaging System, Visual Pathways, Inc.,
Prescott, AZ) [35]. The measurement involves capturing
a specular reflectance single wavelength 500 nm image,
through a dilated pupil at 2 retinal locations: the fovea
having maximum MPOD and a peripheral retinal loca-
tion where MPOD is minimal. Peak subjective hetero-
chromic flicker photometric 1-degree MPOD using
QuantifEye® (ZeaVision, Chesterfield, MO) was also
acquired.

The ARIS Macurate™ Macular Pigment software mod-
ule displays the 7-degree color coded 3D in vivo repre-
sentation of MPOD architecture, quantifying the 1-
degree peak, 2-degree peak and volume of retinal foveal
carotenoid pigmentation using single wavelength auto-
reflectance [36-38] (Fig. 1). Unidentifiable images were
removed from the data set, # =10 (BH). We defined the
MPOD spatial profile as a central dip if visually present
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Fig. 1 Baseline ARIS specular reflectance images showing the macula pigment foveal dip phenomenon in subject #22, female, age 61. The OD
image shows a foveal macular pigment dip (FMPD) while OS shows a normal macula pigment distribution
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and at least one coefficient of repeatability (CoR; i.e., the
average within-subject SD) below the MPOD measure-
ment at 2 degrees). The CoR of the ARIS was found to
be 0.17 density units (du) following repeated MPOD
measurements in 11 volunteers.

Peak subjective heterochromic flicker photometric
MPOD at 1 degree was also determined using the Quan-
tifEye® (ZeaVision, Chesterfield, MO) instrument. Palm
skin carotenoids, a measure of systemic carotenoid in-
take, was determined using the resonant Raman spectro-
scopic BioPhotonic® Scanner (Pharmanex, Inc., Provo,
UT) [39].

Foveal retinal thickness, visual acuity and contrast
sensitivity

Spectral domain optical coherence tomography (SD-
OCT) scans, for foveal retinal thickness (cRT) through
dilated pupils, was accomplished with the Topcon Spec-
tral Domain 100 (Oakland, NJ) in a subset (n=72) of
offspring. Snellen visual acuity through best spectacle
correction was recorded and converted to decimal for-
mat. Photopic contrast sensitivity at 5 spatial frequencies
was evaluated using a Stereo Optical Functional Vision

Analyzer (Stereo Optical, Chicago, IL, USA) and the
Area Under Curve (AUC) calculated as described in our
previous studies [36, 40].

Serum carotenoids, RBC omega-3 fatty acids and
Spectracell®

Serum carotenoids (lutein and zeaxanthin) from 126 par-
ticipants were determined by Pennington Biomedical Re-
search Center (www.pbrc.edu). Volunteers were grouped
according to low (< 2.9 pg/dL) or high serum Z (2.9 pg/
dL) since the HPLC column used to measure Z was not
sensitive to values lower than 2.9 pg/dL. The HS-Omega-3
Index by OmegaQuant (developed by True Health Diag-
nostics, Frisco, TX) was used to determine the red blood
cell content of the following fatty acids: Omega-3 Total,
Alpha-Linolenic Acid (ALA), Docosapentaenoic (DPA),
Eicosapentaenoic (EPA), Docosahexaenoic (DHA), HS-
Omega-3 Index (RBC EPA + DHA), Omega-6 Total, Ara-
chidonic (AA), Linoleic (LA), Cis-Monounsaturated Total,
Saturated Total, and Trans-Fat Index. SpectraCell® La-
boratories (Houston, TX; www.spectracell.com) testing
was ascertained to gauge further insight with respect to
nutrient factors affecting the RBC omega-3 results [41].
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Genetics

A subgroup of participants (7 =99) were buccal cheek-
swabbed, segregated into 5 risk categories and categorized
for total risk & lifetime risk using a 5 genotype CFH, C3,
ARMS2 & MT-ND2 8 SNP DNA array (www.njlabs.com)
[42]. We also evaluated the SNP (single nucleotide poly-
morphisms) methylenetetrahydrofolate reductase (MTHF
R) C677T and A1298C for folic acid, because of their po-
tential synergistic relationship to DHA status [43].

Statistics

All statistical analyses were performed in SPSS version
25.0 for Windows (SPSS, Inc., Chicago, IL). Independent
Student’s t-tests analyzed the differences between the
MPOD spatial profile groups (with and without foveal
dip) and those with or without measurable carotenoids in
the serum, whereas an ANCOVA was used to correct for
age where appropriate. Kolmogorov-Smirnov tests re-
vealed a significant deviation from a normal distribution
for all variables except age, % body fat, MPOD, cRT, con-
trast (not contact) sensitivity, DHA, Omega-3 index, skin
carotenoids, zinc, homocysteine, HDL cholesterol, HDL
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2b and COQ10. The Pearson x2 test and Mann-Whitney
U test assessed any difference between categories and
groups that showed an abnormal distribution. Preliminary
analysis ensured no violation of assumptions of normality,
or high correlation between the independent variables. Bi-
nomial logistic regression ascertained the effects of MPOD
peak and volume, EPA, DHA, and Omega-3 index against
EMPD presence. We also applied the binomial logistic re-
gression analysis to further ascertain the effects of Holman
Omega-3 Index modifiers: COQ10, anti-inflammatory
Spectracell® (Houston, TX) serum calcitriol 1, 25 OH Vita-
min D3 white blood cell (WBC) activity, total high-density
lipoprotein (HDL), HDL 2b, hs-CRP, and LP(a) against
EMPD presence. Statistical significance was accepted at
the 95% confidence level (P < 0.05).

Results

Demographic, genetic, macular, and skin carotenoid
pigmentation

Table 1 displays characteristics of the offspring of AMD
patients with and without a FMPD. Population peak
MPOD significantly decreased with age (Spearman’s rho

Table 1 EBAMD Subject characteristics: FMPD (Foveal Macular Pigment Dip) versus No Dip (corrected for age). Mean + SD data is
presented unless otherwise stated. Statistical significance is presented in bold

Variable Total MPOD spatial profile: MPOD spatial profile: P
FMPD No Dip
Offspring subjects (%) 130 (100%) 53 (41%) 77 (59%)
Age (years) 62.8+86 60.6+ 80 644+87 0.012
Gender 36 (28%): 11 (21%): 25 (32%): 0.14
Male: Female (%) 94 (72%) 42 (79%) 52 (68%)
% Body Fat (bioelectric impedance) 326+78 326+77 325+80 092
Body Mass Index (kg/mz) 254+48 254+53 255+45 0.49
ARIS MP Peak (du) 0.80£0.21 0.85+0.20 0.77 £0.21 0.39
ARIS MP Volume 3963+ 1222 4310+ 1156 3723+£1217 0.10
Central retinal thickness (um) (n=72) 238+210 232+178 243+ 222 0.010
Visual acuity (converted to decimals) 092+0.22 091+0.22 093 +£0.21 0.61
Contrast sensitivity (AUC) 362 + 109 362+ 104 361114 0.94
DHA (%) 494 +142 462+136 515+£142 0.040
EPA (%) 1.07 £ 0.68 092 +£0.559 1.16 £0.744 0.10
HS-n3 index (%) 6.03+1.99 555+ 1.80 6.34+2.05 0.029
Serum L (ug/dL) 248+ 157 23.7+13.1 256+173 0.98
Serum Z (ug/dL) 6.89+6.12 6.34+541 7.28 £6.59 034
L: Z ratio 445+ 184 4.75+220 424+152 0.31
Skin carotenoids 34,525+13970 33,528+ 14,331 35,225+ 13,766 0.50

Folic acid mutations
Negative: Heterozygous: Homozygous
Cc677T
Al298C

57 (46%): 47 (38%): 20 (16%)
45 (36%): 57 (46%): 22 (18%)

26 (52%): 18 (36%): 6 (12%)
16 (32%): 23 (46%): 11 (22%)

31 (42%): 29 (39%): 14 (19%) 044
29 (39%): 34 (469%): 11 (15%) 0.53

Du Density units, AUC Area under the curve, MPOD Macular pigment optical density, FMPD Foveal macular pigment dip, MP Macular pigment, DHA
Docosahexaenoic acid, EPA Eicosapentaenoic acid, Serum L Serum Lutein, Serum Z Serum Zeaxanthin
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re (128)=-0.519, P<0.0001) as did MPOD volume
(Spearman’s rho ry (127) = — 0.524, P < 0.0001), indicating
27% of the variance in both parameters was explained by
age. There was no significant relationship between cen-
tral 1-degree foveal MP and the MP distribution inte-
grated area, using either specular reflectance or
QuantifEye® heterochromic flicker photometry.

FMPD was common in AMD offspring as n =53 (41%
of offspring) presented this phenomenon. 62% (n =20)
displayed the phenomenon in one eye and 38% (n = 33)
displayed a foveal dip in both retinas, with no gender,
BMI or %-age body fat effect. Paradoxically, younger age
was significantly associated with an FMPD central dip
(P=0.012), and FMPD offspring also had denser average
bi-retinal peak MPOD (0.85+ 0.20 du), compared with
those without FMPD (0.77 + 0.21 du). This difference,
however, was not significant after correction for age (F
(1, 125)=0.757, P=0.39, n,> = 0.006). FMPD offspring
also had denser average bi-retinal MPOD volume
(4310 £ 1156 du) compared to those without FMPD
(3723 £ 1217 du), however once again corrected for age,
this seemingly compensatory increase in non-foveal ret-
inal pigmentation was non-significant (F (1, 124) = 2.84,
P =0.095, n,” = 0.022).

A comprehensive ophthalmological evaluation was
completed on all patients by the same examiner (SGP)
revealing no clinically significant drusen or retinal pig-
ment epithelium changes. All patients had a best cor-
rected vision of 20/25 or better in both eyes. SD-OCT
structural data was determined on a population subset
(n=72). After correcting for age, central retinal thick-
ness at the fovea (cRT) was thinner where FMPD was
observed (232 +17.8 um), versus without a MPOD dip
(243 £22.2 um; F (1,69) =7.09, P=0.01). Neither visual
acuity nor contrast sensitivity discriminated between the
two offspring groups (n=130, P=0.61 and P=0.94;
Table 1).

Population skin carotenoids scores, a surrogate meas-
ure of systemic carotenoids, were 34,525 + 13,970 with
no correlation to age (Pearson r=0.12; P=0.18). Skin
carotenoids were lower in those with a FMPD (33,528 +
14,331 units) versus those without (35,225 + 13,766 units)
but not statistically significant (P = 0.50). Serum L, Z and
the L:Z ratio are shown in Table 1. Although not signifi-
cant, serum L and Z were both decreased and the L:Z
ratio was increased when a FMPD was present, com-
pared to those without a central dip (P = 0.31).

A Chi-square test for independence was performed to
investigate the relationship between FMPD and 5 prom-
inent DNA risk categories. Risk categories 1 and 2 to 4
were compared to prevent violation of the frequency as-
sumption (count > 10), as categories 3 and 5 were infre-
quent. The proportion of participants showing an FMPD
and higher risk genetic scores did not significantly differ
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from those without a dip [x2(1) =0.029, P=0.87].
MTHER SNPs C677T and A1298C showed no signifi-
cant difference in those presenting with FMPD com-
pared to controls (P=0.44 and P=0.53, respectively)
(Table 1).

Omega-3 index, DHA, and EPA

The RBC omega-3 fatty acid status was different in
FMPD offspring versus those without a central dip
(Table 1). RBC content of docosahexaenoic acid (DHA)
was reduced in FMPD offspring vs. controls [4.62%
(1.36%) vs. 5.15% (1.42%); P =0.04]. RBC Eicosapenta-
enoic acid (EPA) also trended lower in FMPD subjects
vs. controls [0.92% (0.56%) vs. 1.16% (0.74%); P =0.10],
although not significantly. However, the Omega-3 Index
(RBC EPA + DHA) was significantly decreased in FMPD
offspring [5.55% (1.80%) vs. 6.34% (2.05%); P = 0.03].

Predictors of MPOD foveal dip status

A binomial logistic regression was performed to ascer-
tain the effects of MPOD peak and volume, EPA, DHA,
Omega-3 index on the likelihood of offspring having a
EMPD. The logistic regression model was statistically
significant [x2(5) =11.81, P=0.038]. The model ex-
plained 12.8% (Nagelkerke R?) of the variance in FMPD
and correctly classified 68% of cases. Specificity of our
model was 86% with a positive predictive value of 67%.
We applied the binomial regression analysis to further
ascertain the effects of Holman Omega-3 index modi-
fiers: CoQ10, anti-inflammatory Spectracell® (Houston,
TX) serum calcitriol 1, 25 OH Vitamin D3 white blood
cell (WBC) activity, Total High-density lipoprotein
(HDL), HDL 2b, hs-CRP, and LP(a) on the likelihood
that participants presented with a FMPD. The logistic
regression model was highly suggestive, but not statisti-
cally significant [x2(6) =11.952, P = 0.063].

Serum zeaxanthin

40% of subjects presented with low serum Z levels (<
29 pg/dL). FMPD offspring exhibiting low serum Z
(44%) did not statistically differ compared to controls
(37%; P =0.49). We further investigated the effect of low
serum Z on all our serum nutritional biomarkers be-
cause of zeaxanthin’s central foveola location. Independ-
ent t-tests and Mann-Whitney U test results are shown
in Table 2. Those subjects with low serum Z showed sig-
nificantly higher contrast sensitivity (P =0.049), but sig-
nificantly decreased RBC DHA (P =0.00034) and EPA
(P=0.041), decreased RBC Omega 3 (P=0.0025), de-
creased RBC Omega-3 index (P=0.0011), increased
Spectracell (1,25 hydroxy-vitamin D) calcitriol anti-
inflammatory activity (P=0.037), fewer HDL 2b mole-
cules (P=0.018) and increased Chromium (P =0.014)
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Table 2 Independent t-test and non-parametric Mann-Whitney' test analyses of differences in nutritional biomarkers for those presenting
low (< 2.9 pg/dL) versus high (= 2.9 ug/dL) serum zeaxanthin. Mean + SD data is presented. Statistical significance is presented in bold

Variable Serum Z (< 2.9 pg/dL) Serum Z (>2.9 pg/dL) P
Offspring subjects (%) 50 (40%) 76 (60%)
Age (years) 614+9.1 63.7+83 0.15
% Body Fat measurement 33.0+£85 322+75 0.62
Body Mass Index (kg/m?) 265+58 247+ 4.1 011"
ARIS MP Peak (du) 0.80£0.22 0.81+0.20 0.95
ARIS MP Volume 3949+ 1310 4005+ 1162 0.81
Central retinal thickness (um) (n =68) 239+22 237+19 0.82
Visual acuity (decimals) 091+£0.22 092+022 077"
Contrast sensitivity (AUC) 383+ 100 344+ 113 0.049
DHA (%) 436+ 135 531137 0.00034
EPA (%) 0.92+0.58 1.17+0.74 0.041%
HS-n3 index 530+ 184 6.52+1.99 0.0011
Skin carotenoids 33,132+12,334 35,763 + 14,896 0.31
Homocysteine (Lmol/L) 97+26 99+25 0.71
Zinc 407 +6.7 41.8+5.1 0303
Copper 520+53 520453 091"
Vitamin
B1 912+82 926+79 039"
B3 92061 92469 072"
B6 630£72 655+56 0.079"
B9 (folate) 4054 £5.1 4145+62 019"
B12 188+39 186+45 087"
D3 (1,25 WBC Calcitriol Activity) 649+108 61.878+89 0.037%
Omega 3 81422 95+24 0.0025"
Insulin (ulU/mL) 469+82 466+ 80 081"
Chromium 468 +4.7 448+5.1 0.014"
HDL cholesterol (nmol/L) 643+153 708+ 195 0.0556
Total HDL Particles (nmol/L) 8674+ 1016 8379+ 1408 0.099"
HDL 2b (nmol/L) 2393 + 642 2701 +714 0.0182
hs-CRP (mg/L) 178 £2.11 205+ 2.74 0.64"
coQ1o 9124423 909+4.15 0.71
LP(a) (mg/dL) 199 £ 241 302+£416 0.34"

Serum Z Serum Zeaxanthin, MP Macular Pigment, DHA Docosahexaenoic acid, EPA Eicosapentaenoic acid, HDL High-density lipoprotein, hs-CRP High Sensitivity C-

Reactive Protein, LP Lipoprotein

*signifies that a Man-Whitney test was used to obtain the corresponding p-value

compared to subjects whose serum zeaxanthin was
>2.9 ug/dL.

Discussion

EBAMD is a preventative medicine analysis of genetic,
nutritional and subclinical risk factors for developing
AMD, given a parental AMD history [32]. MPOD dip
prevalence in at least one eye of the offspring of AMD
parent(s) was surprisingly high at 41%, double that re-
ported within the general Caucasian population [23, 25,

32]. This was unexpected since our population already
excluded offspring more likely to have atypical profiles
(i.e. foveal macula pigment dip) such as non-Caucasians
with larger concentrations of skin pigments [25, 44, 45]
smokers [17] and diseased retinas (AMD patients) [22].
Consistent with the MPOD literature [10, 46, 47], we
found significantly decreased MPOD with age. AMD
genetic risk test failed to reflect a difference, suggesting
that additional SNPs, multiple systemic alleles or envir-
onmental epigenetic modulators might be at work. It
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was surprising that FMPDs were more often unilateral
suggesting the possibility of sampling variation or meas-
urement error. Commonly, right and left retinas are
more symmetrical in MPOD levels and spatial profiles
[48, 49]. However, such asymmetry has been found in
older population [50], history of central serous choriore-
tinopathy [51], and Starghardt’s disease [52].

EBAMD results agree with null genetic results from a
similarly aged cohort evaluating SD-OCT retinal structure
in pre-clinical AMD, against 17 SNP biomarkers [53]. The
authors stated, “No consistent changes were observed in
retinal structure at multiple locations that are associated
with pre-clinical AMD, based on AMD genetic risk or
with aging” [53], although neither macular pigment nor its
foveal architecture were evaluated in this study.

In EBAMD, offspring of an AMD parent(s) presenting
with a FMPD showed significantly reduced RBC serum
concentrations of DHA compared to those without an
EMPD. This was independent of other known FMPD
risk factors in multivariate analysis, as well as general
population risk factors. This seminal finding suggests
that a low DHA concentration may play an age-
independent role in the pathophysiology and hence vul-
nerability for AMD, in the offspring of an AMD par-
ent(s). Indeed, offspring with FMPD were some 4 years
younger, in agreement with authors who have found an
increase in the RBC Omega-3 Index with age [54]. Our
results reveal that offspring of an AMD parent(s), with-
out any visible clinical signs of AMD, show an average
yet insufficient Omega-3 Index [55]. It is possible that
higher DHA may be required for the eye to mitigate ret-
inal FMPD.

Although not statistically significant, FMPDs were as-
sociated with a higher L:Z ratio. It is known that in com-
bination with the macular distribution of the 2 dietary
xanthophylls (foveal zeaxanthin and parafoveal lutein),
increased plasma zeaxanthin is significantly associated
with reduced risk of AMD [56]. Indeed, it has been re-
cently demonstrated that high dose (8 mg) zeaxanthin
supplementation augments (‘normalizes’) both central
MPOD and foveal visual scotomas in subjects presenting
with atypical FMPD spatial profiles [40, 57, 58]. How-
ever, similar to Zeimer et al. [59], our data also suggests
that the increased L:Z ratio does not create the FMPD
but potentially amplifies it, which supports the hypoth-
esis that lower serum Z (or higher L:Z ratio) only par-
tially explains the presence of FMPD.

FMPD offspring exhibiting low (< 2.9 ug/dL) serum Z
did not statistically differ compared to controls, however
offspring of AMD patients presenting with low serum Z
levels (~40%) had a significantly lower omega-3 index
and significantly lower levels of DHA and HDL 2b. This
suggests an important interaction between omega-3 fatty
acids, lipoproteins and carotenoids such as zeaxanthin.
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It has been shown that DHA increases macular pigment
in the central region, where zeaxanthin is the most
prominent [60]. Furthermore, in a randomized, con-
trolled trial, Johnson et al. [60] found that DHA facili-
tated accumulation of the carotenoid lutein in the blood
and the macula, and that some of these effects may be
due to alterations in lipoprotein profile by DHA. More
work should be completed to study the possible inter-
action between omega-3 fatty acids, carotenoids and
lipoproteins.

EBAMD also finds significant association between
MPOD spatial profiles and central retinal thickness with
individuals presenting with FMPD having thinner foveas.
In Caucasians, a thicker central retina has been associ-
ated with significantly higher MPOD levels [61, 62],
however, this was not evident from other reports [20,
21]. Studies have shown a significantly thinner central
retina and wider foveas of healthy non-white patients
compared to Caucasians [63—65]. Similar to heightened
central dip prevalence, thinner retinas appear more com-
parable to ethnic populations that are known for in-
creased prevalence of AMD [44, 45]. The relationship
between the central- dip and AMD is still unclear be-
cause the mechanism of the formation of the central-dip
is unclear. Mueller cells at the fovea contain macular
pigment, and in many cases, the central dip is produced
by the damage to Mueller cell cones induced by vitreous
traction [66—68]. Furthermore, it is unknown whether
the damage in Mueller cells, and not diminished pig-
ment, becomes the risk factor for AMD development.
The theme must be investigated further.

EBAMD design, strengths, and limitations

A major limitation of this study is the lack of a control
group of children who do not have a parent with AMD,
as well as reliance on previous publications in which dif-
ferent instruments were used to measure macular pig-
ment [19-22]. The issue of standardization using a
newly introduced metric called MPOV (Macular Pig-
ment Optical Volume), obtained by dual — wavelength
autofluorescence, should be a major advance in confirm-
ing our results [69].

The utility of spectral reflectance to measure and
visualize the foveal dip has been questioned and debated,
especially in older patients [70]. Specifically, the major
disadvantage of single-wave fundus reflectometry MPOD
determination is the requirement for normal lens and
retinal architecture [71]. Therefore, results may be unre-
liable in patients with advanced AMD or advanced cata-
racts. However, offspring with AMD and advanced
cataract were excluded in EBAMD, rendering this limita-
tion irrelevant or merely inconsequential.

There is a remote possibility that apparent MPOD fo-
veal dips reflect differential absorption by other features
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of the lens or ocular media and the method used to as-
sess MPOD (single wavelength autoflourescence) may
not adequately correct for such features. However, again
the patients in this study were relatively young, mitigat-
ing the confounding effects of lenticular or vitreoretinal
pathology. Secondly, our 3D determination of a central
MPOD dip in younger healthy offspring considered the
relative change between the center and 2 degrees eccen-
tricity, and the coefficient of repeatability was calculated
in order to account for specular reflectance measure-
ment variability.

Unlike heterochromatic flicker photometry (HEP), fun-
dus reflectometry is an objective method of measure-
ment and therefore may obtain MPOD estimates in
special needs populations [37]. It has also proven to be
repeatable and estimates of MPOD can be obtained in
short duration [37, 38, 72]. Other strengths include ob-
jective assessment of carotenoid and fatty acid bio-
markers instead of dietary questionnaires, and relatively
equally sized cohorts.

Conclusions

AMD offspring demonstrated non-protective macular
pigment topography, often low (< 2.9 ug/dL) zeaxanthin,
and significantly thinner foveas. Among all EBAMD fac-
tors and disease markers analyzed, % RBC membrane
DHA was the magnanimous factor significant among
41% of AMD offspring with FMPD. EBAMD omega-3
RBC index data, a measure of long term essential fatty
acid status, supports the importance of ‘essential fatty’
acids in AMD, and our contention that DHA is the pre-
dominant essential fatty acid.

Given the global AMD epidemic, Scripps EBAMD data
are of clinical interest since participants were all AMD
offspring lacking three of the major predisposing factors
attributable to the MPOD foveal dip phenomenon: ad-
vanced age, smoking and an AMD clinical diagnosis.
EBAMD data argues for further use of research and clin-
ical instrumentation to measure MPOD distribution in
AMD offspring, instead of peak MPOD screening, by the
traditional but nonetheless entirely subjective HEFP
measure.
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