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Abstract. We investigate how strategic behavior is affected by the set of notions (frames) used 

when thinking about the game. In our games, the action set consists of visual objects: each player 

must privately choose one, trying to match the counterpart’s choice. We propose a model where 

different player-types are aware of different attributes of the action set (hence, different frames). 

One of the novelties is an epistemic structure that allows players to think about new frames, after 

initial unawareness of some attributes. To test the model, our experimental design brings about 

multiple frames by varying subjects’ awareness of several attributes. 

 

 

 

 

KEYWORDS: unawareness, awareness, interactive epistemology, rationalizability, coordination. 

 

JEL Classification Numbers: C72, C91, D83. 

 

Acknowledgments: We are grateful to Ned Augenblick, Alberto Cardaci, Vince Crawford, 

Alexander Funcke, Einav Hart, Rosemarie Nagel, David Rojo Arjona, Burkhard Schipper, Bob 

Sugden, Emanuel Vespa, and three anonymous referees for their helpful comments. Also, we 

thank Michael Cooper for running the experimental sessions and for programming the zTree 

code used in the experiment. 

 

Contact:  Gary Charness, Department of Economics, University of California, Santa Barbara, 

California, 93106, charness@econ.ucsb.edu;  Alessandro Sontuoso, Smith Institute for Political 

Economy and Philosophy, Chapman University, One University Dr., Orange, California, 92866 

and Philosophy, Politics and Economics, University of Pennsylvania, 249 S. 36th St., 

Philadelphia, Pennsylvania, 19104, sontuoso@sas.upenn.edu.

mailto:charness@econ.ucsb.edu
mailto:sontuoso@sas.upenn.edu


1 
 

I.  Introduction 

Cognitive scientists define a “frame” as a bundle of information about the typical 

characteristics of a situation or problem. Frames are stored in individuals’ minds and provide 

default information with which to interpret and respond to events (Schank and Abelson, 1977). 

Similarly, artificial-intelligence pioneer Marvin Minsky (1975) codified frames so as to represent 

knowledge structures in the context of visual-reasoning and communication-processing problems: 

for instance, the correct interpretation of (and response to) a hand gesture depends on the agents’ 

understanding of the situation in which the gesture occurs.  Indeed, in many everyday interactions 

individuals face an implicit coordination puzzle, whose solution depends on the set of notions (i.e., 

the frames) they take into account when considering it.  Many such problems might seem trivial, 

since we often interact with people with whom we share a similar frame, to the point that one does 

not even notice that there was a coordination puzzle in the first place.  However, miscoordination 

may become evident when one interacts with people who see the problem through a different lens 

(think of the awkward confusion about greeting styles we sometimes experience in social settings).1 

The cognitive processes underlying everyday coordination problems might be thought of in 

this way: first, one “mentally frames” (i.e., describes) the problem on the basis of its perceived 

characteristics; then, one follows the solution that is naturally associated (i.e., comes to mind easily) 

with the relevant frame.  A key determinant of an individual’s behavior is therefore her perception 

of the problem’s characteristics.  Accordingly, in this paper we shall investigate – theoretically and 

experimentally – how choice behavior in abstract coordination games is affected by the individual’s 

perception and beliefs about others’ perception. 

In formal accounts of coordination problems (i.e., symmetric, simultaneous-move games 

with multiple pure-strategy Nash equilibria),2 the issue of singling out an optimal course of action 

has been a long-standing consideration, due to the non-uniqueness of possible solutions.  Relatedly, 

 
1 In the economics literature, the theory of the firm views coordination problems as one of two key organization hurdles 

(the other being the much more studied “agency problem”; Milgrom and Roberts, 1992).  It has been suggested that the 

coordination problem of organizations is inherently due to people’s cognitive limitations, in that individuals often lack a 

common understanding of the tasks they must integrate and coordinate upon (e.g., Heath and Staudenmayer, 2000).  

This line of research implies that individuals come to develop a different understanding of their tasks as a result of a 

different focus or background; different viewpoints may in turn entail different solutions to an identical or similar task 

(Arrow, 1974; Kreps, 1990; Okhuysen and Bechky, 2009; Kets and Sandroni, 2021). 
2 The class of coordination problems contains any situation in which there exist multiple ways players may “match” 

their behavior for mutual benefit. This class contains a broad and diverse array of interactions, including games with 

slightly conflicting interests and games with or without Pareto-rankable equilibria. In this paper, we consider “pure” 

coordination games (i.e., if players choose the same action, they each receive an identical positive payoff; otherwise, 

they each receive nothing), with such games featuring non-Pareto-rankable equilibria. 
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Thomas Schelling (1960) noted that the use of “situational cues” (i.e., characteristics or attributes of 

the problem) could help individuals converge on one solution; in fact, mutually-recognizable 

attributes often induce a frame in such a way to make a specific course of action come to mind 

readily. Here, we contribute to the analysis of frames by formalizing assumptions about attribute 

awareness, rationality and beliefs, and then by studying their behavioral implications in 

coordination problems. Below is an example. 

Consider a “matching game” where two players are presented with a set of options, from 

which each player must privately choose one with the goal of matching the counterpart’s choice.  In 

this case, a frame may be viewed as a player’s description of the options, based on the attributes she 

perceives and thinks about.3  For a schematic illustration, let’s suppose that player 𝑖’s action set in a 

matching game consists of three visual objects denoted {𝑎1, 𝑎2, 𝑎3}, with options 1, 2, and 3 

respectively representing a cyan triangle, a cyan diamond, and a lavender triangle.  Note that the 

conventional way of defining a game does not permit a qualitative characterization of the options to 

enter the formal description of the game. Still, as was first suggested by philosopher David Gauthier 

(1975), accounting for the characteristics of the options implies “restructuring” the action set (e.g., 

someone who thinks about the objects’ colors would distinguish actions according to their colors). 

Formally, the act of distinguishing between colored objects may be represented as the case 

where player 𝑖 partitions the action set so that each of the cells corresponds to an instance of the 

color attribute; that is, {{𝑎1, 𝑎2}, {𝑎3}}.  By contrast, a player who thinks about the different shapes 

would partition the action set so that each cell corresponds to an instance of the shape attribute; i.e., 

{{𝑎1, 𝑎3}, {𝑎2}}.  Generalizing – for any attribute 𝑘 – we say that 𝑘 induces a frame for player 𝑖, if 𝑖 

partitions the action set so that each cell corresponds to an instance of attribute 𝑘: when that occurs, 

we say that 𝑖 perceives and thinks about (“is aware of”) attribute 𝑘.  (For example, the partition 

{{𝑎2, 𝑎3}, {𝑎1}} indicates that player 𝑖 pays attention to some attribute with respect to which option 1 

happens to be distinct.)  Intuitively, players whose frames comprise several attributes will be aware 

of multiple ways to partition the action set. 

Below we propose and test a model articulating what it entails for players to be aware of 

alternative frames. We shall see that the introduction of frame-dependent “awareness types” 

 
3 For a real-world example, suppose that you are attending a conference out of town, and had previously agreed to meet 

a friend for a drink at the hotel’s bar at 9 pm. Once in the lobby, you realize that the hotel actually has three bars and 

your phone is out of battery. Under the assumption that each of you is indifferent about the meeting place and prefers 

having a drink together (rather than a drink alone), then you have a coordination problem where your choice behavior 

may ultimately depend on your perception of the bars’ salient characteristics. 
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restricts players’ beliefs in a natural way, allowing us to rationalize why differences in players’ 

frames may lead to differences in game play. Specifically, our belief restrictions imply that cells 

that contain fewer elements stand out, and thus are more attractive. So, in the example above, a 

player who thinks solely about attribute 𝑘 (or else believes others do so) will end up choosing the 

option that is unique with respect to attribute 𝑘 (i.e., the 𝑘 “oddity”). 

As will be clear, our model integrates streams of research such as the analysis of “labelings” 

(e.g., Bacharach, 1993; Janssen, 2001) and the study of “unawareness”, that is, the case where one 

does not know something and does not know that one does not know it (Dekel, Lipman, and 

Rustichini, 1998a; Heifetz, Meier, and Schipper, 2006).4  Bacharach’s work was the first to 

explicitly define attribute-dependent labels so as to represent players’ frames (see also Sugden, 

1995; a related approach for the case of repeated games was pioneered by Crawford and Haller, 

1990, where previous play would implicitly label actions in such a way as to generate a distinct 

option, e.g., “do what you did last time” vs. “do something else”).  In particular, Bacharach’s work 

was seminal in introducing a non-standard information structure, whereby player 𝑖 does not know 

the list of all possible opponent types; rather, 𝑖 only considers (and best-responds to) those types 

that think about attribute combinations 𝑖 herself thinks about.5 

While greatly innovative, the predictive scope of the labeling literature is somewhat limited 

by its solution concepts’ reliance on strong assumptions (e.g., players’ beliefs about the assignment 

of labels are consistent with an exogenous probability distribution, players use a set of principles for 

selecting among equilibria, etc.); thus, this literature is not well suited as a predictive tool in games 

where one has no experience about the others’ perceptual limitations, or in cases where perception 

might change.  To sidestep these drawbacks, we propose a new solution concept. In doing so, we 

 
4 For a Level-k version of Bacharach’s theory, see Bacharach and Stahl (2000).  For early work on unawareness, see 

Fagin and Halpern (1987) and Modica and Rustichini (1994, 1999). In this connection, it is useful to see how unawareness 

differs from uncertainty: under uncertainty, one conceives of the space of all relevant contingencies (say, 𝜔′, 𝜔′′, 𝜔′′′), 

but does not know which has occurred and thus holds a probabilistic belief about each of them; under unawareness, 

instead, one does not think of all relevant contingencies (e.g., if one is unaware of the possibility that 𝜔′′′ may occur, 

one will not hold any belief at all about 𝜔′′′).  Dekel et al. (1998a) showed that unawareness cannot be accounted for 

under the assumptions underlying standard models of knowledge (in particular, “negative introspection” implies that at 

any state where an agent does not know some event, she knows that she does not know it, which rules out unawareness; 

see also Chen, Ely, and Luo, 2012, and for a survey, Schipper, 2014).  To circumvent the Dekel et al. impossibility result, 

Heifetz et al. (2006) utilize a system of multiple state spaces, where different player types are aware of different spaces. 
5 For example, suppose that the action set consists of marbles that vary in size, brilliance, and material: in Bacharach’s 

(1993) model if a player ignores any such attributes, say, the marbles’ size, then she will not hold any belief about the 

eventuality of facing a size-perceiving opponent. So, 𝑖 will not best-respond to types that think about attributes 𝑖 herself 

does not think about. Notably, Bacharach posited that 𝑖’s beliefs about the distribution of opponent types are consistent with 

the true exogenous distribution of types, or else consistent with a truncated and rescaled distribution if 𝑖 ignores an attribute. 
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build on Heifetz et al.’s (2006, 2013a) account of unawareness, and explicitly incorporate an 

epistemic structure into the study of frames (i.e., unlike the Bacharach model and related work, we 

formally define a system of multiple state spaces to represent what individuals consider in regard to 

alternative frames and, hence, in regard to opponent types).  Moreover, unlike the Heifetz et al. 

approach, we define a pair of frame-dependent restrictions on beliefs so as to characterize how each 

type may behave in a game.  This leads to a novel solution concept (“frame-dependent rationalizability”), 

which we use to derive experimental predictions and provide a test of competing explanations for 

the role of frames in coordination games.6 

To that end, we present an experiment involving ten (one-shot) matching games, played by 

pairs of subjects without feedback. Our between-subjects design brings about multiple frames by 

varying subjects’ awareness of several attributes. In examining the impact of attribute awareness on 

choice, we contrast our model’s predictions against a set of null hypotheses based on the “standard” 

single-state-space Bayesian paradigm (i.e., incomplete-information games with no unawareness). 

In the Baseline treatment, each participant is shown six unlabeled objects (i.e., colored 

geometric shapes) on her screen. At the beginning of each game, the computer program selects three 

of those objects (the same three for each member of a pair, while the rest of the objects disappear 

from the screen). Participants are eventually prompted to choose one of the three available objects, 

with the goal of matching the counterpart’s choice; this entire set-up is common information. Each 

of the ten games presents a different three-object selection, and thus differs from the other games in 

the characteristics of the available action set. 

The All-Aware treatment is the same as the Baseline, except that we hint at several attributes 

at once, in such a way that subjects are privately made aware of multiple attributes. To do so, we 

ask them how likely they think it would be for Baseline participants to notice each of the three 

attributes of the objects (i.e., color, shape, and order of display).7  These questions may be viewed 

as tautologies, as in “𝐸 is the case or ¬𝐸 is the case”, where 𝐸 and ¬𝐸 respectively represent the 

event such that others have and have not noticed an attribute. Note that a question involving a 

 
6 Our solution concept is defined by an iterative deletion procedure, whereby each player 𝑖 best-responds to her 

(subjective) beliefs about surviving type-action pairs of the opponents of which 𝑖 is aware (beliefs about opponent types 

of which 𝑖 is unaware remain undefined). If a player becomes aware of any additional frames, her optimization problem 

is updated so as to account for the eventuality of facing additional opponent types. 
7 Specifically, we asked the following questions (in random order across games): “How likely do you think it is that the 

other participants have noticed the different colors of the objects? … the different shapes? … the order in which the 

objects have been drawn by the computer program?”  To prevent these questions from generating common awareness of 

the frames, All-Aware participants are informed that the subjects with whom they are paired (i.e., Baseline participants) 

would not be asked such questions, but they would otherwise play the same game. 
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tautological clause conveys no information about whether 𝐸 or ¬𝐸 is true.  Further, if one had been 

aware of 𝐸 and ¬𝐸 in the first place (i.e., if one had already paid attention to that attribute and thus 

considered the possibility that others might do so too), then any such question would not alter one’s 

view of the game. By contrast, if one had not been aware of 𝐸 and ¬𝐸 in the first place, then the 

question itself would automatically generate awareness of those events. Indeed, a key goal of the 

All-Aware treatment is to ensure that its participants think about all the objects’ attributes. 

The individual-level data from the All-Aware treatment allow us to test if subjects optimize 

a frame-dependent expected utility (per our proposed notion of rationalizability). That is, we predict 

that each All-Aware participant chooses the oddity associated with the frame that, according to her 

own beliefs, is most-likely considered by her (Baseline) counterpart. Relatedly, we stress that the 

All-Aware treatment manipulation hints at several attributes at once, without directing subjects’ 

attention to any one frame in particular, thereby minimizing any implicit demand effects.  The data 

support our predictions, indicating that one’s behavior depends on one’s beliefs as to whether the 

counterpart has noticed (i.e., is aware of) an attribute or not. We will see that such intuitive results 

cannot be captured by “standard” Bayesian models (i.e., incomplete-information games with a 

single state space), which rule out the possibility that players may be unaware of anything relevant.  

Also, we will see that the data from the All-Aware treatment reveal substantial diversity in 

individuals’ beliefs about others’ awareness of the attributes (contradicting an implication of early 

models with non-standard information structures such as Bacharach, 1993). 

Next, the Baseline vs. All-Aware treatment comparison permits us to test for heterogeneity 

in individuals’ awareness of the attributes (as opposed to heterogeneity in individuals’ beliefs about 

others’ awareness of the attributes, which we discussed above).  As a benchmark, we note that the 

assumptions underlying standard games with incomplete information (i.e., no unawareness) here 

imply no significant differences across treatments.  In fact, if it were true that subjects knew all the 

possible frames/types in the first place (as is implied by the standard Bayesian paradigm), then 

participants would learn nothing from the All-Aware questions above (see footnote 7); also, since 

those questions in no way make an attribute more salient than another, they should not significantly 

change the All-Aware participants’ choices.  Yet, contrary to what is implied by previous models, 

our data reveal that the All-Aware manipulation does affect average game play.  By comparing 

choice distributions across treatments, we conclude that the All-Aware manipulation makes some 

participants think about attributes to which they would otherwise not have paid attention (namely, 

order frames and, to a lesser extent, shape frames).  The data further indicate that the All-Aware 
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manipulation leads to a decrease in coordination rates, as is predicted by our model: remarkably, 

this means that an increase in attribute awareness can hurt successful coordination, ceteris paribus. 

To put the results in context, a few comments are in order.  First, we stress that consistent 

with the epistemic literature, here being aware of an event (e.g., a frame) means that the event is 

being “taken into account” when one makes a choice (Modica and Rustichini, 1999, p. 274); that is, 

being aware corresponds to “thinking of” or “paying attention to”.  Accordingly, being aware of – 

say – the color frame does not merely mean that one has the ability to distinguish between colors; 

rather, it means that one consciously distinguishes between colors when thinking about the game.  

(Just like you can hear someone talk and not listen to them, decision-makers filter out much of the 

data available to them as a way to reduce cognitive load.)  To put it differently, an event of which an 

agent is unaware “is not necessarily one the agent could not conceive of, just one he doesn’t think of 

at the time he makes his choice” (Dekel, Lipman, and Rustichini, 1998b, p. 524, italics in original).  

Thus, an event of which one is unaware is not the same as an event one has (thought about and) 

assigned probability zero: to see why the notions of unawareness and probability-zero are inherently 

different from each other, note that only an agent who had been unaware of an event might be 

affected by a question asking if that event may or may not happen.8 

In summary, this paper contributes to the study of interactive unawareness by formally 

analyzing the role of attribute awareness in coordination games. We then put the theory to the test 

by experimentally investigating how choice behavior is impacted by changes in attribute awareness; 

we find that the best explanation of the data is consistent with our model and solution concept.  

The remainder is organized as follows: section II lays out the theory; section III introduces the 

experimental design; section IV contrasts the model’s predictions against a set of null hypotheses 

based on the standard Bayesian paradigm; section V presents the data, and section VI concludes. 

 

II.  Model and solution concept 

1. Actions and attributes 

Our model proposes that players identify an action with a (possibly partial) description of its 

observable attributes; we will see that this ultimately affects strategic deliberations. Although some 

of our insights can easily be generalized for a broad variety of problems with a coordination 

 
8 For example, imagine that as you prepare to go out for a stroll, your partner asks you whether it might rain.  If you had 

already assigned probability zero to the event “rain”, then you will be unmoved by such a question.  If instead you had 

ignored that event – and you now notice it is cloudy outside – then you may react by taking an umbrella along. 
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element, for simplicity the analysis will center around a class of matching games where the action 

set consists of visual objects characterized by the “color”, “shape”, and “order” attributes. In this 

subsection, we shall define such a class of games and elaborate on the notion of attributes; in the 

next subsection, we will lay out the core components of the theory, namely, the players’ (partial) 

awareness of attributes and a novel solution concept. 

Let Nature draw three objects from a 6-element set, one by one at random, and then place 

them in a column according to the order of selection, starting from the top.  Denote by 𝐴 the 

(unordered) 3-element collection of objects – henceforth “triplet” – selected by Nature.  Next, 

define a game such that the set of available actions corresponds to 𝐴, and has generic member 𝑎; 

assume that 𝐴 becomes common knowledge as soon as Nature selects a triplet. For each player 𝑖, 𝑗 

and for each action 𝑎 ∈ 𝐴, specify a player’s payoff to be a positive number 𝜋 if players choose the 

same action 𝑎, and zero otherwise. 

Each of the actions 𝑎 ∈ 𝐴 is characterized by a tuple of attribute labels, as follows. Denote 

by 𝐾 the set of attributes, with 𝐾 ∶= {𝐶, 𝑆, 𝑂}, where 𝐶, 𝑆, 𝑂 respectively denote the color, shape, and 

Nature’s order of selection/display of the objects. For each action (i.e., object) 𝑎 ∈ 𝐴, assume that 

𝑎’s color, shape, and order attributes may each take on one value (“label”) – respectively – from 

𝐶 = {𝑐𝑦𝑎𝑛, 𝑙𝑎𝑣𝑒𝑛𝑑𝑒𝑟, 𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒}, 𝑆 = {𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛}, and 𝑂 = {𝑡𝑜𝑝, 𝑜𝑡ℎ𝑒𝑟}. 

Intuitively, labels in 𝐶 and 𝑆 respectively represent the color and shape an object 𝑎 ∈ 𝐴 may be, 

whereas labels in 𝑂 indicate whether 𝑎 is or is not the first object to be selected by Nature and 

placed at the top of the column.9  Finally, a labeling function ℓ:  𝐴 ⟶ ℒ formally specifies the 

relation between an action and its description, with ℒ being defined as ℒ ∶= 𝐶 × 𝑆 × 𝑂; in a nutshell, 

a labeling function assigns to each action 𝑎 ∈ 𝐴 a tuple of attribute labels ℓ(𝑎) ∈ ℒ. 

EXAMPLE.  The definition of a labeling function says that each 𝑎 ∈ 𝐴 is characterized by a 

list of labels (one label per attribute). For instance, ℓ(𝑎) = (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑡𝑜𝑝) completely 

identifies the object (i.e., action) whose color, shape, and order of selection/display are respectively 

turquoise, diamond, and top. Further, if the subsequent two objects being drawn by Nature consisted 

of a cyan diamond and a turquoise pentagon, then the set of available actions 𝐴 would be described 

as ℓ(𝐴) = {(𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑡𝑜𝑝), (𝑐𝑦𝑎𝑛, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑜𝑡ℎ𝑒𝑟), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟)}. 

 
9 Depending on the level of descriptive detail or the emphasis one puts on a particular position, the modeler may assume 

alternative specifications of the order attribute, such as 𝑂′′ = {𝑚𝑖𝑑𝑑𝑙𝑒, 𝑜𝑡ℎ𝑒𝑟} or 𝑂′′′ = {𝑏𝑜𝑡𝑡𝑜𝑚, 𝑜𝑡ℎ𝑒𝑟} or else 𝑂′′′′ =
{𝑓𝑖𝑟𝑠𝑡, 𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡ℎ𝑖𝑟𝑑}.  To keep the exposition simple, for the time being we assume that the order attribute is defined as 

𝑂 ≡ 𝑂′ = {𝑡𝑜𝑝, 𝑜𝑡ℎ𝑒𝑟}: as such, it limits itself to characterizing each available action 𝑎 ∈ 𝐴 as either “top” or “not top”. 

Still, our experimental predictions and econometric analysis will account for all possible specifications of the order attribute. 
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2. Attribute awareness and frame-dependent rationalizability 

So far, we have assumed that each of the actions 𝑎 ∈ 𝐴 is characterized by a 3-tuple of 

attribute labels, under the implicit assumption that one is aware of (i.e., perceives and thinks about) 

all three attributes in 𝐾, with 𝐾 ∶= {𝐶, 𝑆, 𝑂}.  Below we will do away with this implicit assumption: 

in doing so, we will posit that a player may identify an action with a “partial description”, which 

involves solely those attributes (i.e., a subset of 𝐾) she currently perceives, while ignoring the rest. 

𝐚. PARTIAL DESCRIPTIONS.  Before modeling the players’ awareness and beliefs, we must 

first introduce some notation to formalize how an action 𝑎 ∈ 𝐴 is labeled when using just a subset of 

the attributes 𝐾′ ⊆ 𝐾: to that purpose, we define the following system of projections. 

For any subset 𝐾′ ∈ 2𝐾 (where 2𝐾 is the set of all subsets of 𝐾, i.e., the power set of 𝐾), let 

ℒ𝐾′ denote a collection of tuples of labels involving solely the attributes contained in 𝐾′. Below we 

refer to any subset 𝐾′ ∈ 2𝐾 as a “frame”.  For each such 𝐾′ ∈ 2𝐾, a partial description 𝑙𝐾′:  𝐴 ⟶ ℒ𝐾′ 

is given by the commuting diagram: 

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝐴  

𝐴
      𝑙      
→    ℒ

↓ ↓

𝐴
    𝑙
𝐾′
    

→    ℒ𝐾′

 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 

EXAMPLE.  As in our earlier example, let ℓ(𝑎) = (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑡𝑜𝑝) identify the 

action 𝑎 ∈ 𝐴 whose color, shape, and order of display are respectively turquoise, diamond, and top.  

Now, the commuting diagram above implies that if – say – 𝐾′ = {𝐶, 𝑆}, then it follows that 

𝑙{𝐶,𝑆}(𝑎) = (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑): we say that this is a less expressive description than ℓ(𝑎) =

(𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑡𝑜𝑝), in that 𝑙{𝐶,𝑆}(𝑎) involves solely a 2-tuple of (color, shape) attribute labels.  

As another example, note that if 𝐾′ = {𝐶}, then 𝑙{𝐶}(𝑎) = (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒): this is yet a less expressive 

description, as it involves just one attribute label.  Finally, note that if 𝐾′ = {∅}, then 𝑙{∅}(𝑎) =

( blank ): here the interpretation is that 𝑎 is characterized trivially as a “nondescript object”. 

Having defined a system of partial descriptions, we move on to articulate what it entails for 

a player to be aware of some such descriptions. To that end, we build on the epistemic structure 

proposed by Heifetz, Meier, and Schipper (2013a), which rests on a lattice of state spaces ordered 

by their “expressive scope” (i.e., ordered according to the extent to which the spaces account for 

any relevant contingencies).10  In particular, the remainder of the subsection is organized into the 

 
10 Unlike the Heifetz et al. (2013a, 2013b) approach, which models awareness of actions per se, here we model awareness 

of the actions’ attributes. To do so, we shall define a state space for each subset of attributes (i.e., frame) 𝐾′ ∈ 2𝐾. We will 

see that this construction allows us to restrict players’ beliefs in a natural way, which leads to a novel solution concept. 
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following parts: in (b) we embed partial descriptions into alternative state spaces; in (c) we model 

awareness types, which specify the frames that players perceive and think about; in (d) we define a 

novel solution concept, which we call frame-dependent rationalizability. 

 

Figure 1 - A lattice structure defined by the power set of 𝐾, with an arrow connecting any two 

elements that are ordered via a superset relation ⊇. 

 

𝐛. STATE SPACES.  We set out to define a state space for each and every subset of attributes 

𝐾′ ∈ 2𝐾.  Before doing so, we note that the members of 2𝐾 can be (partially) ordered according to a 

superset relation ⊇, thereby obtaining the lattice structure depicted in Figure 1. Each such 𝐾′ ∈ 2𝐾 

may be thought of as a different (as a whole) vocabulary with which to express facts; with that in 

mind, we now construct a system of multiple state spaces as follows. 

For each 𝐾′ ∈ 2𝐾 fix a state space Ω𝐾′ – with generic member 𝜔 – in such a way as to obtain 

a lattice of disjoint state spaces {Ω𝐾′}𝐾′∈2𝐾, with the partial order given by the superset relation on 

the underlying attributes.  The general interpretation is that state spaces higher up in the lattice 

involve a more expressive vocabulary, and thus provide a more thorough account of the possible 

states of the world.  (Later on, we will see that each state space is interpreted as the particular 

viewpoint of a different player type, as defined in part (c) below.)  Some qualifications are in order. 

For any space Ω𝐾′, each of the states 𝜔 ∈ Ω𝐾′ is assumed to encompass all the relevant facts 

that can be expressed in terms of the 𝐾′ frame (i.e., expressible via the attributes contained in 𝐾′).  

Thus, each 𝜔 ∈ Ω𝐾′ implicitly includes player 𝑖’s potential 𝐾′-specific description of 𝐴, along with a 

description of opponent 𝑗’s frame 𝐾′′ (with 𝐾′′ ⊆ 𝐾′) and of 𝑗’s beliefs about 𝑖’s frame.11  Whereas 

the paper’s results apply to any lattice of state spaces satisfying this characterization, Figure 2 

presents a specific lattice upon which our running example will be based. 

 
11 The construction implies that the upmost space (i.e., Ω{𝐶,𝑆,𝑂}) provides the most exhaustive account of the resolution of all 

possible uncertainties in the model. Lower spaces have fewer states, as their expressive scope does not allow describing some 

contingencies; e.g., Ω{𝐶,𝑆} does not account for the eventuality that some opponent frames may comprise the order attribute. 
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Figure 2 - A lattice of state spaces.  Each of the rectangular boxes represents a 𝐾′-specific state space Ω𝐾′: each such box is interpreted as the 

state space perceived by a different player type, as defined in part (c) below.  Within any one box, each of the black dots represents a state 𝜔: 

a state provides an account of all the relevant facts expressible in terms of the 𝐾′ frame, such as 𝑖’s potential 𝐾′-specific description of 𝐴, plus 

a description of opponent 𝑗’s frame/beliefs.  Each arrow points from a state to the corresponding information set perceived by a player type 

whose frame comprises one attribute less: such arrows are drawn for the sole benefit of the reader.  (While player 𝑖 knows how her state space 

maps to a less expressive space, 𝑖 is unconcerned about any such “translation”, since her state space incorporates in itself all the relevant facts 

that 𝑖’s type can express about the game.) 

NOTE: the upmost space Ω{𝐶,𝑆,𝑂} contains states where 𝑖’s frame 𝐾′ comprises color, shape, and order.  For visual clarity, this figure considers 

only 2 ordered triplets of objects, as indicated inside the upmost rectangular box; namely, {(𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒,  ◇,  1), (𝑐𝑦𝑎𝑛,  ◇,  0), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒,  ⬠,  0)} 

and {(𝑐𝑦𝑎𝑛, ▷ ,  1), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒,  ◇,  0), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒,  ⬠,  0)}.  A state obtains once Nature has drawn a triplet.  States enclosed in the same oval 

account for the same description of 𝐴.  Within any one oval, each state accounts for a different 𝑗 type (i.e., different opponent frame/beliefs): 

such states are enclosed in the same oval to indicate that, once Nature has drawn a triplet, player 𝑖 is uncertain as to the opponent’s awareness.  

Spaces lower in the lattice have fewer states, since each Ω𝐾′ accounts only for the eventuality of facing 𝑗 types with frame 𝐾′′, for 𝐾′′ ⊆ 𝐾′.

KEY: shape labels 𝑆 = {𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛} 

are represented pictorially for space-saving reasons; 

similarly, order labels 𝑂 = {𝑡𝑜𝑝, 𝑜𝑡ℎ𝑒𝑟} are given in 

binary code (with 𝑡𝑜𝑝 ≡ 1, 𝑜𝑡ℎ𝑒𝑟 ≡ 0).   
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𝐜. TYPE MAPPINGS.  We now move on to develop the players’ unawareness belief structure 

by formalizing the notion of “awareness types”. In what follows, a player type is characterized by a 

mapping such that when 𝜔 obtains, the player may perceive and think about some other state(s). 

Formally, denote the union of the above-defined state spaces by Ω ∶= ⋃ Ω𝐾′𝐾′∈2𝐾 . For each 𝑖, 

then define a type mapping 𝜇𝑖 as a correspondence 𝜇𝑖:  Ω ⟶ ⋃ ∆(Ω𝐾′)𝐾′∈2𝐾 ;12  this is required to 

satisfy standard properties of unawareness structures (for discussion, see Heifetz, Meier, and 

Schipper, 2013a). In short, a type mapping 𝜇𝑖 assigns to each 𝜔 ∈ Ω a set of probabilities about the 

states of which 𝑖 is aware at 𝜔.  For instance, suppose that some state 𝜔 obtains: we interpret 

𝜇𝑖(𝜔)({𝜔
′}) and 𝜇𝑖(𝜔)({𝜔

′′}) respectively as the subjective probability about 𝜔′ and 𝜔′′ that 𝑖 holds 

“at 𝜔” (i.e., when the true state is actually 𝜔). In other words, when 𝜔 obtains, player 𝑖 thinks that 

𝜔′ or 𝜔′′ obtains, with probability 𝜇𝑖(𝜔)({𝜔
′}) and 𝜇𝑖(𝜔)({𝜔

′′}), respectively.  Note that 𝜔′ and 𝜔′′ 

may belong to a different (less expressive) space than the true state 𝜔. 

In a nutshell, 𝜇𝑖(𝜔) specifies a belief about each of the states that player 𝑖 regards as possible 

when 𝜔 obtains. Whenever 𝜇𝑖(𝜔) ∈ ∆(Ω𝐾′) for some 𝐾′ ∈ 2𝐾, we informally refer to 𝑖 as a 𝐾′ type 

(i.e., 𝑖’s current belief is concentrated on Ω𝐾′); for any 𝐾′ ⊂ 𝐾 we say that 𝑖 is “unaware” of 𝐾\𝐾′.13 

EXAMPLE.  Suppose that 𝜔 ∈ Ω{𝐶,𝑆,𝑂}, and that the triplet drawn by Nature is describable as 

ℓ(𝐴) = {(𝑐𝑦𝑎𝑛, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑡𝑜𝑝), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑜𝑡ℎ𝑒𝑟), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟)}. Here the 

true state 𝜔 ∈ Ω{𝐶,𝑆,𝑂} corresponds to one of the eight states (i.e., black dots) on the right-hand-side 

of the upmost rectangular box, in Figure 2: in all of those eight states, player 𝑖’s description of the 

triplet is given by ℓ(𝐴), as indicated directly above the top right oval. Note that each of those states 

accounts for the eventuality of facing an opponent 𝑗 with different frame/beliefs (i.e., different type): 

those eight states are enclosed in the same oval to indicate that 𝑖 is aware of the drawn triplet’s 

description in terms of {𝐶, 𝑆, 𝑂}, yet is uncertain about 𝑗’s awareness, under the assumption that 

there are eight possible 𝑗 types.  (More generally, Figure 2 assumes that, for any drawn triplet, there 

is one state for each opponent frame that is expressible via 𝐾′: i.e., there is one state per 𝐾′′ ∈ 2𝐾
′
; 

note that our results do not depend on this particular assumption.14)  In summary, this example 

models the case where 𝑖 is aware of all the attributes but is uncertain about 𝑗’s awareness: accordingly, 

 
12 ∆(Ω𝐾′) denotes the set of probability measures over the state space Ω𝐾′. 
13 The symbol \ denotes set difference. 
14 Thus, if 𝐾′ = {𝐶, 𝑆, 𝑂}, there is one state for each of the eight members of the power set of {𝐶, 𝑆, 𝑂}; i.e., one state per 

𝐾′′ ∈ {{𝐶, 𝑆, 𝑂}, {𝐶, 𝑆}, {𝐶, 𝑂}, {𝑆, 𝑂}, {𝐶}, {𝑆}, {𝑂}, ∅}. The interpretation is that – in each state – there is a 𝑗 type that uses, 

respectively, color-shape-order labels, or only color-shape labels, or only color-order labels, etc.; note that as per our 

definition of a state, each of those states incorporates 𝑗’s respective beliefs about 𝑖’s frame.  (In this connection, we note 

that prior research proved the existence of a universal unawareness type space containing all belief hierarchies: see 

Heifetz et al.’s 2011 working paper and Heinsalu, 2014.) 
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once Nature has drawn the triplet above, 𝑖’s type mapping will assign positive conditional 

probability to the aforementioned eight states, and probability zero to any other states in Ω{𝐶,𝑆,𝑂}. 

Next, consider the case where 𝑖’s type is 𝐾′ = {𝑆, 𝑂}, i.e., 𝑖 is unaware of the color attribute. 

In terms of the model, this means that 𝑖’s type mapping will assign positive conditional probability 

to states in Ω{𝑆,𝑂}; formally, 𝜇𝑖(𝜔) ∈ ∆(Ω{𝑆,𝑂}). That is, 𝑖 will perceive solely the states in Ω{𝑆,𝑂} 

instead of the states in Ω{𝐶,𝑆,𝑂}. More specifically, in the case of the triplet above, the possible states 

that 𝑖 perceives are depicted by the four rightmost black dots in the second row of the lattice, 

denoted by 𝜔∗, 𝜔∗∗, 𝜔∗∗∗, 𝜔∗∗∗∗: in all of those four states, 𝑖’s description of the triplet is given by 

ℓ𝐾′(𝐴) = {(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑡𝑜𝑝), (𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑜𝑡ℎ𝑒𝑟), (𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟)}.  To see why this information set 

has just four states, recall that – by construction – each Ω𝐾′ includes only facts expressible via the 

attributes in 𝐾′: this implies that states in Ω𝐾′ can account only for the eventuality of facing an 

opponent 𝑗 with frame 𝐾′′, for 𝐾′′ ⊆ 𝐾′. So, if 𝑖’s type is 𝐾′ = {𝑆, 𝑂}, then 𝑖’s perceived states will 

account only for opponent frames 𝐾′′ ∈ 2𝐾
′
, that is, 𝐾′′ ∈ {{𝑆, 𝑂}, {𝑆}, {𝑂}, ∅}.  The interpretation is 

that if 𝑖 is unaware of the color attribute, 𝑖 will solely think of states where 𝑗 types describe 𝐴 via, 

respectively, shape-order labels, or only shape labels, or only order labels, or no descriptive labels. 

Thus, if 𝑖 is unaware of the color attribute, 𝑖 will ignore any 𝑗 types whose frames involve colors. 

 

𝐝. FRAME-DEPENDENT RATIONALIZABILITY.  We now present a new solution concept. 

To do so, we build on Dekel, Fudenberg, and Morris’ (2007) notion of interim correlated rationalizability, 

which captures interactions where there is a correlation between the state of the world and players’ 

conjectures about the actions of others. Like the rationalizability notion in complete-information 

games (Bernheim, 1984; Pearce, 1984), Dekel et al.’s concept is defined via an iterated-deletion 

procedure.  At each iteration, an action survives for a type only if: (i) it is a best-response to a belief 

assigning positive probability to type-action pairs of the opponents that have not yet been deleted; 

(ii) it is consistent with that type’s beliefs about others and chance.  Here, to allow for unawareness, 

we provide a notion of rationalizability whereby 𝑖 does not best-respond to all the 𝑗 types, but only 

to those types of which 𝑖 is aware (i.e., as specified by 𝜇𝑖(𝜔)).  Another key novelty of our proposed 

solution concept is that it incorporates a pair of frame-dependent restrictions on beliefs, as follows. 

The first restriction (“principle of indifference”) reflects Jacob Bernoulli’s principle of 

insufficient reason, in the following sense: if one of the 𝑗 types (frames) of which 𝑖 is aware attaches 

the same label to two or more actions, then 𝑖 believes that that 𝑗 type will play those actions with the 

same probability.  The second restriction (“oddity is prominence”) says that: if one of the 𝑗 types 

(frames) of which 𝑖 is aware attaches a distinct label to one action, and a common label to the other 

actions, then 𝑖 believes that that 𝑗 type will play the oddity with a higher probability. 
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Formally, for each player 𝑖, there is a (pure) strategy 𝑠𝑖: Ω ⟶ 𝐴 with the property that 

𝜇𝑖(𝜔
′) = 𝜇𝑖(𝜔) ⟹ 𝑠𝑖(𝜔

′) = 𝑠𝑖(𝜔), where 𝜔,𝜔′ denote two states that may or may not belong to the 

same space (i.e., this property implies that 𝑖’s strategy is a function of the set of states 𝑖 perceives).  

Next, denote by 𝐵𝑖(𝜔) the set of joint probability distributions – with generic member 𝛽𝑖 – over 

actions and states 𝑖 perceives (when 𝜔 obtains). We interpret 𝛽𝑖({𝑎
′, 𝜔′}) as a belief 𝑖 holds about the 

strategy 𝑗 might take at 𝜔′. 

Given this, let 𝛽𝑖({𝑎
′, 𝜔′}) ⋅ 𝑢𝑖(𝑎, 𝑎

′, 𝜔′) denote player 𝑖’s expected utility from strategies 

𝑠𝑖(𝜔
′) = 𝑎 and 𝑠𝑗(𝜔

′) = 𝑎′, where 𝑎, 𝑎′ are generic members of 𝐴.  Finally, define frame-dependent 

rationalizability (“FDR”) inductively as a sequence of iterations (indexed 𝑞) of beliefs 𝐵𝑖
𝑞
 and 

strategies 𝑅𝑖
𝑞
 of player 𝑖, as follows. 

DEFINITION.  For 𝜔 ∈ Ω with 𝜇𝑖(𝜔) ∈ Δ(Ω𝐾′), let 𝑅𝑖
𝑞=0(𝜔) = 𝐴.  For 𝑞 > 0, 

𝐵𝑖
𝑞(𝜔) ∶=

{
 
 
 
 

 
 
 
 

𝛽𝑖 ∈ Δ(𝐴 × Ω𝐾′):

(0)  𝑚𝑎𝑟𝑔Ω
𝐾′
𝛽𝑖 = 𝜇𝑖(𝜔)                                                                                                         

(1)  Principle of indifference:  if 𝜇𝑗(𝜔
′) ∈ Δ(Ω𝐾′′) and 𝑙𝐾′′(𝑎) = 𝑙𝐾′′(𝑎

′),              

then 𝛽𝑖({𝑎, 𝜔
′}) = 𝛽𝑖({𝑎

′, 𝜔′}), for 𝑎, 𝑎′ ∈ 𝐴                                                                    
(2)  Oddity is Prominence:  if 𝜇𝑗(𝜔

′) ∈ Δ(Ω𝐾′′)                                                              

and there exists an action 𝑎′′  such that                                                                           
𝑙𝐾′′(𝑎

′′) ≠ 𝑙𝐾′′(𝑎),  𝑙𝐾′′(𝑎
′′) ≠ 𝑙𝐾′′(𝑎

′),  with 𝑙𝐾′′(𝑎) = 𝑙𝐾′′(𝑎
′),                               

then 𝛽𝑖({𝑎
′′, 𝜔′}) > 𝛽𝑖({𝑎, 𝜔

′}) and 𝛽𝑖({𝑎
′′, 𝜔′}) > 𝛽𝑖({𝑎

′, 𝜔′}), for 𝑎, 𝑎′, 𝑎′′ ∈ 𝐴

(3)  Belief in (𝒒 − 𝟏)-Rationality:  𝛽𝑖({𝑎, 𝜔
′}) > 0 ⟹  𝑎 ∈ 𝑅𝑗

𝑞−1(𝜔′), for 𝑎 ∈ 𝐴  }
 
 
 
 

 
 
 
 

 

𝑅𝑖
𝑞(𝜔) ∶= {𝑎 ∈ 𝑅𝑖

𝑞−1(𝜔):
There exists 𝛽𝑖 ∈ 𝐵𝑖

𝑞(𝜔)  such that                                      

𝑎 ∈ argmax
𝑎′∈𝐴

∑ 𝛽𝑖({𝑎
′′, 𝜔′}) ⋅ 𝑢𝑖(𝑎

′, 𝑎′′, 𝜔′)(𝑎′′,𝜔′)∈𝐴×Ω𝐾′
}. 

The set of player 𝑖’s frame-dependent rationalizable (“FDR”) strategies is 

𝑅𝑖(𝜔) = ⋂ 𝑅𝑖
𝑞(𝜔)∞

𝑞=0 . 

 

Prior to illustrating the definition through a pair of results, a few comments are in order. 

Condition (0) above requires that 𝑖’s various beliefs be internally consistent, in the sense that the 

marginal of 𝛽𝑖 over Ω𝐾′ must be equal to 𝜇𝑖(𝜔).  Conditions (1)-(2) define the above-discussed 

belief restrictions.15,16  Condition (3) is a standard feature of rationalizability concepts, requiring 

 
15 As for (1), note that different formulations of Bernoulli’s principle of “insufficient reason” have found application in 

previous models, like the Harsanyi and Selten (1988, pp. 70-74) principle of invariance with respect to isomorphisms, 

Crawford and Haller’s (1990) attainable strategies, Bacharach’s (1993) definition of option sets and related definitions 

in Casajus (2000), Janssen (2001), and Blume and Gneezy (2010).  Unlike us, all these models use the principle of 

insufficient reason within the context of an equilibrium solution. 
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that (at each iteration 𝑞) 𝑖 assign positive probability only to type-action pairs of the opponent that 

have not been deleted yet (i.e., that are rationalizable at 𝑞 − 1).  Finally, the set of 𝑖’s FDR strategies 

is defined as the collection of actions that survive an infinite sequence of iterations. 

OBSERVATION 1.  Consider a matching game where 𝑖’s type perceives a single attribute 

(besides ∅): assume that this attribute induces an oddity. If 𝑖’s type assigns any positive probability 

to a state where 𝑗 is aware of the oddity, then the unique FDR strategy is for 𝑖 to play that oddity. 

𝑃𝑟𝑜𝑜𝑓.  The observation is easily proved by example.  To that purpose, fix an arbitrary 

matching game and a lattice of state spaces. Without loss of generality, consider a triplet describable 

as ℓ(𝐴) = {(𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑡𝑜𝑝), (𝑐𝑦𝑎𝑛, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑜𝑡ℎ𝑒𝑟), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟)}. Of the 

several possible states associated with this triplet [which in Figure 2 are depicted by the eight black 

dots on the left-hand-side of the upmost rectangular box], suppose that some 𝜔 ∈ Ω{𝐶,𝑆,𝑂} obtains. 

Consider an arbitrary 𝐾′ comprising a single attribute, and assume that player 𝑖 is a 𝐾′ type: 

for instance, 𝐾′ = {𝐶}.  Accordingly, when 𝜔 ∈ Ω{𝐶,𝑆,𝑂} obtains, 𝑖’s type mapping will assign positive 

conditional probability solely to some states in Ω{𝐶}; formally, 𝜇𝑖(𝜔) ∈ ∆(Ω{𝐶}).  [In Figure 2, the 

states of which 𝑖 is aware are depicted by the two leftmost black dots in the third row of the lattice, 

denoted by �̂� and �̃�.]  Note that each of those perceived states describes the action set as ℓ𝐾′(𝐴) =

{(𝑐𝑦𝑎𝑛), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒)}: each such state accounts for one of the two opponent frames 𝐾′′ 

that 𝑖 can think of, with 𝐾′′ ∈ 2𝐾
′
 (i.e., if 𝑖’s type is 𝐾′ = {𝐶}, then 𝑖 can only think of 𝐾′′ ∈ {{𝐶}, ∅}). 

We move on to apply our definition of FDR strategies to the game above. We begin with 

condition (0): this requires that 𝑖’s various beliefs be internally consistent, in the following sense. 

Consider one of 𝑖’s perceived states, say, �̂�. Denote by 𝛽𝑖({𝑎, �̂�}) 𝑖’s belief that the 𝑗 type at �̂� might 

play 𝑎. For any action set 𝐴 = {𝑎, 𝑎′, 𝑎′′}, condition (0) says that 𝛽𝑖({𝑎, �̂�}) + 𝛽𝑖({𝑎
′, �̂�}) + 𝛽𝑖({𝑎

′′, �̂�}) 

must be equal to 𝜇𝑖(𝜔)({�̂�}) (recall that the latter expression denotes the probability 𝑖 assigns to �̂�). 

In addressing conditions (1)-(2), let �̂� refer to the state where 𝑗’s type is 𝐾′′ = {𝐶}. That is, 

according to player 𝑖, 𝜇𝑗(�̂�) ∈ Δ(Ω{𝐶}): this means that 𝑖 believes that the 𝑗 type at �̂� describes 𝐴 as 

ℓ𝐾′′(𝐴) = {(𝑐𝑦𝑎𝑛), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒)}.  Hence, condition (1) says that player 𝑖 believes that 

the 𝑗 type at �̂� will play the two same-label (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒) actions with equal probability.  (2) says that 

player 𝑖 believes that this 𝑗 type will play 𝑐𝑦𝑎𝑛 with probability greater than each 𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒 action. 

Next, let �̃� refer to the state where 𝑗’s type is aware of no attributes, that is, 𝐾′′ = {∅}. Here, 

according to player 𝑖, 𝜇𝑗(�̃�) ∈ Δ(Ω{∅}), in which case player 𝑖 believes that the 𝑗 type at �̃� describes 

𝐴 as ℓ𝐾′′(𝐴) = {(𝑛𝑜𝑛𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡  𝑜𝑏𝑗𝑒𝑐𝑡), ((𝑛𝑜𝑛𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡  𝑜𝑏𝑗𝑒𝑐𝑡)), ((𝑛𝑜𝑛𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡  𝑜𝑏𝑗𝑒𝑐𝑡))}.  Hence, 

condition (1) says that player 𝑖 believes that the 𝑗 type at �̃� will play (all) same-label actions with 

equal probability.  We further note that condition (2) has no bite here. 

 
16 As for (2), note that the present formulation emphasizes simplicity over generality. Yet the idea behind the principle 

(i.e., a distinct minority stands out) is easily extended to games with more than three actions (e.g., the formulation may 

be generalized so that beliefs are inversely related to the frequency of each label).  Incidentally, it is worth noting that 

Battigalli and Siniscalchi’s (2003) notion of ∆-rationalizability incorporates belief restrictions that are similar in spirit to 

(but more general than) our approach; their concept however does not allow for unawareness, nor does it address prominence. 
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Based on the analysis above, at the first iteration (i.e., 𝑞 = 1) the belief operator 𝐵𝑖
1(𝜔) 

includes any probability distribution 𝛽𝑖 such that: (i) the 𝑗 type at �̂� is more likely to play 𝑐𝑦𝑎𝑛, and 

(ii) the 𝑗 type at �̃� plays each of the three actions with equal probability. (Note: trivially any 𝐵𝑖
1(𝜔) 

satisfies condition (3), since by definition 𝑅𝑗
0(𝜔) = 𝐴.)  What about 𝑅𝑖

1(𝜔)? It is easy to see that the 

only best-response to any such 𝛽𝑖 ∈ 𝐵𝑖
1(𝜔) is for 𝑖 to play 𝑐𝑦𝑎𝑛.  This in turn implies that, owing to 

condition (3), 𝐵𝑖
2(𝜔) and successive iterations of the belief operator will remove from consideration 

any 𝛽𝑖 such that the 𝑗 type at �̂� plays 𝑐𝑦𝑎𝑛 with probability less than 1.  To conclude, as long as 

player 𝑖 regards �̂� as possible (i.e., for any positive 𝜇𝑖(𝜔)({�̂�})), 𝑖’s expected utility is maximized 

by playing the color oddity. Thus, the only FDR strategy is for 𝑖 to play that oddity.  ∎ 

Note that although the above behavioral prediction (that a player will “choose an oddity”) 

could be accounted for by other solution concepts, the underlying epistemic assumptions would 

differ greatly. In fact, our solution concept is characterized simply by common belief in rationality 

and in the two belief restrictions (principle of indifference, oddity is prominence). By contrast, 

solutions in the form of equilibrium refinements remain controversial as a predictive device, due to 

their demanding assumptions as to what the players must know to achieve coordination; also, note 

that normative models presume that the players’ perception is fixed, and so they do not address the 

case where perception changes during the game. Conversely, our solution concept intuitively 

justifies how an increase in one’s attribute awareness may lead to one’s change in strategy. 

OBSERVATION 2.  Consider the same scenario as in Observation 1, but now suppose that 

before taking action 𝑖 notices that [at least] one previously-ignored attribute induces another oddity. 

If the state where 𝑗 is aware of a new oddity is assigned (by 𝑖’s updated type) a higher probability 

than the other states, then the unique FDR strategy is for 𝑖 to play that new oddity. 

𝑃𝑟𝑜𝑜𝑓.  Without loss of generality, suppose (as in Observation 1) that 𝐴 is describable as 

ℓ(𝐴) = {(𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑡𝑜𝑝), (𝑐𝑦𝑎𝑛, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑, 𝑜𝑡ℎ𝑒𝑟), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟)}, and that 

some state 𝜔 ∈ Ω{𝐶,𝑆,𝑂} obtains.  Next, assume that before taking action, player 𝑖’s type 𝐾′ changes 

from {𝐶} to, say, {𝐶, 𝑆}. This increase in awareness implies that when 𝜔 ∈ Ω{𝐶,𝑆,𝑂} obtains, player 𝑖’s 

(updated) type mapping will assign positive conditional probability to some states in Ω{𝐶,𝑆}; 

formally, 𝜇𝑖(𝜔) ∈ ∆(Ω{𝐶,𝑆}).
17  [In Figure 2, the new possible states of which player 𝑖 has become 

aware are depicted by the four leftmost black dots in the second row of the lattice, denoted by 

𝜔′, 𝜔′′, 𝜔′′′, 𝜔′′′′.]  Note: each of those perceived states accounts for one of the four opponent frames 

𝐾′′ of which 𝑖 can think, with 𝐾′′ ∈ 2𝐾
′
 (i.e., if 𝑖’s type is 𝐾′ = {𝐶, 𝑆}, then 𝑖 can only think of 𝐾′′ ∈

{{𝐶, 𝑆}, {𝐶}, {𝑆}, ∅}). 

 
17 The updated type mapping should reflect the prior mapping, when possible. For instance, the sum of the probabilities 

assigned to any states involving color (i.e., 𝐾′′ = {𝐶, 𝑆} or 𝐾′′ = {𝐶}) after the change in awareness should be equal to the 

probability assigned to the one state involving color (i.e., 𝐾′′ = {𝐶}) before the change. 
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Per conditions (1)-(2), the belief operator 𝐵𝑖
1(𝜔) now includes any probability distribution 𝛽𝑖 

such that: (i) the 𝑗 type (at 𝜔′′) with 𝐾′′ = {𝐶} is more likely to play the color oddity, (ii) the 𝑗 type 

(at 𝜔′′′) with 𝐾′′ = {𝑆} is more likely to play the shape oddity, and finally (iii) the 𝑗 type (at 𝜔′′′′) 

with 𝐾′′ = ∅ is just as likely to play each of the three actions.18  In this case, an analogous line of 

reasoning as in Observation 1 implies that: if the state with 𝐾′′ = {𝑆} is assigned a higher probability 

than the other states, 𝑖’s expected utility is maximized by playing the shape oddity (i.e., 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛). 

If so, the only FDR strategy is for 𝑖 to play this “new” oddity.  ∎ 

 

III.  Experimental design 

Below we put our model to the test. To do so, we present the following lab experiment. 

At the beginning of the experiment, each person is assigned to a computer (the experiment 

was conducted using zTree; Fischbacher, 2007), and paired with an unknown partner.  Participants 

are then told that everyone is being shown the same six objects on her own screen: specifically, 

participants see six “blocks” (i.e., colored geometric shapes), as described in Table 1 below; note 

that no such numbers or labels are shown to the subjects. 

 

 

Object no. 1 2 3 4 5 6 

Color Cyan Cyan Lavender Lavender Turquoise Turquoise 

Shape Triangle Diamond Triangle Pentagon Diamond Pentagon 

Table 1 - The six objects in the experimental game (object numbers/labels not shown to the subjects). 

  

Initially the objects are loosely arranged in a hexagonal fashion (one per vertex), and 

collectively occupy the left-hand side of the screen.  After each subject has viewed the six objects 

on her screen, the computer program selects three objects – one by one – by sliding them and 

placing them in a column (on the right-hand-side of the screen) according to the order of selection, 

starting from the top.  (The three-object selection is identical for each participant; note that the 

experimental game, including its actions and attributes, reflects the formal model in section II.1.19)  

 
18 Note that the beliefs about the 𝑗 type with 𝐾′′ = {𝐶, 𝑆} are not restricted by conditions (1)-(2).  This is because a 

description in terms of multiple attributes involves three distinct labels (one color-shape label per action); that is, 

ℓ𝐾′′(𝐴) = {(𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑), (𝑐𝑦𝑎𝑛, 𝑑𝑖𝑎𝑚𝑜𝑛𝑑), (𝑡𝑢𝑟𝑞𝑢𝑜𝑖𝑠𝑒, 𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛)}. Since no two labels are identical, conditions 

(1)-(2) have no bite. 
19 To ensure that the set-up above be common information, a summary description of the game – including the following 

message – is read aloud by the experimenter: “The computer program will select three of the objects, and will then display those 

three objects to every participant in the same fashion and order.”  Relatedly, we note that the design we presented in early 

working-paper versions of this study involved slightly different experimental instructions; following a reviewer’s suggestion, we 

edited the instructions to remove a possible ambiguity and re-ran the experiment, obtaining new (but qualitatively similar) data. 
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The rest of the objects subsequently disappear from the screen and subjects complete a few tasks, 

described below. In the end, each subject is asked to indicate her choice of one of the three objects, 

with the goal of coordinating with her partner in the pair.  Each member of a pair receives a payoff 

of $1.25 if each chooses the same object; each receives nothing otherwise. 

Our between-subjects design includes the Baseline and All-Aware treatments. The list below 

details the entire sequence of events in the Baseline treatment. 

i. Each subject is assigned to a computer terminal and is shown the paper instructions. 

ii. Each subject is paired with an unknown partner. Subjects are presented six objects on 

their screen, three of which are later selected by the program and put in a column. 

iii. An on-screen message prompts subjects to label those three objects [“PART A”]. 

iv. An on-screen message prompts subjects to estimate the probabilities of the three objects 

being chosen by others [“PART B”]; they are informed that good guesses will be 

rewarded with an additional payment.20 

v. An on-screen message prompts subjects to choose an object by ticking the relevant box; 

they are reminded that their payoff will be $1.25 if both members of the pair choose the 

same object, $0 otherwise [“PART C”]. 

vi. Steps ii.-v. are repeated for 9 more rounds, whereby in each round a new three-object 

selection is implemented by the computer program and shown to each member of a pair. 

(In each round, participants are randomly assigned to another pair and are so informed.) 

No feedback is given between rounds. 

vii. Payment. 

 

A few comments are in order.  We begin by noting that each of the ten rounds presents a 

different three-object selection, and so each round differs from the others in the characteristics of 

the available action set.  (No feedback is given between rounds, that is, games.)  To ensure that 

oddities be balanced across positions, our design implements pre-randomized blocks; this procedure 

also ensures that participants across sessions be presented with the same sequence of triplets.21,22 

 
20 Subjects are shown a pie chart with three spokes, which they may adjust so that a sector’s relative area represents the estimated 

likelihood of an object being chosen by others (as an identifier, within each sector there is the label the subject entered at step iii.). 

We incentivized this task by informing subjects that if at least one of their three estimates differed by no more than 5 percentage 

points from the realized value, they would receive an extra payment of $0.25 at the end of the session. No feedback was given 

before the end of the session.  We note that this elicitation mechanism has a simplicity advantage over alternative mechanisms: as 

such, it minimizes the need for lengthy instructions. Like other mechanisms, this one has drawbacks too; e.g., subjects are directly 

incentivized to state (at least) one true estimate, which in some cases may cause slight deviations from truthful reporting. 
21 At the beginning of every round, subjects are shown the same six blocks as in round 1, but three different blocks are 

subsequently selected in each round. The initial position of the six blocks is re-shuffled in every successive round, but it 

is identical for all subjects taking part in the same round. 
22 More explicitly, the constrained pre-randomization ensures that: (i) color/shape oddities are balanced across positions 

(i.e., top, middle, and bottom of the column); (ii) the sequence of games is representative of the theoretical distribution 
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We stress that the objects are not pre-labeled, so that we do not impose exogenous frames. 

Still, to help subjects identify options when navigating across tasks, at the beginning of each round 

subjects are invited to type a short text (3-15 characters) in each of three boxes beside the objects.  

Note that the labeling is for the subject’s reference only, and our hypotheses do not rely on such 

idiosyncratic strings (many of the strings are not clear-cut, and were we to use such free-form inputs 

in the analysis we would have to exercise our discretion in assigning a value to each alphanumeric 

string, undermining the tests’ objectivity).  In brief, our analysis revolves around the guess and choice 

data, respectively elicited in Part B and C of each round.  For the instructions, see the Online Appendix. 

The design of the All-Aware treatment is the same as the Baseline except for PART B, 

which presents three extra questions, as shown in the following transcript: 

«Recall that – in Part C of the experiment – you will be prompted to pick one object in order 

to coordinate with your partner.  Prior to that, we would like to know what you think about 

other participants in this room.  Please answer the following questions by moving the sliders 

to the desired percentages.  Note: your partner will not be asked to answer these questions. 

1) How likely do you think it is that the other participants have noticed the order in which 

the objects have been drawn by the computer program? Please move the below slider… 

2) How likely do you think it is that the other participants have noticed the different colors 

of the objects? Please move the below slider… 

3) How likely do you think it is that the other participants have noticed the different shapes 

of the objects? Please move the below slider…» 

 

Note that the order in which questions 1-3 are presented is randomized in each round. 

Subjects enter their beliefs by moving a slider (i.e., one slider for each question) to the desired 

percentage, with the slider ranging from 0% to 100%.  Note that the purpose of the questions is to 

make subjects privately aware of multiple attributes: to that end, All-Aware participants are 

matched into pairs with Baseline participants; accordingly, we inform All-Aware participants that 

their (Baseline) counterparts are not exposed to questions 1-3 above.  This feature of the design 

ensures that All-Aware participants believe – correctly – that their partners’ awareness has not been 

raised exogenously. (Obviously, to keep the Baseline participants’ awareness unchanged, they are 

not informed about the extra questions to which their All-Aware counterparts are exposed.) 

 
of triplets, as follows.  Given the attributes in Table 1, the theoretical probability that Nature randomly selects a triplet 

with no color or shape oddities is 1/10 (see objects {1,4,5} and {2,3,6} in Table 1). Furthermore, the probability of a 

triplet containing one color oddity is 1/3 (e.g., {1,2,6}); the probability of a triplet containing one shape oddity is 1/3 

(e.g., {2,3,5}); the probability of a triplet containing both color and shape oddities is 1/3 (e.g., {4,5,6}). 
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After presenting the questions above, the All-Aware treatment proceeds to the task described 

at step iv. of the Baseline.  The rest of the treatment is identical to the Baseline. 

Prior to stating our hypotheses, we note that it is easy for one to distinguish objects according to an 

attribute if one thinks about that attribute. That is, (barring some rare eye disorder) one could fail to see 

differences in the objects only if one did not pay attention to the attributes: such an unconscious neglect 

corresponds to the game-theoretic notion of unawareness. Per the epistemic literature, “being aware of an 

event” means that the event is taken into account when making a decision (Modica and Rustichini, 1999, 

p. 274). Hence, being aware of – say – the color frame does not mean that one can generally distinguish 

between colors; rather, it means that one consciously distinguishes between colors when thinking about 

the game. So, an event of which an agent is unaware “is not necessarily one the agent could not conceive of, 

just one he doesn’t think of at the time he makes his choice” (Dekel et al., 1998b, p. 524, italics in original). 

 

IV.  Experimental hypotheses 

We now show that our model produces numerous intuitive predictions regarding the 

treatments above; such predictions will be articulated in the form of alternative hypotheses, while 

null hypotheses will be based on the “standard” single-state-space Bayesian paradigm (i.e., 

incomplete-information models without unawareness). In doing so, we spell out how our model’s 

assumptions are at odds with the default economic model of knowledge.23 

We start by considering predictions that relate specifically to the All-Aware treatment. 

Recall that the All-Aware treatment manipulation involves a sequence of pre-play questions about 

whether others have or have not noticed the three (color, shape, and order) attributes of the currently 

drawn triplet. Those questions may be viewed as tautologies, as in “𝐸 is the case or ¬𝐸 is the case”, 

where 𝐸 and ¬𝐸 respectively represent the event such that 𝑗 has and has not noticed an attribute. 

Now, in a Bayesian game one is assumed to always know the full set of states; given the 

standard models’ underlying properties, then for any event 𝐸 (i.e., for any subset of states) one is 

always aware of 𝐸 and ¬𝐸 (Dekel et al., 1998a). This implies that one’s awareness level would be 

unaffected by the questions above. Further, note that Bayesian games presume common knowledge 

of the information structure: this precludes 𝑖 from believing that 𝑗 is uncertain about something, 

 
23 Dekel et al. (1998a, Theorems 1, 2, pp. 166-169) prove that standard models of knowledge preclude unawareness (the case 

where one does not know an event and does not know that one does not know it): the rough intuition is that if an agent knows 

the full set of states, then she cannot be unaware of any events; as we shall see, the null hypotheses below follow from this 

result. In analyzing the data (in section V), we will also address early models with “non-standard” information structures, such 

as Bacharach (1993). 
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without 𝑗 knowing so. In other words, a player cannot conceive of the opponent unconsciously ignoring 

something. Accordingly, our first null hypothesis (H1) is that All-Aware participants do not think that 

their Baseline counterparts may overlook features of the game such as the actions’ attributes.24 

H1. All-Aware participants believe that their Baseline counterparts notice with certainty any 

differences in the objects with respect to colors, shapes, and order. 

By contrast, our alternative hypothesis is that “All-Aware participants believe that others may fail 

to notice some features of the action set, with such beliefs varying across players as well as games”.  

To see how this alternative hypothesis stems from our model, note that we circumvent the Dekel et al. 

impossibility result (that standard models preclude unawareness) by building on Heifetz et al.’s 

(2006, 2013a) system of multiple state spaces; thus, here the full information structure is not 

common knowledge. With regard to the experiment, our model says that each All-Aware participant 

personifies a player with 𝜇𝑖(𝜔) ∈ ∆(Ω{𝐶,𝑆,𝑂}) who (perceives all attributes and) is uncertain about the 

opponent’s perception. In short, our model’s alternative hypothesis is that All-Aware participants 

consider it possible that their counterparts might not notice every feature of the actions; so, their beliefs 

about whether others perceive some attribute (henceforth “awareness beliefs”) may each be less 

than 100%.  (Instead, barring the rare case where people may be affected by an untreated eye disorder, 

standard models imply that any such elicited beliefs should be close to 100%.25) 

 

We proceed to H2. This is a three-fold hypothesis (with components a, b, c) concerning the 

relation between awareness beliefs and behavior.  Following up on the discussion above, note that 

standard models imply no particular relation between one’s strategy and one’s awareness beliefs 

(since each elicited belief ≈ 1); so, they entail the next null hypotheses. 

 
24 Bayesian models for games with incomplete information (Harsanyi, 1967–68) formally capture conscious uncertainty. 

That is, a situation where a player knows that she cannot distinguish elements of the space of uncertainty. Such a space 

is assumed to be commonly known, and may include opponents’ strategies or moves by Nature (or both); note that – in 

the context of our experiment – the latter case would correspond to a player who knows that she cannot tell apart the 

triplets, hence the actions, as she cannot see well. (Such a model would aptly represent a situation where it is common 

knowledge that players have an untreated eye disorder; however, it is an implausible characterization of our experiment, 

due to the low occurrence of any such impairments. In fact, the common type of color blindness consists of a decreased 

ability to tell green from red: this cannot affect our games, since all the objects involve shades of blue.) 
25 This and all other null hypotheses below are based on a standard model, defined as follows: consider a coordination game 

as described in the experimental instructions; next, assume that – as the game begins – players become commonly aware that 

the actions vary in color, shape, and order; finally, fix an (arbitrary) epistemic type space, whereby each type is associated 

with a hierarchy of beliefs about the players’ behavior conditional on the drawn triplet. Note that this is a Bayesian game 

(without unawareness) where the space of uncertainty consists of the opponents’ actions, given the observed triplet. 
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H2.a. The frequency with which All-Aware participants choose color oddities is not related to their 

belief about others noticing the different colors (for brevity, this belief is hereafter referred to as 𝜇𝑖
C). 

H2.b. The frequency with which All-Aware participants choose shape oddities is not related to their 

belief about others noticing the different shapes (henceforth 𝜇𝑖
S, for brevity). 

H2.c. The frequency with which All-Aware participants choose top, middle, or bottom objects is not 

related to their belief about others noticing the order of the objects (henceforth 𝜇𝑖
O, for brevity). 

In brief, null hypothesis H2.a above applies to All-Aware participants in games containing 

color oddities.  The alternative hypothesis to H2.a is that “the frequency of play of color oddities is 

positively related to 𝜇𝑖
C, and not to 𝜇𝑖

S or 𝜇𝑖
O”.  To see how this alternative hypothesis stems from 

our model, recall that player 𝑖’s FDR strategy corresponds to the oddity induced by the attribute 

most-likely noticed by the opponent (see Observation 2 for a proved statement). In particular, when 

𝑖 believes that others are more likely to notice the different colors (relative to shapes and order, i.e., 

when 𝜇𝑖
C ≥ 𝜇𝑖

S and 𝜇𝑖
C ≥ 𝜇𝑖

O), 𝑖 should choose a color oddity if there is one.  Therefore, to test 

whether a color oddity is indeed 𝑖’s FDR strategy, the experimenter must verify that the frequency 

of play of color oddities is positively related to 𝜇𝑖
C, and not to 𝜇𝑖

S or 𝜇𝑖
O. 

We turn to H2.b, which applies to All-Aware participants in games with shape oddities. 

Thus, following the same reasoning as above, our model’s alternative hypothesis to H2.b is that 

“the frequency of play of shape oddities is positively related to 𝜇𝑖
S, and not to 𝜇𝑖

C or 𝜇𝑖
O”. 

We move on to address H2.c, which concerns the All-Aware participants’ propensity to 

choose the n-th option.  Prior to elaborating on our test, we note that whereas color and shape 

attributes induce a natural labeling, the same is not necessarily true of the order attribute. In fact, 

depending on the level of descriptive detail or the emphasis one puts on a particular position, the 

order attribute could be associated with any of the following labelings: i. ((𝑡𝑜𝑝), (𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟)); 

ii. ((𝑜𝑡ℎ𝑒𝑟), (𝑚𝑖𝑑𝑑𝑙𝑒), (𝑜𝑡ℎ𝑒𝑟)); iii. ((𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟), (𝑏𝑜𝑡𝑡𝑜𝑚)); iv. ((𝑓𝑖𝑟𝑠𝑡), (𝑠𝑒𝑐𝑜𝑛𝑑), (𝑡ℎ𝑖𝑟𝑑)).26  

While labeling iv does not generate “order oddities”, i, ii, iii respectively pull a subject toward the 

top, middle, and bottom blocks (thus possibly away from any color or shape oddities).  To simplify 

the exposition, we have so far identified the order attribute with the first labeling (as per footnote 9); 

yet in conducting the data analysis we shall account for all the labelings above. Accordingly, our 

 
26 Note that each such labeling has analogous translations that entail the same partition. For instance, labeling iv is 

equivalent to ((𝑡𝑜𝑝), (𝑚𝑖𝑑𝑑𝑙𝑒), (𝑏𝑜𝑡𝑡𝑜𝑚)), and to ((𝑟𝑖𝑠ℎ𝑜𝑛), (𝑠ℎ𝑒𝑛𝑖), (𝑠ℎ𝑙𝑖𝑠ℎ𝑖)), and to ((𝑝𝑟𝑖𝑚𝑜), (𝑠𝑒𝑐𝑜𝑛𝑑𝑜), (𝑡𝑒𝑟𝑧𝑜))… 
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model’s alternative hypothesis to H2.c is that “the frequency of play of (just) one of the three 

positions is positively related to 𝜇𝑖
O, whereas no position is positively related to 𝜇𝑖

C or 𝜇𝑖
S”.27 

 

In the following, we contrast the All-Aware treatment with the Baseline. Recall that the 

treatments are identical except for the three extra questions asked of All-Aware participants, which 

may be viewed as tautologies (i.e., “𝐸 is the case or ¬𝐸 is the case”). For any event 𝐸, remember 

that in a standard model one is always aware of 𝐸 and ¬𝐸: it follows that one cannot learn (from the 

All-Aware questions) anything that one did not know already. Standard models therefore predict that 

the All-Aware questions have no impact on participants’ behavior (regardless of the solution concept). 

So, there should be no behavioral differences across treatments, as in the following null hypothesis.28 

H3. Average choices do not vary between the Baseline and All-Aware treatments. 

By contrast, our model’s alternative hypothesis is that “average choices vary across treatments” 

due to an increase in attribute awareness, resulting from the three extra questions that we asked of 

All-Aware participants (i.e., if one had not been aware of 𝐸 and ¬𝐸 in the first place, then the 

question itself would automatically generate awareness of those events).  To see how this would 

impact choices, we note that the randomized assignment of subjects to either treatment guarantees 

a-priori similar samples across treatments (thus, a-priori similar choice distributions, on average). 

Now recall that – from the experimenter’s perspective – the All-Aware questions ensure that each 

participant in the All-Aware treatment will shift (from an unobservable type) to type 𝐾′ = {𝐶, 𝑆, 𝑂}. 

If a participant’s prior type was different, in that before seeing those questions she had ignored some 

attribute/s, then she might reconsider her strategy as a result of the updated type. This leads to 

behavioral differences across treatments.  (See Claim 1 in the Appendix for a formal statement.) 

 

The next hypothesis addresses whether any between-treatment differences in game play are 

reflected in the subjects’ guesses about which objects will be chosen by others.  Such guesses were 

elicited from both All-Aware and Baseline participants (see task iv., in section III), and should not 

 
27 Recall that our design involves a pre-randomization mechanism, ensuring that color and shape oddities be balanced 

across positions. So, high beliefs 𝜇𝑖
O cannot be driven by an abundance of color/shape oddities in a particular position. 

As we will see, the data reject null hypothesis H2.c in favor of our model’s alternative hypothesis: more precisely, the 

frequency of play of the top object is positively related to 𝜇𝑖
O, which points to a labeling such as ((𝑡𝑜𝑝), (𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟)). 

28 Also note that the All-Aware treatment manipulation hints at multiple attributes at once (without directing subjects’ 

attention to any one frame in particular), thereby minimizing any implicit demand effects on the part of our questions. 
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be confused with the above-discussed awareness beliefs.  Due to the same reasoning as above, 

standard models entail the following null hypothesis. 

H4. Average guesses (about which objects will be chosen by others) do not vary across the Baseline 

and All-Aware treatments. 

Conversely, our model’s alternative hypothesis is that “average guesses vary across treatments” 

due to an increase in attribute awareness on the part of All-Aware participants. 

 

Our final hypothesis has to do with differences in coordination rates between treatments.  

Once again, if participants were unaffected by the All-Aware questions (as is implied by standard 

Bayesian models), then average choices would not vary across treatments; if so, coordination rates 

would not vary either. This means that standard models entail the following null hypothesis. 

H5. Coordination rates do not vary between the <Baseline, Baseline> and <Baseline, All-Aware> 

pairs of subjects. 

By contrast, our model’s alternative hypothesis is that “the treatment manipulation causes a 

decrease in coordination rates”, as follows.  As a benchmark, take the hypothetical case in which 

Baseline participants are paired with Baseline participants (i.e., <Baseline, Baseline> pairs); we 

then compare such a reference group with the case in which Baseline participants are paired with 

All-Aware participants, as in our experimental design (i.e., <Baseline, All-Aware> pairs).29  Here, 

the model implies that coordination rates for <Baseline, All-Aware> pairs must be weakly lower 

than those for <Baseline, Baseline> pairs.  The informal argument is that some Baseline participants 

overlook an attribute, so they will not match their All-Aware counterparts who choose an object 

based on that attribute; generalizing, increases in attribute awareness affect the variance of the 

choice distributions, thus coordination rates.  (See Claim 2 in the Appendix for a formal statement.) 

 

V.  Experimental results 

1. General procedures, recruitment, and earnings 

Experimental sessions were conducted at UCSB, with subjects being recruited from a broad 

range of academic departments via ORSEE (Greiner, 2015). A total of 108 subjects took part in our 

 
29 Note that it would not make sense to consider the case in which All-Aware participants are paired with each other, 

since that would contradict the information provided during the experiment (i.e., recall that All-Aware participants 

believe – correctly – that their counterparts’ awareness has not been raised exogenously). 
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six sessions.  Subjects on average earned a total payoff of about $12 (over ten games, including a $5 

show-up fee), with minimum (maximum) earnings of $6.50 ($17.50). On average, sessions had 18 

subjects and lasted about 40 minutes. In each session, half of the participants was assigned to the 

All-Aware treatment and half to the Baseline. No subject could participate in more than one session. 

 

2. Tests of H1 

We begin by analyzing the All-Aware treatment.  Here we address the null hypothesis H1, 

concerning the distribution of subjective probabilities about whether others do or do not notice an 

attribute (collectively referred to as “awareness beliefs”, for short).  To that end, Figure 3 reports 

histograms for the awareness beliefs with respect to colors, shapes, and order (which for brevity we 

respectively denote by 𝜇𝑖
C, 𝜇𝑖

S, 𝜇𝑖
O, where each variable is a number belonging to the interval [0,1]).30   

 

 

Figure 3 - All-Aware treatment. The first, second and third panel (from the top) show histograms for the 

beliefs about others noticing differences in the objects with respect to colors, shapes and order, respectively. 

Note: the data refer to per-subject mean beliefs elicited (as percentages) over ten games; such beliefs are 

treated as continuous variables, with the width of each histogram bin covering about 5 percentage points. 

 
30 Here, such elicited beliefs fully determine a type mapping, as defined in section II.2.  For instance, let’s denote by �̌� 

the state where 𝑗 is aware of the color attribute only (i.e., 𝑗 is aware of the color attribute, and not of the shape or order 

attributes). Then, the probability 𝑖’s type mapping assigns to �̌� is computed as 𝜇𝑖
C ⋅ (1 − 𝜇𝑖

S) ⋅ (1 − 𝜇𝑖
O). 
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A quick glance at Figure 3 shows that All-Aware participants are really not certain that their 

Baseline counterparts would notice every feature of the action set, as is instead implied by the 

Bayesian paradigm (i.e., incomplete-information models presume common knowledge of the 

information structure, which precludes a player from believing that the counterpart may overlook 

any features of the game). In brief, we see from Figure 3 that only about 30% of the color (1st panel) 

and shape (2nd panel) awareness beliefs are within the 95-100 percent interval, and less than 15% of 

the order (3rd panel) awareness beliefs are within that interval.  Notably, the rate of order awareness 

beliefs that fall within the 95-100 percent interval is significantly different (N = 108 obs., z = 2.053, 

p = 0.040, two-tailed test of proportions) than the corresponding rate for color and shape awareness 

beliefs, confirming that these responses are not merely noise. 

Now, to reject the null hypothesis H1 (“All-Aware participants believe that their Baseline 

counterparts notice with certainty any differences with respect to colors, shapes, and order”), we 

just need to show that the awareness beliefs are less than 100 percent.  So, with 70%-85% of the 

distributions outside of the 95-100 percent interval, we can readily reject H1. People do not have 

faith that everything will be observed, giving some scope for unawareness to have an impact.  Even 

a conservative Wilcoxon signed-rank test for whether the median belief differs from the value of 95 

percent (i.e., instead of 100 percent, thus allowing for “almost certainty”) is strongly significant: for 

color awareness beliefs (N = 54 obs., z = -4.376, p = 0.000, two-tailed), for shape awareness beliefs 

(N = 54 obs., z = -4.280, p = 0.000, two-tailed), and finally for order awareness beliefs (N = 54 obs., 

z = -5.997, p = 0.000, two-tailed).  Therefore, All-Aware participants are far from certain that their 

Baseline counterparts would notice every feature of the action set.  (Incidentally, we stress that the 

tests above are conducted on the sample of per-subject mean beliefs, to satisfy the assumption of 

independence of observations; i.e., the tests use one observation per participant.)  We conclude that 

the data reject the null hypothesis H1. 

 

Moving on, we note that evidence against H1 is consistent with our model as well as with 

earlier theories featuring “non-standard” information structures, such as Bacharach’s (1993) 

variable frame theory and related work (Bacharach and Stahl, 2000; Casajus, 2000; Janssen, 2001), 

henceforth collectively referred to as VFT. While each VFT variant differs somewhat from others, 

they each allow for some heterogenous awareness.  (As we previously noted, our model draws on 

this literature, yet unlike VFT we define a lattice of state spaces and provide a new solution concept, 

which avoids the drawbacks resulting from some VFT assumptions.)  In particular, VFT assumes 
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that – in a given population – the probability that someone thinks of an attribute is a constant, and it 

is independent of the “physical distribution of the objects; and of features of the player, such as her 

skill, her experience of similar games, and her opportunities to search for descriptors” (Bacharach 

and Bernasconi, 1997, p. 13). In the context of our experiment, this implies that the probability of 

noticing, say, color differences is a constant, and it is invariant to the specific color of the objects 

across games.  Further, VFT posits that players’ beliefs consistently reflect that probability.31 

Since the VFT assumptions above are too strong to generate testable predictions, here we 

relax them.  Instead of assuming that any individuals who perceive an attribute 𝑘 somehow hold 

identical beliefs, we assume that beliefs are concentrated around a value that we take to be the mean 

of a normal distribution. We first report summary statistics to have a sense of whether mean beliefs 

are similar across players; we then test if those beliefs come from the same normal distribution.  

Descriptive statistics relating to the (per-subject) mean dataset confirm that color awareness beliefs 

are fairly dispersed across players: avg. = 86.825, s.d. = 12.552; further, the Shapiro-Wilk W test 

(i.e., a common test for normality) rejects the hypothesis that subjects’ beliefs come from the same 

normal distribution (N = 54 obs., z = 4.723, p = 0.000).  For shape awareness beliefs, we find that 

avg. = 83.470, s.d. = 15.912 and, again, the Shapiro-Wilk W test rejects the hypothesis that beliefs 

come from the same normal distribution (N = 54 obs., z = 3.779, p = 0.000).  For order awareness 

beliefs, we find that avg. = 71.140, s.d. = 18.587; here, the test provides mild evidence against the 

hypothesis that beliefs come from the same normal distribution (N = 54 obs., z = 1.413, p = 0.078), 

however the standard deviation of the observed distribution is even higher than in previous cases.  

So, while VFT implies that – for each attribute 𝑘 – beliefs should not vary across 𝑘-perceiving 

individuals, our data show that they vary substantially and do not exhibit normality. 

The tests so far utilized per-subject mean observations. In what follows, instead, we test if 

an individual’s own beliefs are similar across the sequence of games (recall that, per VFT, the 

probability that someone thinks of an attribute is a constant, and it is independent of the physical 

distribution of the objects). To that end, we report a Friedman test (i.e., the non-parametric analog to 

 
31 This assumption is motivated by the notion of the “acquisition of mutual beliefs among normal agents”.  For example, 

suppose that in a given population the actual probability that players normally notice color differences is 𝑝. There, VFT posits 

that all (Bacharach, 1993, pp. 260-263) or some (Bacharach and Stahl, 2000, p. 230) of the color-perceiving players correctly 

know 𝑝, while the rest of the players do not hold any beliefs about color perception. In the context of our experiment, this 

implies that All-Aware participants generally hold correct beliefs about their Baseline counterparts.  Yet, this is implausible in 

games where one has no experience about the others’ perceptual limitations. In designing an empirical test of VFT, the late 

Bacharach acknowledged this and other issues, adding that “[the authors] wanted to test VFT constructively, that is, in such a 

way that evidence of incorrectness would show how to improve it” (Bacharach and Bernasconi, 1997, p. 12). 
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the Repeated Measures ANOVA) conducted on the entire sequence of awareness beliefs, consisting 

of ten games per subject.  This test indicates significant differences across games in the case of 

color awareness beliefs (𝜒9
2 = 22.946, p = 0.006), shape awareness beliefs (𝜒9

2 = 19.087, p = 0.024), 

and order awareness beliefs (𝜒9
2 = 37.465, p = 0.000). So, the data do not support the VFT prediction 

that beliefs reflect the fact that the probability of noticing an attribute must be constant across games. 

In summary, the data reject null hypothesis H1, thereby contradicting the predictions of a 

standard model; moreover, we find that the data contradict some VFT predictions. In fact, we find 

support for our model’s alternative hypothesis, that is: “All-Aware participants believe that others may 

fail to notice some features of the action set, with such beliefs varying across players as well as games”. 

 

3. Tests of H2 

We proceed to test null hypothesis H2 (with components a, b, c), which as usual is based on 

a standard model (per footnote 25).  In brief, the single-state-space Bayesian paradigm implies no 

particular relation between one’s strategy and one’s awareness beliefs: in fact, in that model one is 

aware of everything, and knows that others are aware of everything (thus, each elicited belief ≈ 1). 

  

 

[I] 

Choice of 

the color 

oddity 

[II] 

Choice of 

the shape 

oddity 

 

 [III] 

Choice of 

the top 

object 

[IV] 

Choice of 

the middle 

object 

[V] 

Choice of 

the bottom 

object 

Belief about others noticing colors 

𝜇𝑖
C 

.029 *** 

(.010) 

-.020 ** 

(.008) 
 

 -.014 

(.013) 

-.001 

(.015) 

.024 

(.015) 

Belief about others noticing shapes 

 𝜇𝑖
S 

-.012 ** 

(.006) 

.021 ** 

(.008) 
 

 .001 

(.008) 

.002 

(.010) 

-.004 

(.009) 

Belief about others noticing order 

𝜇𝑖
O 

-.013 ** 

(.006) 

.004 

(.006) 
 

 .008 * 

(.004) 

-.001 

(.005) 

-.010 *** 

(.003) 
 
 

   
 

   

Round 
-.034 

(.036) 

.261 ** 

(.129) 
 

 .042 

(.052) 

-.040 

(.085) 

-.013 

(.114) 
 

  
 

    

Constant 
-.317 

(.966) 

-1.88 

(1.158) 
 

 .289 

(1.034) 

-.818 

(.892) 

-2.164 ** 

(1.045) 
 

  
 

    

Pseudo R2 0.038 0.077   0.017 0.003 0.024 

Obs. 324 324   540 540 540 

Table 2 - Logit model coefficients, with robust standard errors adjusted for two-way clustering on the 

subjects and the games.  *, ** and *** respectively indicate 𝑝 < 0.10, 𝑝 < 0.05 and 𝑝 < 0.01 for the 

relevant Z-statistic, two-tailed tests.  Note: models [I] and [II] use All-Aware data from any games 

with at least a color and a shape oddity, respectively; model [III]-[V] use All-Aware data from all the 

ten games. For details about the distribution of oddities across games, see footnote 22. 
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Specifically, H2.a says that there is no relationship between color awareness beliefs 𝜇𝑖
C and 

choice behavior in games containing color oddities.  For a formal test, column [I] of Table 2 

presents a logit model with a subject’s choice of the color oddity as the binary dependent variable; 

the list of predictors includes each of the awareness beliefs 𝜇𝑖
C, 𝜇𝑖

S, 𝜇𝑖
O, as well as a round variable 

(controlling for any time effects).  Note that model [I] uses All-Aware data from any games 

containing a color oddity, with half such games containing a shape oddity as well; in order to 

provide a most conservative test, we present robust standard errors adjusted for two-way clustering 

(Cameron, Gelbach, and Miller, 2011), on the subjects and on the games.  Results from model [I] 

show a significant positive effect of 𝜇𝑖
C (i.e., the belief about others noticing the different colors) on 

the likelihood of playing the color oddity; also, we find a significant negative effect of 𝜇𝑖
S and 𝜇𝑖

O.  

Hence, the data reject H2.a in favor of the alternative hypothesis derived from our model: “the 

frequency of play of color oddities is positively related to 𝜇𝑖
C, and not to 𝜇𝑖

S or 𝜇𝑖
O”. 

We turn to null hypothesis H2.b, which posits no relationship between shape awareness 

beliefs 𝜇𝑖
S and choice behavior in games containing shape oddities.  In short, column [II] of Table 2 

presents a logit model with a subject’s choice of the shape oddity as the binary dependent variable; 

as before, predictors include the awareness beliefs as well as a round variable. Note that model [II] 

uses All-Aware data from any games containing a shape oddity, with half such games containing a 

color oddity as well; again, robust standard errors are adjusted for clustering.  Model [II] indicates a 

significant positive effect of 𝜇𝑖
S (i.e., the belief about others noticing the different shapes) on the 

likelihood of playing the shape oddity; additionally, we find a significant negative effect of 𝜇𝑖
C and 

no significant effect of 𝜇𝑖
O.  So, the data reject H2.b in favor of our model’s alternative hypothesis: 

“the frequency of play of shape oddities is positively related to 𝜇𝑖
S, and not to 𝜇𝑖

C or 𝜇𝑖
O”. 

We move on to null hypothesis H2.c, which concerns the full sample of games (as opposed to a 

subsample of games containing color or shape oddities).  This hypothesis posits no relationship between 

order awareness beliefs 𝜇𝑖
O and behavior.  Instead, our model predicts that “the frequency of play of (just) 

one of the three positions is positively related to 𝜇𝑖
O, while no position is positively related to 𝜇𝑖

C or 𝜇𝑖
S”.  

(In this regard, it is worth noting that our design involves a pre-randomization mechanism, ensuring that 

color and shape oddities be balanced across positions: this implies that high beliefs 𝜇𝑖
O cannot be driven 

by an abundance of color/shape oddities in a particular position.)  That said, columns [III]-[V] of Table 2 

present logit models respectively consisting of a subject’s choice of the top, middle, and bottom object as 

the binary dependent variable; again, predictors include the awareness beliefs, along with a round 

variable (the models use All-Aware data from each of the ten games, with robust standard errors adjusted 
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for clustering).  Model [III] shows a mildly significant positive effect of 𝜇𝑖
O (i.e., the belief about others 

noticing the order of the objects) on the likelihood of playing the top object.  Interestingly, while none of 

the models [III]-[V] indicates any significant effect of 𝜇𝑖
C or 𝜇𝑖

S, model [V] shows a significant negative 

effect of 𝜇𝑖
O on the likelihood of playing the bottom object.  We conclude that the data reject H2.c in 

favor of our model’s alternative hypothesis: specifically, we find evidence that the frequency of play 

of the top object is positively related to 𝜇𝑖
O, which points to a labeling such as 

((𝑡𝑜𝑝), (𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟)). 

To recap, the tests reject H2 (a, b, c).  In fact, the tests support our rationalizability concept, 

according to which 𝑖’s FDR strategy is the oddity induced by the attribute most-likely noticed by 𝑗. 

  

4. Tests of H3 

In the rest of the paper, we contrast the All-Aware treatment with the Baseline.  We start by 

testing null hypothesis H3, which pertains to the distributions of choice data: based on the standard 

Bayesian paradigm, this null hypothesis says that there should be no behavioral differences across the 

two treatments, on average (i.e., if one never overlooks any attributes, then the three All-Aware questions 

cannot alter one’s view of the game). Instead, our model’s alternative hypothesis is that choices vary 

between treatments due to an increase in attribute awareness on the part of All-Aware participants. 

Prior to discussing our tests, we shall present some summary statistics. To that end, we let 

((𝑎1), (𝑎2), (𝑎3)) denote a generic, ordered triplet of objects (𝑎𝑛 refers to the n-th available option).  

In the Baseline, subjects chose 𝑎1, 𝑎2 and 𝑎3, respectively, 40.18%, 33.15% and 26.67% of the time 

(averaging across ten games); in the All-Aware treatment, instead, 50.00%, 26.30% and 23.70%, 

respectively.  These average (across-games) distributions hint at differences between treatments, yet 

these statistics are uninformative as to the relation between one’s attribute awareness and the 

objects’ attributes in each game.  So, like before, we must run an analysis of the full sample of 

individual observations (adjusting standard errors for clustering on the subjects and the games). 

Columns [I]-[III] of Table 3 present logit models respectively consisting of a subject’s 

choice of 𝑎1, 𝑎2 and 𝑎3 as the dependent variable. The list of predictors includes:  (i) “Treat”, a 

treatment indicator taking on value 0 or 1 when a subject is assigned to the Baseline or All-Aware, 

respectively;  (ii) “Odd”, a dummy for whether the object 𝑎𝑛 specified in the column’s header is a 

color/shape oddity or not;  (iii) a Treat*Odd interaction variable;  (iv) “Else”, a dummy for whether 

the triplet of objects contains another color/shape oddity (i.e., other than the object 𝑎𝑛 specified in 

the column’s header);  (v) a “Round” variable, controlling for any time effects. 
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[I] 

Choice of 𝒂𝟏 

[II] 

Choice of 𝒂𝟐 

[III] 

Choice of 𝒂𝟑 

Treat 

(Treatment indicator) 

.575 ** 

(.282) 

-.623 ** 

(.279) 

-.341 

(.239) 
 

Odd 

(Dummy for whether the object 𝑎𝑛 

specified in the column’s header is a 

color/shape oddity or not) 

1.315 *** 

(.360) 

.986 * 

(.579) 

1.343 *** 

(.503) 

 

Treat*Odd 

(Interaction variable) 

-.429 

(.299) 

.371 

(.362) 

.284 

(.317) 
 

   

Else 

(Dummy for whether the triplet contains 

another color/shape oddity or not) 

-1.215 *** 

(.177) 

-.904 ** 

(.364) 

-.243 

(.426) 
 

 
   

Round 
-.026 ** 

(.011) 

.001 

(.080) 

.018 

(.045) 
 

   

Constant 
.299 

(.202) 

-.758 

(.809) 

-1.591 *** 

(.548) 
 

   

Pseudo R2 0.095 0.117 0.096 

Obs. 1080 1080 1080 

Table 3 - Logit model coefficients, with robust standard errors adjusted for two-way clustering on the 

subjects and the games.  *, ** and *** respectively indicate 𝑝 < 0.10, 𝑝 < 0.05 and 𝑝 < 0.01 for the 

relevant Z-statistic, two-tailed tests.  Note: ((𝑎1), (𝑎2), (𝑎3)) denotes a generic, ordered triplet of objects 

(𝑎𝑛 refers to the n-th available option); each model uses data from all the ten games. The indicator 

Treat takes on value 0 or 1 when a subject is respectively assigned to the Baseline or All-Aware. 

 

Results from Table 3 show a positive effect of Odd, and a negative effect of Else.  This means that 

the frequency of play of an object 𝑎𝑛 increases when that object is a color/shape oddity, and it decreases 

when another object is a color/shape oddity.  Remarkably, the significance of Treat in models [I]-[II] 

provides evidence that behavior varies across treatments, in such a way that All-Aware participants are 

more likely to choose 𝑎1 (and less likely to choose 𝑎2) than Baseline participants. We interpret such 

differences as being driven by an increase in the awareness of the order labeling ((𝑡𝑜𝑝), (𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟)). 

Further, we note that the interaction variable in each of the models of Table 3 is non-significant, 

indicating that All-Aware participants are as likely as Baseline participants to choose color and shape 

oddities (counted together). This appears to suggest that our treatment manipulation did not affect the 

All-Aware participants’ consideration of color/shape frames.  However, the non-significance of the 

interaction might conceal opposite-sign changes in the frequency of play of color and shape oddities.  

To check that, we analyze the subsample of games that contain both a color oddity and a shape oddity at 

once (in the same triplet of objects).  Given this subsample, we consider a simple logit model with one’s 
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choice of color oddities as the binary dependent variable, and the treatment indicator as the sole 

predictor: such a model reveals a significant negative impact of the All-Aware treatment on the choice 

of color oddities (N = 324, coef. = -.275, z = -2.20, p = 0.028, two-tailed logit with standard errors 

adjusted for clustering).  Given the same subsample, we also consider a logit model with one’s choice of 

shape oddities as the binary dependent variable, and the treatment indicator as the sole predictor: this 

model shows a positive non-significant effect of the All-Aware treatment on the choice of shape oddities 

(N = 324, coef. = .268, z = 0.98, p = 0.325, two-tailed logit with clustered standard errors). 

The analysis above rejects H3, thereby supporting our model’s alternative hypothesis that 

“average choices vary across treatments”.  In short, the data indicate behavioral differences 

pointing to an increase in the awareness of a labeling like ((𝑡𝑜𝑝), (𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟)). In other words, 

the All-Aware manipulation affects choices, because it makes participants think about order (and to 

a lesser extent shape) frames to which they would otherwise not have paid attention. 

 

5. Tests of H4 

We now verify if the above differences in game play are reflected in the subjects’ guesses about 

which objects will be chosen by others.  Such guesses were elicited from both All-Aware and Baseline 

participants (see task iv., in section III), and should not be confused with the above-discussed 

awareness beliefs.  As usual, the null hypothesis is based on the standard Bayesian paradigm, which 

entails no differences in the guesses stated across treatments, on average.32  On the other hand, our 

model’s alternative hypothesis is that guesses vary across treatments due to an increase in attribute 

awareness. 

Columns [I]-[III] of Table 4 present OLS models consisting of a subject’s guess about 

respectively 𝑎1, 𝑎2 and 𝑎3 being chosen by others, as the dependent variable; the list of predictors is 

the same as in Table 3.  Results from Table 4 confirm a significant positive effect of Odd, and a 

negative effect of Else: this means that guesses (about 𝑎𝑛 being chosen by others) increase when the 

object is a color/shape oddity, and they decrease when another object is a color/shape oddity.  

Further, the mild significance of Treat in model [I] provides some evidence that guesses about 𝑎1 

(which corresponds to the top object) change – namely, increase – in the All-Aware treatment 

 
32 Indeed, since participants are randomly assigned to either treatment, the large sample size and the homogeneity in the 

make-up of the subject pool give us no reason to assume prior differences across samples.  Given this, if subjects’ 

awareness is unaffected by the treatment manipulation (in that subjects pay attention to all the frames regardless of the 

treatment, as is assumed by Bayesian models), then Bayesian models imply no differences in the distribution of guesses. 
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relative to the Baseline.  At the same time, the significant negative effect of Treat in model [III] 

confirms that guesses about 𝑎3 (the bottom object) decrease in the All-Aware treatment relative to 

the Baseline.  Finally, note that the interaction variable in model [I] reveals that the All-Aware 

participants’ guesses about 𝑎1 increase relatively less when 𝑎1 is a color/shape oddity.33 

 
 

 
[I] 

Guess about 𝒂𝟏 

[II] 

Guess about 𝒂𝟐 

[III] 

Guess about 𝒂𝟑 

Treat 

(Treatment indicator) 

3.891 * 

(2.269) 

-1.866 

(1.270) 

-2.938 ** 

(1.496) 
 

Odd 

(Dummy for whether the object 𝑎𝑛 

specified in the column’s header is a 

color/shape oddity or not) 

6.777 *** 

(1.578) 

5.989 ** 

(2.507) 

6.080 ** 

(2.564) 

 

Treat*Odd 

(Interaction variable) 

-2.669 *** 

(.603) 

1.262 

(2.235) 

2.706 

(2.520) 
 

   

Else 

(Dummy for whether the triplet contains 

another color/shape oddity or not) 

-6.488 *** 

(.371) 

-4.991 *** 

(1.547) 

-1.325 

(1.375) 
 
 

   

Round 
.095 

(.111) 

-.221 

(.290) 

.141 

(.207) 
 

   

Constant 
37.650 *** 

(.824) 

34.663 *** 

(2.759) 

29.254 *** 

(2.225) 
 

   

R2 0.068 0.115 0.088 

Obs. 1080 1080 1080 

Table 4 - OLS regression coefficients, with robust standard errors adjusted for two-way clustering on 

the subjects and the games.  *, ** and *** respectively indicate 𝑝 < 0.10, 𝑝 < 0.05 and 𝑝 < 0.01 for the 

relevant Z-statistic, two-tailed tests.  Note: ((𝑎1), (𝑎2), (𝑎3)) denotes a generic, ordered triplet of objects 

(𝑎𝑛 refers to the n-th available option); each model uses data from all the ten games. The indicator 

Treat takes on value 0 or 1 when a subject is respectively assigned to the Baseline or All-Aware. 

 

We conclude that the results reject H4 and support our model’s alternative hypothesis that 

“average guesses vary across treatments”. In particular, the present analysis corroborates our earlier 

interpretation that All-Aware participants exhibit an increase in the awareness of the order labeling 

((𝑡𝑜𝑝), (𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟)).  Still, it is worth discussing a speculative counter-argument, according to 

which the All-Aware manipulation could lead subjects who had already been aware of all three attributes 

to somehow “reassess” their guesses (i.e., despite there being no change in attribute awareness).  In this 

 
33 If 𝑎1 is a color/shape oddity, the predicted value of the guess about 𝑎1 goes from 40.70% to 41.93% when moving from the 

Baseline to the All-Aware treatment. By contrast, if 𝑎1 is not a color/shape oddity, the predicted value of the guess about 𝑎1 

increases from 32.58% to 36.47% when moving from Baseline to All-Aware. The latter change is consistent with an increase 

in the awareness of a labeling such as ((𝑡𝑜𝑝), (𝑜𝑡ℎ𝑒𝑟), (𝑜𝑡ℎ𝑒𝑟)), since color/shape oddities are not a factor in that case. 
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respect, we note that while such a reassessment might be justified at the margin (were one to attach nearly 

the same probability to multiple objects), one cannot justify a significant reassessment unless new 

information has arisen.  Relatedly, we stress that the All-Aware treatment manipulation hints at several 

attributes at once (without directing subjects’ attention to any one frame in particular), thereby 

minimizing any implicit demand effects.  Thus, subjects could not interpret a question in the All-Aware 

treatment as a signal that “one should particularly pay attention to an attribute”, since such a signal would 

be uninformative in that the three questions are symmetric to each other.  This falsifies the argument that 

one may observe a significant change in the distribution of guesses even without a change in awareness. 

 

6. Tests of H5 

Here we test null hypothesis H5, which concerns coordination rates across the Baseline and 

All-Aware treatments.  While Bayesian models imply no between-treatment differences in behavior 

and so no difference in coordination rates, the alternative hypothesis derived from our model is that 

the treatment manipulation causes a change, whereby coordination rates for <Baseline, All-Aware> 

pairs are lower than those for <Baseline, Baseline> pairs (see Appendix for a formal claim). 

We start by reporting some summary statistics.  In keeping with previous studies, we report 

expected coordination rates (as opposed to actual frequencies of coordination), computed at the 

session level.34  As a benchmark, we consider the hypothetical case in which a Baseline participant 

is paired with another Baseline participant, which yields a 50.2% coordination rate, averaging 

across sessions.  We then turn to the case in which an All-Aware participant is paired with a 

Baseline participant – as per our experimental design – which yields a 44.6% coordination rate 

(averaging across sessions).  This provides informal evidence against the null hypothesis. 

For a formal test, we now contrast the distribution of per-session mean coordination rates 

for <Baseline, All-Aware> pairs, against the distribution for <Baseline, Baseline> pairs. Such a 

comparison allows us to conclude that the coordination rates differ significantly from each other 

under a Wilcoxon signed rank sum test (N = 12 obs., z = -2.201, p = 0.027, two-tailed). 

Additionally, a binomial test can help us verify if (same-direction) differences across coordination 

 
34 Actual coordination rates depend on individual choices and on a stochastic element, that is, the random assignment of 

partners: in a relatively small sample, this random element might bias the rates.  “Thus, the actual frequency of 

coordination has no special significance; it is more appropriate to consider the expected frequency of coordination” 

(Mehta, Starmer, and Sugden, 1994, p. 663, italics in original).  Here we compute the expected coordination rates from 

the observed distribution of individual choices, by calculating the probability that two subjects match in a certain round 

(i.e., triplet) and session; per-session mean rates are then computed by averaging across all the rounds in a session. 
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rates are due to chance, as opposed to treatment-induced variations in awareness. In this regard, we 

note that <Baseline, All-Aware> pairs exhibit lower coordination rates than <Baseline, Baseline> 

pairs in six out of six sessions, confirming that variations in subjects’ awareness do have an impact 

on coordination (N = 6, p = (
1

2
)
5
= 0.031, two-tailed).  In brief, the data reject null hypothesis H5 in 

favor of our model’s alternative hypothesis that “the treatment manipulation causes a decrease in 

coordination rates”. As per our prediction, an increased awareness can hurt coordination. 

 

VI.  Discussion and conclusion 

We have proposed a model allowing for heterogeneity in players’ awareness as to the attributes 

of the action set. We have then provided a test of competing hypotheses about the impact of frames on 

choice behavior. The data confirm that changes in attribute awareness cannot be plausibly accounted 

for by a standard Bayesian model (which precludes unawareness in the first place); in fact, we find that 

the best explanation of the data is consistent with our proposed model and solution concept. 

Taken together, the present theory and evidence provide a coherent account of the impact of 

varying multi-attribute awareness.  This account builds on research streams such as the formal analysis 

of unawareness (e.g., Dekel et al., 1998a; Heifetz et al., 2013a) and the study of labelings (Bacharach, 

1993; Bacharach and Stahl, 2000; Janssen, 2001).  With reference to the latter, we note that while 

Bacharach’s work and related variants allowed for heterogeneous awareness – as previously discussed – 

their solution concepts rely on quite strong assumptions; thus, they are not well suited as a predictive 

device in experimental games where one has no experience about the others’ perceptual limitations, or 

in cases where one’s perception may change during the game. In reviewing some of these drawbacks, 

the late Bacharach hinted at several directions for future research, some of which we have taken up here 

(e.g., see the discussion in Bacharach and Bernasconi, 1997, pp. 12-13).  Relatedly, we note that we 

depart from Bacharach and Bernasconi’s seminal experiment, since their design did not attempt to raise 

subjects’ awareness, nor did it test if subjects best-respond to their “awareness beliefs”.  (For an 

overview of related experiments, see Rojo Arjona, 2020.) 

In this connection, Blume and Gneezy (2010) studied an interesting form of heterogeneity in 

frame awareness, drawing on the influential analysis of symmetries by Crawford and Haller (1990) 

and Blume (2000).  Specifically, Blume and Gneezy’s experimental design presupposes two levels 

of cognitive ability (low and high), where only the high type perceives a symmetry in the structure 

of the options that induces a Pareto-efficient strategy. While the Blume-Gneezy design did not elicit 

awareness beliefs, their results show evidence that high types conceive of and react to low types 
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(e.g., subjects behaved differently when trying to match an unknown partner rather than their own 

previous choice).  Summing up, in the authors’ words, the Blume-Gneezy design aims to address 

“logical inference” and “mathematical foci” (2010, p. 490); as such, it does not address individuals 

that are similar in their cognitive skills, and yet heterogenous in the extent to which they simply 

think about multiple symmetric attributes when making a decision. 

In the domain of (normative) equilibrium theories, we note that Arad and Rubinstein’s 

(2019) model does address multi-attribute thinking (in Colonel Blotto games); however, their model 

pertains to problems where “players have accumulated experience in playing the game and have 

settled on a particular mode of behavior” (p. 286). More explicitly, their work does not aim to 

address the case where inexperienced subjects suffer from partial perception: hence, unawareness 

has no role in their model.  In a similar vein, Alós-Ferrer and Kuzmics (2013) study players with 

common knowledge of a focal frame; so, their model “is not a descriptive one of how players 

behave in a given framed game in the lab […], but rather how players should and perhaps 

eventually will behave, after generations of teaching and learning” (p. 229). 

In the experimental realm, research on the impact of “prescriptive frames” has compared 

behavior across problems with exogenously-assigned game labels (e.g., “Community game” vs. 

“Wall Street game”; Kay and Ross, 2003) or action labels (e.g., {cooperate, defect} vs. {out, in}; 

Andreoni, 1995).35  There, the experimenter induces a prescriptive frame by evoking individualistic 

versus cooperative norms, which direct subjects’ attention toward the action one ought to take in the 

context evoked.  In this respect, we note that our design does not involve any exogenous labels; 

also, our design evokes multiple frames at once, thereby minimizing any implicit demand effects. 

To conclude, this paper has studied how attribute awareness relates to rational choice; the data 

confirm that changes in attribute awareness do affect choice behavior in matching games. Going 

forward, we note that since our solution concept is defined inductively, it can also be used to generate 

predictions for finite, low levels of mutual belief in rationality (e.g., as in the Level-k literature) in 

games without a pure coordination motive. Indeed, a better appreciation of the perception-action link 

may lead to new applications for games incorporating an element of conflict (Shah and Ludwig, 

2016). Everyday life does in fact show that our mental framing can influence which actions we 

consider – and then choose – in a broad array of interactions.  

 
35 For evidence on exogenous labels, see O’Neill (1987), Rapoport and Boebel (1992), Rubinstein, Tversky, and Heller 

(1997), Tversky (2004). For evidence on labels in the context of Level-k reasoning, see Crawford and Iriberri (2007), 

Crawford, Gneezy, and Rottenstreich (2008), and Sontuoso and Bhatia (2021); see also Alaoui, Janezic, and Penta (2020). 
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APPENDIX 

 

 

 

Claim 1.  An increase in attribute awareness (on the part of some All-Aware participants) causes 

behavioral differences across treatments, ceteris paribus. 

Proof.  Assume that, in a given game, there is a subset of Baseline participants that does not think about 

all three attributes.  For instance, and without loss of generality, suppose that some Baseline participants 

are aware of a single attribute (besides ∅); formally, there are some Baseline participants whose 𝐾′ type is 

either {𝐶} or {𝑆} or {𝑂}. It follows from Observation 1 that each such participant will choose the color, 

shape, and order oddity (if any), respectively.  Now, regardless of the specific distribution of types, note that 

the randomized assignment of subjects to either treatment ensures a-priori similar samples (i.e., it ensures 

that the unobserved a-priori distribution of types be similar) across treatments.  Then, it follows from 

Observation 2 that an increase in attribute awareness causes a change in strategy on the part of some of 

the All-Aware participants, relative to their Baseline counterparts.  Such a change implies behavioral 

differences across treatments.  ∎ 

 

 

Claim 2.  An increase in attribute awareness causes a fall in coordination rates, ceteris paribus. 

Proof.  We start by noting that distributions of choice data (on which coordination rates depend) can be 

represented as 3-dimensional vectors, where the n-th element of the vector indicates the frequency of play 

of the n-th object in a given sample of participants.  Let the vector 𝚼 denote the choice distribution of a 

sample of Baseline participants.  Further, let �̃� and �̃�𝑡 respectively denote the “ex ante” and “ex post” 

choices of a sample of All-Aware participants; that is, �̃� represents the unobserved distribution of choices 

absent the treatment manipulation (i.e., prior to being exposed to the three All-Aware questions), whereas 

�̃�𝑡 is the observed distribution of choices (i.e., after the treatment manipulation).  Even though the 

experimenter does not observe �̃�, note that the randomized assignment of subjects to either treatment 

ensures a-priori similar samples, across treatments.  This implies that the vectors 𝚼 and �̃� must be similar; 

formally, 𝑐𝑜𝑠(𝚼, �̃�) ∼ 1, with 𝑐𝑜𝑠 denoting the cosine similarity of the vectors.*  Next, note that the 

expected coordination rate can be defined as the dot product of the vectors (i.e., the sum of the products of 

the vectors’ corresponding entries).  Thus, in the hypothetical case in which untreated subjects are paired 

with each other, the coordination rate is given by 𝚼 ⋅ �̃�, where 𝚼 ⋅ �̃� = ∑ Υ𝑛Υ̃𝑛
3
𝑛=1 . Similarly, denote by 𝚼 ⋅ �̃�𝑡 

the coordination rate for the case in which untreated subjects are paired with treated subjects. 

 
* The cosine similarity between (3-dimensional) vectors 𝚼 and �̃� is defined as 𝑐𝑜𝑠(𝚼, �̃�) =

∑ Υ𝑛Υ̃𝑛
3
𝑛=1

‖𝚼‖ ‖�̃�‖
, where the 

numerator is the dot product of the vectors and the denominator is the product of the Euclidean norm of each vector.  

The reader can easily verify that, for any two vectors with non-negative values, such a similarity measure ranges 

between 0 and 1.  In our case this has a nice interpretation.  The cosine similarity is in fact 0 if every participant in a 

sample chooses object 𝑎 and every participant in the other sample chooses object 𝑎′, for any 𝑎′ ≠ 𝑎.  By contrast, the 

cosine similarity is 1 whenever the choice distributions are identical across the two samples. 
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That said, we want to compare 𝚼 ⋅ �̃� with 𝚼 ⋅ �̃�𝑡 and determine which coordination rate is greater.  

To this purpose, we can use a well-known result from linear algebra and rewrite each of the dot products 

as follows.  By the law of cosines (Gunning, 2018, p. 65), write 𝚼 ⋅ �̃�  ≡ ‖𝚼‖ ⋅ ‖�̃�‖ ⋅ 𝑐𝑜𝑠(𝚼, �̃�);  likewise, 

write 𝚼 ⋅ �̃�𝑡 ≡ ‖𝚼‖ ⋅ ‖�̃�𝑡‖ ⋅ 𝑐𝑜𝑠(𝚼, �̃�𝑡), with ‖∙‖ denoting the Euclidean norm of a vector.  Note that the 

coordination rates are now expressed as the product of three non-negative scalars, and hence we can 

divide each of the expressions by ‖𝚼‖.  That leaves us to compare ‖�̃�‖ ⋅ 𝑐𝑜𝑠(𝚼, �̃�) with ‖�̃�𝑡‖ ⋅ 𝑐𝑜𝑠(𝚼, �̃�𝑡).  

Before doing so, note that per Observation 2 an increase in attribute awareness causes a change in strategy 

on the part of some treated subjects.  Under the assumption that participants’ deviations from the ex-ante 

choice distribution are equally likely across objects, then the variance of �̃�𝑡 will weakly decrease relative 

to �̃�.  (Note: the variance of a 3-object choice distribution is lowest, with a value of 0, when the frequency 

of play of each object is 1/3, whereas the variance is highest when every participant in the sample chooses 

the same one object.)  It is easy to see that whenever 𝑣𝑎𝑟(�̃�) ≥ 𝑣𝑎𝑟(�̃�𝑡), then it must be that ‖�̃�‖ ≥ ‖�̃�𝑡‖.  

Since by assumption 𝑐𝑜𝑠(𝚼, �̃�) ∼ 1, then it follows that ‖�̃�‖ ⋅ 𝑐𝑜𝑠(𝚼, �̃�) ≥ ‖�̃�𝑡‖ ⋅ 𝑐𝑜𝑠(𝚼, �̃�𝑡). Hence, 𝚼 ⋅ �̃� ≥

𝚼 ⋅ �̃�𝑡.  That is, coordination rates for <Baseline, Baseline> pairs must be (weakly) greater than those for 

<Baseline, All-Aware> pairs.  ∎ 
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ONLINE APPENDIX 

 

The Doors of Perception: 

Theory and Evidence of Frame-Dependent Rationalizability 

Gary Charness and Alessandro Sontuoso 

 

Experimental instructions (Baseline and All-Aware treatments) 

NOTE: The screenshots below refer to both treatments, unless otherwise noted. 

 

→Home screen: 

Consent form. 

 

 

→Screenshot 2 (transcript): 

Hello and welcome to a decision-making experiment. You will receive a show-up fee, and can also earn 

additional money. The additional payment will be determined by your own choices and those made by 

some other participant, according to the rules described below. 

 

 

→Screenshot 3: 
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→Screenshot 4: 

 
 

 

 

→Screenshot 5: 

 
NOTE: Here three objects just slid toward the right; i.e., the program has selected three blocks – one by one – 

and put them in a column on the right-hand side of the screen. 
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→Screenshot 6: 

 
NOTE: The (three) available strategy options are now shown on their own. 

 

 

 

→Screenshot 7: 

 
NOTE: The subject is prompted to enter one label per object, for her own future reference. 
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→Screenshot 8.i (All-Aware ONLY): 

 
 

 

 

→Screenshot 8.ii: 

NOTE: The spokes are initially arranged in such a way that each sector corresponds to one-third of the area. 

Within each sector there is a text box containing the label the subject entered in Screenshot 7. 
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→Screenshot 9: 

 
NOTE: The labels next to each of the options are those entered by the subject in Screenshot 7. 

 

 

 

→Screenshot 10 (transcript): 

In what follows you will go through 9 other rounds, where each round will involve the same type of tasks 

as the ones you have performed so far. 

NOTE: Screenshots 4 to 9 are repeated. 

 


