
              

City, University of London Institutional Repository

Citation: Siomos, V., Naval-Marimont, S., Passerat-Palmbach, J. & Tarroni, G. (2024). 

ARIA: On the Interaction Between Architectures, Initialization and Aggregation Methods for 
Federated Visual Classification. Paper presented at the 2024 IEEE International 
Symposium on Biomedical Imaging (ISBI), 27-30 May 2024, Athens, Greece. doi: 
10.1109/isbi56570.2024.10635565 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/33737/

Link to published version: https://doi.org/10.1109/isbi56570.2024.10635565

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ARIA: ON THE INTERACTION BETWEEN ARCHITECTURES, INITIALIZATION AND
AGGREGATION METHODS FOR FEDERATED VISUAL CLASSIFICATION
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ABSTRACT

Federated Learning (FL) is a collaborative training paradigm that
allows for privacy-preserving learning of cross-institutional models
by eliminating the exchange of sensitive data and instead relying
on the exchange of model parameters between the clients and a
server. Despite individual studies on how client models are aggre-
gated, and, more recently, on the benefits of ImageNet pre-training,
there is a lack of understanding of the effect the architecture chosen
for the federation has, and of how the aforementioned elements
interconnect. To this end, we conduct the first joint ARchitecture-
Initialization-Aggregation study and benchmark ARIAs across a
range of medical image classification tasks. We find that, contrary
to current practices, ARIA elements have to be chosen together to
achieve the best possible performance. Our results also shed light
on good choices for each element depending on the task, the effect
of normalization layers, and the utility of SSL pre-training, pointing
to potential directions for designing FL-specific architectures and
training pipelines.

Index Terms— Federated Learning, Self-Supervised Pre-
training

1. INTRODUCTION

Federated learning (FL) for healthcare [1] has emerged as a promis-
ing approach that enables collaborative machine learning without
direct access to raw patient data. The typical scenario for medi-
cal imaging data is the cross-silo setting, where a small number of
data owners/stakeholders fully participate in a round of federated
training by training their local/client models and sending the param-
eters to a central server, which aggregates the client models into a
server/global model. The global model is then broadcast to all clients
to start the next round, until training stops, and the final model is de-
livered to the stakeholders for deployment.

Since the seminal FedAvg paper [2], progress in cross-silo vi-
sual classification has been hard to determine, with innovation of-
ten focusing on improving the aggregation strategy for the frequent
scenario where the client datasets are heterogeneous [3, 4]. Unfortu-
nately, proposed methods most commonly use randomly initialized
model weights, small/toy models, or both [5]. This makes comparing
and drawing conclusions for real-world medical settings difficult.

Recent studies [6, 7] have been exploring the value of using Im-
ageNet (IN) pre-trained networks for FL, showcasing improvements
in closing the gap to centralized performance, improving overall per-
formance, and reducing the effect of data heterogeneity. Another
study by Qu et al. [8] highlighted the benefits of using IN pre-trained
transformers for FL. Very recently, Pieri et al. [5] focused on the in-
teraction of aggregation methods and architectures, but only exam-
ined IN pre-trained weights.

It’s important to note IN pre-training restricts the input to
224x224 RGB images. When up-sampling of the original im-
ages is required to achieve that, it leads to a bigger than necessary
computational and memory load, and the introduction of aliasing
artifacts (e.g. Fig. 1). When down-sampling is required instead,
it can degrade performance. Hence, IN pre-training is not a silver
bullet, and benchmarking architectures and aggregation strategies
without pre-training is also important. Furthermore, task-relevant
pre-training through self-supervised learning (SSL) has recently
emerged as a highly-effective alternative to IN pre-training [9], but
its usefulness in the FL setting remains largely unexplored.

Motivated by the above, we conduct what, to the best of our
knowledge, is the first study to jointly examine ARIAs: Architecture-
Initialization-Aggregation combinations: we select 9 architectures,
with the weights initialized from 3 starting points (Random, Ima-
geNet, SSL on a relevant dataset), and use 3 of the most common
methods (FedAvg, FedOpt, SCAFFOLD) to aggregate the models.
We focus on perhaps the most beneficial domain for FL, medical
imaging, and evaluate the resulting ARIAs on 3 different medical
imaging datasets, namely Fed-ISIC, and two versions of OrganAM-
NIST (with and without simulated heterogeneity).

Our results after training more than 300 ARIAs indicate to re-
searchers and practitioners designing FL pipelines for medical imag-
ing data that all elements of an ARIA have to be evaluated together,
but also shed light on the individual effects of network size, normal-
ization methods, architecture choice, and utility of SSL pre-training.

2. METHODS

2.1. (AR)chitectures

We aim to compare popular architectures from both the convolu-
tional and transformer families, while also pinpointing architectural
block that boost FL performance. All models are of reasonable size
and throughput for our target tasks. For comparison, rows in ta-
bles 1,2,3 are listed in decreasing training throughput, and we in-
clude model parameter counts here. From the family of residual net-
works [10], we choose a ResNet-18 (11.7M parameters), a ResNet-
50 (25.6M), and a Wide-ResNet-50-2 [11] (68.9M), to examine the
effect of depth and width. A DenseNet-121 [12] (8M), shows how
the density of residual connections and feature re-use affect perfor-
mance.

These architectures employ Batch Normalisation (BN), which
is known to degrade FL performance in heterogeneous settings,
due to the BN statistics being averaged across heterogeneous image
distributions[13]. There is no clear solution to this, with replacing
BN layers in a ResNet with Group or Layer Normalization, or not
sharing the BN layers, having been proposed before [13]. Our ap-
proach to providing insight into alternatives to BN is benchmarking

ar
X

iv
:2

31
1.

14
62

5v
2 

 [
cs

.C
V

] 
 1

 M
ar

 2
02

4



Table 1. Average balanced accuracy across 6 clients on Fed-ISIC. IN top-1 accuracy reported next to model name. Models listed in decreasing
measured training throughput (using AMP). Difference from average balanced accuracy of centrally trained model in parentheses.
Initialization Random ImageNet Pre-Training DINO on Skin SSL dataset

Agg. Method FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD

ResNet-18 (69.76) 51.65 (↓ 9.8) 46.7 (↓ 14.7) 52.45 (↓ 9) 65.87 (↓ 4.3) 67.55 (↓ 2.6) 68.66 (↓ 1.5) 66.57 (↓ 5.7) 62.36 (↓ 10) 66.87 (↓ 5.4)
NF-ResNet-50 (80.64) 55.93 (↓ 6.1) 56.25 (↓ 5.8) 59.64 (↓ 2.4) 71.88 (↑ 0.9) 68.75 (↓ 2.2) 71.53 (↑ 0.5) 67.83 (↓ 0.7) 67.92 (↓ 0.6) 70.11 (↑ 1.6)
ResNet-50 (80.86) 49.11 (↓ 12) 46.91 (↓ 14.2) 48.13 (↓ 13) 67.97 (↓ 6.3) 66.16 (↓ 8.1) 68.48 (↓ 5.8) 65.16 (↓ 7.2) 66.46 (↓ 5.9) 66.34 (↓ 6)
WRN-50-2 (81.6) 50.53 (↓ 8) 50.12 (↓ 8.4) 51.03 (↓ 7.5) 69.54 (↓ 5.3) 67.68 (↓ 7.2) 70.34 (↓ 4.5) 65.56 (↓ 6.9) 64.22 (↓ 8.3) 66.66 (↓ 5.8)
DenseNet-121 (74.43) 49.42 (↓ 13.3) 45.95 (↓ 16.8) 52.79 (↓ 9.9) 67.34 (↓ 5.8) 68.03 (↓ 5) 68.52 (↓ 4.6) 66.28 (↓ 5.3) 64.94 (↓ 6.6) 67.38 (↓ 4.2)
SWIN-T (81.47) 45.73 (↑ 23.2) 44.13 (↑ 21.6) 45.00 (↑ 22.5) 71.19 (↓ 1.3) 71.81 (↓ 0.6) 73.13 (↑ 0.7) 72.13 (↑ 1.7) 71.40 (↑ 0.9) 73.77 (↑ 3.3)
EfficientNetV2-S (84.22) 46.59 (↓ 10.8) 46.59 (↓ 10.8) 47.51 (↓ 9.8) 70.00 (↓ 9.6) 71.48 (↓ 8.1) 73.18 (↓ 6.4) 57.99 (↓ 14.9) 59.74 (↓ 13.1) 64.98 (↓ 7.9)
ViT-B-16 (81.07) 47.84 (↑ 7.2) 49.52 (↑ 8.9) 48.44 (↑ 7.8) 65.86 (↑ 1.6) 65.18 (↑ 0.9) 68.09 (↓ 3.8) 71.06 (↓ 2.9) 71.52 (↓ 2.5) 69.49 (↓ 4.5)
ConvNext-S (83.61) 48.10 (↓ 7.9) 49.93 (↓ 6.1) 48.56 (↓ 7.5) 75.08 (↓ 0.1) 73.40 (↓ 1.7) 74.28 (↓ 0.8) 72.07 (↓ 3) 73.57 (↓ 1.5) 74.56 (↓ 0.5)

Table 2. Average accuracy across 4 clients on OrganAMNIST with α = 0.1. IN top-1 accuracy reported next to model name. Models listed
in decreasing measured training throughput (using AMP). Difference from the accuracy of the centrally trained model in parentheses.
Initialization Random ImageNet Pre-Training DINO on Abdomen-SSL

Agg. Method FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD

ResNet-18 (69.76) 88.8 (↓5.6) 90.76 (↓3.6) 89.16 (↓5.2) 94.02 (↓1.9) 94.78 (↓1.2) 94.33 (↓1.6) 83.54 (↓9.8) 87.89 (↓5.5) 84.76 (↓8.6)
NF-ResNet-50 (80.64) 71.6 (↓16.3) 78.84 (↓9.1) 73.8 (↓14.1) 94.39 (↓1.4) 95.26 (↓0.5) 95.2 (↓0.6) 84.58 (↓7.9) 87.93 (↓4.5) 86.92 (↓5.5)
ResNet-50 (80.86) 83.32 (↓10.5) 86.6 (↓7.2) 84.82 (↓9.0) 91.98 (↓3.5) 92.98 (↓2.5) 92.32 (↓3.1) 81.33 (↓12.9) 85.69 (↓8.5) 81.49 (↓12.8)
WRN-50-2 (81.6) 84.52 (↓9.6) 85.58 (↓8.5) 83.82 (↓10.3) 90.56 (↓4.3) 91.71 (↓3.2) 90.4 (↓4.5) 79.98 (↓13.7) 85.02 (↓8.6) 77.09 (↓16.5)
DenseNet-121 (74.43) 86.01 (↓8.6) 89.12 (↓5.5) 85.06 (↓9.6) 94.72 (↓2.2) 95.1 (↓1.9) 94.68 (↓2.3) 85.26 (↓9.2) 89.21 (↓5.3) 84.94 (↓9.5)
SWIN-T (81.474) 83.03 (↓8.6) 85.17 (↓6.4) 83.16 (↓8.4) 95.64 (↓0.6) 95.83 (↓0.4) 95.83 (↓0.4) 83.4 (↓8.2) 86.4 (↓5.2) 84.8 (↓6.8)
EfficientNetV2-S (84.22) 88.8 (↓6.2) 91.46 (↓3.6) 89.19 (↓5.9) 94.0 (↓2.7) 94.26 (↓2.4) 93.46 (↓3.2) 61.19 (↓31.6) 67.54 (↓25.3) 56.2 (↓36.6)
ViT-B-16 (81.072) 83.14 (↓4.2) 83.52 (↓3.9) 83.85 (↓3.5) 95.3 (↓1.5) 95.96 (↓0.9) 96.01 (↓0.8) 81.34 (↓6.8) 83.76 (↓4.4) 81.99 (↓6.2)
ConvNext-S (83.61) 53.76 (↓35.4) 56.07 (↓33.1) 55.34 (↓33.8) 94.12 (↓2.6) 94.92 (↓1.8) 94.84 (↓1.9) 87.31 (↓6.0) 89.68 (↓3.7) 87.64 (↓5.7)

networks that altogether do not use BN in their original form. To this
end, we use a Normalization-Free (NF) ResNet-50 [14] (25.6M).
NF architectures rely on Scaled Weight Standardization (SWS),
i.e. careful scaling of weights, instead of normalization, to achieve
correct signal propagation during learning.

Since the emergence of vision transformers, more advanced con-
volutional architectures have been introduced with the goal of out-
performing them, and we pick EfficientNetV2-S [15] (21.5M, uses
BN), an evolution of ResNets guided by neural architecture search,
and ConvNext-S [16] (50.2M, uses LN), which borrows design prin-
ciples from SWIN transformers, as modern CNN benchmarks.

From the transformer family, we benchmark a ViT-B-16 [17]
(86.6M) and a SWIN-T [18] (28.3M), to compare convolution with
self-attention. Both employ Layer Normalization (LN).

2.2. (I)initialization

Both random and IN initializations are of interest depending on the
application, as explained in section 1; all rows in rows in tables 1,2,3
list the pre-trained model’s top-1 accuracy on IN. However, in med-
ical imaging scenarios, it is often the case that i) the target task im-
ages are dissimilar to the natural ones of IN and ii) medical datasets
with similar images are publicly available. This leads us to examine
whether training the models using self-supervised learning (SSL) as
a pre-cursor task can be a beneficial initialization strategy for FL. We
construct two task-relevant pre-training datasets, Abdomen-SSL and
Skin-SSL (Fig 1), and train all models using DINO [19]for 100/300
epochs on the two datasets respectively, with the length chosen based
on the loss plateauing.

2.3. (A)ggregation methods

We limit our scope to methods that produce a global model wg ,
and not a personalized model for each client. We select three

of the most common aggregation strategies, namely FedAvg, Fe-
dOpt, and SCAFFOLD, which share in common their ease/lack of
hyper-parameters to be tuned, allowing for more universal insights.
FedAvg [2] is the seminal FL parameter averaging method, which
uses as the sample-weighted average of client models wi to produce
wg = Ni/N ·

∑C
i=1 wi.

The FedOpt [20] family of methods de-couples server and
client-side optimization, and the server can employ any optimizer
like SGD, Adam, etc. We use SGD with momentum at the server,
similar to FedAvgM [3], with the addition of a cosine annealing to
the server learning rate. The server learning rate is 1.0, tuned from
{0.5, 1}, and the momentum to 0.6, tuned from {0.6, 0.9}.

SCAFFOLD [4] utilizes control variates to correct local model
updates against client-drift (divergence from the global model).
These parameters are of equal size to the model and there is one
set being stored locally and another exchanged alongside the model,
leading to twice the communication and triple the local storage cost.

3. EXPERIMENTS

3.1. Datasets

We conduct experiments on abdominal CT with OrganAMNIST [21]
and skin lesions with Fed-ISIC [22]. The latter is naturally federated
with multi-center data, and for the former we construct a federated
version of 4 clients, by following convention and using the Dirichlet
partitioning strategy [3], which induces size and label distribution
heterogeneity based on the controllable concentration parameter α.
We examine an IID setting by setting α = 100, and a highly het-
erogeneous one by setting α = 0.1. This leads to a wide range
of difficulty to benchmark the chosen models, from the grayscale
IID OrganAMNIST to the highly imbalanced, both in label distribu-
tion and data size RGB, Fed-ISIC. Moreover, the distance between



Table 3. Average accuracy across 4 clients on OrganAMNIST with α = 100. IN top-1 accuracy reported next to model name. Models listed
in decreasing measured training throughput (using AMP). Difference from accuracy of centrally trained model in parentheses.
Initialization Random ImageNet Pre-Training DINO on Abdomen-SSL

Agg. Method FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD FedAvg FedOpt SCAFFOLD

ResNet-18 (69.76) 93.8 (↓0.6) 94.3 (↓0.1) 93.97 (↓0.4) 96.05 (↑0.1) 96.38 (↑0.4) 95.99 (↓0.0) 92.06 (↓1.3) 93.47 (↑0.1) 92.14 (↓1.2)
NF-ResNet-50 (80.64) 84.28 (↓3.6) 88.09 (↑0.2) 84.4 (↓3.5) 95.5 (↓0.3) 95.64 (↓0.1) 95.6 (↓0.2) 92.08 (↓0.4) 92.74 (↑0.3) 92.09 (↓0.4)
ResNet-50 (80.86) 93.39 (↓0.5) 94.0 (↑0.2) 93.54 (↓0.3) 94.98 (↓0.5) 95.56 (↑0.1) 95.34 (↓0.1) 92.8 (↓1.4) 93.51 (↓0.7) 92.69 (↓1.5)
WRN-50-2 (81.6) 93.74 (↓0.3) 93.99 (↓0.1) 93.72 (↓0.4) 94.7 (↓0.2) 95.42 (↑0.5) 94.76 (↓0.1) 92.24 (↓1.4) 93.1 (↓0.5) 92.52 (↓1.1)
DenseNet-121 (74.43) 93.95 (↓0.7) 94.28 (↓0.3) 93.66 (↓1.0) 96.53 (↓0.4) 97.0 (↓0.0) 96.66 (↓0.3) 93.4 (↓1.1) 94.11 (↓0.4) 93.38 (↓1.1)
SWIN-T (81.47) 90.64 (↓1.0) 90.89 (↓0.7) 90.27 (↓1.3) 96.61 (↑0.4) 96.82 (↑0.6) 96.6 (↑0.4) 89.66 (↓2.0) 90.86 (↓0.8) 89.68 (↓1.9)
EfficientNetV2-S (84.22) 94.84 (↓0.2) 95.13 (↑0.1) 94.96 (↓0.1) 96.22 (↓0.5) 96.48 (↓0.2) 96.28 (↓0.4) 89.18 (↓3.6) 92.03 (↓0.8) 89.02 (↓3.8)
ViT-B-16 (81.07) 86.42 (↓1.0) 86.34 (↓1.0) 86.54 (↓0.8) 96.12 (↓0.7) 96.3 (↓0.5) 96.25 (↓0.6) 86.67 (↓1.5) 87.61 (↓0.6) 86.94 (↓1.2)
ConvNext-S (83.61) 84.56 (↓4.6) 87.29 (↓1.9) 78.48 (↓10.7) 96.3 (↓0.4) 96.24 (↓0.5) 96.18 (↓0.5) 92.15 (↓1.2) 92.87 (↓0.5) 92.24 (↓1.1)

the domains and ImageNet provides more insight into learning dy-
namics for the medical community compared to testing on natural
images.

OrganAMNIST [21] consists of 58,850 28x28 grayscale im-
ages with 11 organ labels segmented from axial slices of abdominal
CT scans. We upscale the images to 224x224 and copy the chan-
nel over 3 times for compatibility with IN pre-trained models. Each
client has a training and validation set, with the local validation set
used to determine good local training hyper-parameters. After that,
clients train on the union of their two sets, and accuracy is reported
on the original, pooled, test dataset of 17,778 images.

The Abdomen-SSL dataset was created by extracting 20 slices
around the center of each volume in 4 abdominal CT datasets [23, 24,
25], cropping around the subject, resizing to 224x224 and copying
the channel over, resulting in ∼ 21, 000 whole abdomen images. As
seen in Fig.1, Abdomen-SSL is quite different to OrganAMNIST.
Due to OrganAMNIST’s uniqueness, it is difficult to design a more
similar source dataset. However, SSL pre-training can still help the
models learn general organ structures and channel redundancy.

Fed-ISIC [22] consists of 23,247 RGB skin lesion images with
8 classes, split across 6 clients representing different datacenters and
imaging technologies. Fed-ISIC exhibits very high heterogeneity in
size and label imbalance, so performance is measured through bal-
anced accuracy, defined as the average recall on each class. We fol-
low the pre-processing in [22], applying color constancy, and centre-
cropping while maintaining the aspect ratio.

Skin-SSL was created from 3 skin lesion datasets [26, 27, 28],
with the largest contributor being ISIC-2020, which has no overlap
with Fed-ISIC, and consists predominantly of benign samples.

For all settings, besides federated training, we also train a central
model on the pooled datasets to compare the FL models against, and
tables 1,2,3 present each model’s difference from its centrally trained
counterpart in parentheses.

3.2. Hyper-parameters

In order to concentrate on the ARIA effects, we limit our scope
to shared hyper-parameters between the clients (no client-level tun-
ing), and across aggregation methods. For Fed-ISIC, we follow [22]
and train for 20 rounds, using Weighted Focal Loss, a batch size
of 64, Adam with lr = 5 · 10−4, and a cosine annealer. Instead
of local epochs, each client performs 200 local steps, tuned from
[100,200,600], which allows the biggest client to iterate through all
of its data, but keeps client drift to a minimum. While 200 steps
worked best for SSL and IN pre-training, we use 600 local steps
when training from scratch as a parity measure since these models
have not seen any data prior, and this improved performance. Adam,

surprisingly, worked well for all networks, outperforming both SGD
with momentum (favors CNNs) and AdamW (favors transformers)
in our tests. The learning rate was tuned in the range [10−4, 10−3];
the combination of adaptive momentum buffers at each client and
cosine annealing led to different initial learning rates having mini-
mal effect. For OrganAMNIST, we used the local validation sets of
the IID partition and majority voting to decide on the use of momen-
tum SGD with (lr = 0.01, m = 0.9), a cosine annealing schedule, a
batch size of 128, and 50 local steps. We transfer these settings to the
heterogeneous case, since the heterogeneity is typically not known
about in advance. Results are averaged across two seeds. We open
source our code1, which uses NVFlare [29].

4. RESULTS AND DISCUSSION

4.1. Comparing initializations

In the IID OrganAMNIST experiment (Table 3) IN pretrained net-
works virtually solve the task, and achieve very low gaps compared
to centralized training (max 0.6%). This gap increases as hetero-
geneity in the other two datasets increases, as expected, but over-
all the IN Initialization outperformed the others. This leads to our
first important finding: ImageNet is generally the best initializa-
tion for federated learning on medical datasets. In SSL initial-
ization, Skin-SSL pre-training is predictably more useful (Table 1)
than Abdomen-SSL due to the source and target images being much
more similar (Figure 1). Abdomen SSL pre-training reduce perfor-
mance on average, but helped ”prime” ConvNext-S and NF-ResNet-
50 compared to random initialization, indicating that SSL can coun-
teract the reduction in regularization due to not using BN. Overall,
Skin-SSL greatly increases the performance of all models com-
pared to random initialization. Moreover, despite the much shorter
pre-training time compared to IN, the SSL initialized ConvNext-S
with SCAFFOLD nearly achieves the best overall performance. In
summary, our findings suggest SSL can be extremely beneficial in
medical FL in multiple scenarios, from task-specific architectures
that have no public IN pre-trained weights, to tasks that cannot ad-
here to IN image size, and potentially even tasks beyond visual clas-
sification, such as segmentation.

4.2. ResNet depth, width, and connection density

Despite deepening and widening generally improving the centrally
trained model, the increased central training accuracy was not trans-
ferred to FL training. Hence, in our findings, ResNets do not scale

1https://github.com/siomvas/ARIA



well in FL tasks, as ResNet-18 outperforms its deeper and wider
counterparts in all settings except for Fed-ISIC with IN weights (Ta-
ble 1), where the much larger and slower WRN-50-2 is modestly bet-
ter. If a low memory footprint is a priority, DenseNet-121, which has
much fewer parameters than all other networks but lower throughput
than other residual networks, performs just as well or better depend-
ing on the task, suggesting that its salient characteristic, feature re-
use, is beneficial for FL.

4.3. Comparing normalization methods

It has been widely discussed, most recently in [13], that BN im-
pedes FL performance under heterogeneous settings due to the local
clients calculating statistics that are not representative of each other’s
datasets. Simultaneously, BN is reliant on the batch size being suf-
ficiently big to accurately approximate the mean and variance, in
contrast to LN and SWS. For OrganAMNIST we use a batch size of
128; as a result, we observe (Tables 2, 3) that randomly initialized
BN models outperform LN and SWS ones, under both IID and
non-IID distributions, but there is no difference when the models are
pre-trained. For Fed-ISIC, where the batch size was 64, BN could
not help random models as much, and when using IN weights the
top three models all use LN or SWS.

Compared to the (generally bigger) LN networks, the perfor-
mance of NF-ResNet (which uses SWS) does not suffer as much for
the random initialization, and the model even performs the best out
of all random models on Fed-ISIC. This makes NF networks and
SWS even more promising for FL applications.

4.4. Transformers vs CNNs for FL

Randomly initialized transformers perform poorly in our experi-
ments, a finding that is perhaps due their lack of inductive bias com-
pared to CNNs, and one that we cannot attribute to model size or
speed, as SWIN-T often outperformed ViT-B while being similar
to ResNet-50 in size. Performance between IN initialized trans-
formers and CNNs was very similar, with the latter being, on aver-
age, marginally better when using IN weights. Thus, we find the ex-
tra space and time to train a VIT-B-16 model compared to ResNet-50
mostly fruitless. SSL initialization greatly increases transformer
performance, and outperforms the IN one in Fed-ISIC. This is de-
spite our SSL pipeline not being tuned to its full extent, which can
likely further increase SSL performance. Hence, we argue that trans-
former models have a place in medical FL applications where the
target domain is dissimilar to ImageNet, and suitable datasets to con-
duct SSL are available.

4.5. Comparing aggregation methods

In OrganAMNIST, FedOpt, on average, increases test accuracy by
0.68% and 2.4% compared to FedAvg for the IID and non-IID case
respectively, while the difference between SCAFFOLD and FedAvg
is negligible. In Fed-ISIC, FedOpt led, on average, to a loss of 0.59%
balanced accuracy, but SCAFFOLD consistently improved perfor-
mance (1.32% on average), meaning that if the extra memory and
bandwidth are not an issue, SCAFFOLD is worth considering.
This is in line with its design being for heterogeneous cross-silo, full
participation settings, like ours. Despite that, a very important result
is that the best ARIA uses FedAvg (Table 1, IN pre-training). Over-
all, we found the benefits of switching architectures greater than
those of switching aggregation methods, suggesting we need to
re-examine how much we have progressed on the algorithmic front
since the introduction of FedAvg.

Fig. 1. Samples from the SSL and respective target datasets.

5. CONCLUSION

We conduct the first comprehensive study on ARIAs for federated
cross-silo visual classification, giving answers to which parts of an
ARIA are most important, and how choices for each compare be-
tween them. We find and present evidence that shows FedAvg is
still not definitively surpassed, that transformers are not better than
CNNs despite recent claims, that IN initialization is beneficial, and,
in its absence/non-applicability, SSL also improves performance, as
well as the interconnection between these elements. Our work can
inform practitioners in the cross-silo setting on which ARIA to em-
ploy in real-world scenarios.
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Cholakkal, “Handling data heterogeneity via architectural de-
sign for federated visual recognition,” in Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023.



[6] Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han Wei Shen, and
Wei-Lun Chao, “On the importance and applicability of pre-
training for federated learning,” in The Eleventh International
Conference on Learning Representations, 2022.

[7] John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi,
and Michael Rabbat, “Where to begin? on the impact of pre-
training and initialization in federated learning,” arXiv preprint
arXiv:2210.08090, 2022.

[8] Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia, Feifei
Wang, Ehsan Adeli, Li Fei-Fei, and Daniel Rubin, “Rethink-
ing architecture design for tackling data heterogeneity in feder-
ated learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 10061–
10071.

[9] Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Vi-
raj Prabhu, Gowthami Somepalli, Prithvijit Chattopadhyay,
Mark Ibrahim, Adrien Bardes, Judy Hoffman, et al., “Bat-
tle of the backbones: A large-scale comparison of pre-
trained models across computer vision tasks,” arXiv preprint
arXiv:2310.19909, 2023.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Identity mappings in deep residual networks,” in Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part IV
14. Springer, 2016, pp. 630–645.

[11] Sergey Zagoruyko and Nikos Komodakis, “Wide residual net-
works,” arXiv preprint arXiv:1605.07146, 2016.

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger, “Densely connected convolutional net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 4700–4708.

[13] Jike Zhong, Hong-You Chen, and Wei-Lun Chao, “Making
batch normalization great in federated deep learning,” arXiv
preprint arXiv:2303.06530, 2023.

[14] Andrew Brock, Soham De, and Samuel L Smith, “Characteriz-
ing signal propagation to close the performance gap in unnor-
malized resnets,” arXiv preprint arXiv:2101.08692, 2021.

[15] Mingxing Tan and Quoc Le, “Efficientnetv2: Smaller models
and faster training,” in International conference on machine
learning. PMLR, 2021, pp. 10096–10106.

[16] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie, “A convnet for the
2020s,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2022, pp. 11976–11986.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929,
2020.

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo, “Swin transformer: Hi-
erarchical vision transformer using shifted windows,” in Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, 2021, pp. 10012–10022.

[19] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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