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Abstract— CAVs have recently attracted interest both for 

researchers and automotive industry. 

Among the various issues with the design of Autonomous 

vehicles (AV) including CAV, safety and security assurance 

as well as dealing effectively with the trade-off among these 

have been recognized as very important. The debate 

regarding what level of safety and security of (C)AV is 

socially acceptable is very active at the moment [1], [2].  

In this paper, we present a probabilistic modelling 

approach to dealing with the problem of safety assessment of 

CAV under cyber-attacks, and demonstrate its plausibility 

and usefulness in ranking various modes of vulnerability of 

the essential components of (C) AV such as the AV perception 

system and safety monitors. 

Keywords—Digital CAV, Road hazards, Cyber-attacks, 

Safety, Probabilisitic modelling, Perception system, Safety 

monitors. 

I. INTRODUCTION 

In a world where connectivity is ever-increasing, cyber-

security is of the utmost importance. This is even more 

important for safety-critical cyber-physical systems, i.e. 

systems whose failures can cause physical harm to people 

(including death) or to the environment.  

The vehicles have evolved in recent years from manual 

transmission, to driver assistance with very significant effort 

nowadays being expended on bringing the level of autonomy 

to levels which require little to no input from the driver. 

Naturally, as the control is reduced and given to an 

autonomous system, there will be flaws in the design and 

implementations of various components used in (C)AVs. 

Their vulnerabilities, too, create new risks for malfunction 

caused by malicious agents. 

CAVs exacerbate the problem of cybersecurity. CAVs are 

attractive as they equip each vehicle with ability to 

communicate with the outside world through connections that 

allow it to have improved awareness of its surroundings, not 

merely relying on the human driver or on the sensors of an 

individual AV. However, the benefits come with new risks –

compromises of the road systems intended to improve the 

situational awareness of the individual CAVs can be used by 

adversaries as a single point of failure to broadcast inaccurate 

or outright misleading information about the CAV 

surroundings.  

This ability of an AV to ‘see’ the environment is delegated 

to the AV perception system, consisting of the sensors, 

communications and a machine learning system that makes 

decisions based on the information it receives [3]. Having the 

perception and other relevant systems based on machine 

learning is the key difference between regular vehicles and 

AVs. 

When the perception system fails accidentally or is 

interfered with by deliberate adversarial actions, the 

perception will instruct the AV control decisions to take 

incorrect and potentially dangerous actions, which can 

include or lead to various lethal scenarios. 

Likewise, as with any safety-critical system, in order for 

CAVs to have vehicle safety, they rely on Safety Monitors 

(SM). These are independent devices which control the 

actions taken by the CAV and, in case of danger, would take 

corrective action (e.g., would stop the CAV safely). An 

example of SM are devices implementing a set of rules 

consistent with the Responsibility Sensitive Safety (RSS), 

proposed by MobilEye, an Intel Corp company [4]. SM, 

however, too, may be subjected to cyber-attacks and the rules 

they implement can be altered by an adversary. Successful 

attack on SM thus, would deny the CAV an essential element 

of its safety. A (C) AV, certified as safe due to a good SM, 

may become unsafe should the SM integrity be compromised 

by a successful attack.  

This paper models the effects of successful cyber-attacks 

on (C)AV perception system and on (C)AV SM. We 

identified several vulnerability modes of these two 

subsystems and compare these by looking at their impact on 

(C)AV safety.  

The paper is organized as follows. Section 2 describes in 

more detail the problem that we study. Section 3 present a 

probabilistic model used in the paper. Section 4 presents the 

findings, in section 5 we discuss their implications. Section 6 

concludes the work and outlines areas for future study.  

II. RELATED RESEARCH  

In this section, we provide a summary of the recent 

relevant research on safety and security, particularly in 

relation to vehicle perception. 

Various CAV communications across short and long 

distances are discussed in [5]. These communications include 

V2V (Vehicle-to-Vehicle) and V2I (Vehicle-to-

Infrastructure) as the main forms of vehicular communication 

on the outside.  

V2V is low latency, short-range communication that requires 

messages to be sent quickly when vehicles are in close 

proximity to inform one another of their status as well as their 
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own information on the road. The protocols for this are 

typically Dedicated Short Range Communications (DSRC) 

and sometimes cellular and Wi-Fi [5]. 

Communications from the vehicle end typically happen 

through the Onboard Unit (OBU) of the vehicle, which sends 

and receives data to other nodes on the vehicular network. 

V2I usually happens for longer range information transfer, 

such as for traffic data being sent across different areas, using 

the OBU of the vehicles to communicate with the Roadside 

Unit (RSU), which is the main infrastructure component of 

CAV networks. 

Vehicular communications are typically vulnerable to attacks 

such as Denial of Service (DoS) and impersonation, namely 

an attack performed by pretending to be another node such as 

a vehicle or RSU. 

In [6], we see a detailed safety and security review, where 

it is stated that connected safety-critical systems tend not to 

be secure and that the solutions implemented in such systems 

do not always support each other as they could be applied to 

separate sections, causing issues such as added delay in other 

subsystems. 

Important outlined areas for looking at safety include the 

methods of evaluating it, including the need to evaluate safety 

and security at the same time. Risk analysis is a key part of 

safety and security as modelling could help identify the 

greatest risks. 

An important part of perception is discussed in [3], which 

is adversarial examples, one of the most serious CAV 

vulnerabilities related to machine learning. Adversarial 

examples are when different mathematical inputs are used to 

perturb images received by the perception system so that the 

machine learning model classifies them incorrectly. By doing 

this, the definition of what is being seen is changed and can 

mislead the CAV control thus endangering (e.g., a pedestrian 

is overlooked or misclassified). 

This is further evaluated in [7], where features such as 

transferability are considered, meaning that another, similar 

machine learning model can be built and tested to create the 

ideal perturbations that are harder to detect.  

In [8], we get an evaluation of both attacks and defences 

in CAVs, starting off by describing the popularity of CAVs, 

which also make them attractive to those wishing to perform 

cyberattacks. 

The CAV itself is described as being a series of sensors 

and communication mechanisms when it comes to the 

perception needed to be autonomous, after which it goes into 

their vulnerabilities. 

All sensors of the types LiDAR, radar and GPS are 

vulnerable to spoofing and jamming. Spoofing is where 

previously collected information in the form of sensor signals 

is sent to the sensors instead of legitimate information, which 

they will consider correct, having no means of knowing 

otherwise. This happens in GPS by using stronger signals than 

usual to overpower the ones belonging to the satellites in 

space, either to spoof or to completely jam the GPS receiver. 

Cameras simply take images, so they can be blinded with 

bright light, and even damaged with laser light. In other cases, 

adversarial examples can be fed through the cameras to 

confuse the machine learning system. 

Solutions to attacks on the sensors include things like 

sensor fusion, where all sensors are combined to have an 

overall view of the surroundings, or the introduction of 

redundant sensors so that an attack on one sensor does not 

compromise that entire section of the perception system. 

Other solutions include filtering of laser light and even some 

detection systems. 

For the in-vehicle network, the bus is one of the bigger 

issues, particularly for the CAN (Controller Area Network),  

described in [9], which indicates the following vulnerabilities 

in the CAN bus: 

 

 Broadcast transmission allows for eavesdropping. 

 Lack of authentication allows injection of false, 

potentially malicious messages. 

 The CAN is able to be flooded with high priority 

frames so other ECUs (Electronic Control Unit) 

cannot transmit, essentially DoSing the CAN. 

 No encryption on CAN frames makes them readable 

to anyone connected to the bus. 

 Units connected to the attack surface can provide 

direct access to the CAN, potentially granting total 

vehicle control. 

Various solutions have been proposed to this problem, 

including methods to detect intruders, introduction of 

authentication to the bus or components connected to it and 

even encryption, though this could have unwanted overheads 

depending on where it is deployed (i.e., on the ECUs). 

Finally, a recently developed attack is described in [10], 

where it is possible to use a form of LiDAR spoofing to make 

pedestrians and potentially other obstacles completely 

invisible to the sensor. By injecting invisible echoes of the 

LiDAR signal near the sensor, legitimate cloud points are 

discarded so that the obstacle is no longer detected, with the 

injected LiDAR signals being fired at the angle of detection 

of the vehicle LiDAR. Simulations in the article showed that 

the vehicle can accelerate and collide with hidden objects 

despite the fact that they are only being obscured for short 

periods of time, though if the planning of the vehicle is 

designed to be more careful then it is less likely to do so. 

Methods can also be applied to detect false signals that are 

made for this purpose in order to prevent it being as easy to 

implement.  

III. METHODOLOGY 

The methodology used in this work is based on the 

approach developed in [11]. The behaviour of an AV is 

modelled using a stochastic activity network (SAN) model 

(Fig. 2), in which road hazards are captured as a stochastic 

process – they occur at random and their duration is also a 

random variable – an approach consistent with ISO 26262. 

Examples of road hazards are situations on the road which 

may lead to accidents, but not all hazards lead to accidents. 

The likelihood of a hazard escalating to an accident is affected 

by the seriousness of the hazard, and by the quality of the AV 

perception and on AV safety monitors. Quality of perception, 

typically based on machine learning, is limited. Some report 

rates of failure [12] in excess of 2%, often significantly 

higher. This level of quality in practice may lead to a 

significant probability of overlooking road hazards (e.g., 

objects on the road) which, in turn, may lead to a significant 

risk of an accident, much higher than if the hazard is detected 

as soon as it occurs. AV safety is also affected by the quality 

of safety monitors, which by design should prevent AV 

accidents even in case failures of some of the AV 

components. Achieving very high reliability of safety 

monitors, however, is also problematic [13], which may lead 

to accidents.  
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The prior work is extended by adding a model of cyber-

attacks and modelling in detail the possible effects of 

successful cyber-attacks on the behaviour of the AV sub-

systems critical for AV safety – the perception system and 

safety monitors. The approach taken here is based on our prior 

work [14]–[16]. The essence of the adopted modeling 

approach is that successful attacks can reduce reliability of the 

compromised software component. We compare the impact 

on AV safety of different modes of compromising different 

critical for safety AV sub-systems. This comparison allows us 

to rank the modes of compromise and thus establish the most 

serious AV cyber-vulnerability.  

The probabilistic model relies on the formalism of 

Stochastic Activity Networks (SANs) [17] supported by the 

Mobius tool developed by the University of Illinois at Urban 

Champaign.  SAN is an extension of Petri nets, a formalism 

popular in Computer Science.  

The structure of the model is shown on Fig. 1. It includes 

two “atomic” models1 known as ”StateMachine” and 

“AttackModel”, which will be discussed in turn below.  

 
Fig. 1. Structure of the SAN model used in the study 

  
 

Fig. 2. Vehicle Hazard Model 

Fig. 2 shows a stochastic state machine which models the 

AV operation in the presence of road hazards in a “trusted 

environment” (e.g., when no cyber-attacks take place but also 

captures the effect on this behaviour of successful cyber-

attacks).  

The state of the operational environment oscillates 

between the state OK, which model the road conditions free 

of road hazards, and a number of states where a road hazard 

either occurs or is falsely perceived to have occurred.  Below 

the states in Fig. 2 are explained: 

                                                           
1 “Atomic models” in SAN are used to deal with complexity of large 

models. A complex model can be split into parts using several atomic 

models, which are put together using one or more composed models 

(as the one shown in Fig. 1). The link between atomic models is 

achieved via a set of “shared places” – these are places which appear 

 OK: This state models road conditions free from 

road hazards. 

 Accident: The vehicle has now had an accident. 

This is an absorbing state for the model.  

 FalselyPerceivedHazard: This state models the 

situation when the AV incorrectly perceives the 

current road conditions as hazardous (false hazard). 

 CorrectlyPerceivedHazard: This state models the 

hazardous state on the road which is correctly 

detected as hazardous by the AV.  

 OLH: This state models the hazardous situation on 

the road which is overlooked by the AV. 

 CPH_Late: This state models the situation with a 

road hazard which is eventually detected by the AV 

as such, but with some delay. For some time since 

the occurrence of the hazard, the AV has remained 

unaware of the hazard.  

 Compromised: This state captures the fact that a 

cyber-attack on AV has succeeded and, as we will 

see below, affects the various modelling parameters 

(the transitions between the states) or the “case” 

probabilities, which we explain next. The state is in 

fact a “shared place” in the terminology of SAN: 

this is a state which is present in a different atomic 

model “Vehicle Attack Model”.  

In addition to the states, Fig. 2 includes a number of timed 

transitions between states, which are modelled as timed 

activities. These are:  

 OK2FH: This timed activity captures the intervals 

between false alarms (i.e. between events of 

perception system flags the road condition as 

hazardous when no hazard is actually present). 

 OK2Hazard: This time activity models the 

intervals between the hazardous situations on the 

road.  

 CorHaz2Acci: This timed activity models the 

duration of a road hazards which is correctly and 

timely detected (i.e., as soon as it occurs). There are 

two alternative ways for a road hazard to finish – 

either it escalates to an accident, or instead the 

hazard “goes away” (i.e., the situation on the road 

is not dangerous any longer). These two options are 

captured by the two “cases”, which can take place 

at the end of the hazard: one returning the model 

back to the “OK” state, or the second which leads 

to the state “Accident”. The cases occur with 

probabilities the sum of which must be 1 (i.e. with 

certainty one of the options will take place). 

 FailHaz2Acc: This timed activity models the 

duration of the false hazard and can have outcomes 

similar to CorHaz2Acci – either the false hazard 

goes away without any visible consequences and the 

model returns to “OK” state, or the false hazard 

escalates to an accident. The two options occur with 

in several atomic models and provide semantic links between the 

parts (atomic models). The reader interested in details, should 

consult the user guide provided by the Mobius vendors.  
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probabilities, the sum of which is 1. The possibility 

of transitioning to an accident is quite plausible in 

different scenarios – erratic AV driving, when the 

AV decreases speed without an obvious reason may 

take the other vehicles in the vicinity by “surprise”, 

thus leading to an accident.   

 sojournTime: Models the duration of overlooking 

a hazard, given the hazard has occurred. This 

interval can end in one of the following 

possibilities: escalation to “Accident”, moving to 

state “OLH”, when the hazard is ongoing and is 

eventually detected but with some delay, or 

returning back to “OK” state, if the hazard goes 

away. These three options are captured by 3 cases 

and their respective probabilities.  

 HDLateAcc: This transition models the duration of 

hazard after its successful detection (with a delay), 

which may result in an accident or going back to 

the “OK” state. This transition is conceptually the 

same as CorHaz2Acci, but the length of the hazard 

which is difficult to detect may differ stochastically 

from the length of the hazards which are detected 

immediately upon their occurrence. The model 

allows for systematic exploration of the differences 

between lengths of hazards which are difficult or 

easy to detect.  

In addition to the model of AV on the road, we 

model attacks on the AV vehicle. The model is 

shown in Fig. 3.  

The second atomic model – “AttackModel” is shown in 

Fig. 3, which, as the name suggests, captures the cyber-

attacks on the AV. Despite its simplicity, the model requires 

two parameters – the intensity of the attacks and the 

probability of attack success. Both aspects are captured by the 

timed activity “Ready2Attack”: the rate of this activity 

(modelled as a global variable “AttackRate”, see Table 1 

below) models attacks intensity; the case probabilities at the 

output of timed activity “Ready2Attack” represent the two 

possible outcomes of an attack instance – a successful or 

unsuccessful attack. The probability of success is a defined as 

a modelling parameter (“attackSuccess”, see Table 1 below). 

Under normal conditions the model is in OK state, meaning 

that the state of the software which might be subjected to 

attacks has not been compromised. Once an attack is launched 

and it succeeds, the model moves to a new state 

“Compromised”. The effects of successful attacks are handled 

in the other atomic model “StateMachine”. The atomic model 

“AttackModel” also captures the possibility of recovery from 

successful attacks – this happens with intensity defined in the 

timed activity “CompromisedReset”. 

The model is such that after the first successful attacks the 

state Compromised is reached and no further successful 

attacks will have any impact.  

 

Fig. 3. Structure of Atomic Model AttackModel  

The effect of successful attacks may vary depending on 

the payload of a successful attack (e.g. what the successful 

attack may try to achieve). We call the hypothetical harm that 

successful cyber-attacks can lead to  

“vulnerability modes”, following the spirit of Failure Mode 

and Effect Analysis (FMEA), a popular safety technique,  and 

its recent extension FMFEA [18]. We have conducted an 

informal analysis of AVs and identified several “vulnerability 

modes” which an adversary can exploit to harm the operation 

of AV. We focused this analysis on potential vulnerabilities 

of AV perception and safety monitors:  

- Vulnerabilities of the perception system. The 

perception system may be harmed in a number of 

ways:  

o V_mode 1: Omissions/misclassifications of 

road hazards can be exacerbated by 

successful attacks by reducing the likelihood 

of hazard detection immediately upon its 

occurrence. Examples of such attacks are the 

“adversarial examples” widely documented 

in the literature. 

o V_mode 2: Another related vulnerability 

mode would be maliciously extending the 

duration of “hazard blindness” beyond the 

accidental “blindness” which under normal 

road conditions is relatively short in the 

order of no more than a few seconds. 

- Vulnerability modes which may affect the reliability 

of AV safety monitors (SM) is of particular interest. 

Often safety monitors are designed conservatively to 

guarantee AV safety even at the expense of 

availability (false alarms). Successful adversaries 

may alter the behaviour of SMs (e.g., those defined 

by RSS [4], [13]) by modifying the integrity of the 

safety rules that SMs implement. There are three 

separate aspects that we explore: 

o V_mode 3: Increased SM failure rate given 

the road hazard is detected correctly. 

o V_mode 4: Increased SM failure given the 

road hazards is overlooked. 

o V_mode 5: Increased SM failure rate given 

road the hazard is eventually detected, but 

with some delay (e.g., in when the road 

hazard is a “difficult” one).  

In this paper we compare the seriousness of the identified 

vulnerability modes by conducting a “what-if” analysis: 

hypothesizing that a successful attack may exploit one of the 

identified vulnerability modes and proceeding compare the 

safety impact of such exploits in turn. We compare the effect 

of such exploits against the “base-line”, when attacks are 

disabled and also against the “worst case scenario” whereby 

the attacker may decide to exploit all vulnerability modes 

simultaneously.  

Other vulnerability modes may be present in AVs and 

CAVs (e.g., software implementing (C) AV control) such as 

in the case of vulnerabilities which affect the communication 

(e.g., speed or integrity) inside an AV or in the case of CAVs, 

either V2V and/or V2I. Although the approach presented in 

the paper can be applied to these vulnerabilities, their analysis 

is outside the scope of this paper.  
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IV. RESULTS 

A. Model parameters 

Given the vulnerability modes we introduced a number of 

model parameters which allow us to model the effect of 

exploiting the different vulnerability modes. These 

parameters are described next: 

 HazardScale: This parameter allows us to study the 

impact of V_mode 1 on AV safety. By varying it 

(e.g., increasing it by an order of magnitude) we can 

establish how sensitive AV safety is to deterioration 

of hazard detection rate caused by an adversary.  

 DelayScale: This parameter allows us to look at the 

impact of V_mode 2, i.e. on how sensitive AV safety 

is to malicious extensions of road hazard 

“blindness”.  

 AccidentScale: This parameter allows us to study 

the impact of exploiting V_mode 3 (e.g., how 

compromising integrity of SM rules may affect AV 

safety).  

 OH2CH_scale: This parameter allows us to assess 

how sensitive AV safety is V_mode 4. 

 LateCH2AccScale: This parameter allows us to 

assess how sensitive AV safety is V_mode 5. This 

parameter is similar to AccidentScale but for those 

difficult road hazards which are initially overlooked, 

but subsequently correctly detected (with some 

delay).  

Given the 5 vulnerability modes we conducted 7 experiments: 

i) the “base line” experiment when attacks are assumed 

“disabled”, ii) 5 experiments when we hypothesize that a 

successful attack will exploit one of the vulnerability modes 

only (thus, we vary only one of the 5 scale parameters listed 

above), and iii) an experiment when we hypothesize that the 

successful attack will exploit all vulnerability modes 

simultaneously.  

We have tested 7 experiments where we start with all the 

above parameters set to 0, activating only one for the 

following five experiments and then activating all of them for 

the final experiment. From this, we will look at the average 

time to an accident in each case. The values below are the 

model parameters adopted for the “base line”.  
Parameter Value Function 

CH2AccRate 0.001 

Accident rate of correctly perceived 

hazard [hours-1] 

CH2OKRate 856.3 
Rate of recovery from correctly 
perceived hazard [hours-1] 

FH2AccRate 1.0E-5 

Rate of accident due to falsely 

perceived hazard [hours-1] 

FH2OKRate 856.3 
Rate of recovery from falsely perceived 
hazard [hours-1] 

HazardRate 197.4 Rate of hazard occurrence [hours-1] 

MH2AccRate 0.01  

Accident rate due to delayed hazard 

perception [hours-1] 

OH2OKRate 1000.0 Overlooked hazard recovery [hours-1] 

attackRate 0.1 Rate of attack [hours-1] 

attackReset 1.0E-4 Rate of attack model reset [hours-1] 

attackSuccess 0.5 Rate of successful attack [hours-1] 

falseHazardProb 0.0 Rate of false hazards [hours-1] 

isRSSperfect 0 Is the safety system perfect or not 

missHazardProb 0.05 

Rate of missing/overlooking a hazard 

[hours-1] 

Table 1: Fixed Experimental Parameters 

All distributions used in the model are assumed to be 

exponentially distributed. The parameter values listed in 

Table 1 are derived from publicly available datasets. Details 

on parameter estimation are provided in [11]. 

The values of the scale parameters used in the experiments 

with attacks enabled are given in Table 2.  
Experiment 1 2 3 4 5 6 7 

AccidentScale - 10 - - - - 10 

DelayScale - - 1000 - - - 1000 

HazardScale - - - 10 - - 10 

LateCH2AccScale  - - - - 10 - 10 

OH2CH_scale - - - - - 10 10 

Table 2: Activated Parameters of Compromised Hazard Perception 

For these results, particularly in Table 1, more realistic results 

were obtained from the ITSC paper where drones had been 

used to monitor vehicle behaviour on the road, with the 

exception of the parameters being varied in Table 2, which 

were chosen with the assumption that any effect on the 

different parts of the hazard perception system would be bad 

irrespective of the nature of the attack. The parameters aim to 

increase the rate or probability of an accident by at least one 

order of magnitude. 

B. Rewards 

A measure of interest in all experiments was the probability 

of accident occurring at pre-defined instances of time in hours 

of operation. These instances are: 100, 1100, 2100, 3100, 

4100, 5100, 6100, 7100, 8100 and 9100 

C. Model Solutions 

There are two ways to solve SAN models and the relevant 

experiments: 

i. Monte Carlo simulations 

ii. Numeric Solvers 

Our experiments were solved using a numeric solver for 

transient analysis, provided by the Mobius tool. The solver 

was set to obtain values of the rewards with an accuracy of 

10-9, which is effectively an exact solution. Monte Carlo 

simulations would have had to run for millions of repetitions 

to get results that were anywhere near the level of accuracy 

afforded by the numeric solver. 

The findings are shown in Fig. 4.  

 
Fig. 4. Comparison of the impact on AV safety of exploiting 

vulnerability modes 
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Time 

[hours]        
Ex.1 Ex.3 Ex.4 Ex.5 Ex.6 

100 0.004165 0.004189 0.004165 0.004165 0.004165 

1100 0.004606 0.004633 0.004606 0.004606 0.004606 

2100 0.00502 0.005049 0.00502 0.00502 0.00502 

3100 0.005433 0.005465 0.005433 0.005434 0.005433 

4100 0.005847 0.005881 0.005847 0.005847 0.005847 

5100 0.00626 0.006297 0.00626 0.00626 0.00626 

6100 0.006674 0.006712 0.006674 0.006674 0.006674 

7100 0.007087 0.007128 0.007087 0.007087 0.007087 

8100 0.007499 0.007543 0.0075 0.0075 0.007499 

9100 0.007912 0.007958 0.007912 0.007912 0.007912 

Table 3:  Numerical comparison of vulnerability modes on AV 

safety. 

It is clear from Fig. 4 that the impact on AV safety of 

exploiting different vulnerability modes differs considerably 

between vulnerability modes. The impact of maliciously 

altering the SM rate of failure (AccidentScale) is much greater 

than the impact of all other vulnerabilities. Increasing this rate 

by an order of magnitude translates into a dramatic increase 

of the probability of accident from ~10-3 without attacks to 

14% with an attack after 100 hours of operation. The 

probability of an accident quickly escalates for longer times 

of operation (of 1100 … 9100). In contrast, the impact of 

exploiting other vulnerability modes is invisible on Fig. 4. 

The actual values of the chosen reward at different times for 

those vulnerability modes are detailed in Table 3. The 

observation that reliability of SM is critically important 

parameter is consistent with the results reported in [11]. The 

additional insight that our model provides is the magnitude of 

the impact under the particular model of cyber - attacks.  

Another striking observation from Fig. 4 is that the worst-

case scenario (an attack which exploits all vulnerability 

modes simultaneously) is not merely a sum of the impacts of 

the different vulnerabilities (most of which are negligible in 

comparison with the impact of increased AccidentRate). The 

combined exploit of all vulnerability modes simultaneously 

leads to almost a certain accident after 100 hours – the 

probability of accident after 100 hours of operation is greater 

than 90%. This combined effect is quite surprising indeed.  

V. DISCUSSION  

While the findings are quite clear from Fig. 4, the recorded 

observations need further elaboration.  

The dramatic impact of AccidentRate is probably due to 

the fact that the increase of this rate is not countered by any 

defence. All other vulnerability modes have to overcome 

additional barriers. For instance, the lower branch of the 

atomic model StateMachine where most of the vulnerability 

modes are, is relatively rare. Based on the adopted model 

parameters, under normal circumstances a road hazard is 

overlooked with a probability of 5%, which is relatively low. 

An increase of the probability of overlooking a hazard as a 

result of a malicious activity is possible, of course, but then 

the “single vulnerability mode exploited” assumption means 

that if the hazard omission is increased by an order of 

magnitude (to 50%) the other parameters leading to accident 

are still low and the model remains “stiff” with a significant 

likelihood of the road accident going away before an accident 

occurs. If another vulnerability mode is exploited there is only 

a 5% chance for overlooking the hazard, which limits the 

scope for these other exploits to manifest themselves.  

Exploiting all vulnerability modes simultaneously 

changes the situation considerably. A malicious increase of 

the probability of overlooking a hazard by an order of 

magnitude will make the two branches of StateMachine 

model – the branch of correctly and timely detecting a road 

hazard and the branch of overlooking the hazard – equally 

likely (each will occur with a probability of 50%). The 

increased likelihood of overlooking a road hazard, however, 

now will be exacerbated by the fact that the overlooked 

hazard will lead to an increased rate of accident before and 

after the sojournTime. The additional barriers of low accident 

rates are now removed under the “worst-case” scenario. As a 

result, the probability of having an accident when the hazard 

is overlooked becomes very dramatic.  

These results summarized in Fig. 4 suggest that the 

combined effects of multiple vulnerability modes may be 

significant and protecting against exploiting only some of 

them (e.g., making the safety motor very reliable and 

intrusion tolerant [19]) may be insufficient. More detailed 

analysis of exploiting simultaneously multiple vulnerabilities 

may reveal additional insight as to how one can allocate 

defences against exploiting different vulnerability modes 

under the additional constraint of having a limited budget of 

making an AV safe and cyber-resilient.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we proposed a method of ranking 

vulnerability modes of an autonomous vehicle using a 

probabilistic model. The model that we used is an extension 

of the previous work [11] by adding to it a model of a generic 

cyber-attack which may lead to a “compromise” of different 

components in an AV. We call the location of the compromise 

vulnerability modes. We concentrate on two important for AV 

sub-system – the perception system and the safety monitors.  

We conducted an informal safety analysis to identify 

several vulnerability modes and then study the possible 

impact on system safety of attacks exploiting these 

vulnerability modes one at a time or all vulnerability modes 

simultaneously.  

Our finding demonstrate that the safety impact of 

exploiting different vulnerabilities may vary significantly: 

some vulnerability modes have a negligible impact, while the 

effect of exploiting others – is quite dramatic. These 

observations, although expected, reinforce one of the main 

outcomes of this work that conducting quantitative analysis 

of the style we outline in this paper may provide an important 

insight and guide the AV designers where to spend their time, 

effort and resources on making an AV cyber-resilient.  

The second observation worth highlighting is that the 

combined effect of exploiting several vulnerability modes 

may be “non-linear” and very dramatic. Even when 

quantifying the impact of exploiting a single vulnerability is 

judged “negligible”, one should be prepared to quantify the 

combined effect of exploiting several vulnerability modes 

simultaneously. Conclusions based on analysing individual 

vulnerability modes separately and on assumptions that the 

combined effect could be “predicted” as a linear sum of the 

individual effects may be grossly inaccurate. This last 

observation seems particularly important since in safety 

engineering often the analysis is limited to dealing with a 

single failure at a time (the aforementioned FMEA is an 

example). While accidental simultaneous failure can 
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justifiably be assumed rare2, the assumption that a successful 

attack will only exploit a single vulnerability mode is very 

hard to justify and quantifying the worst possible impact of a 

successful attack should be based on considerations that a 

successful attack may exploit more than one vulnerability 

mode.  

The model that we used in the study relied on a significant 

number of parameters, these were estimated elsewhere  [11] 

using publicly available datasets.  

The parameters of the attacks, however (intensity and 

probability of success) that we used in this work are not based 

on any empirical data. These are likely to vary significantly 

between different deployment and operational environments. 

We intend to extend our survey of literature and look for 

datasets to help with the parameterization of the AttackModel. 

An alternative approach would be to conduct sensitivity 

analysis on the values of the AttackModel parameters. In this 

case, rather than looking for specific values of attacks 

intensity and probability of success we will need to establish 

bounds on the range of values for intensity/probability of 

success and conduct sensitivity analysis, another area for 

future research.  

Finally, we did not consider falsely perceived road 

hazards in this work. We plan to extend the presented work in 

the future and account for the impact of successful attacks that 

may lead to false alarms.  
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2 Except in the case of common cause/common mode failures, of 

course.  


