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theoretical prediction is that the initial profiles can settle into either two-soliton solutions or
into any number of N-soliton solutions. In the latter case this implies that the solutions exhibit
oscillations that spread in time but remain finite. We confirm these analytical predictions by
explicitly solving the associated Cauchy problem numerically with multiple initial profiles for
various higher time-derivative versions of integrable modified Korteweg-de Vries equations. In
the case with the theoretical possibility of a decay into two-soliton solutions, the emergence of
underlying singularities may prevent the profiles from fully developing or may be accompanied
by oscillatory, chargeless standing waves at the origin.

Keywords: Integrable Field Theories, Integrable Hierarchies

ArXiv ePrint: 2406.18255

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2024)199

https://orcid.org/0000-0002-7896-7161
https://orcid.org/0000-0003-3083-9352
mailto:a.fring@city.ac.uk
mailto:taira904@iis.u-tokyo.ac.jp
mailto:bethan.turner.2@city.ac.uk
https://doi.org/10.48550/arXiv.2406.18255
https://doi.org/10.1007/JHEP09(2024)199


J
H
E
P
0
9
(
2
0
2
4
)
1
9
9

Contents

1 Introduction 1

2 Emergent solitons from initial value disturbances 2

3 Emergent solitons in modified Korteweg-de Vries systems 3
3.1 Emergent solitons in the Korteweg-de Vries system 3
3.2 Emergent solitons in higher charge KdV Hamiltonian systems 6
3.3 Emergent solitons in the modified Korteweg-de Vries equation 7
3.4 Solitary waves in the nonintegrable modified KdV equations 9

4 Emergent solitons in HTDT versions of modified KdV equations 10
4.1 Emergent solitons in the HTDT version of the KdV system 10
4.2 Emergent solitons in the HTDT version of the modified KdV system 12
4.3 Solitary waves in nonintegrable HTD mKdV systems 14

5 Conclusions 14

1 Introduction

The emergence of stable soliton solutions from the evolution of generic initial profiles in
continuous versions [1] of the seminal Fermi-Pasta-Ulam-Tsingou models [2, 3] is one of
the archetypical effects in classical nonlinear integrable field theories. The integrability
of the models ensures that the system evolves into some of the N -soliton solutions of the
underlying nonlinear integrable equation when N > 1. Following [4, 5] one can employ the
conservation laws of the model and predict how many solitons will emerge together with
their amplitudes. Here, our main purpose is to investigate the analogue of this phenomenon
in a set of integrable higher time-derivative theories (HTDT).

Despite the fact that HTDT unavoidably contain singularities in their classical solutions
and lead to inconsistent quantum versions, they have kept being of interest because at the same
time they also posses a number of very attractive features, such as being renormalizable [6–11].
Several proposals have been made to resolve the issues of non-normalisable states and/or
the unboundedness of their spectra in the quantum version of HTDT [12–16]. HTDT have
been applied in a variety of areas in physics, such as in attempts to quantize gravity [17], in
applications to cosmology [18–21], finite temperature physics [22], black hole solutions [23],
BRST quantisation [24, 25], in a massless particle descriptions of bosons and fermions [26, 27]
and in supersymmetric theories [28, 29]. Classical and quantum stability properties of HTDT
were investigated in [30–35].

There are of course many different versions of HTDT, [6-35]. Here we will follow a
recent suggestion [36] and focus our investigations on a particular class of models that are
obtained from exchanging space and time in Hamiltonian and higher charge systems of
modified Korteweg-de Vries type. For the specific example such an idea was previously
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pursued in [37]. While in general the original versions of higher charge theories are still of
interest in their own right [38, 39], we continue here our investigation from [40] on HTDT by
concentrating on the study of soliton solutions in these systems. Here we focus in particular
on the previously not investigated aspect of how an initial profile evolves into an analytical
soliton solution as dictated by integrability. The result will shed new light on the nature
of the instabilities inevitably present in HTDTs.

Our manuscript is organised as follows: In section 2 we recall the standard argument of
how to predict the amplitudes of the emerging solitons for a given initial value profile and
discuss how this reasoning needs to be modified for HTDT. In section 3 we carry out a detailed
analytical and numerical analysis of the emergent solitons in the standard KdV system, some
of its higher charge Hamiltonian systems, the integrable modified KdV system and their
nonintegrable modified versions. In section 4 we carry out the adequately modified analysis
for the HTDT of the systems considered in section 3. Our conclusions are stated in section 5.

2 Emergent solitons from initial value disturbances

We briefly recall from [4] the standard argument of how the conservation laws of integrable
systems can be used to predict the amplitudes of the emergent solitions from an initial
value profile that is evolved with an integrable nonlinear equation and elaborate on how it
needs to be modified for HTDT. In general, we are considering here the following Cauchy
initial value problem

ut = F (u, ux, . . . , unx), u(x, t = 0) = f(x), lim
|x|→∞

u(x, t), . . . , u(n−1)x(x, t) = 0, (2.1)

where the function F might be nonlinear in the fields u and its partial x-derivatives up to
order n and the function f(x) characterises the initial value profile.

The system is assumed to be integrable so that one can exploit infinitely many conservation
laws of the form

∂Qℓ(x, t)
∂t

+ ∂χℓ(x, t)
∂x

= 0, ℓ ∈ N, (2.2)

relating the charge densities Qℓ to the flux densities χℓ. Then Qℓ(t) =
∫∞
−∞Qℓ(x, t)dx is

conserved in time, i.e. dQ/dt = 0 for lim|x|→∞ χℓ(x, t) = 0, where the latter is ensured by our
asymptotic conditions in (2.1). It is well-known that any N -soliton solution behaves asymp-
totically in time as the sum of N one-soliton solutions. Therefore, the corresponding charges
Q(N)

ℓ (a1, . . . , aN ), depending on some parameters ai, such as for instance the amplitudes, is
the sum of the asymptotically acquired one-soliton contributions, i.e., Q(N)

ℓ =
∑N

i=1 Q
(1)
ℓ (ai).

Assuming that the initial profile breaks up into an N -soliton then implies that for each
charge the entire initial profile charge Q(I)

ℓ is converted into the sum of the one-soliton
contributions to that charge, i.e.,

Q(I)
ℓ =

∫ ∞

−∞
Qℓ [u(x, 0)] dx =

N∑
i=1

Q(1)
ℓ (ai). (2.3)

At this point it is still not determined into how many solitons N the initial profile will evolve.
However, each of the equations in (2.3) provides a constraint, which can be used to answer
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this question in concrete models. Moreover, one can solve the system of equations (2.3) for
the amplitudes ai to predict them in an approximate fashion. In [4] only combination of the
lowest charges were taken into account to make theoretical predictions. However, one should
stress that all possibilities need to be respected, which makes this system of equations highly
overdetermined. Here we refine the analysis of [4] by including more combinations into the
analysis. Thus, our approach leads to more detailed predictions and crucially, especially for
HTDT, also predicts when a break up into multi-soliton solution is prohibited.

In HTDT the Cauchy problem (2.1) must be changed into

0 = F (u, ux, . . . , unx, ut, . . . , umt), u(x, 0) = f1(x), . . . , u(m−1)t(x, 0) = f(m−1)(x), (2.4)

together with adequate boundary conditions. All m functions fi are independent. Follow-
ing [40–42] we assume here in the first instance that the HTDT is obtained from (2.1) by
exchanging time and space, i.e. x ↔ t. This approach allows us to use the conservation
laws (2.3) with Qℓ(x, t) ↔ χℓ(t, x) and make similar prediction for the number of solitons
and their amplitudes in these theories into which the initial profiles f1, . . . fm evolve. The
interesting aspect to be investigated here is how the different types of singularities, that are
inevitable present in a HTDT, manifest themselves in this break up process.

3 Emergent solitons in modified Korteweg-de Vries systems

We start our investigation with the series of the modified KdV system in the form

ut + n(n− 1)un−2ux + uxxx = 0, n ∈ N. (3.1)

Rescaling equation (3.1) by

x→ σ2λ3−2n
n

(n− 1)2n2x, t→ λnt, u→ λnu, λn :=
[

(n− 1)3n3

σ2

] 1
4−3n

, (3.2)

we obtain

ut + un−2ux + 1
σ2uxxx = 0. (3.3)

Next we solve the Cauchy problem for equation (3.3) with initial value profile u(x, t = 0) = f(x)
and vanishing asymptotic values lim|x|→∞ u(x, t), ut(x, t), utt(x, t) = 0. In accordance with
the similarity principle the parameter σ, that was introduced through the scaling (3.2),
is known to separate regions of different characteristic behaviour [4]. Letting the initial
profile evolve by means of (3.3), the integrability of the models for n = 3, 4 ensures that
the profile will eventually settle into a multi-soliton solution and hence for large times into
a number of one-soliton solutions. For the nonintegrable systems with n > 4 no solitons
are expected to emerge.

3.1 Emergent solitons in the Korteweg-de Vries system

The first case we consider is to revisit the standard KdV-equation corresponding to the
equation of motion (3.1) with n = 3. We recall from [43–45] the charge and flux densities of
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the first four conserved quantities, which when appropriately scaled become

Q1 = u, χ1 = 1
2u

2 + 1
σ2uxx, (3.4)

Q2 = 1
2u

2, χ2 = 1
3u

3 + 1
2σ2

(
2uuxx − u2

xx

)
,

Q3 = 1
3u

3 − 1
σ2u

2
x, χ3 = 1

4u
4 + 1

σ2

(
u2uxx + 2uux

)
+ 1
σ4u

2
xx,

Q4 = 1
4u

4 − 3
σ2uu

2
x + 9

5σ4u
2
xx,

χ4 = 1
5u

5 + 1
σ2

(
u3uxx − 9

2u
2u2

x

)
+ 3
σ4

(
u2

xuxx − 2uuxuxxx + 8uu2
xx

5

)

− 9
5σ6

(
u2

xxx − 2uxxuxxxx

)
.

For the one-soliton solution of (3.3)

u(x, t) = a sech2
[
σ

σs

√
a

(
x− a

3 t
)]

, (3.5)

with nonlinearity index σs =
√

12, we compute with (3.4) the conserved charges

Q1 = 2σs
√
a

σ
, Q2 = 2σsa

3/2

3σ , Q3 = 4σsa
5/2

15σ , Q4 = 4σsa
7/2

35σ . (3.6)

Thus, if the initial profile would be converted entirely into a one-soliton solution, relation (2.3)
implies that Qℓ = Q(I)

ℓ . In principle, these relations could be used to predict the amplitude
of the emerging soliton. However, when solved for the amplitudes as functions of σ these
equations lead to vastly mismatching solutions for different values of ℓ and hence the solution
is not unique, see the yellow region in figure 1 for some examples. The marked amplitudes
of some solitary waves obtained from the numerical solutions are very crudely identified, as
we have ignored the typical oscillatory tail that spreads to negative infinity as time evolves.
This means the various constraints imposed by the integrability of the system prevent a full
conversion of the initial profile into a one-soliton, so that the region σ < σc in which no
multi-soliton can form, is referred to as a “nonsoliton” region [4]. In this region the initial
disturbance decays into an oscillating wave that spreads throughout space.

Assuming instead that the initial profile evolves into a two-soliton with amplitudes
a1 and a2, relation (2.3) yields the two constraining equations from the first two equation
with ℓ = 1 and ℓ = 2

√
a1 +

√
a2 = σ

2σs
Q(I)

1 =: I1, and a
3/2
1 + a

3/2
2 = 3σ

2σs
Q(I)

2 =: I2, (3.7)

which are easily solved to

a1/2 =

I1
2 ±

√
4I1I2 − I4

1

2
√

3I1

2

. (3.8)

Demanding the amplitudes to be real and its square roots to be positive, as assumed in (3.7),
gives the following interval for σ in which the initial profile may consistently evolves into
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Figure 1. Domains of N -soliton states emerging from an initial Gaussian profile in the KdV system
together with their predicted amplitudes. The nonsoliton, two-soliton, three-soliton and four-soliton
regions are shaded in yellow, blue, red and green, respectively. The black crosses and dots represent
the values of the amplitudes from the actual numerical solutions of the Cauchy problem for specific
values of σ. For the values of the black dots we show the explicit solutions in figure 2.

two-soliton solutions

σc < σ < 2σc, σc = 12
√
Q(I)

2 /
(
Q(I)

1

)3
. (3.9)

For a Gaussian initial profile f(x) = e−x2 we obtain from (2.3)

Q(I)
1 =

√
π, Q(I)

2 =
√
π

23 , Q(I)
3 =

√
π

33 − 1
σ2

√
π

2 , Q(I)
4 =

√
π

8 − 2
σ2

√
π

3 + 1
σ4

27
5

√
π

2 .
(3.10)

This information is sufficient to predict the amplitudes in the different N -soliton regions.
The bounds for the two-soliton region (3.9) are then characterised by σc = 6×21/4/

√
π ≈

4.026, which is in agreement with [4]. However, here we refine this analysis and consider
also solutions from combining conservation laws for different values of ℓ. In figure 1 we have
included for a variety of combinations the numerically obtained predicted amplitudes together
with the actual numerical solutions of the initial value problem.

For the two-soliton case we observe that, unlike as in the nonsoliton region, there are
regions for which the predicted amplitudes from different combinations roughly coincide.
For σc < σ ⪅ 7.22 the two one-soliton solutions are formed with small deviations from the
anticipated amplitudes because each combination of the conservation laws leads to slightly
different predictions. For σ ≈ 7.22 the agreement is extremely good, since all the predicted
amplitudes almost exactly coincide, the system is left with no ambiguities into which solution
to settle, see figure 2 panel (a).

However, in the region σ ≳ 7.22 the predictions start to differ more significantly. Moreover,
beyond that value even three-soliton solution may occur, hence the “three-soliton region”
is partially encroaching into the “two-soliton region” that was predicted in [4]. In figure 1
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Figure 2. Evolution of an initial Gaussian profile into a two-soliton solution panel (a) and three-
solition solution panel (b) as time evolves for the KdV system for σ = 7.2 and σ = 7.5, respectively.
The predicted two and three-soliton amplitudes are depicted as dotted red and blue lines, respectively.

we have also included some solutions for these cases computed numerically from solving
the three equations

3∑
i=1

√
ai = σ

2σs
Q(I)

1 ,
3∑

i=1
a

3/2
i = 3σ

2σs
Q(I)

2 ,
3∑

i=1
a

5/2
i = 15σ

4σs
Q(I)

3 . (3.11)

We see in figure 1 that the predicted amplitudes from combining different combinations of
the conservation laws matches quite well the actual numerical solution. We also note in panel
(b) of figure 2 that the acquired values in the “two-soliton region” are in fact those predicted
for the three-soliton with one of the amplitudes being very small so that the solutions only
appears to be a two-soliton. We have also included the predictions of the four-soliton solutions
which start to emerge at around σ ≈ 10.355 where all the three-soliton predictions and the
largest amplitudes of the four-soliton prediction coincide.

The observed features suggest more generally that an initial profile will always break up
into the maximal number of one-solitons that is allowed by the conservation laws (2.3).

3.2 Emergent solitons in higher charge KdV Hamiltonian systems

Next we interpret the higher KdV charge Q4 as a Hamiltonian. In order to derive Hamilton’s
equation of motion we need to identify the canonical fields. Here we may achieve this by a
direct extrapolation from the standard Hamiltonian system [46], for a more general treatment
see [40]. Multiplying this charge by −1/3, introducing the canonical momentum field π = ψx/2
by adding zero to it and replacing u→ ψx, we obtain the higher charge Hamiltonian density

H4 = πψt −
1
2ψtψx − 1

12ψ
4
x + 1

σ2ψxψ
2
xx − 3

5σ4ψ
2
xxx. (3.12)

The corresponding Hamilton’s equations resulting from this Hamiltonian are

ψt = δH4
δπ

= ∂H4
∂π

= ψt, (3.13)

πt = −δH4
δϕ

= −
[
∂H4
∂ψ

− ∂x

(
∂H4
∂ψx

)
+ ∂2

x

(
∂H4
∂ψxx

)
− ∂3

x

(
∂H4
∂ψxxx

)]
(3.14)

= −1
2ψxt −

1
3(ψ3

x)x + 1
σ2 (ψ2

xx)x − 2
σ2 (ψxψxx)xx − 6

5σ4 (ψxxx)xxx.
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In terms of the standard field u the equation of motion reads

ut + u2ux + 2
σ2

[
(u2

x)x + uuxxx

]
+ 5

6σ4u5x = 0. (3.15)

We find a one-soliton solution for (3.15)

u(x, t) = a sech2
[
σ

σs

√
a

(
x− 2a2

15 t
)]

. (3.16)

The charges obtained from integrating the densities (3.4) are also conserved, subject to
the equation of motion (3.15). The fluxes will of course change. We report the first three
expressions

χ1 = u3

3 + 1
σ2

(
u2

x + 2uuxx

)
+ 6

5σ4u4x, (3.17)

χ2 = u4

4 + 2
σ2u

2uxx + 3
5σ4

(
2uu4x − 2uxuxxx + u2

xx

)
, (3.18)

χ3 = u5

5 + 2
σ2u

2
(
uuxx − u2

x

)
+ 2

5σ4

[
u
(
3uu4x + 8u2

xx

)
− 14u2

xuxx − 16uuxuxxx

]
(3.19)

+ 6
5σ6

(
2u4xuxx − 2uxu5x − u2

xxx

)
.

Since the static part of the two one-soliton solutions (3.5) and (3.16) coincide, and also
the general expression for the corresponding charges are identical, the predictions for the
amplitudes and the number of one-solitons to emerge are the same. The only difference
between (3.5) and (3.16) are the soliton speeds v1 = a/3 and v2 = 2a2/15, respectively. Since
v2 < v1 for 0 < a < 5/2 and the upper bound for any of the acquired one-soliton amplitudes
is 2, see [47], the solitons in the higher charge Hamiltonian system will always be identical in
height but slower than those in the original KdV equation. We have verified this numerically.

3.3 Emergent solitons in the modified Korteweg-de Vries equation

Next we consider modified KdV-equation corresponding to (3.1) with n = 4, which in standard
terminology is the original modified KdV equation. The associated charge and flux densities of
the first five conserved quantities can be found in [43–45], and when scaled appropriately read

Q1 = 1
2u

2, χ1 = 1
4u

4 + 1
σ2

(
uuxx − 1

2u
2
x

)
, (3.20)

Q2 = 1
4u

4 − 3
2σ2u

2
x, χ2 = 1

6u
6 + 1

σ2

(
u3uxx − 3u2u2

x

)
+ 3
σ4

(1
2u

2
xx − uxuxxx

)
,

Q3 = 1
6u

6 − 5
σ2u

2u2
x + 3

σ4u
2
xx,

χ3 = 1
8u

8 + 1
2σ2

(
2u5uxx − 15u4u2

x

)
+ 1

2σ4

[
4u2

(
4u2

xx − 5uxuxxx

)
+ 20uu2

xuxx + u4
x

]
+ 1
σ6

(
6uxxuxxxx − 4u2

xxx

)
,

Q4 = u8

8 − 21
2σ2u

4u2
x − 63

10σ4

(
u4

x − 2u2u2
xx

)
− 27

5σ6u
2
xxx,

– 7 –
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χ4 = 1
10u

10 + 1
σ2u

6
(
uuxx − 14u2

x

)
− 21

10σ4u
2
(
10u2uxuxxx − 11u2u2

xx − 20uu2
xuxx + 12u4

x

)
− 9

5σ6

(
10u2u2

xxx − 14u2u4xuxx + 28uuxuxxuxxx + u2
xu

2
xx + 14u3

xuxxx − 2uu3
xx

)
+ 27

5σ8

(
u2

4x − 2u5xuxxx

)
,

Q5 = 1
10u

10 − 18
σ2u

6u2
x + 18

5σ4u
2
(
9u2u2

xx − 19u4
x

)
+ 108

35σ6

(
51u2

xu
2
xx + 20uu3

xx − 9u2u2
xxx

)
+ 324

35σ8u
2
4x.

We will not report the flux χ5 here as it is rather lengthy. For the one-soliton solution
of (3.1) with n = 4

u(x, t) = a sech
[
a σ√

6

(
x− a2

6 t
)]

, (3.21)

we compute the values of the conserved charges

Q1 =
√

6 a
σ

, Q2 = a3
√

6σ
, Q3 = a5

5
√

6σ
, Q4 =

√
3a7

70
√

2σ
, Q5 = a9

105
√

6σ
, (3.22)

and also the values the charges (2.3) acquire with the same Gaussian initial profile as previously

Q(I)
1 = 1

2

√
π

2 , Q(I)
2 =

√
π

8 − 3
2σ2

√
π

2 , Q(I)
3 = 1

6

√
π

6 − 5
√
π

4σ2 + 9
σ4

√
π

2 , (3.23)

Q(I)
4 = 1

16

√
π

2 − 7
2σ2

√
π

6 + 1197
√
π

80σ4 − 81
σ6

√
π

2 .

Q(I)
5 = 1

10

√
π

10 − 9
4σ2

√
π

2 + 62
√

6π
5σ4 − 15741

√
π

70σ6 + 486
√

2π
σ8 (3.24)

As explained in much detail in the previous sections, we use the charge conservation equa-
tion (2.3) for various combinations to determine the different soliton regions. Taking ℓ = 1, 2
we compute the predicted two-soliton amplitudes to

a± =
√

3πσ2 ±
√

288
√

2σ2 − πσ4 − 3456
24σ . (3.25)

For 3.0213 ≈
(
24

√
2
(
6 −

√
36 − 3π

)
/π
)1/2

≤ σ ≤
(
24
√

2
(
6 +

√
36 + 3π

)
/π
)1/2

≈ 10.9781
these amplitudes are real. We also compute the predicted three-soliton amplitudes by taking
ℓ = 1, 2, 3, which turn out to be real for 7.392064 ≤ σ ≤ 14.947399. Thus compared to
the prediction for the KdV equation we have a much larger overlap between the two and
three-soliton region. A comparison with the actual numerical results from evolving the initial
profile is presented in figure 3.

We observed that once a three-soliton is possible to occur, the numerical solutions do in
fact settle into them. The same holds for the predicted four-soliton amplitude predictions,
that are also included into figure 3, when compared to the three soliton predictions. This
observation confirms the general statement made at the end of section 3.1, that an initial
profile always breaks up into the maximal possible number of multi-solitons.
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Figure 3. Domains of N -soliton states emerging from an initial Gaussian profile in the mKdV system
together with their predicted amplitudes. Colour conventions are the same as in figure 1 with the
addition of the five-soliton region in grey.
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Figure 4. Evolution of an initial Gaussian profile in nonintegrable versions of the modified KdV
equations with n = 5, σ = 7 and n = 6, σ = 4 in panel (a) and panel (b), respectively.

3.4 Solitary waves in the nonintegrable modified KdV equations

For completeness we also present here two examples for a nonintegrable version of (3.1), i.e.
for n > 4. For these values the initial profile does not break up into a multi-soliton solution.
However, the characteristic behaviour for n = 5 is different from the other cases as exemplified
for two cases in figure 4. In the n = 5 case, panel (a), the solution behaves very much like
the integrable cases in the nonsoliton region, i.e. the initial disturbance settles into a moving
solitary wave, but also maintains an oscillatory tail for negative x. However, even for larger
σ we did not observe any break up into multi-soliton solutions, which is of course a signature
of the model not being integrable. In contrast, in the other cases the initial disturbance only
transforms into an oscillatory tail that stretches more and more in space as time evolves. No
solitary waves are emerging in these cases, see panel (b) for an example.
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4 Emergent solitons in HTDT versions of modified KdV equations

Next we consider the rotated version of equation (3.3) with time and space exchanged

ux + un−2ut + 1
σ2uttt = 0, (4.1)

and solve the rotated Cauchy problem (2.4) for this equation with initial value profile
u(x, t = 0) = f1(x), ut(x, t = 0) = f2(x), utt(x, t = 0) = f2(x), and vanishing asymptotic
values lim|x|→∞ u(x, t) = 0. Equivalently, we may of course also rotate (3.1) and change
the scaling (3.2) appropriately to obtain (4.1).

4.1 Emergent solitons in the HTDT version of the KdV system

As mentioned in section 2, in the rotated case the conserved quantities are the same as
in the original equation with x ↔ t and Qℓ(x, t) ↔ χℓ(t, x), i.e., the first charge and flux
densities in the rotated case for n = 3 read

Q1 = 1
2u

2 + 1
σ2utt, χ1 = u, Q2 = 1

3u
3 + 1

2σ2

(
2uutt − u2

tt

)
, χ2 = 1

2u
2, etc. (4.2)

We find the following one-soliton solution to (4.1) for n = 3

u(x, t) = a sech2
[
σ

σs

a3/2

3

(
x− 3

a
t

)]
. (4.3)

In general, the solutions for the rotated KdV system were found to be unstable [41, 42], in
the sense that they develop singularities of different type, as was discussed in detail in [40]
for the periodic solution in terms of Jacobi elliptic functions. Here we investigate how these
features manifest themselves for the emergent soliton solution. At first we solve the rotated
Cauchy problem by implementing the profiles directly from the exact solution (4.3)

u(x, 0) = a sech2
(
a3/2σx

6
√

3

)
, ut(x, 0) = a3/2σ√

3
tanh

(
a3/2σx

6
√

3

)
sech2

(
a3/2σx

6
√

3

)
,

utt(x, 0) = 1
6a

2σ2
[
cosh

(
a3/2σx

3
√

3

)
− 2

]
sech4

(
a3/2σx

6
√

3

)
, lim

|x|→∞
u(x, t) = 0.

(4.4)

Since the one-soliton solutions have finite compact support, the latter boundary value can
be implemented numerically to a very high precision simply by taking the finite values of
the interval in x to be very large. Thus, unlike as for periodic solutions of elliptic type,
for the one-soliton solution the initial boundary value problem becomes a genuine Cauchy
problem even when tackled numerically.

As seen in figure 5, for times up to around t = 4 the numerical solution smoothly follows
the exact solution, but after that a visible singularity starts to develop at the origin in form of
an ever growing oscillation which tends to infinity at t ≈ 6.34. We notice that the oscillations
are standing waves that do not make contributions to any of the charges, which for the values
used in figure 5 are exactly identical to those obtained from the single soliton solution, i.e.
Q1 = 3.26599, Q2 = 2.17732, Q3 = 1.74186 and Q4 = 1.49302.
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Figure 5. Evolution of the exact soliton solution (4.3) (solid black) versus the numerical solution
(coloured dashed) of the rotated Cauchy problem for the KdV system with initial profiles (4.4) for
σ = 3, a = 2 together with an emergent chargeless standing wave at the origin.

Next we solve the rotated Cauchy problem (4.1) for some more generic initial profile, here
taken to be a Gaussian as in the previous section. We may then employ the same arguments
as for the original unrotated case outlined in section 2 and predict the amplitudes of the
emerging solitons. It turns out that for the solution (4.3) the values for the charges Qℓ are
exactly the same as those computed in (3.6), so that the general expressions for the bounds
in (3.9) remain the same. However, the charges Q(I)

ℓ for the initial Gaussian profile are
different in this case. We find Q(I)

1 =
√
π/23, Q(I)

2 =
√
π/33, Q(I)

3 =
√
π/43, Q(I)

4 =
√
π/53.

Using the same argument as previously, we find that the two-soliton region (3.9) is now
confined to the interval σc < 2σc with σc = 16 × 61/4/

√
π ≈ 14.1281. In figure 6 we display

the numerical solutions for the real square root amplitudes of the rotated version of the
charge conservation equation (2.3).

Using the requirement that √
ai ∈ R+ for i = 1, . . . , N , we observe from figure 6 that

only in the two soliton region a consistent solution may be found and no N -soliton solutions
with N > 2 can be formed. For instance, considering the solution for ℓ = 1, 2, 3 we observe
that in the region σ ⪅ 39.85 always one of the solutions is negative, whereas for σ ⪆ 39.85
only one of the solutions is real. Hence, no consistent three-soliton solution can be found.
Indeed, this feature is confirmed by our numerical solutions shown in figure 7, for the initial
profile u(x, 0) = e−x2 , ut(x, 0) = utt(x, 0) = 0 and vanishing asymptotic conditions in x.

At the same time these predictions combine with the emerging of a singularity. For values
of σ in the nonsoliton region σ < σc we observe the emergence of a “defected” one-soliton
and a single peakon that evolves into a single peak singularity. In contrast, for the larger
values of σ in the two-soliton region σc < σ < 2σc, as predicted by (3.9), we see that the wave
indeed starts to morphe into a two one-soliton structure, but before they are fully developed,
the singularity in time has already occurred. We have verified that while the profiles evolve,
the charges are conserved remaining Q1 = 0.627, Q2 = 0.341, Q3 = 0.222, Q4 = 0.159 in
both cases. For various values of σ > 2σc we have also verified that no N -soliton, not even
in some indicated infant stage, begins to emerge. This agrees precisely with our predictions
resulting from the charge conservation equations.
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Figure 6. Predicted real square root amplitudes from different combinations of the rotated version
of the charge conservation equation (2.3) with Gaussian initial profile in the HDT version of the
mKdV-equation.
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Figure 7. Evolution of a Gaussian, vanishing first and second order time-derivative initial profile for
the rotated Cauchy problem of the KdV equation with σ = 2 in the nonsoliton region, panel (a) and
σ = 27 in the two-soliton region, panel (b).

4.2 Emergent solitons in the HTDT version of the modified KdV system

For the case n = 4 in (4.1) we find the exact one-soliton solution

u(x, t) = a sech
[
a3σ

6
√

6

(
x− 6

a2 t

)]
. (4.5)

At first we track this exact solution with the initial profiles directly corresponding to (4.5)

u(x, 0) = a sech
(
a3σ

6
√

6
x

)
, ut(x, 0) = a2σ√

6
tanh

(
a3σx

6
√

6

)
sech

(
a3σx

6
√

6

)
, (4.6)

utt(x, 0) = a3σ2

12

[
cosh

(
a3σx

3
√

6

)
− 3

]
sech3

(
a3σx

6
√

6

)
, lim

|x|→∞
u(x, t) = 0.
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Figure 8. Evolution of the exact soliton solution (4.5) (dashed black) versus the numerical solution
(red solid) of the rotated Cauchy problem for the modified KdV system with initial profiles (4.6) with
an emergent standing wave at the origin for σ = 3 and a = 2

√
2/3.

Unlike as in the HTD version of the KdV systems we can track this exact one-soliton solution
quite precisely to arbitrary large time as depicted in figure 8.

We also observe that similarly as for the HTD version of the KdV system oscillations
start to emerge near the origin, but crucially in this case they remain finite in amplitude.

Next we probe what happens when we send in an arbitrary initial profile. The charges
corresponding to the solution (4.5) are the same as in the unrotated case (3.22). However,
the charges corresponding to the Gaussian initial profile are different

Q(I)
n =

√
π

8 (n+ 1)3 , n = 1, 2, . . . (4.7)

so that the predictions for the amplitudes from the conservation laws will also vary. Our
predictions are depicted in figure 9.

Unlike as in the HTD version of KdV, now negative amplitudes in the solution (4.5) are
permitted, since a→ −a leads to u→ −u, which is also a solution of (4.1) for n even. Thus
we see that for σ ⪅ 39.85 all of the calculated possibilities for N -soliton solutions are actually
realised, i.e., N = 2, 3, 4, 5. We conjecture that this will hold also beyond the cases we have
computed for all N > 5. In the region for σ ⪆ 39.85 only solutions for N > 4 are acquired.

The overall effect on the evolution of the initial profile is that the localised wave tries
to decay into N -soliton soltions with larger and large N as time evolves. We conjecture
that this feature is responsible for the oscillatory behaviour as seen in figure 10. In the
positive x-region we can identify the various N -soliton solutions that can be realised at
different times and notice further that for larger values of σ the larger N -soliton solutions
are settled into much quicker. At the same time the overall behaviour remains benign (or
metastable [48]), in the sense that all the solutions for the amplitudes predicted from different
conservation laws are finite.
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Figure 9. Predicted real amplitudes from different combinations of the rotated version of the charge
conservation equation (2.3) with Gaussian initial profile in the HDT version of the mKdV-equation.
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Figure 10. Evolution of a Gaussian, vanishing first and second order time-derivative initial profile
for the HTD version of the modified KdV equation in different characteristic regions.

4.3 Solitary waves in nonintegrable HTD mKdV systems

Finally, we investigate the HTD systems with n > 4, which are not integrable. The latter
means that we do not expect soliton solutions to appear, but also that all the restrictions
imposed by the conservation laws are absent. Our explicit computations show that all models
with n odd and n > 4 behave for all σ qualitatively in the same manner as the n = 3 theory
in the nonsoliton regime. For n even and n > 4 we observe a similar, but more random
behaviour as in the n = 4 model.

5 Conclusions

In the first part we have revisited the problem of how an initial localised profile evolves when
propagated by means of nonlinear modified KdV systems. Exploiting the integrability of
some of these systems, we used various combinations of conservation laws to predict the
number of solitons into which the profile will be permitted to settle into, as well as their
respective amplitudes. By refining the previously carried out analysis, we found that an
initial profile will always decay into the maximal number of N -solitons that is allowed by
the conservation laws. We conjecture that this is a general feature. For the nonintegrable
versions of these theories we found that in the n = 5 case the features of the nonsoliton regime
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of the integrable systems are still present. In that case a solitary wave moving at constant
speed emerged together with an oscillatory tail at negative x. No decay into multi-solitons
was observed. For all other cases with we found that the profile will always evolve into the
oscillatory tail that will eventually distribute the charge into all modes.

When adapting the analysis to the higher time-derivative versions of these theories, we
derived that the only allowed breakup, by integrability, of the initial profile is into a two-soliton
solution for the n = 3 case. This feature then combines with the previously observed property
that the classical solutions of these theories will develop instabilities [40–42], as is to be
expected in HTDT. For the exact solutions of the HTD-KdV system the singularities manifest
themselves as chargeless standing waves at the origin, whose amplitudes grow to infinity as
time evolves. Instead, in the HTD-mKdV system we found that the profile is allowed to settle
into any of the N -soliton solutions, which gives rise to the oscillations spreading out from the
origin. As the solutions for all of the predicted amplitudes is finite, these oscillations do not
grow to infinity. For the nonintegrable theories with n odd we found the same behaviour as
for the n = 3 theory in the nonsoliton region. For the cases with n even we found that the
disturbance settles into a more random set of oscillations. We noticed that the soliton/solitary
waves in the HTDT are usually slower when compared to their first order time-derivative
counterparts. The spreading speed of the oscillations is faster in all observed cases so that the
solitary wave structures were always found to be absorbed by the oscillations spreading out.

There are some obvious open questions. Here we have always taken a simple Gaussian as
initial profile u(x, 0) = e−x2 , and have set the independent profiles for the first and second
order time-derivative to zero. We found that changing the time derivative profiles does not
change the overall characteristic behaviour, but a more systematic analysis, using different
options for these profiles, would be interesting to obtain. It would be especially insightful to
find out whether it is possible to prolong the lifetime of the soliton/solitary wave structures to
such an extend that they can fully develop before being absorbed by the oscillations. Evidently,
it would be interesting to develop analytical arguments that predict the speed of the spread
of the oscillation study and to study the observed effect in other types of integrable models.
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